Skip to main content

Advertisement

Log in

On sublinear inequalities for mixed integer conic programs

  • Short Communication
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

This paper studies \(\mathcal {K}\)-sublinear inequalities, a class of inequalities with strong relations to \(\mathcal {K}\)-minimal inequalities for disjunctive conic sets. We establish a stronger result on the sufficiency of \(\mathcal {K}\)-sublinear inequalities. That is, we show that when \(\mathcal {K}\) is the nonnegative orthant or the second-order cone, \(\mathcal {K}\)-sublinear inequalities together with the original conic constraint are always sufficient for the closed convex hull description of the associated disjunctive conic set. When \(\mathcal {K}\) is the nonnegative orthant, \(\mathcal {K}\)-sublinear inequalities are tightly connected to functions that generate cuts—so called cut-generating functions. In particular, we introduce the concept of relaxed cut-generating functions and show that each \({\mathbb {R}}^n_+\)-sublinear inequality is generated by one of these. We then relate the relaxed cut-generating functions to the usual ones studied in the literature. Recently, under a structural assumption, Cornuéjols, Wolsey and Yıldız established the sufficiency of cut-generating functions in terms of generating all nontrivial valid inequalities of disjunctive sets where the underlying cone is nonnegative orthant. We provide an alternate and straightforward proof of this result under the same assumption as a consequence of the sufficiency of \(\mathbb {R}^n_+\)-sublinear inequalities and their connection with relaxed cut-generating functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Notes

  1. Note that when \(E=\mathbb {R}^n\), and a linear map \(A:\mathbb {R}^n\rightarrow \mathbb {R}^m\) is just an \(m\times n\) real-valued matrix, and its conjugate is given by its transpose, i.e., \(A^*=A^T\).

  2. We note that our definition of tightness of an inequality does not require the corresponding hyperplane to have a nonempty intersection with the feasible region, as is sometimes the definition used in the literature.

  3. We note that the valid inequalities that are referred as minimal in [3, 4, 10, 18] correspond to tight and \(\mathbb {R}^n_+\) -minimal inequalities with respect to the definitions in this paper.

References

  1. Andersen, K., Jensen, A.N.: Intersection cuts for mixed integer conic quadratic sets. In: Proceedings of IPCO 2013, Volume 7801 of Lecture Notes in Computer Science, pp. 37–48. Valparaiso, Chile (2013)

  2. Atamtürk, A., Narayanan, V.: Conic mixed-integer rounding cuts. Math. Program. 122(1), 1–20 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bachem, A., Johnson, E.L., Schrader, R.: A characterization of minimal valid inequalities for mixed integer programs. Oper. Res. Lett. 1, 63–66 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bachem, A., Schrader, R.: Minimal inequalities and subadditive duality. SIAM J. Control Optim. 18, 437–443 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  5. Basu, A., Conforti, M., Cornuéjols, G., Zambelli, G.: Minimal inequalities for an infinite relaxation of integer programs. SIAM J. Discrete Math. 24(1), 158–168 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Belotti, P., Góez, J.C., Pólik, I., Ralphs, T.K., Terlaky, T.: On families of quadratic surfaces having fixed intersections with two hyperplanes. Discrete Appl. Math. 161(16), 2778–2793 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Belotti, P., Góez, J.C., Pólik, I., Ralphs, T.K., Terlaky, T.: A conic representation of the convex hull of disjunctive sets and conic cuts for integer second order cone optimization. In: Al-Baali, M., Grandinetti, L., Purnama, A. (eds.) Numerical Analysis and Optimization, Volume 134 of Springer Proceedings in Mathematics & Statistics, pp. 1–35. Springer International Publishing, Switzerland (2015)

    Google Scholar 

  8. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization. MPS-SIAM Series on Optimization. SIAM, Philadehia (2001)

    Book  MATH  Google Scholar 

  9. Bienstock, D., Michalka, A.: Cutting-planes for optimization of convex functions over nonconvex sets. SIAM J. Optim. 24(2), 643–677 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Blair, C.E.: Minimal inequalities for mixed integer programs. Discrete Math. 24, 147–151 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  11. Borozan, V., Cornuéjols, G.: Minimal valid inequalities for integer constraints. Math. Oper. Res. 34(3), 538–546 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Burer, S., Kılınç-Karzan, F.: How to convexify the intersection of a second order cone and a nonconvex quadratic. Technical report, June 2014. Revised June (2015). http://www.andrew.cmu.edu/user/fkilinc/files/nonconvex_quadratics.pdf

  13. Conforti, M., Cornuéjols, G., Daniilidis, A., Lemaréchal, C., Malick, J.: Cut-generating functions and \(s\)-free sets. Math. Oper. Res. 40(2), 276–301 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cornuéjols, G., Wolsey, L., Yıldız, S.: Sufficiency of cut-generating functions. Math. Program. 152, 643–651 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dadush, D., Dey, S.S., Vielma, J.P.: The split closure of a strictly convex body. Oper. Res. Lett. 39, 121–126 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gomory, R.E., Johnson, E.L.: Some continuous functions related to corner polyhedra. Math. Program. 3, 23–85 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jeroslow, R.G.: Cutting plane theory: algebraic methods. Discrete Math. 23, 121–150 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jeroslow, R.G.: Minimal inequalities. Math. Program. 17, 1–15 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  19. Johnson, E.L.: On the group problem for mixed integer programming. Math. Program. 2, 137–179 (1974)

    MathSciNet  Google Scholar 

  20. Johnson, E.L.: Characterization of facets for multiple right-hand side choice linear programs. Math. Program. Study 14, 137–179 (1981)

    Google Scholar 

  21. Kılınç-Karzan, F.: On minimal inequalities for mixed integer conic programs. Math. Oper. Res. (2015). doi:10.1287/moor.2015.0737

    MATH  Google Scholar 

  22. Kılınç-Karzan, F., Yang, B.: Sufficient conditions and necessary conditions for the sufficiency of cut-generating functions. Technical report, December (2015). http://www.andrew.cmu.edu/user/fkilinc/files/draft-sufficiency-web.pdf

  23. Kılınç-Karzan, F., Yıldız, S.: Two-term disjunctions on the second-order cone. In: Lee, Jon, Vygen, Jens (eds.) IPCO, Volume 8494 of Lecture Notes in Computer Science, pp. 345–356. Springer, Heidelberg (2014)

    Google Scholar 

  24. Kılınç-Karzan, F., Yıldız, S.: Two term disjunctions on the second-order cone. Math. Program. 154, 463–491 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Modaresi, S., Kılınç, M.R., Vielma, J.P.: Intersection cuts for nonlinear integer programming: convexification techniques for structured sets. Math. Program. (2015). doi:10.1007/s10107-015-0866-5

    MATH  Google Scholar 

  26. Modaresi, S., Kılınç, M.R., Vielma, J.P.: Split cuts and extended formulations for mixed integer conic quadratic programming. Oper. Res. Lett. 43(1), 10–15 (2015)

    Article  MathSciNet  Google Scholar 

  27. Morán R, D.A., Dey, S.S., Vielma, J.P.: A strong dual for conic mixed-integer programs. SIAM J. Optim. 22(3), 1136–1150 (2012)

  28. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley, New York (1988)

    Book  MATH  Google Scholar 

  29. Rockafellar, R.T.: Convex Analysis. Princeton Landmarks in Mathematics. Princeton University Press, New Jersey (1970)

    Google Scholar 

  30. Yıldız, S., Cornuéjols, G.: Disjunctive cuts for cross-sections of the second-order cone. Oper. Res. Lett. 43(4), 432–437 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the review team for their constructive feedback that improved the presentation of the material in this paper. The research of the first author is supported in part by NSF Grant CMMI 1454548.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatma Kılınç-Karzan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kılınç-Karzan, F., Steffy, D.E. On sublinear inequalities for mixed integer conic programs. Math. Program. 159, 585–605 (2016). https://doi.org/10.1007/s10107-015-0968-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-015-0968-0

Keywords

Mathematics Subject Classification

Navigation