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Abstract

For the problems of low-rank matrix completion, the efficiency of the widely-
used nuclear norm technique may be challenged under many circumstances, espe-
cially when certain basis coefficients are fixed, for example, the low-rank correlation
matrix completion in various fields such as the financial market and the low-rank
density matrix completion from the quantum state tomography. To seek a solution
of high recovery quality beyond the reach of the nuclear norm, in this paper, we
propose a rank-corrected procedure using a nuclear semi-norm to generate a new
estimator. For this new estimator, we establish a non-asymptotic recovery error
bound. More importantly, we quantify the reduction of the recovery error bound
for this rank-corrected procedure. Compared with the one obtained for the nuclear
norm penalized least squares estimator, this reduction can be substantial (around
50%). We also provide necessary and sufficient conditions for rank consistency in
the sense of Bach (2008). Very interestingly, these conditions are highly related to
the concept of constraint nondegeneracy in matrix optimization. As a byproduct,
our results provide a theoretical foundation for the majorized penalty method of
Gao and Sun (2010) and Gao (2010) for structured low-rank matrix optimization
problems. Extensive numerical experiments demonstrate that our proposed rank-
corrected procedure can simultaneously achieve a high recovery accuracy and capture
the low-rank structure.
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1 Introduction

The low-rank matrix completion is to recover an unknown low-rank matrix from the
under-sampled observations with or without noises. This problem is of considerable
interest in many application areas, from machine learning to quantum state tomography.
A basic idea to address a low-rank matrix completion problem is to minimize the rank of
a matrix subject to certain constraints from observations. Since the direct minimization
of rank function is generally NP-hard, a widely-used convex relaxation approach is to
replace the rank function with the nuclear norm — the convex envelope of the rank
function over a unit ball of the spectral norm [19].

The nuclear norm technique has been observed to provide a low-rank solution in
practice for a long time (see, e.g., [55, 54, 19]). The first remarkable theoretical charac-
terization for the minimum rank solution via the nuclear norm minimization was given
by Recht, Fazel and Parrilo [64], with the help of the concept of Restricted Isometric
Property (RIP). Recognizing that the matrix completion problem does not obey the
RIP, Candés and Recht [8] introduced the concept of incoherence property and proved
that most low-rank matrices can be exactly recovered from a surprisingly small number
of noiseless observations of randomly sampled entries via the nuclear norm minimization.
The bound of the number of sampled entries was later improved to be near-optimal by
Candés and Tao [9] through a counting argument. Such a bound was also obtained by
Keshavan et al. [37] for their proposed OptSpace algorithm. Later, Gross [30] sharpened
the bound by employing a novel technique from quantum information theory developed
in [31], in which noiseless observations were extended from entries to coefficients relative
to an arbitrary basis. This technique was also adapted by Recht [63], leading to a short
and intelligible analysis. Besides the above results for the noiseless case, matrix com-
pletion with noise was first addressed by Candés and Plan |7]. More recently, nuclear
norm penalized estimators for matrix completion with noise have been well studied by
Koltchinskii, Lounici and Tsybakov [44], Negahban and Wainwright [58], and Klopp [40]
under different settings. Besides the nuclear norm, estimators with other penalties for
matrix completion have also been considered in terms of recoverability in the literature,
e.g., |68, 39, 43, 70, 25].

The nuclear norm technique has been demonstrated to be a successful approach to
encourage a low-rank solution for matrix completion. However, its efficiency may be
challenged in some circumstances. For example, Salakhutdinov and Srebro [69] showed
that when certain rows and/or columns are sampled with high probability, the nuclear
norm minimization may fail in the sense that the number of observations required for
recovery is much more than the setting of most matrix completion problems. It means
that the efficiency of the nuclear norm techniques could be highly weakened under a
general sampling scheme. Negahban and Wainwright 58] also pointed out the impact
of such heavy sampling schemes on the recovery error bound. As a remedy for this, a
weighted nuclear norm (trace norm), based on row- and column-marginals of the sampling
distribution, was suggested in [58, 69, 24| if the prior information on sampling distribution



is available. Moreover, the conditions characterized by Bach [3] for rank consistency of
the nuclear norm penalized least squares estimator may not be satisfied, especially when
certain constraints are involved.

A concrete example of interest is to recover a density matrix of a quantum system
from Pauli measurements in quantum state tomography (see, e.g., [31, 22, 74]). A density
matrix is a Hermitian positive semidefinite matrix of trace one. Clearly, if the constraints
of positive semidefiniteness and trace one are simultaneously imposed on the nuclear norm
minimization, the nuclear norm completely fails in promoting a low-rank solution. Thus,
one of the two constraints has to be abandoned in the nuclear norm minimization and
then be restored in the post-processing stage. In fact, this idea has been much explored
in [31, 22] and the numerical results there indicated its relative efficiency though it still
has much room for improvement.

All the above examples motivate us to ask whether it is possible to go beyond the nu-
clear norm approach for practical use to seek for better performance in low-rank matrix
completion. In this paper, we provide a positive answer to this question with both the-
oretical and empirical supports. We first establish a unified low-rank matrix completion
model, which allows for the imposition of fixed basis coefficients so that the correlation
and the density matrix completion are included as special cases. It means that in our
setting, for any given basis of the matrix space, a few basis coefficients of the true matrix
are assumed to be fixed due to a certain structure or some prior information, and the
rest are allowed to be observed with noises under a general sampling scheme. To pursue
a low-rank solution with a high recovery accuracy, we propose a rank-correction step
to generate a new estimator. The rank-correction step solves a penalized least squares
problem with its penalization being the nuclear norm minus a linear rank-correction term
constructed on a reasonable initial estimator. A satisfactory choice of the initial estimator
could be the nuclear norm penalized least squares estimator or one of its analogies. The
resulting convex matrix optimization problem can be solved by the efficient algorithms
recently developed in [21, 34, 35, 36| even for large-scale cases.

The idea of using a two-stage or even multi-stage procedure is not brand new for
dealing with sparse recovery in the statistical and machine learning literature. The ;-
norm penalized least squares method, also known as the Lasso [71], is very attractive
and popular for variable selection in statistics, thanks to the invention of the fast and
efficient LARS algorithm [12]. On the other hand, the /;-norm penalty has long been
known by statisticians to yield biased estimators and cannot achieve the best estimation
performance [14, 18|. The issue of bias can be overcome by nonconvex penalization
methods, see, e.g., [47, 13, 77|. A multi-stage procedure naturally occurs if the nonconvex
problem obtained is solved by an iterative algorithm [81, 45]. In particular, once a good
initial estimator is used, a two-stage estimator is enough to achieve the desired asymptotic
efficiency, e.g., the adaptive Lasso proposed by Zou [80]. There are also a number of
important works along this line on variable selection, including [47, 53, 78, 33, 79, 52, 15],
to name only a few. For a broad overview, the interested readers are referred to the recent
survey papers [16, 17]. It is natural to extend the ideas from the vector case to the matrix



case. Fazel, Hindi and Boyd [20] first proposed the reweighted trace minimization for
minimizing the rank of a positive semidefinite matrix. In [3], Bach made an important
step in extending the adaptive Lasso of Zou [80] to the matrix case for rank consistency.
However, it is not clear how to apply Bach’s idea to our matrix completion model with
fixed basis coefficients since the required rate of convergence of the initial estimator for
achieving asymptotic properties is no longer valid, as far as we can see. More critically,
there are numerical difficulties in efficiently solving the resulting optimization problems.
Numerical difficulties also occur in the reweighted nuclear norm approach proposed by
Mohan and Fazel [56] as an extension of [20] for rectangular matrices. Iterative reweighted
least squares minimization is an alternative extension of [20] independently proposed by
Mohan and Fazel [57] and Fornasier, Rauhut and Ward [23], taking advantage of the
property that the rank of a matrix is equal to the rank of the product of this matrix and
its transpose. However, the resulting smoothness of inner-iteration subproblems is weak
in encouraging a low-rank solution so much more iterations are needed in general and
thus the computational cost is high especially when hard constraints such as fixed basis
coefficients are involved.

The rank-correction step to be proposed in this paper is for overcoming the above
difficulties. This approach is inspired by the majorized penalty method proposed by
Gao and Sun [27] for solving structured matrix optimization problems with a low-rank
constraint. For our proposed rank-correction step, we establish a non-asymptotic recov-
ery error bound in Frobenius norm, following a similar argument adopted by Klopp in
[40]. We also discuss the impact of adding the rank-correction term on recovery error.
More importantly, we provide an affirmative guarantee that under mild condition the
rank-correction step highly improves the recoverability, compared with the nuclear norm
penalized least squares estimator. As the estimator is expected to be of low-rank, we
also study the asymptotic property — rank consistency in the sense of Bach [3]|, under
the setting that the matrix size is assumed to be fixed. This setting may not be ideal
for analyzing asymptotic properties for matrix completion, but it does allow us to take
the crucial first step to gain insights into the limitation of the nuclear norm penalization.
Among others, the concept of constraint nondegeneracy for conic optimization problem
plays a key role in our analysis. Interestingly, our results of recovery error bound and rank
consistency suggest a consistent criterion for constructing a suitable rank-correction func-
tion. In particular, for the correlation and the density matrix completion problems, we
prove that rank consistency automatically holds for a broad selection of rank-correction
functions. For most cases, a single rank-correction step is sufficient for a substantial
improvement, unless the sample ratio is rather low so that the rank-correction step may
be iteratively used for two or three times to achieve the limit of improvement. Owing
to this property, the advantage of our proposed method is more apparent in practical
computations especially when fixed basis coefficients are involved. Finally, we remark
that our results can also be used to provide a theoretical foundation in the statistical
setting for the majorized penalty method of Gao and Sun [27] and Gao [26] for structured
low-rank matrix optimization problems.



This paper is organized as follows. In Section 2, we introduce the observation model
of matrix completion with fixed basis coefficients and formulate the rank-correction step.
In Section 3, we establish a non-asymptotic recovery error bound for the estimator gen-
erated from the rank-correction step and provide a quantification of the improvement
in recoverability. Section 4 provides necessary and sufficient conditions for rank consis-
tency. Section 5 is devoted to the construction of the rank-correction function. In Section
6, we report numerical results to validate the efficiency of our proposed rank-corrected
procedure. We conclude this paper in Section 7. All relevant material and all proofs of
theorems are left in the appendices.

Notation. Here we provide a brief summary of the notation used in this paper.

o Let R™*"™2 and C™*"2 denote the space of all ny x ny real and complex matrices,
respectively. Let S"(S%, ST, ) denote the set of all n x n real symmetric (positive
semidefinite, positive definite) matrices and H™(H", H". ) denote the set of all
n X n Hermitian (positive semidefinite, positive definite) matrices.

o Let V™" represent R™*"2 C™*"2 8™ or H™. We define n := min(n,ny) for
the previous two cases and stipulate n; = no = n for the latter two cases. Let
VX2 he endowed with the trace inner product (-, -) and its induced norm || - || 7,
ie., (X,Y) := Re(Tr(X"Y)) for X,Y € V™*"2 where “Tt” stands for the trace
of a matrix and “Re” means the real part of a complex number.

e For the real case, i.e., V"1 X2 = R"X72 op Y"1 X"2 = S et S™ (ST, S} | ) represent
S™ (8%, 8%, ); and for the complex case, i.e., V"1 X2 = C™">"2 or YVM>n2 — YY",
let S™ (ST, S, ) represent H"™ (M}, H'} ).

e For the real case, 0"** denotes the set of all n x k real matrices with orthonormal
columns, and for the complex case, O™ denotes the set of all n x k complex
matrices with orthonormal columns. When k = n, we write Q"** as Q" for short.

e The notation T denotes the transpose for the real case and the conjugate transpose
for the complex case. The notation * means the adjoint of a linear operator.

e For any index set m, let |7| denote the cardinality of 7, i.e., the number of elements
in 7. For any x € R", let |z| denote the vector in R’} whose i-th component is
|z, let x4 denote the vector in R’} whose i-th component is max(x;,0) and let z_
denote the vector in R’} whose i-th component is min(—x;,0).

e For any given vector x, Diag(z) denotes a rectangular diagonal matrix of suitable
size with the i-th diagonal entry being z;.

e For any x € R", let ||z||2 and ||z||oc denote the Euclidean norm and the maximum
norm, respectively. For any X € V™*"2 et || X|| and || X ||« denote the spectral
norm and the nuclear norm, respectively.



e The notations 3, 2 and % mean almost sure convergence, convergence in proba-
bility and convergence in distribution, respectively. We write z,,, = Op(1) if z, is
bounded in probability.

e For any set K, let 0x(x) denote the indicator function of K, i.e., dx(x) = 0 if
x € K, and 0x(x) = 400 otherwise. Let I,, denote the n x n identity matrix.

2 Problem formulation

In this section, we formulate the model of the matrix completion problem with fixed basis
coefficients, and then propose an adaptive nuclear semi-norm penalized least squares
estimator for solving this class of problems.

2.1 The observation model

Let {©1,...,04} be a given orthonormal basis of the given real inner product space
V™m>n2 - Then, any matrix X € V™*"2 can be uniquely expressed in the form of
X = Zg:1<@kaX>@k> where (O, X) is called the basis coefficient of X relative to
©r. Throughout this paper, let X € V™2 be the unknown low-rank matrix to be
recovered and let rank(X) = r. In some practical applications, for example, the corre-
lation and density matrix completion, a few basis coefficients of the unknown matrix X
are fixed (or assumed to be fixed) due to a certain structure or reliable prior informa-
tion. We let o C {1,2,...,d} denote the set of the indices relative to which the basis
coefficients are fixed, and  denote the complement of « in {1,2,...,d}, i.e, anNng =10
and aU S ={1,...,d}. We define d; := |a| and ds := |5|.

When a few basis coefficients are fixed, one only needs to observe the rest for re-

covering the unknown matrix X. Assume that we are given a collection of m noisy
observations of the basis coefficients relative to {©y : k € 5} in the following form

Yi = (O, X) +0v&, i=1,...,m, (1)

where w; are the indices randomly sampled from the index set 3, & are the independent
and identically distributed (i.i.d.) noises with E(¢;) = 0 and E(¢?) = 1, and v > 0
controls the magnitude of noise. Unless otherwise stated, we assume a general weighted
sampling (with replacement) scheme with the sampling distributions of w; as follows.

Assumption 1 The indices wi,...,wn are i.i.d. copies of a random variable w that has
a probability distribution I1 over {1,...,d} defined by

0 if k € a,
Pr(“’—k)_{pk>0 if keg.



Note that each O,k € S is assumed to be sampled with a positive probability in this
sampling scheme. In particular, when the sampling probability of all k € § are equal,
e, pr = 1/de Yk € B, we say that the observations are sampled uniformly at random.

For notational simplicity, let £ be the multiset of all the sampled indices from the
index set f, i.e., Q = {wi,...,wy}. With a slight abuse on notation, we define the
sampling operator Rq: V™*1*"2 — R™ agsociated with 2 by

Ra(X) = (O, X), .o, (O, X)), X € yxnz,

Then, the observation model (1) can be expressed in the following vector form

where ¥y = (y1,...,ym)" € R™ and & =(&1,...,&n)T € R™ denote the observation vector
and the noise vector, respectively.

Next, we present some examples of low-rank matrix completion problems in the above
settings.

(1) Correlation matrix completion. A correlation matrix is an n X n real symmetric
or Hermitian positive semidefinite matrix with all diagonal entries being ones. Let
e; be the vector with the ¢-th entry being one and the others being zeros. Then,
(eie?,Y> = X; = 1V1 < i <n. The recovery of a correlation matrix is based
on the observations of entries. For the real case, V" *"2 = §" d = n(n + 1)/2,
dl =n,

1
@a:{eiegrﬂgign} and @5:{(e¢e?+ejegr) ‘ 1§i<j§n};

V2

and for the complex case, V"1 *X"2 = H" d =n?, d; = n,

1 v—1
O :{eiegr |1<i<n} and Og= {(eie}r#— ejer), ~—= (eieh — ejer)

V2 b e <if

Here, v/—1 represents the imaginary unit. Of course, one may fix some off-diagonal
entries in specific applications.

(2) Density matrix completion. A density matrix of dimension n = 2! for some
positive integer [ is an n x n Hermitian positive semidefinite matrix with trace one.
In quantum state tomography, one aims to recover a density matrix from Pauli
measurements (observations of the coefficients relative to the Pauli basis) [31, 22],
given by

1 1
Oq = {\/ﬁfn} and Oy = {\/ﬁ(% ®--@0g) | (s1,-0.,81) € {0’1’2’3}1} \@a,



where “®” means the Kronecker product of two matrices and

= (b D)= ()= (& )= )

are the Pauli matrices. In this setting, V%2 = H" Tr(X) = (I,, X) = 1, d = n?,
and d1 =1.

(3) Rectangular matrix completion. Assume that a few entries of a rectangular
matrix are known and let Z be the index set of these entries. One aims to recover
this rectangular matrix from the observations of the rest entries. For the real case,
yraxne — Rnlan, d= nina, dl = ’I‘,

Oq = {eie}r | (i,j) €Z} and Og= {eie}r | (i,§) ¢ T};
and for the complex case, V"1*"2 = C™*"2 d = 2nyng, d; = 2|Z|,

O, = {eie}T,\/—leie}r | (i,j) €Z} and Op= {eiegr,\/—leiegr | (i,§) ¢ T}.

Now we introduce some linear operators that are frequently used in the subsequent
sections. For any given index set 7 C {1,...,d}, say a or /3, we define the linear operators
Ry Yaxne LRIl p . ymixne _y ymxne gnd Q. YM*"2 — Y™ X"2 regpectively, by
T
rers Pr(X) =) (0, X)0; and Qn(X):=> pp(O X)64.

kem ker

For convenience of discussions, in the rest of this paper, for any given X € Y"1 *"2

we denote by o(X) = (01(X),... ,an(X))T the singular value vector of X arranged in
the nonincreasing order and define

0™ (X) = {(U,V) € 0™ x 0" | X = UDiag(o(X))V"}.

In particular, when V™"1*"2 = §" we denote by A(X) = (A(X),..., /\n(X))T the eigen-
value vector of X with |A1(X)| > ... > |\ (X)] and define

0"(X):= {P € 0" | X = PDiag(\(X))P"}.

For any X € V"> and any (U, V) € O""2(X), we write U = [U; U] and V = [V} V3]
with Uy € QX" Uy € Qm*(m=7) Ve Q%" and Va € Qm2*(2=7)  In particular,
for any X € S and any P € O"(X), we write P = [Py P| with P, € O™ and
P, e @nx(nfr).



2.2 The rank-correction step

In many situations, the nuclear norm penalization performs well for matrix recovery,
but its efficiency may be challenged if the observations are sampled at random obeying
a general distribution such as the one considered in [69]. The setting of fixed basis
coefficients in our matrix completion model can also be regarded to be under an extreme
sampling scheme. In particular, for the correlation and density matrix completion, the
nuclear norm completely loses its efficiency since it reduces to a constant in these two
cases. In order to overcome the shortcomings of the nuclear norm penalization, we
propose a rank-correction step to generate an estimator in pursuit of a better recovery
performance.

Recall that X is the unknown true matrix of rank r. Given an initial estimator )~(m
of X, say, the nuclear norm penalized least squares estimator or one of its analogies, our
proposed rank-correction step is to solve the convex optimization problem

= . 1 ~
X € argmin o [ly = R + pm (1X |+ = (F(Xm), X))
Xeyn1xng 2m

st. Ra(X) =Ra(X), |Rs(X)|w <b, X e€C,

(3)

where p,, > 0 is the penalty parameter (depending on the number of observations), b
is an upper bound of the magnitudes of basis coefficients of X, C C V™" *"2 is a closed
convex set that contains X, and F : V*1X"2 — Y™ X"2 ig a spectral operator associated
with a symmetric function f : R® — R™. One may refer to Appendix A for more
information on the concept of spectral operators. (Indeed, based on the subsequent
analysis for better recovery performance, the choice f : R™ — [0,1]" is much preferred,
for which the penalization || X ||, — (F(X,), X) is indeed a nuclear semi-norm. But this
choice criterion is not compulsory). The bound restriction is very mild since such a
bound is often available in applications, for example, the correlation and the density
matrix completion. This boundedness setting can also be found in previous works done
by Negahban and Wainwright [58] and Klopp [40].

Hereafter, we call F' the rank-correction function and (¥ ()A(:m), X) the rank-correction
term. Note that, when F' = 0, the rank-correction step (3) reduces to the nuclear norm
penalized least squares estimator, which equally penalizes singular values to promote a
low-rank solution for matrix completion. Certainly, for this purpose, penalizing more on
small singular values or even directly penalizing the rank function could serve better, but
only theoretically rather than practically, due to the lack of convexity. Also note that
an initial estimation, if deviates not too much from the true matrix, could contain some
information of the singular values and/or the rank of the true matrix to a certain extent.
Therefore, provided such an initial estimator is available, it is achievable to construct a
rank-correction term with a suitable F' to substantially offset the penalization of large
singular values from the nuclear norm penalty. Consequently, we can expect the rank-
correction step (3) to have a better low-rank promoting ability and outperform the nuclear
norm penalized least squares estimator.



The key issue is then how to construct a favored rank-correction function F'. In the
next two sections, we provide theoretical supports to our proposed rank-correction step,
from which some important guidelines on the construction of F' can be captured. In
particular, if one chooses the nuclear norm penalized least squares estimator to be the
initial estimator X,,, and also suitably chooses the spectral operator F' so that || X||. —
(F(X,), X) is a semi-norm, called nuclear semi-norm, then the estimator X,, generated
from this two-stage procedure is called the adaptive nuclear semi-norm penalized least
squares estimator associated with F.

2.3 Relation with the majorized penalty approach

The rank-correction step above is inspired by the majorized penalty approach proposed
by Gao and Sun [27] for solving the rank constrained matrix optimization problem:

?gcl {h(X): rank(X) <r}, (4)

where r > 1, h : V"1*"2 — R is a given continuous function and C € V™" *"2 ig a closed
convex set. Note that for any X € V™ *"2 the constraint rank(X) < r is equivalent to

0=0p1(X) + 4 0n(X) = | X[l — | X,

where || X||) = 01(X) + -+ + 0,(X) denotes the Ky Fan r-norm. The central idea of
the majorized penalty approach is to solve the following penalized version of (4):

min 7(X) + p(IX s = 1 X M)

where p > 0 is the penalty parameter. With the current iterate X*, the majorized penalty
approach yields the next iterate X**1 by solving the convex optimization problem
min h*(X) + p([1X | — (G*, X)), (5)
XeC
where G¥ is a subgradient of the convex function || X ) at X k and h¥ is a convex
majorization function of h at X*. By comparing with (3), one may notice that our
proposed rank-correction step is close to a single step of the majorized penalty approach.

Note that the rank constrained least squares problem is of great consideration in ma-
trix completion especially when the rank information is known. However, different from
the noiseless case, for matrix completion with noise, the solution to the rank constrained
least squares problem (assuming the uniqueness) is in general not the true matrix though
quite close to it. Indeed, there may exist many candidate matrices surrounding the true
matrix and having its rank. The rank constrained least squares solution is only one of
them. It deviates the least from the noisy observations rather than the true matrix.
Naturally, it is conceivable that some candidate matrices may deviate a bit more from
the noisy observations but less from the true matrix. So, for the purpose of matrix com-
pletion, there is no need to aim precisely at the rank constrained least squares solution
and find this solution accurately. An approach roughly towards it such as our proposed
rank-correction step (3) is good enough to bring similar good recovery performance.
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3 Error bounds

In this section, we aim to derive a recovery error bound in Frobenius norm for the
estimator generated from the rank-correction step (3) and discuss the impact of the rank-
correction term on the resulting bound. The analysis mainly follows Klopp’s arguments
in [40], which is also in line with those used by Negahban and Wainwright [58].

We start the analysis by defining a quantity, which plays a key role in the subsequent
analysis, as
> += =T
(Xm) = UiVl (6)

Qo -

1
= —||F
v

A basic relation between the true matrix X and its estimate )?m can be obtained by
using the optimality of X, to the problem (3) as follows.

Theorem 1 For any k > 1, if pym > HZ/H%RE(@

}, then the following inequality holds:

o [Ra(Fn — K2 < (fmm)pmﬁufcm—xup ™)

We emphasize that x is not restricted to be a constant in Theorem 1 but could be
set to depend on the size of matrix. This realization is important as can be seen in the
sequel. According to Theorem 1, the choice of the penalty parameter p,, depends on the
observation noises & and the sampling operator Rq. Therefore, we make the following
assumption on the noises &; as follows:

Assumption 2 The i.i.d. noise variables &; are sub-exponential, i.e., there exist positive
constants c1, ca and c3 such that for all t > 0, Pr(|&;]| > t) < c1 exp(—cat®).

Moreover, based on Assumption 1, we further define quantities p1 and g that control
the sampling probability for observations as
}- (8)

1 1
H1 = 'Hlax{} and  pg > \/g'maX{
It is easy to obtain that p; > 1 and po > 1, according to the facts Zkeﬁ pr = 1 and

I

> pkOx6;,
kep

> kOO

dy kep | p ey

Tr(Zkeﬁpk@k@g) = Tr( Zke,@ pk@g@k) = 1, respectively. In general, the values of
and p9 depend on the sampling distribution. The more extreme the sampling distribution
is, the larger these two values have to be. Assume that there exist some positive constants
~v1 and 7 such that v /de < pr < 7v2/da, Yk € . Then we can easily set p; := 1/71.
The setting of po is not universal for different cases. For example, consider the cases
described in Section 2. For correlation matrix completion, we can set ug := 2/ V2 for
the real case and g := 7o for the complex case. For density matrix completion, we can
set uo := 1 for any sampling distribution. For rectangular matrix completion, we can set

11



Lo = 7 for the real case and po := /27, for the complex case. Note that v; = vy = 1
for uniform sampling.

Theorem 1 reveals the key to deriving a recovery error bound in Frobenius norm, that
is, to establish the relation between 1| Rq (X, — X)||3 and || X, — X||%. This can be
achieved by looking into some RIP-like property of the sampling operator Rq, as done
previously in [58, 44, 40, 49|. Following this idea, we obtain an explicit recovery error
bound as follows:

Theorem 2 Under Assumptions 1 and 2, there exist some positive absolute constants
¢o, €1, C2, c3 and some positive constants Cy, Cy (only depending on the 11 Orlicz norm
of &) such that when m > c3+/da log3(n1 +ng)/p2, for any K > 1, if py, is chosen as

125] log(nl + 77,2)

Vdom

then with probability at least 1 — c1(ny + n2) =2,

pm = CrkV

9)

”Xm_X”%SCOGOQ(x/ierm) Y +( )(f+am) b2> 2 \/@Tloiinﬁm). (10)

Theorem 2 shows that for any rank-correction function F', controlling the recovery
error only needs the samples size m to be of roughly the degree of freedom of a rank
r matrix up to a logarithmic factor in the matrix size. Besides the information on the
order of magnitude, Theorem 2 also provides us more details on the constant part in
the recovery error bound, which also plays an important role in practice. The impact
of different choices of rank-correction functions on recovery error is fully embodied with
the value of a,,,. Note that the smaller a,, is, the smaller the error bound (10) is for a
fixed k, and thus the smaller value this error bound can achieve for the best k (as well
as the best p;,). Therefore, we aim to establish an explicit relationship between a,, and
F' in the next theorem.

Theorem 3 For any given X,, € V%" such that | X, — X | p/0r(X) < 1/2, we have

1 | X0 — X | r
am < —@log( fim(X) ) +er(Xm),

where ep(X,,) 1= #HF()?m) — UV 1l

It is immediate from Theorem 3 that

1 X — X ||

(1 e V2r(-er(Xm)
— < 1 — m < 1. 11
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Recall that the nuclear norm penalized least squares estimator corresponds to the rank-
correction step with F' = 0 so that a,,, = 1. Therefore, Theorem 3 guarantees that if
the initial estimator X,, does not deviate too much from X, the rank-correction step
outperforms the nuclear norm penalized least squares estimator in the sense of recovery

error, provided that F(X,,) is close to UmJVnTE,l. For example, consider the case when

the rank of the true matrix is known. One may simply choose F(X) = U;V{' to take
advantage of the rank information. In this case, the requirement in (11) ensuring a,, < 1

simply reduces to Xm=Xllr (535 < 1 — e~ V2"). Moreover, further suppose that

5

or(X) V2

X, is the nuclear norm penalized least squares estimator. Then, according to Theorems
2 and 3, one only needs samples with size

m= O(x/d2r2 log! ™27 (g + ny) - ;Ei()) = a, = 0(log™"(n1 + ng)),
g,

T

where 7 > 0. As can be seen, the larger the matrix size n is, the easier a,, becomes
less than 1 or even close to 0. If the rank of the true matrix is unknown, one could
construct the rank-correction function F on account of the tradeoff between optimality
and robustness, to be discussed in Section 5. An experimental example of the relationship
between a,, and F can be found in Table 1.

Next, we demonstrate the power of the rank-correction term with more details. It
is interesting to notice that the value of k (as well as p,,) has a substantial impact on
the recovery error bound (10). The part related to the magnitude of noise v increases as
k increases, while the part related to the upper bound b of entries slightly decreases to
its limit as k increases. Therefore, our first target is to find the smallest error bound in
terms of (10) among all possible x > 1. It is possible to work on the error bound (10)
directly for its minimum in x but the subsequent analysis is much more tedious. For
simplicity of illustration, instead, we perform our analysis on a slightly relaxed version
instead as

1 X — Vdarlog(ny +ns)

‘<H2F 2 2
<C
l2 = oMy K1 M2 ’

where

Nm = Co (\@ + Kam )V + (/-il) (\/5 + am)b.

Direct calculation shows that over x > 1, n,, attains its minimum

ﬁmz(\f2+am)(00u—l—b)+2\/am(\/§+am)coyb at K=1+ <1+\/§>b

Qm ) CoV

It is worthwhile to note that & = O(l /\/@m ) when a,, < 1, meaning that the optimal
choice of k is inversely proportional to \/a,, rather than a simple constant. (This ob-
servation is important for achieving the rank consistency in Section 4.) In other words,
for achieving the best possible recovery error, the penalty parameter p,, chosen for the

13



rank-correction step (3) with a,, < 1 should be larger than that for the nuclear norm
penalized least squares estimator. In addition, consider two extreme cases with a,, = 1
and a,, = 0 respectively:

7" =V2(cv + 1) if @y, =0,
I\ = (V2+1)(cov +b) + 21/ (V2 +1)corb i ap = 1.

By direct calculations, we obtain 7/ € (0.356,0.586), where the lower bound is at-
tained when cor = b and the upper bound is approached when cyr/b — 0 or cov/b — 0.
This finding motivates us to wonder whether the recovery error can be reduced by around

half in practice. This inference is further validated by numerical experiments in Section
6.

4 Rank consistency

In this section we consider the asymptotic behavior of the estimator generated from the
rank-correction step (3) in term of its rank. We expect that the resulting X, has the
same rank as the true matrix X. Theorem 2 only reveals a flavored parameter p,, in
terms of the optimal order but rather its exact value. In practice, for a chosen parameter
Pm, there is hardly any clue to know the recovery performance of the resulting solution
since the true matrix is unknown. However, if the rank property holds as expected, the
observable rank information may be used to infer the recovery quality of the resulting
solution of a parameter and thus help in parameter searching. Numerical experiments in
Section 6 demonstrate the practicability of this idea.

For the purpose above, we study the rank consistency in the sense of Bach [3] under
the setting that the matrix size is fixed. An estimator X,, of the true matrix X is said
to be rank consistent if

n}gnoo Pr(rank(X,,) = rank(X)) = 1.

Throughout this section, we make the following assumptions:

Assumption 3 The spectral operator F is continuous at X.
Assumption 4 The initial estimator Xm satisfies X 2 X as m — oo

Epi-convergence in distribution gives us an elegant way in analyzing the asymptotic
behavior of optimal solutions of a sequence of constrained optimization problems. Based
on this technique, we obtain the following result.

Theorem 4 If p,, — 0, then )?m 25X asm — oo.

14



We first focus on the characterization of necessary and sufficient conditions for rank
consistency of )?m Unlike in the analysis of recovery error bound, additional infor-
mation represented by the set C could affect the path along which )A(m converges to
X and thus may break the rank consistency. In the sequel, we only discuss two most
common cases: the rectangular case C = V™ *"2 (recovering a rectangular matrix or a
symmetric/Hermitian matrix) and the positive semidefinite case C = S%} (recovering a
symmetric/Hermitian positive semidefinite matrix).

For notational simplicity, we divide the index set § into three subsets as
pri={kep (0 X)=0b}, BT :={keB|(0kX)=-b}, B°:=p\(67UB7). (12)

Then, we define a linear operator Q}j ;Ymxne _, Ymxne aq

QE(X)::Z (O, X @HZ (O, X @HZ (O, X))+ Oy

kepe Pk ke,@+ keb’—
Here, we use the superscript “1” because of its inverse-like property in terms of
Q5(Q4(2)) = QL(Qs(2)) = P3(2) VZ {Z V"™ | Ry (Z) < 0,Rp-(2) > 0}
By extending the arguments of Bach [3] for the nuclear norm penalized least squares

estimator from the unconstrained case to the constrained case, we obtain the following
results.

Theorem 5 For the rectangular case C = V™ *"2  consider the linear system

=T + + +T\=5 =T ~t 7 =T -\

U, QL(ULIV )V = U, Q4(T1V, — F(X))Va. (13)
If pr, — 0 and \/mpy,, — 0o, then for the rank consistency of )?m,

(1) a necessary condition: (13) has a solution T e Vm=—r)xm2=r) yitp Hf” <1;
(ii) a sufficient condition: (13) has a unique solution T e Vm=r)x(n2=r) yp, ||fH < 1.

For the positive semidefinite case, the nuclear norm || X ||« in (3) simply reduces to
the trace (I,, X). We assume that the Slater condition holds.

Assumption 5 For the positive semidefinite case C = Sii, the Slater condition holds,
e., there exists some X° € ST such that Ro(X°) = Ra(X) and [|Rg(X)| s < b.

Theorem 6 For the positive semidefinite case C = S, consider the linear system

=T ~t 5 x5Tvs 5T S\

Py QL(PoAP,)Py = Py Qi (I, — F(X))Po. (14)
Under Assumption 5, if ppm — 0 and \/mp,, — 0o, then for the rank consistency of Xm,

15



(1) a necessary condition: (14) has a solution Ae S

(ii) a sufficient condition: (1/) has a unique solution A € NI

Next, we provide a theoretical guarantee on the uniqueness of the solution to the
linear systems (13) and (14) with the help of constraint nondegeneracy. The concept of
constraint nondegeneracy was pioneered by Robinson [65] and later extensively developed
by Bonnans and Shapiro [5]. We say that the constraint nondegeneracy holds at X to
(3) with C = V™ xn2 if

Raugrup- (T(X)) = RV, (15)
where T(X) = {H € V> | U;THVQ = 0}. Meanwhile, we say that the constraint
nondegeneracy holds at X to (3) with C = S7 if

Rauptus- (lin(Tsp (X)) = RIOVFTU (16)

where lin(7s» (X)) ={H eS| F;FH?Q = 0}. One may refer to Appendix B for more
details of constraint nondegeneracy.

To take a closer look at the linear systems (13) and (14), we define linear operators
By : Yrmxnz _y ylu=—r)x(n2a=r) and By ; Y(m—r)x(n2=r) _y y(ni—r)x(n2=r) geqciated with
X, respectively, by

Bi(Y) := U, QL(Y)Vs and By(Z) := U, QL(T22V5) Vo, (17)

where Y € V"2 and Z € YV(m—")x(2=") " From the definition of QL, we know that
the operator By is self-adjoint and positive semidefinite. Then, for the rectangular case
C = V™Mx"2 the linear system (13) can be rewritten as

By(T) = Bi(U1 V) — F(X)), T evm=nxtm=r, (18)
and for the positive semidefinite case C = S'}, the linear system (14) can be rewritten as
Ba(A) = Bo(Iy—) + Bi(P\P) — F(X)), AeS", (19)

since both U; and V; reduce to P; for i = 1,2 for X € St

Clearly, the invertibility of By is equivalent to the uniqueness of the solution to the
linear systems (13) and (14). The following result provides a link between the constraint
nondegeneracy and the positive definiteness of Bs.

Theorem 7 For either the rectangular case C = V™*"2 or the positive semidefinite
case C = S, if the constraint nondegeneracy holds at X to the problem (3), then the
self-adjoint linear operator By defined by (17) is positive definite.

Combining Theorems 5, 6 and 7 together with (18) and (19), we immediately have
the following result of rank consistency.
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Theorem 8 Suppose that p,, — 0 and \/mp,, — co. If

(i) for the rectangular case C = V™2 the constraint nondegeneracy (15) holds at X
to the problem (3) and

|85 BT,V — F(X))|| < 1; (20)

(ii) for the positive semidefinite case C = S, the constraint nondegeneracy (16) holds
at X to the problem (3) and

L—y + By'By(P, P, — F(X)) € ST, (21)

then the estimator )?m generated from the rank-correction step (3) is rank consistent.

From Theorem 8, it is not difficult to see that when F(X) is sufficiently close to

Ulﬁr, the conditions (20) and (21) hold automatically and so does the rank consistency.
Thus, Theorem 8 provides us a guideline to construct a suitable rank-correction function
F to achieve the rank consistency. In particular, for the positive semidefinite matrix
completion, we further consider two important classes as follows.

Class I: The covariance matrix completion with partial positive diagonal entries fixed.

Due to the positive semidefinite structure, the magnitudes of off-diagonal entries are
fully controlled by the magnitudes of diagonal entries. Therefore, we remove all the
bounded constraints corresponding to off-diagonal entries from the rank-correction
step (3) as they are redundant. Thus, the constraints are reduced to

X“:Y“ Viern, X;<b V’L'GTFC, XGS”,

where (7w, 7€) is a partition of the index set {1,...,n}. This class of problems
includes the correlation matrix completion as a special case, in which all diagonal
entries are fixed to be ones.

Class II: The density matrix completion with its trace fixed to be one.

Due to the positive semidefinite structure, all the coefficients of Pauli basis are con-
trolled because of the trace one constraint. Therefore, we remove all the bounded
constraints from the rank-correction step (3) as they are redundant. Thus, in this
case the constraints are reduced to

X eSy.
Interestingly, for the matrix completion problems of Classes I and II, the constraint
nondegeneracy automatically holds at X. More importantly, if observations are sampled

uniformly at random, the rank consistency can be guaranteed for a broad class of rank-
correction functions F'.
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Theorem 9 For the matriz completion problems of Classes I and II under uniform sam-
pling, if pm — 0, /mpm — 00 and F is a spectral operator associated with a symmetric
function f : R™ — R"™ such that fori=1,...,n,

{:’;’Egig Zji’zg Vo eR? and Vi=1,...,n, (22)

then the estimator )?m generated from the rank-correction step (3) is rank consistent.

5 Construction of the rank-correction function

In this section, we focus on the construction of a suitable rank-correction function F based
on the results in Sections 3 and 4. For achieving a smaller recovery error, according to
Theorem 2, we desire a construction such that F(X,,) is close to Ulﬁr. Meanwhile,
for achieving the rank consistency, according to Theorem 8, we desire a construction

such that F'(X) is close to U1V1T. Therefore, these two guidelines consistently suggest a
natural idea, i.e., if possible, choosing

F(X)~ U V' near X.

Next, we proceed with the construction of the rank-correction function F' for the rect-
angular case. For the positive semidefinite case, one only needs to replace the singular
value decomposition with the eigenvalue decomposition and conduct exactly the same
analysis.

5.1 The rank is known

If the rank of the true matrix X is known, it is clear that the best choice of F is
F(X):=U V], (23)

where (U, V) € O0""2(X) and X € V" *"2_ Note that F' defined by (23) is not a spectral
operator over the whole space of V%2, but in a neighborhood of X it is indeed a spectral
operator and is actually twice continuously differentiable (see, e.g., [11, Proposition §]).
With this rank-correction function, the rank-correction step is essentially the same as a
single step of the majorized penalty method developed in [27].

5.2 The rank is unknown

If the rank of the true matrix X is unknown, we intend to construct a spectral operator
F' to imitate the case when the rank is known. Here, we propose F' to be a spectral
operator

F(X) := UDiag(f(c(X)))V" (24)
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associated with the symmetric function f : R™ — R"™ defined by

¢< i > if z € R™\{0},

[E41P8

0 if x =0,

fi(x) = (25)

where (U, V) € O""2(X), X € V"> and the scalar function ¢ : R — R takes the

form
It

M teR, 26
[t|” + €7 (26)

o(t) :=sgn(t)(1+¢")

for some 7 > 0 and ¢ > 0.

Corollary 10 Let F' be a spectral operator defined by (24), (25) and (26).

. IXm=XllF _ 1 (1_ .—V2r oo Or1 (Xm) or(Xm)
1) If o (%) < \/5(1 e ), then for any € satisfying s <e< (X)) there

exists some 71 > 0 such that a,, < 1 for any F with 7 > 71.

(ii) Suppose that the constraint nondegeneracy holds at X to the problem (3). If pp — 0
or(X)
R o1(X)
such that the rank consistency of X,, holds for any F with T > To.

and \/mpy — 00, then for any € satisfying 0 < e < , there exists some 7o > 0

The proof of Corollary 10 is straightforward so we omit it. Corollary 10 suggests an

ideal choice of € for the recovery error reduction, i.e., € € (U"“(NX’”), ”’“()fm)>, provided
01(Xm) " 01(Xm)

that )~(m does not deviate too much from X,,, and also an ideal choice of ¢ for rank

or(Xm)
T o1(Xm)
other, implying the theoretical possibility that the recovery error reduction and the rank
consistency may not be achieved simultaneously if the initial estimator X,, is not close

to X,

consistency, i.e., € € (O ) Note that these two intervals may not overlap each

The interval of € for the recovery error reduction is disclosed if the true rank is
accessible. Therefore, this ideal interval is an important insight that can be used to
guide the choice of € in practice since the initial )A(:m should contain some information
of the true rank in general. Indeed, the value of € can be regarded as a divide of
confidence on whether ai()?m) is believed to come from a nonzero singular values of X

with perturbation — positive confidence if 0;(X,) > €01(X;n) and negative confidence

if 0;(X,) < €01(Xm). Next we look for a suitable 7. It is observed from Figure 1 that

the parameter 7 > 0 mainly controls the shape of ¢ over ¢ € [0,1]. The function ¢ is

concave if 0 < 7 < 1 and S-shaped with a single inflection point at 5(:—3)1/7 ifr> 1
It should be good to choose an S-shaped function ¢. But one also needs to take account
of the steepness of ¢, which increases when 7 increases. In particular for any ¢ satisfying
0 < e < 1, ¢ approaches to the step function taking the value 0 if 0 < ¢ < ¢ and the value

life <t <1as7— co. Since the rank of X is unknown and the singular values of X,
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Figure 1: Shapes of the function ¢ with different € > 0 and 7 > 0

are unpredictable, choosing a large 7 could be risky. Therefore, one needs to choose 7
with certain conservation, sacrificing certain recovery quality in exchange for robustness
strategically. Here, we provide a recommendation of the choices ¢ ~ 0.05 (or within
0.01 ~ 0.1) and 7 = 2 (or within 1 ~ 3) for most cases, particularly when the initial
estimator is generated from the nuclear norm penalized least squares problem. These
choices have performed very stably for plenty of problems, as validated in Section 6.

We also remark that for the positive semidefinite case, the rank-correction function
defined by (24), (25) and (26) is related to the reweighted trace norm for the matrix rank
minimization proposed by Fazel et al. [20, 56]. The reweighted trace norm in [20, 56| for
the positive semidefinite case is ((X* + £I,)~!, X), which arises from the derivative of
the surrogate function log det(X + €I,,) of the rank at an iterate X*, where ¢ is a small
positive constant. Meanwhile, in our proposed rank-correction step, if we choose 7 =1,
then In—l%reF()Z'm) = &/(Xp+e'1,)  with &’ = || X,||. Superficially, similarity occurs;
however, it is notable that & depends on )N(m, which is different from the constant ¢ in
[20, 56]. More broadly speaking, the rank-correction function F' defined by (24), (25)
and (26) is not a gradient of any real-valued function. This distinguishes our proposed
rank-correction step from the reweighted trace norm minimization in [20, 56| even for
the positive semidefinite case.

6 Numerical experiments

In this section, we validate the power of our proposed rank-correction step on the recov-
ery by applying it to different matrix completion problems. We adopted the proximal
alternating direction method of multipliers (proximal ADMM) to solve the optimization
problem (3). For more details of the proximal ADMM, the readers may refer to Ap-
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pendix B of [21]. For convenience, in the sequel, the NNPLS estimator and the RCS
estimator, respectively, stand for the estimators from the nuclear norm penalized least
squares problem (i.e., F' = 0) and the rank-correction step (3) with F' specified in Section
5. Given an estimator X,, of X,,, the relative error (relerr for short) is defined by

[ Xm — X
max(1078, [| X )

relerr =

6.1 Influence of fixed basis coefficients on the recovery

In this subsection, we test the performance of the NNPLS estimator and the RCS estima-
tor for different patterns of fixed basis coefficients. We randomly generated a correlation
matrix by the following command:

M = randn(n,r)/sqrt(sqrt(n)); ML = weight*M(:,1:k); M(:,1:k) = ML;
Xtemp = M*M’; D = diag(l./sqrt(diag(Xtemp))); X_bar = D*Xtemp+D.

We took the true matrix X = X_bar with dimension n = 500, rank r = 5, weight = 5 and
k = 1. Here, the parameter weight is used to control the relative magnitude difference
between the first k largest eigenvalues and the left r—k nonzero eigenvalues. We randomly
fixed partial diagonal and off-diagonal entries of X and then uniformly sampled the rest
entries with 1.i.d. Gaussian noise. The noise level, defined by [|v€|2/||ly||2 in (2) hereafter,
was set to be 10% and the upper bound of the non-fixed diagonal entries was set to be
1. We further assumed that the rank of the true matrix was known so that for RCS
estimator we chose the rank-correction function (23).

In Figure 2, we plot the curves of the relative recovery error and the rank of both
the NNPLS estimator (the subfigures on the left) and the RCS estimator (the subfigures
on the rigth) for different patterns of fixed entries. Note that both m and p,, in the
rank-correction step (3) depend on the problem of consideration. Thus, we report mp,,
as a whole in the z-axis. (Note that for a specific problem, only p,, is adjustable.) In the
captions of subfigures, diag means the number of fixed diagonal entries, and off-diag
means the number of fixed off-diagonal entries. For each subfigure on the right side, the
initial )Z'm for the RCS estimator is the point with the smallest recovery error from the
corresponding subfigure on the left side.

Figure 2 fully manifests the advantage of the RCS estimator over the NNPLS es-
timator. It is shown that compared with the NNPLS estimator, the RCS estimator
substantially reduces the recovery error and significantly improves the rank consistency.
Moreover, the RCS estimator possesses a wide rage of the parameter p,, to achieve a
desired small recovery error and the rank of the true matrix simultaneously. It indicates
that whether the resulting solution of a parameter p,, achieves the true rank can be used
to infer the recovery quality. Even if the true rank is unknown in advance, it is still
possible to pick out a satisfied solution via monitoring the change of rank in parameter
searching. Such advantages are far beyond the reach of the NNPLS estimator.
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6.2 Performance of different rank-correction functions for recovery

In this subsection, we test the performance of different rank-correction functions for
recovering a correlation matrix. We randomly generated the true matrix X by the
command in Subsection 6.1 with n = 1000, r = 10, weight = 2 and k = 5. We fixed
all the diagonal entries of X and then sampled partial off-diagonal entries uniformly
at random with i.i.d. Gaussian noise. The noise level was set to be 10%. We chose
the (nuclear norm penalized) least squares estimator to be the initial estimator )?m In
Figure 3, we plot four curves corresponding to the rank-correction functions F' defined
by (24), (25) and (26) with different € and 7, and additional two curves corresponding to
the rank-correction functions F defined by (23) at X, (i.e., C~/11~/1T) and X (i.e., Ulﬁr),
respectively. The values of a,, and the best recovery error are listed in Table 1.

For all the rank-correction functions plotted in Figure 3, when p,, increases, the
recovery error first decreases together with the rank and then increases after the rank
of the true matrix is attained. The only exception is Ulvrf. This exactly validates our
discussion about the recovery error at the end of Section 3. It is worthwhile to point out
that, according to our observations of many tests, in practice, if a,, is larger than 1 but
not too much, the recovery performance of the RCS estimator still has a high chance to
be much better than that of the NNPLS estimator.

Table 1: Influence of the rank-correction term on the recovery error

Zero e=01|e=01]e=01|e=005| =51 | 7 T
F function | 7 =1 T=2 T=3 T=2 UiV | vy

Ay, 1 0.3126 | 0.1652 | 0.1402 0.1849 | 0.1355 0
optimal relerr | 10.66% | 5.92% | 5.84% | 5.83% | 5.83% | 5.84% | 3.00%

6.3 Performance of different initial NNPLS estimators for recovery

In this subsection, we take the covariance matrix completion for example to test the
performance of the RCS estimator with different initial NNPLS estimators X,n. We
generated the true matrix X by the command in Subsection 6.1 with n = 500, r = 5,
weight = 3 and k = 1 except that D = eye(n). The upper bound of the non-fixed
diagonal entries was set to be double of the largest absolute value among all the noisy
observations of entries together with the fixed entries. We assumed that the rank of the
true matrix was known so that we chose the rank-correction function (23).

For each p,,, we first produced the NNPLS estimator, and then use it as the initial
point to produce a sequence of RCS estimators with different penalty parameters. Next
we choose the RCS estimators that attains the correct rank with the smallest penalty
parameter. As can be seen from Figure 2, this choice of the RCS estimator results in
the desired small recovery error. The test results are plotted in Figure 4, where the
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Correlation matrix completion with only fixed diagonal entries (n=1000,rank=10,noise level=10%,sample ratio=7.17%)
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Figure 3: Influence of the rank-correction term on the recovery
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dash curves represent for the NNPLS estimator and the solid curves represent for the
chosen RCS estimator. We clearly observe from Figure 4 that, no matter which NNPLS
estimator is given to be the initial estimator, the RCS estimator can always substantially
improve the recovery quality in terms of both the error and the rank.

Covariance matrix completion (n = 500, rank = 5, noise level = 10%, sample ratio = 6.37%, nfix_diag=n/5, nfix_offdiag = n/5)

0.25 60
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Figure 4: Performance of the RCS estimator with different initial NNPLS estimators

6.4 Performance for different matrix completion problems

In this subsection, we test the performance of the RCS estimator for different matrix
completion problems. Figure 2 has revealed that a good choice of the parameter p,, for
the RCS estimator could be the smallest value that attains a stable rank. Therefore, the
bisection search method can be used to find such a parameter p,,. This is actually what
we benefit from rank consistency. In the following experiments, we apply this strategy
to find a suitable p,, for the RCS estimator.

A natural question then arises: Will multiple rank-correction steps further improve
the recovery quality? The answer can be found in Tables 2, 3 and 4 below, which report
the experimental results for covariance matrix completion, rectangular matrix completion
and density matrix completion, respectively. The reported NNPLS estimator is the one
with the smallest recovery error among all different p,, presuming the true matrix is

known. The initial estimator of the first RCS estimator is the NNPLS estimator with

log(ni+n2)
mn

pm follows (9) with C = 04, Kk = 1, p = 1 and v taken its expected value based on
observations. The second (third) RCS estimator takes the first (second) RCS estimator
to be the initial estimator. The rank-correction function F is defined by (24), (25) and
(26) with ¢ = 0.05 and 7 = 2.

a single preset p,, = 0.477\H/y%2 , where n is the noise level. This choice of
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Table 2: Performance for covariance matrix completion problems with n = 1000

. diag/ sample NNPLS 1st RCS 2st RCS 3rd RCS
off—diag | ratio |relerr (rank) | relerr(rank) | relerr (rank) | relerr (rank)
1000/0 | 2.40% | 1.94e-1 (47) | 8.84¢-2 (5) | 8.03e-2 (5) | 7.85¢-2 (5)

< | 1000/0 | 7.99% | 6.08¢-2 (50) | 3.39¢-2 (5) | 3.38¢-2 (5) | 3.38¢2 (5)
500/500 | 2.39% | 2.28e-1 (56) | 1.07e-1 (5) | 8.99e-2 (5) | 8.48e-2 (5)
500/500 | 7.98% | 1.16e-1 (56) | 5.62e-2 (5) | 5.42e-2 (5) | 5.40e-2 (5)
1000/0 | 5.38% | 1.59¢-1 (77) | 7.42e-2 (10) | 7.23e-2 (10) | 7.22e-2 (10)

Lo| 1000/0 | 8.96% | 9.15¢-2 (81) | 5.06e-2 (10) | 5.05¢-2 (10) | 5.05¢-2 (10)
500/500 | 5.38% | 1.65¢-1 (82) | 7.70e-2 (10) | 7.29e-2 (10) | 7.28¢-2 (10)
500/500 | 8.96% | 9.54e-2 (85) | 5.16¢-2 (10) | 5.11e-2 (10) | 5.11e-2 (10)

For the covariance matrix completion problems, we generated the true matrix X by
the command in Subsection 6.1 with n = 1000, weight = 2 and k = 1 except that D =
eye(n). The rank of X and the number of fixed diagonal and non-diagonal entries of X
are reported in the first and the second columns of Table 2, respectively. We sampled
partial off-diagonal entries uniformly at random with i.i.d. Gaussian noise at the noise
level 10%. The upper bound of the non-fixed diagonal entries was set to be double of
the largest absolution value among all the noisy observations of entries together with the
fixed entries. From Table 2, we see that when the sample ratio is reasonable, a single
rank-correction step is fully capable to yield a desired result. However, when the sample
ratio is very low, especially if some off-diagonal entries are fixed, one or two further
rank-correction steps could still bring some improvement in recovery quality.

For the density matrix completion problems, we generated the true density matrix X

by the following command:
M= weight*M(:,1:k); M(:,1:k) = ML;

Xtemp/sum(diag((Xtemp))) .

randn(n,r)+i*randn(n,r); ML =
Xtemp = M*xM’; X_bar =

During the testing, we set n = 1024, weight = 2 and k = 1, and sampled partial Pauli
measurements except the trace of X uniformly at random with 10% i.i.d. Gaussian noise.
Besides this statistical noise, we further added the depolarizing noise, which frequently
appears in quantum systems. The strength of the depolarizing noise was set to be 0.01.
This case is labeled as the mixed noise in the last four rows of Table 3. We remark here
that the depolarizing noise differs from our assumption on noise since it does not have
randomness. One may refer to [31, 22| for details of the quantum depolarizing channel.
In [22], Flammia et al. proposed a two-step method for seeking a feasible solution of
low-rank — (1) evaluating an NNPLS estimator by dropping the trace one constraint;
(2) normalizing the resulting solution to be of trace one. We tested this method in our
experiments, with the NNPLS estimator without trace one constraint chosen to be the
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one with the smallest recovery error among all that attain the true rank, presuming that
the true matrix is known. The two-step results are reported as NNPLS1 and NNPLS2,
respectively, in Table 3. Besides the relative recovery error (relerr), we also report the
(squared) fidelity, which is a measure of the closeness of two quantum states defined
by H)?i{ 2Y1/ 2“3 From Table 3, we can see that the RCS estimator is superior to the
NNPLS2 estimator in terms of both the fidelity and the relative error.

Table 3: Performance for density matrix completion problems with n = 1024

|, | noise | sample NNPLS1 NNPLS2 RCS
S level | ratio |fidelity relerr rank|fidelity relerr rank|fidelity relerr rank
—13 10.0% | 1.5% | 0.716 2.49e-1 3 | 0.962 2.34e-1 3 | 0.992 8.47e-2 3
= 10.0% | 4.0% | 0.915 8.14e-2 3 | 0.997 6.88¢-2 3 | 0.998 4.13e-2 3
'é 5 10.0% | 2.5% | 0.696 2.56e-1 5 | 0.959 2.7le-1 5 | 0.992 8.28e-2 5
a 10.0% | 5.0% | 0.886 1.04e-1 5 | 0.994 9.61e-2 5 | 0.997 4.81e-2 5
3 12.5% | 1.5% | 0.657 2.95e-1 3 | 0.959 2.4le-1 3 | 0.990 9.89¢-2 3
2 12.4% | 4.0% | 0.842 1.42e-1 3 | 0.996 7.48¢-2 3 | 0.997 6.20e-2 3
E 5 12.4% | 2.5% | 0.631 3.05e-1 5 | 0.954 2.87e-1 5 | 0.990 9.81e-2 5
12.5% | 5.0% | 0.814 1.62e-1 5 | 0.994 1.03e-1 5 | 0.996 6.94e-2 5

For the rectangular matrix completion problems, we generated the true matrix X by
the following command:

ML = randn(nr,r); MR = randn(nc,r); MW = weight*ML(:,1:k);
ML(:,1:k) = MW; X_bar = ML*MR’.

We set weight = 2, k = 1 and took X = X_bar with different dimensions and ranks.
Both the uniform sampling scheme and the non-uniform sampling scheme were tested
for comparison. For the non-uniform sampling scheme, the probability to sample the
first 1/4 rows and the first 1/4 columns were 3 times as much as that of other rows and
columns respectively. In other words, the density of sampled entries in the top-left part
was 3 times as much as that in the bottom-left part and the top-right part respectively
and 9 times as much as that in the bottom-right part. We added 10% i.i.d. Gaussian
noise to the sampled entries. We also fixed partial entries of X uniformly from the rest
un-sampled entries. The upper bound of the non-fixed entries was set to be double of
the largest absolution value among all the noisy observations of entries together with
the fixed entries. What we observe from Table 4 for the rectangular matrix completion
is similar to that for the covariance matric completion. Moreover, we can see that the
non-uniform sampling scheme greatly weakens the recoverability of the NNPLS estimator
in terms of both the recovery error and the rank, especially when the sample ratio is low.
Meanwhile, the advantage of the RCS estimators in such cases becomes more remarkable.

27



Table 4: Performance for rectangular matrix completion problems

ERES sample | NNPLS 1st RCS 25t RCS | 3rd RCS
§ g fixed ratio | relerr (rank) | relerr (rank) | relerr (rank) | relerr (rank)
CTI’ 0 | 5.97% | 1.98¢-1(119)] 7.69e-2 (10) | 7.31e-2 (10) | 7.30e-2 (10)
2| E| 0 | 119% | 8.34e-2(114)] 449¢-2 (10) | 4.48¢-2 (10) | 4.48¢-2 (10)
£ | 21000 | 5.98% | 1.93e-1(120)| 7.45¢-2 (10) | 7.01e-2 (10) | 7.00e-2 (10)
S 711000 | 120% |8.20e-2(108)| 4.35¢-2 (10) | 4.34¢-2 (10) | 4.34c-2 (10)
X E] 0 | 597% | 320e-1(144)] 1.22e-1 (10) | 9.31e-2 (10) | 8.77e-2 (10)
% S| 0 | 11.9% | 1.27e-1(171)] 5.32e-2 (10) | 5.12¢-2 (10) | 5.11e-2 (10)
I E 1000 | 5.98% | 3.07e-1(146)| 1.16e-1 (10) | 8.78e-2 (10) | 8.30e-2 (10)
2| 8] 1000 | 12.0% | 1.24e-1(173)] 5.14e-2 (10) | 4.93¢-2 (10) | 4.92e-2 (10)
o 0 | 3.99% | 2.31e-1(73) | 9.15e-2 (5) | 8.10e2 (5) | 7.95¢-2 (5)
2 E| 0 | 7.98% | 9.01e2 (78) | 4.60e-2 (5) | 4.58¢-2 (5) | 4.58¢-2 (5)
g | =2

E |2 1000 | 4.00% | 2.150-1 (74) | 8772 (5) | 7.58¢-2 (5) | 7.36¢-2 (5)
S| 711000 | 7.99% | 8722 (69) | 4.34e-2 (5) | 4.31e-2 (5) | 4.31e-2 (5)
X[ 2] 0 [ 399% [337e1(91) | 1531 (5) | L18e1 (5) | 1.07e1 (5)
B2 0 | 798% | 1.37e1(128)| 5622 (5) | 5.33e2 (5) | 53le2 (5)
L | Z[1000 | 400% | 31lel(93) | 139%-1(6) | L06e-l (5) | 95502 (5)
S| 211000 | 7.99% | 1.29¢-1(104)| 5.21e2 (5) | 4.91e-2 (5) | 4.89e-2 (5)
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7 Conclusions

In this paper, we proposed a rank-corrected procedure for low-rank matrix completion
problems with fixed basis coefficients. This approach can substantially overcome the
limitation of the nuclear norm technique for recovering a low-rank matrix. We confirmed
the improvement of the rank-correction step in both the reduction of recovery error and
the achievement of rank consistency (in the sense of Bach [3]). Due to the presence of
fixed basis coefficients, constraint nondegeneracy plays an important role in our analysis.
Extensive numerical experiments show that our approach can significantly improve the
recovery performance compared with the nuclear norm penalized least square estima-
tor. As a byproduct, our results also provide a theoretical foundation for the majorized
penalty method of Gao and Sun [27] and Gao [26] for structured low-rank matrix opti-
mization problems.

Our proposed rank-correction step also allows additional constraints according to
other possible prior information. In order to better fit the under-sampling setting of ma-
trix completion, in the future work, it would be of great interest to extend the asymptotic
rank consistency results to the case where the matrix size is allowed to grow. It would
also be interesting to extend this approach to deal with other low-rank matrix problems.
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Appendix A Spectral operator

The concept of spectral operator is associated with a symmetric vector-valued function.
A function f:R"™ — R" is said to be symmetric if

f(x) = Q" f(Qx) Vsigned permutation matrix Q and z € R™,

where a signed permutation matrix is a real matrix that contains exactly one nonzero
entry 1 or —1 in each row and column and 0 elsewhere. From this definition, we see that

fz(ac) =0 if xTr; — 0.
The spectral operator F': V*1*n2 — YMXN2 agq0ciated with the function f is defined by
F(X) := UDiag(f(c(X)))VT, (27)

where (U, V) € O™ "2(X) and X € V"*"2 From [10, Theorems 3.1 & 3.6|, the symme-
try of f guarantees the well-definiteness of the spectral operator F', and the (continuous)
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differentiability of f implies the (continuous) differentiability of F'. When V"™1*"2 = §"
we have that T
F(X) = PDiag(f(|A(X)])) (PDiag(s(X))) ",

where P € O"(X) and s(X) € R™ with the i-th component s;(X) = —1 if A;(X) < 0
and s;(X) = 1 otherwise. In particular for the positive semidefinite case, both U and V

in (27) reduce to P. For more details on spectral operators, the readers may refer to the
PhD thesis [10].

Appendix B Constraint nondegeneracy

Consider the following constrained optimization problem

min {(I)(X) FU(X): AX)—be K} (28)
Xevnixna

where ® : V" *"2 — R is a continuously differentiable function, ¥ : V"1*"2 — R is a

convex function, A : V*"1*"2 — Rl is a linear operator and K C R is a closed convex set.

Let X be a given feasible point of (28) and % := A(X) — b. When ¥ is differentiable at

X , we say that the constraint nondegeneracy holds at X if

AVTXn2 4 in(Tk(2)) = R, (29)

where Tx(Z) denotes the tangent cone of K at z and lin(7x(Z)) denotes the largest
linearity space contained in Tk (%), ie., lin(7Tx (%)) = Tk(Z) N (=Tk(z)). When the
function ¥ is nondifferentiable, we can rewrite the optimization problem (28) equivalently
as
min {<I>(X) tt: AX,t) €K x epi‘lf},
XGanXnQ’teR

where epil := {(X,t) € V"*"2 x R | U(X) < t} denotes the epigraph of ¥ and A :
Vrixnz o R — R x V1X72 % R is a linear operator defined by

N A(X) = b
A(X,t) = X . (X, 1) eV xR
t

From (29) and [67, Theorem 6.41], the constraint nondegeneracy holds at (X,7) with
t=v(X) if
R!

() i) - (75

By the definition of fT, it is not difficult to verify that this condition is equivalent to
[A 0] (lin(Tepiw (X, 1)) + lin(Ti (2)) = R, (30)
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One can see that the problem (3) with C = V™ *"2 can be cast into (28) with ¥ =
|, A =[Ra Rgl, K= {0}l x [~b,0]!l, and meanwhile the problem (3) with C = S7
can be cast into (28) with ¥ = dgn, A = R, K = {0}. In the previous case, the
condition (30) reduces to (15) according to the expression of Topiw (X, ) with £ = || X|.
(e.g., see [34]). In the latter case, the condition (30) reduces to (16) according to Arnold’s

characterization of the tangent cone Tgn (X)={H eS| P;TH Py eSSy} in [2].

Appendix C Proofs of Theorems

C.1 Proof of Theorem 1

Let Ay, := X,, — X. Using the optimality of X,, to the problem (3), we obtain that
1 v, _ _ _
o R < { LR, An) — o (1Rl ~ I~ (F(Fon) An). (31)

Then, we introduce an orthogonal decomposition V"1*"2 = T'@ T with

T:={X e V" | X = X| + X, with col(X;) C col(X) and row(X3) C row(X)},
T+ = {X € V"*"2 | row(X) L row(X) and col(X) L col(X)},

where row(X) and col(X) denote the row space and column space of X, respectively.
Let Pr and Pp. be orthogonal projections onto 7' and T, respectively, given by

Pr(X) =T\U1 X + XV, V| =0, XV\V; and Pro(X) = U0, XVaV,  (32)
for any X € V"*"2 and (U, V) € O""2(X). Then, it follows from the choice of p,, that

(ZRA©): Am) < | ZRAE||I1Amll- < 22 (IPr(AW) I+ [P (Am)l-) (33)

Moreover, from the directional derivative of the nuclear norm at X, (see |75, Theorem
1]), we have

[Xmlls = [ X[s = (F(Xin), Am) = (U1Vi, Am) + [Ug A Volls = (F(Xm), Am)
J— 7T ~
2 [Pre(Am)lls = U1V = F(Xo)l| Fl|[ Al 7
= [Pr(Am)lls = am V(| Aml|£. (34)

Then, by substituting (33) and (34) into (31), we have

1 ) 1 k-1
5~ IRa(Am)I3 < pm (am V7Bl + - IPr(Am)lle = = [Pro(Am)ll).  (35)

Note that rank(Pr(A,,)) < 2r. Hence, |[Pr(Am)ll« < vV2r|Pr(An)|r < V2r|Anlr
and then the desired result (7) follows.
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C.2 Proof of Theorem 2

We first show that the sampling operator R, satisfies some RIP-like property for matrices
specified in a certain set with high probability. Similar results can also be found in
[58, 44, 40, 49].

For this purpose, define
1
Im :EHER*Q(E)H with €= (e1,...,em)7, (36)

where {€1,..., €y} is an i.i.d. Rademacher sequence, i.e., an i.i.d. sequence of Bernoulli
random variables taking the values 1 and —1 with probability 1/2.

Lemma 11 Given any s > 0 and t > 0, define
K(s,t) :={A e V"2 | Ry (A) = 0,[|Rs(A)[loc = L, [Allx < sl|A[lr, (Qs(A), A) > t}.
Then, for any given v > 1, 1 € (0,1) and 1o € (0,71/7), with probability at least

1— exp(—(11—y72)?mit?/2)
1—exp(—(y2—1)(r1—y72)?mt?/2)’

1 16
EIIRQ(A)H% > (1 -7)(Qs(A),A) - 7282u1d21972n VA € K(s,t). (37)

Proof: The proof is similar to that of [40, Lemma 12|. For any s,t >0,y > 1, 71 € (0,1)
and 1 € (0,71/7), we need to show that the event

1 16
E= {HAGK(s,t) such that ‘EHRQ(A)H% —(Q5(A), A)] > 11(Qs(A), A) + T—szuldgﬁfn}
2

exp(—(11—y7m2)?mt?/2)
1—exp(—(y2—1)(11—y72)?mt?/2) "

occurs with probability less than We decompose K(s,t) as

oo

K(s,t) = {A € K(s,t) | 7" < (Qp(A),A) < ykt}.
k=1

For any a > t, we further define K(s,t,a) := {A € K(s,t) | (Q3(A),A) < a}. Then we
get E C Jpe, Ej with

1 1
By = {EIAeK(s,t,vkt) such that ‘EHRQ(A)H% — (Qg(A), A)‘ > Ah Lt 4 76s2u1dgﬁ;}.
2
Now we need to estimate the probability of each event Ej. Define

Lo = sup

1
—|[Ra(A)]3 ~ (Qs(4), A)|.
A€EK (s t,a) T
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Notice that for any A € V1xn2

m

T Ra(A)F = S (T, A % E((T, A)) = (Q5(A), A).

=1

Since [[Rg(A)||ec < 1 for all A € K(s,t), from Massart’s Hoeffding type concentration

inequality [51, Theorem 1.4] for suprema of empirical processes, we have
me?
Pr(Z, > E(Z,) +¢) < exp <—2> Ve >0. (38)

Next, we use the standard Rademacher symmetrization in the theory of empirical pro-
cesses to further derive an upper bound of E(Z,). Let {e1,...,€en} be a Rademacher
sequence. Then, we have

E(Z,) = IE( sup

T, A)2 (<Fwi,A>2)‘>

A€K(s,t,a) T ;
m 1 m
< 2E sup €(Cw,;, A) D < 8E( sup |— €i<meA>D
(AEK(s,t a) ; A€K (s,t,a) m ;
1 1
= 8E sup | — RG(€), A D §8EH—R* € < sup A *>, 39
(AEKW m§:j< 40, 4) Ra@] (e alL), @

where the first inequality follows from the symmetrization theorem (e.g., see |73, Lemma
2.3.1] and [6, Theorem 14.3]) and the second inequality follows from the contraction
theorem (e.g., see [46, Theorem 4.12] and [6, Theorem 14.4]). Moreover, from (8), we
have

(Qs(A), ) > (mda) UIAI} YA€ {ASTHI™ | Ry(A) =0} (40)

This leads to

1Al < sl|AllF < S\/NldQ (Qs(A sv/pdea YA€ K(s,t,a). (41)

Combining (39) and (41) with the definition of ¥,, in (36), we obtain that
1 7al 16 5 5 7al
E(Z,) + (* - Tz)a < 85/ pidaa + (7 - 72>a < —s“mde?;, + —a,
v v T2 v

where the second inequality follows from the simple fact z129 < (22 + 23)/2 for any
x1,x2 > 0. Then, it follows from (38) that

16 2
Pr(Za > Doy 32u1d219%1> <Pr <Za > E(Za) + (Tl—m)a) < exp (— (E—m) .
YT v Y 2
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This implies that Pr(Fy) < exp ( 1 20=1) (7 — ’)/TQ)thz). Then, since v > 1, by using
Y% > 14 k(y—1) for any k > 1, we have

Pr( i (Ey) < Zexp ( 2(k 1)( T — 772)2mt2)

k=1

< oxp (~2m —mme) Y exp (206 - D7 — (1 — 97)m?)
k=1
exp(— (11 — ym2)?mt?/2)
T 1—exp(—(v2 = 1)(11 —y72)?mt?/2)

Thus, we complete the proof of Lemma 11. O

Now we proceed with the proof of Theorem 2. Let A, := )?m — X. Notice that the
equality (35) implies that

1
1Prs (Am)lle < == [IPr(Am) ]l + amfl\AmHF
This, together with |Pr(An)|l« < V2r||An| F, leads to

il (V24 an) Vil Anle. (42)

[Amll« < 1Pr(Am)lls + [ Prs(Am)[lx <

Let by, = ||R5(Am)|loo < 2b. For any fixed ¢ > 0, v > 1, 7y € (0,1) and 7 € (0,72/7),

define t,, := % so that direct calculation yields

exp(— (11 — y72)*mtZ, /2) _ (n1 + ng)~° _ (n1 4+ ng)~¢
L —exp(=(y2 = 1) (11 —ym)?mt2,/2) 1= (n14ng)~(*=De = 1 —2-(y*~1e’

Then we separate the discussion into two cases:
Case 1: (Q5(Anm), Ap) < b2 ty,. It follows from (40) that || A,,[|%/da < 462 pity,.

Case 2: (Qp(Am), Ap) > b2,ty. It follows from (42) that A, /by € K(Sm,tm) with
Sm = ﬁ(\/ﬁ + am)\/T". Then for any given 73 satisfying 0 < 73 < 1, we obtain that

(n1+n2)~°
1—2—(2=1)e?

with probability at least 1 —

HAmH% H1 1 9 16 4 212
—F < Ap, 7Am < — A, —Sn, d ﬁmbm
5 < m(Qs(Am), Am) < 7 lRa(Am)ll3 + sminde
2 V2 16
=1-7 <I€ + am)ﬂlpm\/;HAmHF + W mu1d2192 b2
T3||Am||% n 2 <\/§ 2 12

2
16
2 2
d 2da0)
do (1_7_1)27_3 K +am> HiPmTd2 + (1_7_1)7_2 m/’Ll 2YmY%m

IN
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where the first inequality follows from (40), the second inequality follows from Lemma
11 and the third inequality follows from Theorem 1. Plugging in s,, further leads to

|mm%<@@rQ 2 () (*ﬂfwamwwﬁﬁ.

do “1—13 1—7’1)27'3 K 1—7’1)T2 k—1

Combing the above two cases together, with ~, 71, 70 and 73 chosen to be absolute
constants, we arrive at an intermediate result that there exist some positive absolute
constants ¢, ¢}, ¢5 and C{) such that for any x > 1, if p,, is chosen as in Theorem 1, then
with probability at least 1 — ¢} (n1 + ng)*d?,

X — X |3 2 2 ?
1 Xm — XII7 < Cjmax {,u%dzr <062 <\I{ + am> P2+ ( i ) (\@—l— am)Qﬁgan> ;

d2 k—1

log(ny +n
b2 g(;n?)} (43)

To further derive explicit estimations of p,, and ¥,,, we introduce the noncommutative
Bernstein inequality taken from [42, Corollary 2.1], which provides a probability control
of the deviation of the sum of random matrices from its mean in the operator norm. The
noncommutative Bernstein inequality introduced here is a recently-extended version, with
the random matrices being controlled by the Orlicz norms (see [42, 43, 44]) rather than
the operator norm (see, e.g., [63, 72, 30]). The Orlicz norms are used to characterize the
tail behavior of random variables. Given any s > 1, the ¥4 Orlicz norm of a random
variable z is defined by | z[|y, := inf{t > 0| Eexp(|z[*/t*) < 2}.

Lemma 12 (Koltchinskii [42]) Let Z,...,Z,, € V"'*"2 pe independent random ma-

trices with mean zero. Suppose that max{HHZiHHw ,2]E%(HZZH2)} < ws for some con-
stant ws. Define
1/2}

1 m
0z := max { H . Z E(Z:Z}))
=1
Then, there exists a constant C' such that for allt > 0, with probability at least 1—exp(—t),

1/s
< C'max {O_Z\/t +log(ny + n2),w3 <10g ws> t + log(ni+ ng) } ‘

1/2 1
WZM@@
m =1

1 m
e
1

i1

m oy m

With the help of Lemma 12, we obtain the following result, which is an extension
of |44, Lemma 2| and [40, Lemmas 5 & 6| from the standard basis to an arbitrary
orthonormal basis. A similar result can also be found in [58, Lemma 6].
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Lemma 13 Under Assumption 2, there exists a positive constant C' (only depending on
the 11 Orlicz norm of &) such that for all t > 0, with probability at least 1 — exp(—t),

| oo < c/max{ \/uz(t+ ogu 1) Lo+ oo 1) } S

In particular, when m > \/dylog®(ny + n2)/us, we also have

2epz log(ny + n2)
V dgm

| Rae)] < ¢ (15)

where e is the exponential constant.

Proof: Recall that LR () = LY, £0,,. Let Z; := §0O,,. Since E(§) = 0, the
independence of & and O,, implies that E(Z;) = 0. Since ||Oy,||r = 1, we have that
1Zill < 1ZilF = |&l|Owllr = |&]- 1t follows that ||| Zi][],, < lI€lls, and thus finite.
(It is known that a random variable is sub-exponential if and only its ¢; Orlicz norm is
finite [73]). Meanwhile, E2 (|| Z;||2) < E2(|| Zi||%) = E2(£2) = 1. Then direct calculation
yields
E(ZiZ]) = E(£6.,00,) =E(0,00,) =Y p0:0y.
kep

The calculation for E(Z] Z;) is similar. We obtain from (8) that 1/v/dy < 0% < pa/v/da.
Then, applying this to Lemma 12 yields (44). The remaining proof of (45) follows the
same as the proof of Lemma 6 in [40]. For simplicity, we omit it. O

A good estimation of p,, can be achieved by choosing ¢t = ¢, log(n; 4+ n2) in Lemma
13 for an optimal order bound, where ¢, is the same as that in (43). With this choice,
when m > 4(1 + c4)v/dz log?(d2) log(ny + na)/ua, the first term in the maximum of (44)
dominates the second one. Thus, with probability at least 1 — (ny + ng)*cé, one can
choose

Vdam '

Moreover, since Bernoulli random variables are sub-exponential, Lemma 13 also provides
an upper bound of ¥, in (45). It is worthwhile to note that after plugging the above
estimations of py, and ¥,,, the second term in the maximum of (43) is negligible compared
with the first term. Therefore, the second term is further dropped for simplicity and thus
we complete the proof.

S \/ (1+ ch)ps log(n1 + o)
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C.3 Proof of Theorem 3

For notational simplicity, we drop the subscript of X,, in this proof. With (ﬁ , ‘7) €
O™-"2(X), one immediately obtains from the definition of a,, in (6) that

1 ST ~ ~p = =T — —T
amsW(HF(X)—U1V1T||F+HU1VF—U1V1 IF) <er(X)+ \fnUlvl U1V |F. (46)

The left proof is to find an upper bound of ||ﬁ1‘71T - Ulﬁup. Let 0 := || X — X||r and
Ns(X) :={X e V"2 | || X — X||p <}

_ Let Foymxnz V"j\xn? be a spectral operator associated with a symmetric function
f R — R™ given by fi(x) = ¢(x;), i = 1,...,n, where ¢ : R — R is an odd scalar
function with ¢(t) = —¢(—t) for t < 0, and ¢(¢) for ¢t > 0 is defined as
1 if t>20,.(X)/3-3/3,
—(or(X)/346/3) . ~ ~
o(t) = % if 0,(X)/3+6/3<t<20.(X)/3—5/3,
0 if 0<t<o,.(X)/3+68/3.

Note that for any X € Ns(X),
0i(X) —oi(X)| <X = X) < | X =X|[p <6, i=1,...,n.
Since §/0-(X) < 1/2, we further have 0,.(X) > 0,.(X) — 3§ > 6 > 0,41(X). This means
F(X)=tV]' VX e Ns(X).

Moreover, Fis continuously differentiable over N3(X). Hence, we can apply the Mean
Value Theorem to obtain

LVl —-T,V, = F(X) - F(X) = /O 1 FI(X)(X — X)dt, (47)

where X; := X + t()? — X). Clearly, X, € Ns(X) when t € [0,1].

Regarding (47), we need to look into the derivative of F over N5(X). Let X € Ns(X)
be arbitrary and (U, V) € O""2(X). Without loss of generality, we assume n; < no.
Let x1:={1,...,7}, xo:={r+1,...,n1} and x3 := {n1 + 1,...,n2}. Then, according
to [10, Theorem 3.6|, we have that for any H € V"1 x"2

ﬁl—i-ﬁlT
2

- A7
Hi—H}

5 T(X)o Hy|VT,  (48)

FI(X)(H) =U|&(X) o + &(X)

where [H, Hy] = H := UHVT with H; € V*m | Hy ¢ Ymx(m2=m) and £(X) €
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Yo g, (X) € Ymxm Y(X) € Vmx(m2=m) take the form

% if 1€ x1,j € x20r1€x2,5€E X1,
(gl(X))ij = {UI(X) 73%)

0 otherwise,
— 2 if iexi,je€
71 (X)+0;(X) LJ S X1
(52(X))ij: m if i€x1,jE€Ex20ri€Xx2,]€ X1,

0 otherwise,
(T(X)), = oD if i€x1,7 € xs,
Y 0 otherwise.

14 7)

Here, stands for the Hadamard product of matrices. Let A denote the matrix in the
bracket of (48). Moreover, let Ay, \, and H,, ,, denote the submatrices of A and H with
row indices x; and column indices , respectlvely Then, a direct calculation yields

| Hyy 13 | Hoy o 13 + [ Hyo |3
A < Hxaxallp A 2 A X1,X2 I F X2,X1 11 F
” XthHF = O’%(X) ) H X1,X2HF + H X27X1||F = (O'T(X) _ O‘r+1(X))2 ’

|l
Banalle =0, Byl < TR and Ayl = 0.
T

Note that ||[F/(X)(H)|r = |Allp and |H|r = |H||F. By summing up the above
inequalities together, we obtain that for any X € N5(X),

~ 1 o uxaxs 17+ [H o 00 117
HF/(X)(H)HFS \/ X1,X1Ux2Uxs | 7 x2.x1 1l F < |H| . (49)
or(X) = ors1(X) or(X) = ory1(X)
Now, we proceed with the proof by applying (49) to (47). This leads to
077 T, < [ IPENE T ae s [
uvy —UV, S/ FI(X)(X — X)||.dt g/ — —dt.  (50)
F 0 F 0 O'T(Xt) — 0-7-+1(Xt)
Moreover, using [4, Theorems IV.3.4 & I1.3.1], we have
> <\ 2 > o 2 S w2
(00 (R0) =, ()02, (%) < o) -0 (0|2 < (Ko T 2 = | Ko X < 242

This implies that ar(Xt) —0,(X) = §; cos § and 0T+1(Xt) = ¢§; sin 0 for some §; < t§ and
6 € [0,27). Thus,

0r(Xs) — 0ri1 (X)) = 00 (X) + 6 cos 8 — Gy sin > 0, (X) — V20 > 0,(X) — V2t6. (51)

Substituting (51) into (50), we obtain that

e 1 b} 1 V2§
UV —-T VT </ ———dt=———=+=1 <1— >
[ 1WVillr < ) o) VA 7518 o (X)

This, together with (46), completes the proof.
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C.4 Proof of Theorem 4

We first prove the following properties of the sample operator Rq and its adjoint Ry.

1
Lemma 14 (i) For any given X € V"*"2  the random matrizv —RHRa(X) 3 Qs(X).
m

1
(ii) The random vector ——=RauaRG(£) 4 N (0, Diag(p)), where p = (p1,...,pa)".

Jm

Proof: (i) It follows from the definitions of R and its adjoint R that LRER(X) =
L5 (Ou,, X) O,,. This is an average value of m i.i.d. random matrices (O, X)O.,.
Note that E((O.,, X)Ou,) = Qs(X) Vi = 1,--- ,m. Then the result follows directly
from the strong law of large numbers.

(ii) It directly follows from the definitions of R and R,up that ﬁRaUﬁRE(f) =

LR (T 60u) = =TT, ERaus(O,,). Since E(§) = 0 and E(€2) = 1, ac-
cording to the independence of & and R,us(O.,), we obtain E(fiRaUB(@wi)) =0 and
cov(&Raup(Oy,;)) = Diag(p). Then, applying the vector-valued central limit theorem
yields the result. O

To prove the convergence in distribution of minimizers, the following theorem of
Knight [41, Theorem 1] on epi-convergence in distribution is particularly useful in this
regard (see also [32, Proposition 9]).

Lemma 15 (Knight [41]) Let {®,,} be a sequence of random lower-semicontinuous
functions that epi-converges in distribution to ®. Assume that

(1) T, is an ep-minimizer of ®p,, i.e., P (Ty,) < inf @y, (x) + £, where ey, LN 0;
(ii) Zpm = Op(1);

(iii) the function ® has a unique minimizer T.
~ d _ iy . . S . ~ _
Then, Ty, — T. In addition, if ® is a deterministic function, then T, 5z

It is know from [29] that Z,, is guaranteed to be O,(1) when all ®,, are convex func-
tions and ® has a unique minimizer. For more details on epi-convergence in distribution,
one may refer to King and Wets [38], Geyer [28|, Pflug [59, 60| and Knight [41]. As
Lemma 15 is only applicable to unconstrained optimization problems, constrained op-
timization problems need to be equivalently converted to unconstrained ones using the
indicator function of feasible set. This leads to the issue of epi-convergence in distribution
of the sum of two sequences of random functions; see, e.g., Pflug [60, Lemma 1].

Now we proceed with the proof of Theorem 4. Let ®,, denote the objective function
of (3) and F denote the feasible set. Then, the problem (3) can be concisely written as

min  {®,(X) + 0£(X)}.
Xeynixna
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By Assumptions 3 and 4 and Lemma 14, we have that the convex function ®,,, converges
pointwise in probability to the convex function ®, where ®(X) := $(X — X, Q(X — X))
for any X € V™" *"2_ Ag a direct extension of Rockafellar [66, Theorem 10.8], Andersen
and Gill [1, Theorem II.1] proved that the pointwise convergence in probability implies
the convergence in probability (and thus in distribution) with respect to the topology of
uniform convergence on compact subset. Then, according to Pflug [60, Lemma 1|, we
further obtain that ®,, + d7 epi-converges in distribution to ® + 6. Note that X is the
unique minimizer of ®(X)+0r(X) since (X) is strongly convex over the feasible set F.
Thus, we complete the proof by applying Lemma 15 on epi-convergence in distribution.

C.5 Proof of Theorem 5

Theorem 4 actually implies that )?m has a higher rank than X with probability converging
to 1if p,, — 0, due to the straightforward result:

Lemma 16 If X,, 5 X, then lim Pr(rank(X,,) > rank(X)) = 1.

m— 00

Proof: It follows from the Lipschitz continuity of singular values that
o1 (Xm) B op(X) V1<Ek<n.
Thus, for any € > 0, we have
P(rank(X,,) > rank(X)) > P(|or(X,) — 0r(X)| < e0,(X)) =1 as m — oo.
O

Now we take a look at the local property for the rank function for the perturbation.

Lemma 17 Let A € V"1 X"2 satisfy UEZVQ % 0. Then, for all p # 0 sufficiently small
and A sufficiently close to A, rank(X + pA) > rank(X).

Proof: Let o/(X;-) denote the directional derivative function of the i-th largest singular
value function o;(-) at X. Let r := rank(X). Note that o,41(X) = 0. Then, according
to [48, Section 5.1| and [11, Proposition 6], for any A € V"*"2 and p — 0, we have

or1(X + pA) — 1,1 (X pA) = O(llpAl7),

where o] 1 (X; pA) = ||U;F(pA)V2||. Since UEZVQ # 0, from the sign-preserving prop-
erty of limits, for any p # 0 sufficiently small and A sufficiently close to A, we have
or+1(X + pA)

7’11‘ JE—
7 = [T, AVl + O(lplI All7) > 0.
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This implies that rank(X + pA) > rank(X). O

Define A, 1= ol (Xm — X). To guarantee the efficiency of the nuclear semi-norm
on encouraging a low-rank solution, the parameter p,, should not decay too fast. Then,
for a slow decay on p,,, we can establish the following result.

Lemma 18 If p,,, — 0 and /mpm, — oo, then ﬁm EN 3, where A is the unique optimal
solution to the following convex optimization problem

1 T T
i 5 (Qs(A),A) + (ThV] = F(X),4) + [TV 5

s.t. RQ(A) = 0, R/@H— (A) < 0, Rﬁ— (A) > 0.

Proof: Take a variable transformation A := p, (X — X) in the optimization problem

(3). Then one can easily see that A, is the optimal solution to

min —— [Ra(A)[2 — —2— (R5(€), A) + — (IX + pmAlls — [K]l) — (F(Xm), A)

Aevyrixne 2m, mpPm, Pm

st. A€ Fopi=ppt(K—X),

(53)
where K := {X € S" | Ra(X) = Ra(X), [[R(X)|lc < b}. Let ®p, and @ denote
the objective functions of (53) and (52), respectively. By the definition of directional
derivative and [75, Theorem 1|, we have

. 1 = — — =T =T \ >

lim —([[X + pmAlls = [ X[ls) = (T1V1, A) + [T AV ..
pm—=0 pm
Then, under Assumptions 3 and 4, according to Lemma 14, we obtain that ®,,, converges
pointwise in probability to ®. Together with the convexity of K, we know that F,,
converges in the sense of Painlevé-Kuratowski to the tangent cone Tx(X) (see [67, 5]),
taking the form

Te(X) = {A e V™2 | Ry (A) =0, Rp+(A) <0, Rg-(A) >0} (54)

Since epi-convergence of functions corresponds to set convergence of their epigraphs [67],
we obtain that dz, epi-converges to 677c (X)- Then, by using the same argument as in the
proof of Theorem 4, we obtain that ®,, +dr,, epi-converges in distribution to ® +5ch X)
In addition, the optimal solution to (52) is unique due to the strong convexity of ® over
the feasible set IC. Then, applying Lemma 15 on the epi-convergence in distribution leads
to the desired result. O

Note that )?m = Y—i—pmﬁm. From Lemmas 16, 17 and 18, we can see that U;IAVQ =
0 is a necessary condition for the rank consistency of X,,,. Then, we look into an explicit
characterization of this condition.
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Lemma 19 Let A be the optimal solution to the problem (‘5)) Then U2 AV, =0 if and
only if the linear system (13) has a solutzon [ € V(m—r)x(n2=r) it HI‘H < 1. Moreover,

in this case, A = QB(UQF V2 - U1V1 + F(X)).

Proof: Assume that U;T&Vz = 0. Since A is the optimal solution to (52), from the
optimality condition, the subdifferential of || X ||, at 0, and [66, Theorem 23.7|, we obtain
that there exist some I' € V(m=7)%(m2=r) with |[T|| < 1 and (7°,7%,72) € Rlel x RIFTT %
RI#”| such that

Qs(A) + U1V — F(X) + R + Riye (') + Ry (%) — ULV, = 0,

RQ(A/)\ =0, ) (55)
Rp+(A) <0, 7' >0, (Rg+(A),7") =0,

R,B7 (3) 2 07 ﬁ2 S 07 <Rﬁ7 (3)77/7\ > 0

Note that R5+(£) < 0 and Rg- (A) > 0 implies that Q;,Qg(&) = Pﬂ(&). Moreover,
QLRZ(ﬁO) = QT Rj (Y = QT Ris- (7?) = 0. Then, we apply the operator QL to the
first equation of (50) and then obtaln

Ps(R) + QLT — F(X)) — Usl'Vy) = 0. (56)

Further note that Re(A) = 0 implies Po(A) = 0. This leads U;TPB(A)VQ = 0 since
U;TAVQ — 0. Then, together with(56), we obtain that T is a solution to (13).

Conversely, if the linear system (13) has a solution T' with ||F|| <1, then it is easy to
check that the KKT conditions (55) are satisfied with A = Q 5( Z) and 7° = Rq (Z ), it =

(Rg+(Z ))+, n? = = (Rg-(Z )),, where Z = UQFVQ U1V1 + F(X). Then, U2AV2 =0
directly follows from (13). O

With Lemma 19, the necessary part of Theorem 5 is immediate due to the necessity
.. —T >~ . . .
of the condition Uy AVy = 0 for rank consistency. Now we proceed with the sufficient
part.

Define 8,5, 8., 82, similar to (12) with X replaced by )?m From Theorem 4, we
have )?m P X as m — co. The convergence implies that B C Bt and §,, C B~ for
sufficiently large m. In this circumstance, the estimator X, is the optimal solution to
(3) with C = V™ ™2 if and only if there exists a subgradient Gy of the nuclear norm
at X,, and (7, 7,,72,) € Rlel x RIBn| x RIBx| such that (X, 70, 7L, 72) satisfies the
KKT conditions:

~

R (Re(Xm) ~0) +0m (G~ F (X)) +RE(T)+ R (Al) + R (72) =0,
Ra(Xm) = Ra(X), (57)

~
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Let (Up, Vin) € O"2(X,,)) with Uy, € QM%7 Uppp € QuXm=n) {7 e Q2% and
Vina € ©"2%(2=7) From Theorem 4 and Lemma 16, we know that rank(X,,) > r with

probability tending to one. When rank(X ) > r holds, from the characterization of the
subdifferential of the nuclear norm [75, 76|, we have that G, = V 1+ Um . V

for some Ty, € V=) (n2=1) gatisfying IT,|l < 1. Now we want to show HFmH < 1so
that rank(X,,) = r. Since X,, 2 X, by [11, Proposition 8] we have ﬁm,ﬂ/},EJ 2 Ulﬁr.
As T is the unique optimal solution to (13), applying Lemma 14 with the equation (2)
leads to

1 N ~ ~ o~ ~ ~ — T —
——RH(Ra(Xm) = y) + Uni Vg — F(Xn) & Qs(A) + U1V, — F(X),

mpPm

Then, by further applying the operator Q}; to the above equation, together with (56) in
Lemma 19 and (57), we obtain that

U, QL (U 2T Vi 0)Va 5 Uy QL (UL V)V (58)

Since Xm EaN X, according to [11, Proposition 7|, there exist two sequences of matrices
Qmu € O™~ and Qv € O™ such that

ﬁm,QQm,U 2T, and vm,ZQm,V BV, (59)

Moreover, the uniqueness of the solution to the linear system (13) is equivalent to the
non—smgularlty of its linear operator. By combining (58) and (59), we obtain that

Qgﬁb UFQOV 2 T'. Hence, we obtain that HFmH < 1 and thus rank(X,,) = r with
probability tending to one since ||FH < 1. Thus, we complete the proof of Theorem 5

C.6 Proof of Theorem 6

The proof of Theorem 6 is similar to the proof of Theorem 5. Define A = o (meX).

Lemma 20 If p,,, — 0 and /mpm, — oo, then Em LN B, where A is the unique optimal
solution to the following convex optimization problem

.1 X
min o (Qs(A),A) + (In = F(X), A) (60)

st Ra(A) =0, Rge(A) <0, Rg-(A)>0, PyAP,eST".

Proof: It is easy to verify that Am is the optimal solution to

1 . _
min 5o IRa(A) — - (RA(E). A) + (L~ F(Xn), &) o

st. A€ Fy =pHKNST - X),

43



where K := {X € S" | Ra(X) = Ra(X), |Rs(X)|lc < b}. Then, F,, converges in
the sense of Painlevé-Kuratowski to the tangent cone Tirgn (X) (see [67, 5]). Note that
the Slater condition in Assumption 5 implies that X and S} cannot be separated. Then,
from [67, Theorem 6.42], we have Tingn (X) =Te(X)N Tsn (X) with Txc(X) taking the
form of (54) and gy (X)={Aes"| ?;TAFQ € S} according to Arnold [2]. Then,
the proof can be completed by using the same argument as in the proof of Lemma 18. O

For the case C = S8, Lemmas 16, 17 and 20 imply that ?;TKE = 0 is a necessary
condition for the rank consistency of X,,. Then we look into an explicit characterization
of this condition.

Lemma 21 Let A be the optimal solution to the problem (60). Then F%E =0 if
and only if the linear system (1) has a solution A € S'\™". Moreover, in this case,

A = 0l(P,AP, — I, + F(X)).

Proof: Note that the Slater condition also holds for the problem (60). (One may check
the point )A(O — X.) Hence, A is the optimal solution to (60) if and only if there exists
(C°, ¢, 2, A) € Rlol x RIBYI x RIBTI x "= such that

Qs(A) + I — F(X) + RA(C) + R (C1) + R () — P2AP, =0,
Ro(A) =0,
N <1 N
Rpe(B) <0, C'>0, (Rge(A),CY) =0, (62)
Rs-(A) >0, 2<0, (Rg (A),?) =0,
PyAP, € ST, Re ST, (PyAP,, A) =0.

Then, applying the operator QL to the first equation of (62) yields the desired expression
of A if Py AP, = 0. It immediately follows that A is a solution to (14).

Conversely, if the linear system (14) has a solution Ae ST, it is easy to check that
(62) is satisfied with A = QF(Z) and (¥ = Ra(Z), ¢! = (Rg+(2))+, (* = (Rs-(2))-,
where Z = P3A ?;T — I, + F(X). Then, ?33@ = 0 directly follows from (14). O

The necessary part of Theorem 6 is immediate from Lemma 21 due to the necessity
of the condition ?;TAPQ = ( for rank consistency. Now we proceed with the sufficient
part.

Define ;. 3., 85, by (12) with X replaced by X’m. From Theorem 4, we have X’m EN
X as m — oo. The convergence implies that 3;; C 3T and 3, C 3~ for sufficiently large
m. In this circumstance, the Slater condition implies that va is the optimal solution to
(3) if and only if there exists multipliers (%, L, C2, Sp) € Rl x RIFTT < RIETI x S such
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that (Xm7 Cm, Cm, Cm, 'm) satisfies the KKT conditions:

[ R (Ra(Kn) ~9) +om (T~ F (X)) 4 RAC) + R (Go) 4R (o)~ =,

Ra()?m) = Ra(X),
R/J’?n ()?m) < bv Rﬁjﬂ(ym) = ba Rﬁfn(ym) = —b, 777%1 > 07 Uzn < 0:
X €S?, 8 €S, (X, Spn) = 0.

\

(63)
The last equation in (63) implies that va and §m can have a simultaneous eigenvalue
decomposition. Let ]3 € @"(Am) with ]3m1 € O™ and ﬁmz e Q"<(n=7) " From
Theorem 4 and Lemma 16, we know that rank( m) > r with probablhty tending to
one. When rank( m) > r holds, we can write Sm = m2A P o for some diagonal

matrix A, € ST™". In addition, if A € ST.", then rank(X,,) = . Since X,, & X,
accordlng to [11 Proposition 1], there exist a sequence of matrices Q,,, € Q™" such that
P 2Qm 5P, Then, using the similar arguments to the proof of Theorem 5, we obtain

that QgAQO 2 A. Since A € S, we have Am € S, with probability tending to
one. Thus, we complete the proof of Theorem 6.

C.7 Proof of Theorem 7

We first prove for the rectangular case C = V™*™ by contradiction. Assume that
there exists some V("1=")x(2=7) 5 T —£ 0 such that By(T) = UEQE(UQFV;T)VQ = 0.
Then (T, UEQL(Ungg)V@ = <UQTV§,QE(UQFV§)> = 0. This immediately leads
to (Q;)l/ 2(@?73) = 0 since Q; is a self-adjoint and positive semidefinite operator.

It then follows that [Rge; (Rg+)—; (Rg)+](UaT Vy) = 0, where (Rp)s(-) := (Ra(-))x
with 7 = 87 or 7. Then by using this equality, we have that for any H € T(X),

= 7T 7> = =T — =T
0= (U HV3) = (Ual'Vy, H) = (Raus(U2l' V3 ), Raus(H))
— =T
= ([Ra; (Rg+)+; (Rg-)-J(U2l'Vy ), Raug+up- (H)).
By using the arbitrariness of R, s+~ (H) over RI@UFTUBTT implied by the constraint

nondegeneracy (15), we further have [Ra; (Rg+)+; (Rﬁf)_](Ungg) = 0. Therefore, we

obtain UQTV;T = 0 and thus I’ = 0, which leads to a contradiction. Therefore, the linear
operator By is positive definite. The proof for the positive semidefinite case is similar.

C.8 Proof of Theorem 9

We first prove for the constraint nondegeneracy.

Lemma 22 For the matriz completion problems of Classes I and II, the constraint non-
degeneracy (16) holds at X.
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Proof: For the real covariance matrix case, the proof is given in [61, Lemma 3.3] and
[62, Proposition 2.1]. For the complex covariance matrix case, one can use the similar
arguments to prove the result.

We next consider the density matrix case. Suppose that X satisfies the density
constrairi le, Ro(X) = ﬁTr(Xi) = ﬁ Note that for any t € R, we have tX €
lin(737 (X)). This, along with Tr(X) = 1, implies that

\}ﬁTr(lin(T;ﬁz (X)) = Ra(lin(To (X)) = R.

This means that the constraint nondegeneracy (16) holds. O

From Theorem 7 and Lemma 22, for both Classes I an II, the linear system (14)
has a unique solution A. Moreover, for both Classes I and II, uniform sampling yields
Ql(Z) = Ps(2)/dy for any Z € ST Thus, from (14), we have

A = PyPo(PyAP,)Py = PyPy(PyAPy) Py = PyPs(l, — F(X)) Py (64)

Then we first prove for Class I by contradiction. For any Z € S, P,(Z) is the
diagonal matrix whose i-th diagonal entries is Xj; for all ¢ € m and the other entries
are 0. Assume that A ¢ S17", ie., Apin(A) < 0, where Apin(-) denotes the smallest
eigenvalue. Then, we have

)\min(K) — )\min (PZKPE) S >\min (Pa (P2KPE)) S >\min (nga (PQ K?E)PQ) )

where the equality follows from the fact that A and FQKP;T have the same nonzero
eigenvalues, the first inequality follows from the fact that the vector of eigenvalues is
majorized by the vector of diagonal entries, (e.g., see [50, Theorem 9.B.1]), and the second
inequality follows from the Courant-Fischer minmax theorem, (e.g., see [50, Theorem
20.A.1]). As a result, the left-hand side of (64) is not positive definite. Notice that

FEF(Y)FQ = 0. Thus, the right-hand side of (64) can be written as

Py Ps(I, — F(X))Py = PyPs(1,)Ps + Py Pa(F(X))P2 = Py (Ps(Ln) + Pa(F(X))) Pa.

Since rank(X) = r, with the choice (22) of F, we have that for any i € T,
Xii = Z)\ )|Pi|* >0 implies Zfl X))|Pi;|* > o.

Moreover, Ps(I,) is the diagonal matrix with the last n — r diagonal entries being ones
and the other entries being zeros. Thus, Ps(I,) +Pa(F (X)) is a diagonal matrix with all
positive diagonal entries. It follows that the right-hand side of (64) is positive definite.
Thus, we obtain a contradiction. Therefore, we should have A€ S%.". Then, we can
obtain the rank consistency according to Theorem 6.
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Next, we prove for Class II. It is easy to see Po(-) = LTr(-)I,. By further using

ﬁgF(Y)Fg =0 and Pg(I,) = 0, we can rewrite (64) as
~ 1 o~
A= =—Tr(AN),—, = —Tr(F(X))In_T.
n

By taking the trace on both sides, we obtain that A = 1Tr(F(X))I—r. Since X is a
density matrix of rank 7, with the choice (22) of F', we have that

ZZ)\ )[Pij|* =1 implies Tr(F( ZZf, X))[P;|* > 0.

=1 j=1 =1 j=1

It follows that A € S" and thus we obtain the rank consistency.

References

[1] P.K. Andersen and R.D. Gill. Cox’s regression model for counting processes: a large sample
study. The Annals of Statistics, 10(4):1100-1120, 1982. 40

[2] V.I. Arnold. On matrices depending on parameters. Russian Mathematical Surveys,
26(2):29-43, 1971. 31, 44

[3] F.R. Bach. Consistency of trace norm minimization. Journal of Machine Learning Research,
9:1019-1048, 2008. 3, 4, 14, 15, 29

[4] R. Bhatia. Matriz Analysis, volume 169. Springer Verlag, 1997. 38

[5] J.F. Bonnans and A. Shapiro. Perturbation analysis of optimization problems. Springer
Verlag, 2000. 16, 41, 44

[6] P. Bithlmann and S. Van De Geer. Statistics for High-Dimensional Data: Methods, Theory
and Applications. Springer-Verlag New York Inc, 2011. 33

[7] E.J. Candés and Y. Plan. Matrix completion with noise. Proceedings of the IEEE, 98(6):925—
936, 2010. 2

[8] E.J. Candeés and B. Recht. Exact matrix completion via convex optimization. Foundations
of Computational Mathematics, 9(6):717-772, 2009. 2

[9] E.J. Candés and T. Tao. The power of convex relaxation: Near-optimal matrix completion.
Information Theory, IEEE Transactions on, 56(5):2053-2080, 2010. 2

[10] C. Ding. An introduction to a class of matriz optimization problems. PhD thesis, National
University of Singapore, 2012. 29, 30, 37

[11] C. Ding, D.F. Sun, and K.C. Toh. An introduction to a class of matrix cone programming.
Mathematical Programming, pages 1-39, 2010. 18, 40, 43, 45

[12] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. The Annals of
statistics, 32(2):407-499, 2004. 3

[13] J. Fan. Comments on “Wavelets in statistics: A review” by A. Antoniadis. Statistical
Methods & Applications, 6(2):131-138, 1997. 3

47



[14]

[15]

[16]
[17]
(18]
[19]

[20]

21]

22]

23]

24]

[25]
[26]

27]

(28]
[29]

(30]

J. Fan and R. Li. Variable selection via nonconcave penalized likelihood and its oracle
properties. Journal of the American Statistical Association, 96(456):1348-1360, 2001. 3

J. Fan and J. Lv. Sure independence screening for ultrahigh dimensional feature space.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70(5):849-911,
2008. 3

J. Fan and J. Lv. A selective overview of variable selection in high dimensional feature
space. Statistica Sinica, 20(1):101, 2010. 3

J. Fan, J. Lv, and L. Qi. Sparse high dimensional models in economics. Annual Review of
Economics, 3:291, 2011. 3

J. Fan and H. Peng. Nonconcave penalized likelihood with a diverging number of parameters.
The Annals of Statistics, 32(3):928-961, 2004. 3

M. Fazel. Matriz rank minimization with applications. PhD thesis, Stanford University,
2002. 2

M. Fazel, H. Hindi, and S.P. Boyd. Log-det heuristic for matrix rank minimization with
applications to hankel and euclidean distance matrices. In American Control Conference,
2003. Proceedings of the 2003, volume 3, pages 2156-2162. Ieee, 2003. 4, 20

M. Fazel, T.K. Pong, D.F. Sun, and P. Tseng. Hankel matrix rank minimization with
applications in system identification and realization. STAM Journal on Matrixz Analysis and
Applications, 34(3):946-977, 2013. 3, 21

S.T. Flammia, D. Gross, Y.K. Liu, and J. Eisert. Quantum tomography via compressed
sensing: error bounds, sample complexity and efficient estimators. New Journal of Physics,
14(9):095022, 2012. 3, 7, 26

Massimo Fornasier, Holger Rauhut, and Rachel Ward. Low-rank matrix recovery via itera-
tively reweighted least squares minimization. SIAM Journal on Optimization, 21(4):1614—
1640, 2011. 4

R. Foygel, R. Salakhutdinov, O. Shamir, and N. Srebro. Learning with the weighted trace-
norm under arbitrary sampling distributions. In Advances in Neural Information Processing
Systems (NIPS) 24, volume 24, pages 2133-2141, 2011. 2

R. Foygel and N. Srebro. Concentration-based guarantees for low-rank matrix reconstruc-
tion. In 24nd Annual Conference on Learning Theory (COLT), 2011. 2

Y. Gao. Structured low rank matriz optimization problems: a penalized approach. PhD
thesis, National University of Singapore, 2010. 4, 29

Y. Gao and D.F. Sun. A majorized penalty approach for calibrating rank constrained corre-
lation matrix problems. Preprint available at http://www.math.nus.edu.sg/ matsundf/
MajorPen_May5.pdf, 2010. 4, 10, 18, 29

C.J. Geyer. On the asymptotics of constrained M-estimation. The Annals of Statistics,
pages 1993-2010, 1994. 39

C.J. Geyer. On the asymptotics of convex stochastic optimization. Unpublished manuscript,
1996. 39

D. Gross. Recovering low-rank matrices from few coefficients in any basis. Information
Theory, IEEE Transactions on, 57(3):1548-1566, 2011. 2, 35

48


http://www.math.nus.edu.sg/~matsundf/MajorPen_May5.pdf
http://www.math.nus.edu.sg/~matsundf/MajorPen_May5.pdf

[31]
32]
33]

[34]

[35]

[36]

37]
38)
[39]
40}
ja1)

42]

[43]

[44]

[45]

[46]

[47]

D. Gross, Y.K. Liu, S.T. Flammia, S. Becker, and J. Eisert. Quantum state tomography
via compressed sensing. Physical Review Letters, 105(15):150401, 2010. 2, 3, 7, 26

C. Han and P.C.B. Phillips. GMM with many moment conditions. Econometrica, 74(1):147—
192, 2006. 39

J. Huang, S. Ma, and C.H. Zhang. Adaptive lasso for sparse high-dimensional regression
models. Statistica Sinica, 18(4):1603, 2010. 3

K. Jiang, D. Sun, and K.C. Toh. An inexact accelerated proximal gradient method for large
scale linearly constrained convex SDP. SIAM Journal on Optimization, 22(3):1042-1064,
2012. 3, 31

K. Jiang, D.F. Sun, and K.C. Toh. A partial proximal point algorithm for nuclear norm
regularized matrix least squares problems. Mathematical Programming Computation, to
appear. 3

K. Jiang, D.F. Sun, and K.C. Toh. Solving nuclear norm regularized and semidefinite
matrix least squares problems with linear equality constraints. In Discrete Geometry and
Optimization, pages 133—-162. Springer, 2013. 3

R.H. Keshavan, A. Montanari, and S. Oh. Matrix completion from a few entries. Information
Theory, IEEE Transactions on, 56(6):2980-2998, 2010. 2

A.J. King and R.J.B. Wets. Epi-consistency of convex stochastic programs. Stochastics: An
International Journal of Probability and Stochastic Processes, 34(1-2):83-92, 1991. 39

O. Klopp. Rank penalized estimators for high-dimensional matrices. FElectronic Journal of
Statistics, 5:1161-1183, 2011. 2

O. Klopp. Noisy low-rank matrix completion with general sampling distribution. Bernoulli,
20(1):282-303, 2014. 2, 4, 9, 11, 12, 32, 35, 36

K. Knight. Epi-convergence in distribution and stochastic equi-semicontinuity. Unpublished
manuscript, 1999. 39

V. Koltchinskii. Oracle Inequalities in Empirical Risk Minimization and Sparse Recovery
Problems: Ecole Ddeté de Probabilités de Saint-Flour XXX VIII-2008, volume 2033. Springer,
2011. 35

V. Koltchinskii. Von Neumann entropy penalization and low-rank matrix estimation. The
Annals of Statistics, 39(6):2936-2973, 2012. 2, 35

V. Koltchinskii, K. Lounici, and A.B. Tsybakov. Nuclear-norm penalization and optimal
rates for noisy low-rank matrix completion. The Annals of Statistics, 39(5):2302-2329, 2011.
2,12, 32, 35

Ming-Jun Lai, Yangyang Xu, and Wotao Yin. Improved iteratively reweighted least squares
for unconstrained smoothed \ell q minimization. SIAM Journal on Numerical Analysis,

51(2):927-957, 2013. 3

M. Ledoux and M. Talagrand. Probability in Banach Spaces: Isoperimetry and Processes,
volume 23. Springer, 1991. 33

C. Leng, Y. Lin, and G. Wahba. A note on the lasso and related procedures in model
selection. Statistica Sinica, 16(4):1273, 2006. 3

49



48]
[49]
[50]
[51]
52|
53]
[54]

[55]

[56]

[57]

[58]

[59]
[60]
[61]
[62]
[63]
[64]
[65]

(6]

A.S. Lewis and H.S. Sendov. Nonsmooth analysis of singular values. Part II: Applications.
Set-Valued Analysis, 13(3):243-264, 2005. 40

Y.K. Liu. Universal low-rank matrix recovery from Pauli measurements. In Advances in
Neural Information Processing Systems, pages 1638-1646, 2011. 12, 32

A.W. Marshall, I. Olkin, and B. Arnold. Inequalities: Theory of Majorization and Its
Applications. Springer Verlag, 2010. 46

P. Massart. Optimal constants for hoeffding type inequalities. Technical report, Technical
report, Mathematiques, Université de Paris-Sud, Report 98.86, 1998. 33

N. Meinshausen. Relaxed lasso. Computational Statistics & Data Analysis, 52(1):374-393,
2007. 3

N. Meinshausen and P. Bithlmann. High-dimensional graphs and variable selection with the
lasso. The Annals of Statistics, 34(3):1436-1462, 2006. 3

M. Mesbahi. On the rank minimization problem and its control applications. Systems &
Control Letters, 33(1):31-36, 1998. 2

M. Mesbahi and G.P. Papavassilopoulos. On the rank minimization problem over a positive
semidefinite linear matrix inequality. Automatic Control, IEEE Transactions on, 42(2):239—
243, 1997. 2

K. Mohan and M. Fazel. Reweighted nuclear norm minimization with application to system
identification. In American Control Conference (ACC), 2010, pages 2953-2959. IEEE, 2010.
4, 20

Karthik Mohan and Maryam Fazel. Iterative reweighted algorithms for matrix rank mini-
mization. Journal of Machine Learning Research, 13(1):3441-3473, 2012. 4

S. Negahban and M.J. Wainwright. Restricted strong convexity and weighted matrix com-
pletion: Optimal bounds with noise. Journal of Machine Learning Research, 13:1665-1697,
2012. 2,9, 11, 12, 32, 35

G.C. Pflug. Asymptotic dominance for solutions of stochastic programs. Czechoslovak
Journal for Operations Research, 1(1):21-30, 1992. 39

G.C. Pflug. Asymptotic stochastic programs. Mathematics of Operations Research,
20(4):769-789, 1995. 39, 40

H. Qi and D.F. Sun. A quadratically convergent newton method for computing the nearest
correlation matrix. SIAM Journal on Matriz Analysis and Applications, 28(2):360, 2006. 46

H. Qi and D.F. Sun. An augmented Lagrangian dual approach for the H-weighted nearest
correlation matrix problem. IMA Journal of Numerical Analysis, 31(2):491-511, 2011. 46

B. Recht. A simpler approach to matrix completion. Journal of Machine Learning Research,
12:3413-3430, 2011. 2, 35

B. Recht, M. Fazel, and P.A. Parrilo. Guaranteed minimum-rank solutions of linear matrix
equations via nuclear norm minimization. SIAM Review, 52(3):471-501, 2010. 2

S.M. Robinson. Local structure of feasible sets in nonlinear programming, Part II: Nonde-
generacy. Mathematical Programming at Oberwolfach II, pages 217-230, 1984. 16

R.T. Rockafellar. Convex Analysis. Princeton University Press, 1970. 40, 42

50



(67]
[68]

[69]

[70]
[71]
[72]
73]
[74]
[75]
[76]
[77]
(78]
[79]
[80]

[81]

R.T. Rockafellar and R.J.B. Wets. Variational Analysis, volume 317. Springer Verlag, 1998.
30, 41, 44

A. Rohde and A.B. Tsybakov. Estimation of high-dimensional low-rank matrices. The
Annals of Statistics, 39(2):887-930, 2011. 2

R. Salakhutdinov and N. Srebro. Collaborative filtering in a non-uniform world: Learning
with the weighted trace norm. In Advances in Neural Information Processing Systems
(NIPS), volume 23, pages 2056-2064, 2010. 2, 9

N. Srebro, J.D.M. Rennie, and T. Jaakkola. Maximum-margin matrix factorization. Ad-
vances in neural information processing systems, 17(5):1329-1336, 2005. 2

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Sta-
tistical Society. Series B (Methodological), pages 267-288, 1996. 3

J.A. Tropp. User-friendly tail bounds for sums of random matrices. Foundations of Com-
putational Mathematics, pages 1-46, 2011. 35

A.W. Van Der Vaart and J.A. Wellner. Weak Convergence and Empirical Processes. Springer
Verlag, 1996. 33, 36

Y. Wang. Asymptotic equivalence of quantum state tomography and noisy matrix comple-
tion. The Annals of Statistics, 41(5):2462-2504, 2013. 3

G.A. Watson. Characterization of the subdifferential of some matrix norms. Linear Algebra
and its Applications, 170:33-45, 1992. 31, 41, 43

G.A. Watson. On matrix approximation problems with Ky Fan k norms. Numerical Algo-
rithms, 5(5):263-272, 1993. 43

C.H. Zhang. Nearly unbiased variable selection under minimax concave penalty. The Annals
of Statistics, 38(2):894-942, 2010. 3

P. Zhao and B. Yu. On model selection consistency of lasso. Journal of Machine Learning
Research, 7(2):2541, 2007. 3

S. Zhou, S. Van De Geer, and P. Bithlmann. Adaptive Lasso for high dimensional regression
and Gaussian graphical modeling. Arziv preprint arXiv:0903.2515, 2009. 3

H. Zou. The adaptive lasso and its oracle properties. Journal of the American Statistical
Association, 101(476):1418-1429, 2006. 3, 4

H. Zou and R. Li. One-step sparse estimates in nonconcave penalized likelihood models.
The Annals of Statistics, 36(4):1509, 2008. 3

51


http://arxiv.org/abs/0903.2515

	1 Introduction
	2 Problem formulation
	2.1 The observation model
	2.2 The rank-correction step
	2.3 Relation with the majorized penalty approach

	3 Error bounds
	4 Rank consistency
	5 Construction of the rank-correction function
	5.1 The rank is known
	5.2 The rank is unknown

	6 Numerical experiments
	6.1 Influence of fixed basis coefficients on the recovery
	6.2 Performance of different rank-correction functions for recovery
	6.3 Performance of different initial NNPLS estimators for recovery
	6.4 Performance for different matrix completion problems

	7 Conclusions
	Appendix A Spectral operator
	Appendix B Constraint nondegeneracy
	Appendix C Proofs of Theorems
	C.1 Proof of Theorem 1
	C.2 Proof of Theorem 2
	C.3 Proof of Theorem 3
	C.4 Proof of Theorem 4
	C.5 Proof of Theorem 5
	C.6 Proof of Theorem 6
	C.7 Proof of Theorem 7
	C.8 Proof of Theorem 9


