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SECOND ORDER ANALYSIS OF CONTROL-AFFINE

PROBLEMS WITH SCALAR STATE CONSTRAINT

M. SOLEDAD ARONNA AND J. FRÉDÉRIC BONNANS AND BEAN SAN GOH

Abstract. In this article we establish new second order necessary and suffi-
cient optimality conditions for a class of control-affine problems with a scalar
control and a scalar state constraint. These optimality conditions extend to

the constrained state framework the Goh transform, which is the classical tool
for obtaining an extension of the Legendre condition.

1. Introduction

Control-affine problems have been intensively studied since the 1960s and there
is a wide literature on this subject. In what respect to second order conditions,
the main feature of these systems that are affine in the control variable is that
the second derivative of the pre-Hamiltonian function with respect to the control
vanishes, and hence the classical Legendre-Clebsch conditions hold trivially and do
not provide any useful information. Second and higher order necessary conditions
for problems affine in the control, without control nor state constraints were first
established in [26, 18, 17, 23, 3]. The case with control constraints and purely
bang-bang solutions was investigated by [33, 4, 36, 31, 15, 35] among many others,
while the class of bang-singular solutions was analyzed in e.g. [37, 6, 16].

This article is devoted to the study of Mayer-type optimal control problems
governed by the dynamics

ẋt = f0(xt) + utf1(xt), for a.a. t ∈ [0, T ],

subject to endpoint constraints

Φ(x0, xT ) ∈ KΦ,

control constraints
umin ≤ ut ≤ umax,

and a scalar state constraint of the form

g(xt) ≤ 0.

For this class of problems, we show necessary optimality conditions involving the
regularity of the control and the state constraint multiplier at the junction points.
Some of these necessary conditions which hold at the junction points were proved
in [29]. Moreover, we provide second order necessary and sufficient optimality
conditions in integral form obtained through the Goh transformation [18].

This investigation is strongly motivated by applications since it allows to deal
with both control and state constraints, which appear naturally in realistic models.
Many practical examples can be found in the existing literature, a non exhaustive
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list includes the prey-predator model [19], the Goddard problem in presence of a
dynamic pressure limit [45, 20], an optimal production and maintenance system
studied in [30], and a recent optimization problem of running strategies [2]. We
refer also to [13], [11], [44] and references therein.

About second order analysis in the state constrained case, we quote the early
work by Russak [41, 42], and more recently, Malanowski and Maurer [28], Bonnans
and Hermant [9] provided second order necessary and sufficient optimality con-
ditions and related the sufficient conditions with the convergence of the shooting
algorithm in the case where the strengthened Legendre-Clebsch condition holds.
Second order necessary conditions for the general nonlinear case with phase con-
straints were also proved in [7, 24]. For control-affine problems with bounded scalar
control variable, a scalar state constraint (as is the case in this article) and solu-
tions (possibly) containing singular, bang-bang and constrained arcs, Maurer [29]
proved necessary conditions (similar to those developed by McDanell and Powers
[32]) that hold at the junction points of optimal solutions. In Maurer et al. [30]
they extended to the state-constrained framework, a second order sufficient test
for optimality given in Agrachev et al. [4] and Maurer-Osmolovskii [34] for opti-
mal bang-bang solutions. Also in [44], the author provided a synthesis-like method
to prove optimality for a class of control-affine problems with scalar control, vec-
tor state constraint and bang-constrained solutions. Some remarks about how the
method in [44] could be extended to general bang-singular-constrained solutions
are given in [43], but no proof of the validity of this extension is provided.

There is a literature dealing with the important case when the standard state-
ment of Pontryagin’s principle is degenerate in the sense that the costate is equal
to zero, so that the principle is trivially verified and no information of the optimal
solution is provided. In some cases, a nontrivial version of Pontryagin’s princi-
ple can be obtained, see in particular Arutyunov [8], Rampazzo and Vinter [38].
Also second order conditions for the general nonlinear case were stated in strongly
non-degenerate form, see e.g. [24, 8].

Up to our knowledge, there is no result in the existing literature about second
order necessary and sufficient conditions in integral (quadratic) form for control-
affine problems with state constraints and solutions containing singular arcs.

The paper is organized as follows. In Section 2 we give the basic definitions
and show necessary optimality conditions concerning the regularity of the optimal
control and associated multipliers. Section 3 is devoted to second order necessary
optimality conditions in integral form and to the Goh transformation, while second
order sufficient conditions are provided in Section 4. The Appendix is consecrated
to the presentation of abstract results on second order necessary conditions.

Notations. Let Rk denote the k−dimensional real space, i.e. the space of column
real vectors of dimension k, and by R

k∗ its corresponding dual space, which consists
of k−dimensional row real vectors. With R

k
+ and R

k
− we refer to the subsets of Rk

consisting of vectors with nonnegative, respectively nonpositive, components. We
write ht for the value of function h at time t if h is a function that depends only
on t, and by hi,t the ith component of h evaluated at t. Let h(t+) and h(t−) be,
respectively, the right and left limits of h at t, if they exist. Partial derivatives
of a function h of (t, x) are referred as Dth or ḣ for the derivative in time, and
Dxh, hx or h′ for the differentiations with respect to space variables. The same
convention is extended to higher order derivatives. By Lp(0, T )k we mean the
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Lebesgue space with domain equal to the interval [0, T ] ⊂ R and with values in R
k.

The notations W q,s(0, T )k and H1(0, T )k refer to the Sobolev spaces (see Adams
[1] for further details on Sobolev spaces). We let BV (0, T ) be the set of functions
with bounded total variation. In general, when there is no place for confusion, we
omit the argument (0, T ) when referring to a space of functions. For instance, we
write L∞ for L∞(0, T ), or (W 1,∞)k∗ for the space of W 1,∞−functions from [0, T ] to
R

k∗. We say that a function h : Rk → R
d is of class Cℓ if it is ℓ−times continuously

differentiable in its domain.

2. Framework

2.1. The problem. Consider the control and state spaces L∞ and (W 1,∞)n, re-
spectively. We say that a control-state pair (u, x) ∈ L∞ × (W 1,∞)n is a trajectory
if it satisfies both the state equation

(2.1) ẋt = f0(xt) + utf1(xt), for a.a. t ∈ [0, T ],

and the finitely many endpoint constraints of equality and inequality type

(2.2) Φ(x0, xT ) ∈ KΦ.

Here f0 and f1 are twice continuously differentiable and Lipschitz continuous vector
fields over Rn, Φ is of class C2 from R

n × R
n to R

n1+n2 , and

(2.3) KΦ := {0}Rn1 × R
n2

− ,

where {0}Rn1 is the singleton consisting of the zero vector of Rn1 and R
n2

− := {y ∈
R

n2 : yi ≤ 0, for all i = 1, . . . , n2}. Given (u, x0) ∈ L∞ × R
n, (2.1) has a unique

solution. In addition, we consider the cost functional φ : Rn ×R
n → R, then bound

control constraints

(2.4) umin ≤ ut ≤ umax, for a.a. t ∈ [0, T ],

and a scalar state constraint

(2.5) g(xt) ≤ 0, for all t ∈ [0, T ],

with φ and g : Rn → R of class C2. Here we allow umin and umax to be either
finite real numbers, or to take the values −∞ or +∞, respectively, in the sense
that problems with control constraints of the form ut ≤ umax or umin ≤ ut are
also considered in our investigation, as well as problems in the absence of control
constraints. We say that the trajectory (u, x) is feasible if it satisfies (2.4)-(2.5).
Let us then consider the optimal control problem in the Mayer form

(P) minφ(x0, xT ); subject to (2.1)-(2.5).

2.2. Regular extremals. We set f(u, x) := f0(x) + uf1(x), and define the pre-
Hamiltonian function and the endpoint Lagrangian, respectively, by

(2.6)

{

H(u, x, p) := pf(u, x) = p
(

f0(x) + uf1(x)
)

,

ℓβ,Ψ(x0, xT ) := βφ(x0, xT ) + ΨΦ(x0, xT ),

where p ∈ R
n∗, β ∈ R and Ψ ∈ R

(n1+n2)∗.
Any function µ ∈ BV (0, T ) (shortly, BV ) has left limit on (0, T ] and right limits

on [0, T ) and, therefore, the values µ0+ and µT are well-defined. Moreover, µ has
a distributional derivative that belongs to the space M(0, T ) (shortly, M) of finite
Radon measures. Conversely, any measure dµ ∈ M can be identified with the
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derivative of a function µ of bounded variation such that µT ∈ BV0, i.e., µ belongs
to the space of bounded variation functions that vanish at time T.

Let (u, x) be a feasible trajectory. We say that Ψ ∈ R
(n1+n2)∗ is complementary

to the endpoint constraint if

(2.7) Ψ ∈ NΦ

(

Φ(x0, xT )
)

,

where NΦ

(

Φ(x0, xT )
)

denotes the normal cone to KΦ at the point Φ(x0, xT ), i.e.
(2.8)

NΦ

(

Φ(x0, xT )
)

:= {Ψ ∈ R
(n1+n2)∗ : Ψi ≥ 0, ΨiΦi(x0, xT ) = 0, i = n1+1, . . . , n1+n2}.

A bounded variation function µ is complementary to the state constraint if and only
if

(2.9) dµ ≥ 0, and

∫ T

0

g(xt)dµt = 0.

For β ∈ R, Ψ ∈ R
(n1+n2)∗ and µ ∈ BV0, the costate equation associated with

(β,Ψ, dµ) is given by

(2.10) − dpt = ptfx(ut, xt)dt+ g′(xt) dµt, for a.a. t ∈ [0, T ],

with endpoint conditions

(2.11) (−p0, pT ) = Dℓβ,Ψ(x0, xT ).

Given (β,Ψ, dµ) ∈ R × R
(n1+n2)∗ ×M, the boundary value problem (2.10)-(2.11)

has at most one solution. In addition, the condition of minimization of the pre-
Hamiltonian H implied by the Pontryagin’s Maximum Principle can be expressed
as follows, for a.a. t ∈ [0, T ],

(2.12)







ut = umin, if umin > −∞ and ptf1(xt) > 0,
ut = umax, if umax < +∞ and ptf1(xt) < 0,
ptf1(xt) = 0, if umin < ut < umax.

Denote the quadruple of dual variables by λ := (β,Ψ, p, dµ), element of the space

(2.13) EΛ := R+ × R
(n1+n2)∗ ×BV n∗ ×M.

The Lagrangian of the problem is

(2.14) L(u, x, λ) := ℓβ,Ψ(x0, xT ) +

∫ T

0

pt
(

f(ut, xt)− ẋt

)

dt+

∫ T

0

g(xt)dµt.

Note that the costate equation (2.10) expresses the stationarity of L with respect
to the state. For a feasible trajectory (u, x) ∈ L∞ × (W 1,∞)n, define the set of
Lagrange multipliers as

(2.15) Λ(u, x) :=

{

λ = (β,Ψ, p, dµ) ∈ EΛ : (β,Ψ, dµ) 6= 0;
(2.1)-(2.5) and (2.7)-(2.12) hold

}

.

Remark 2.1. We could as well call Λ(u, x) the set of Pontryagin multipliers since
they satisfy condition of minimization of the Hamiltonian. But since the dynam-
ics is an affine function of the control variable, the condition of minimization of
the Hamiltonian is equivalent to the stationarity condition (2.12) which gives the
classical definition of Lagrange multipliers in this setting.
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In addition we set, for β ∈ R+,

(2.16) Λβ(u, x) := {(β,Ψ, p, dµ) ∈ Λ(u, x)}.

Since Λ(u, x) is a cone we have that

(2.17) Λ(u, x) =

{

R+Λ1(u, x), if Λ0(u, x) = ∅,
Λ0(u, x) + R+Λ1(u, x), otherwise.

Consider a nominal feasible trajectory (û, x̂) ∈ L∞ × (W 1,∞)n. Set

(2.18) At := Dxf(ût, x̂t), for t ∈ [0, T ].

From now on, when the argument of a function is omitted, we mean that it is
evaluated at the nominal pair (û, x̂). In particular, we write Λ to refer to Λ(û, x̂).

For (v, z0) ∈ L∞×R
n, let z[v, z0] ∈ (W 1,∞)n denote the solution of the linearized

state equation

(2.19) żt = Atzt + vtf1,t, for a.a. t ∈ [0, T ],

with initial condition

(2.20) z0 = z0.

Let Φ̄E denote the function from L∞×R
n to Rn1 that, to each (u, x0) ∈ L∞×R

n,
assigns the value

(

Φ1(x0, xT ), . . . ,Φn1
(x0, xT )

)

, where x is the solution of (2.1)
associated with (u, x0). For some results obtained in this article, we shall consider
the following qualification condition, which corresponds to Robinson condition [39]
(see also (A.5) and Remark A.2 in the Appendix):
(2.21)































(i) DΦ̄E(û, x̂0) is onto from L∞ × R
n to R

n1 ,
(ii) there exists (v̄, z̄0) ∈ L∞ × R

n in the kernel of DΦ̄E(û, x̂0),
such that, for some ε > 0, setting z̄ = z[v̄, z̄0], one has:
ût + v̄t ∈ [umin + ε, umax − ε], for a.a. t ∈ [0, T ],
g(x̂t) + g′(x̂t)z̄t < 0, for all t ∈ [0, T ],
Φ′

i(x̂0, x̂T )(z̄
0, z̄T ) < 0, if Φi(x̂0, x̂T ) = 0, for n1 + 1 ≤ i ≤ n1 + n2.

Here the notation ût + v̄t ∈ [umin + ε, umax − ε] means that, a.e., ût + v̄t ∈ [umin +
ε,+∞) if umax = +∞ and umin is finite; ût + v̄t ∈ (−∞, umax − ε) if umin = −∞
and umax is finite; and ût + v̄t ∈ R if neither umin nor umax is finite.

Definition 2.2. A weak minimum for (P) is a feasible trajectory (u, x) such that
φ(x0, xT ) ≤ φ(x̃0, x̃T ) for any feasible (ũ, x̃) for which ‖(ũ, x̃) − (u, x)‖∞ is small
enough.

Theorem 2.3. Assume that (û, x̂) is a weak minimum for (P). Then (i) the set Λ
of Lagrange multipliers is nonempty, (ii) if the qualification condition (2.21) holds,
then Λ0 is empty, and Λ1 is bounded and weakly* compact.

Proof. If (2.21)(i) holds, we deduce the result from proposition (A.4). Otherwise,
there exists some nonzero ΨE in the image of normal space to DΦ̄E(û, x̂0). Setting
Ψi = 0 for all n1 < i ≤ n1 + n2, and p = 0, we obtain a (singular) Lagrange
multiplier. This ends the proof. �
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2.3. Jump conditions. Given a function of time h : [0, T ] → R
d for d ∈ N, we

define its jump at time t ∈ [0, T ] by

(2.22) [ht] := h(t+)− h(t−),

when the left and right limits, h(t−) and h(t+), respectively, exist and are finite.
Here we adopt the convention h(0−) := h0 and h(T+) := hT . For any function
of bounded variation the associated jump function is well-defined. For a function
defined almost everywhere with respect to the Lebesgue measure, we will accord
that its jump at time t is the jump at t of a representative of this function for which
the left and right limit exist, provided that such a representative exists. By the
costate equation (2.10), we have that, for any (β,Ψ, p, dµ) ∈ Λ,

(2.23)

{

(i) [pt] = −[µt]g
′(x̂t),

(ii)
[

Hu(t)
]

= [pt]f1(x̂t) = −[µt]g
′(x̂t)f1(x̂t).

In addition, if [ût] makes sense, then the jump in the derivative of the state con-
straint exists and satisfies

(2.24)

[

d

dt
g(x̂t)

]

= [ût]g
′(x̂t)f1(x̂t).

Lemma 2.4. Let (β,Ψ, p, dµ) ∈ Λ. Then, if t ∈ [0, T ] is such that [Hu(t)] = 0 and
g′(x̂t)f1(x̂t) 6= 0, then µ is continuous at t.

Proof. It follows from item (ii) in equation (2.23). �

Lemma 2.5. Let t ∈ (0, T ) be such that [ût] makes sense. Then the following
conditions hold

(2.25)







(i) [ût][Hu(t)] = 0,

(ii) [µt]

[

d

dt
g(x̂t)

]

= 0.

Proof. Note that

(2.26) [µt]

[

d

dt
g(x̂t)

]

= [µt]g
′(x̂t)f1(x̂t)[ût] = −[Hu(t)][ût],

where the last equality follows from (2.23). This implies that (i) is equivalent to
(ii), and so we only need to prove (i), which holds trivially when [µt] = 0. Hence, let
us assume that [µt] 6= 0. Then g(x̂t) = 0 in view of (2.9) and, necessarily, t 7→ g(x̂t)
attains its maximum at t, so that

[

d
dtg(x̂t)

]

≤ 0. Since dµ ≥ 0, it follows that
[µt] ≥ 0, and therefore by (2.26), [Hu(t)][ût] ≥ 0. However, the converse inequality
holds in view of (2.12). The conclusion follows. �

We say that the state constraint is of first order if

(2.27) g′(x̂t)f1(x̂t) 6= 0, when g(x̂t) = 0.

Corollary 2.6. Assume that the state constraint is of first order. Then if the
control has a jump at time τ ∈ (0, T ) for which g(x̂τ ) = 0, then µ is continuous at
τ for any associated multiplier (β,Ψ, p, dµ) ∈ Λ.

Proof. From the identity (2.25) in Lemma 2.5, if [ûτ ] 6= 0, then [Hu(t)] = 0. The
latter implies that [µτ ] = 0, in view of the second equality in (2.26) and since the
state constraint is of first order, i.e. (2.27) holds. �
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We refer to Remark 2.8 regarding the link between previous Corollary 2.6 and
Maurer [29].

Remark 2.7. Let us illustrate by means of this example that the associated µ might
have jumps at the initial and or at final times. In fact, consider the problem

min x1,T + x2,T ;

ẋ1,t = ut ∈ [−1, 1]; ẋ2,t = x1,t;

g(x1,t) = −x1,t ≤ 0; x1,0 = 1, x2,0 = 0.

with T = 2, and note that

ût :=

{

−1 on [0, 1],
0 on (1, 2]

is optimal for it. Over [0, 1) the state constraint is not active, and on [1, 2] it is.
The Hamiltonian here is H = p1u+ p2x1, the costate being p = (p1, p2). We obtain
ṗ2 = 0, so that p2,t ≡ p2,T = 1, and −dp1 = dt − dµ with boundary condition
p1(1) = 1. Furthermore, on the constraint arc (1, 2) we necessarily have Hu = 0,
leading to p1 = 0. We conclude that [pT ] = 1 and therefore, due to (2.23), [µT ] = 1,
this is, µ jumps at the final time.

2.4. Arcs and junction points. The contact set associated with the state con-
straint is defined as

(2.28) C := {t ∈ [0, T ] : g(x̂t) = 0}.
For 0 ≤ a < b ≤ T , we say that (a, b) is a (maximal) active arc for the state
constraint, or a C arc, if C contains (a, b), but no open interval in which (a, b) is
strictly contained. Note that, since t 7→ g(x̂t) is continuous, the set C consists of a
countable union of arcs, which can be ordered by size. We say that τ ∈ (0, T ) is a
junction point of the state constraint if it is the extreme point of a C arc.

We give similar definitions for the control constraint, paying attention to the fact
that the control variable is not continuous, and is defined only almost everywhere.
So, we define the contact and interior sets for the control bounds as

(2.29)

{

B− := {t ∈ [0, T ] : ût = umin},
B+ := {t ∈ [0, T ] : ût = umax},

and set B := B− ∪ B+. We shall make clear that if umin = −∞ then B− = ∅
and, analogously, if umax = +∞ then B+ = ∅. These sets are defined up to a
null measure set and they can be identified with their characteristic functions. We
define arcs in a similar way, using representatives of the characteristic functions.
That is, we say that (a, b) is a B−, B+ arc (or simply B arc if we do not want to
precise in which bound û lies) if (a, b) is included, up to a null measure set, in B−,
B+, (in B− or B+) respectively, but no open interval strictly containing (a, b) is.
Finally, let S denote the singular set

(2.30) S := {t ∈ [0, T ] : umin < ût < umax and g(x̂t) < 0}.
Junction times are in general points τ ∈ (0, T ) at which the trajectory (x̂, û)
switches from one type of arc (B−, B+, C or S) to another type. We may have, for
instance, CS junctions, BC junctions, etc. With BC control we refer to a control
that is a concatenation of a bang arc and a constrained arc, and we extend this
notation for any finite sequence, i.e. SC, SBC, etc.
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Remark 2.8. The result in Corollary 2.6 above was proved by Maurer [29] at times
τ ∈ (0, T ) being junction points of the state constraint, and extended to state
constraints of any order.

Consider the following geometric hypotheses on the control structure:

(2.31)























(i) the interval [0, T ] is (up to a zero measure set) the disjoint
union of finitely many arcs of type B, C and S,

(ii) the control û is at uniformly positive distance of the bounds
umin and umax, over C and S arcs,

(iii) the control û is discontinuous at CS and SC junctions.

Remark 2.9. Condition (2.31)(ii) implies the discontinuity of the control at BS
and SB junctions. Therefore, (2.31) yields the discontinuity of the control at any
junction.

Observe that the example in Remark 2.7 above verifies the structural hypothesis
(2.31).

Let us note that we can rewrite the condition (2.27) of first order state constraint
as

(2.32) g′(x̂t)f1(x̂t) 6= 0, on C.

From g(x̂t) = 0 on C, we get

(2.33) 0 =
d

dt
g(x̂t) = g′(x̂t)

(

f0(x̂t) + ûtf1(x̂t)
)

, on C,

and, whenever (2.32) holds, we obtain that

(2.34) ût = −g′(x̂t)f0(x̂t)

g′(x̂t)f1(x̂t)
, on C.

In the remainder of the article we assume that (x̂, û) satisfies the geometric
hypotheses (2.31) and that the state constraint is of first order, that is, (2.32) holds
true.

2.5. About dµ. Observe that, along a constrained arc (a, b), over which umin <
ût < umax a.e., in view of the minimum condition (2.12), we have that Hu = pf1 =
0, for any (β,Ψ, p, dµ) ∈ Λ. Differentiating this equation with respect to time and
using (2.10), we get

0 = dHu = p[f1, f0]dt− g′f1dµ.(2.35)

Thus, since the state constraint is of first order, dµ has a density ν ≥ 0 over C
given by the absolutely continuous function

(2.36) ν : [0, T ] → R, t 7→ νt :=
pt[f1, f0](x̂t)

g′(x̂t)f1(x̂t)
,

where [X,Y ] := X ′Y − Y ′X denotes the Lie bracket associated to a pair of vector
fields X,Y : Rn → R

n.
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3. Second order necessary conditions

In this section we state second order necessary conditions for weak optimality
of problem (P). We start by defining the cones of critical directions and giving
necessary conditions, obtained by applying the abstract result in Theorem A.9 in
the Appendix. Afterwards, we present the Goh transformation [18] and we state
second order conditions in the transformed variables.

3.1. Critical directions. Let us extend the use of z[v, z0] to denote the solution
of the linearized state equation (2.19)-(2.20) for (v, z0) ∈ L2 ×R

n, and let us write
TΦ to refer to the tangent cone to {0}Rn1 × R

n2

− at the point (x̂0, x̂T ), given by

TΦ := {0}Rn1 × {η ∈ R
n2 ; ηi ≤ 0 : if Φn1+i(x̂0, x̂T ) = 0, i = 1, . . . , n2}.

For v ∈ L2 and z0 ∈ R
n, consider the linearization of the cost and endpoint con-

straints

(3.1)

{

φ′(x̂0, x̂T )(z0, zT ) ≤ 0,
Φ′(x̂0, x̂T )(z0, zT ) ∈ TΦ,

where z := z[v, z0]. Define the critical cone as the set

(3.2) C :=

{

(v, z) ∈ L∞ × (W 1,∞)n : (v, z) satisfies (2.19) and (3.1),

vt ≥ 0 a.e. on B−, vt ≤ 0 a.e. on B+, g′(x̂t)zt ≤ 0 on C

}

.

Define the strict critical cone,

(3.3) CS := {(v, z) ∈ C : vt = 0 a.e. on B±, g′(x̂t)zt = 0 on C} .
Note that the strict critical cone is a polyhedron of a closed subspace of L∞ ×
(W 1,∞)n. Consider the following weak complementarity condition: there exists a
Lagrange multiplier (β,Ψ, p, dµ) ∈ Λ (defined in (2.15)) such that

(3.4)

{

(i) Hu(û, x̂, p) 6= 0, a.e. over B,
(ii) the support of dµ is C.

We have the following identity:

Proposition 3.1. Assume that the weak complementarity condition (3.4) holds,
then the critical and strict critical cones coincide, this is C = CS .
3.2. Radiality of critical directions. In order to prove the necessary condition
of Theorem 3.5 below, we make use of the abstract result in Theorem A.9 of the
Appendix and of its related concepts. We consider in particular radial critical
directions as given in Definition A.7 of Section A.2. For our optimal control problem,
an element (v, z) of C is said to be radial if and only if, for some σ > 0, the following
conditions are satisfied:

(3.5) umin ≤ ût + σvt ≤ umax, a.e. on [0, T ],

(3.6) g(x̂t) + σg′(x̂t)zt ≤ 0, for all t ∈ [0, T ].

Recall hypotheses (2.31) and (2.32) on the control structure and the order of the
state constraint, respectively.

Proposition 3.2. Any critical direction (in C) is radial.
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Proof. Let (v, z) ∈ C. Relation (3.5) holds for σ > 0 small enough over B arcs,
and on S and C arcs by (2.31)(ii). Relation (3.6) trivially holds over C arcs and,
since the state constraint is not active over B and S arcs, it does also hold over
these arcs, except perhaps in the vicinity of entry or exit points to C arcs. For
t ∈ [0, T ], let δt denote the distance between t and C. By (2.31)(ii)-(iii) and (2.32),
d
dtg(x̂t) has a jump at the entry and exit points of any C arc. Let us check that,
for ε > 0 and σ > 0 small enough, we have g(x̂t) + σg′(x̂t)zt ≤ 0 for all t ∈
[0, T ] such that δt ∈ (0, ε). For such t, reducing ε > 0 if necessary, we have that
g(x̂t) ≤ −c1δt. On the other hand, since g′(x̂t)zt is Lipschitz continuous and
nonpositive over C arcs, we have that g′(x̂t)zt ≤ c2δt, where c2 > 0 depends on v.
Therefore, g(x̂t)+σg′(x̂t)zt ≤ (σc2−c1)δt < 0 as soon as σ < c1/c2. The conclusion
follows. �

We next give an example of a problem in which the optimal control is not dis-
continuous at the junction points of C arcs, but whose associated critical cone is
nevertheless radial since it reduces to {0}.
Remark 3.3. Let us consider the problem

min

∫ 2

0

x1,tdt,

ẋ1,t = ut ∈ [−1, 1], ẋ2,t = 1, a.e. on [0, T ],

x1,0 = 1, x2,0 = 0; −(x2,t − 1)2 − x1,t ≤ 0 over [0, T ].

(3.7)

Notice that x2,t = t and that the state constraint is of first order since g(x) :=

−(x2 − 1)2 − x1 satisfies d
dtg(xt) = −2(x2,t − 1)− u+ t. Thus, ut = −2(t− 1) on a

constraint arc. It is easy to see that the optimal control is of type B−CB−. More
precisely,

(3.8) ût =







−1, t ∈ [0, 1],
−2(t− 1), t ∈ (1, 3/2],

−1, t ∈ (3/2, 2].

Thus, û is continuous at the junction time t = 3/2. Yet, since no singular arc occurs,
the critical cone reduces to {0} and, therefore, any critical direction is radial.

3.3. Statement of second order necessary conditions. Next we state a second
order necessary condition in terms of the Hessian of the LagrangianL (which respect
to (u, x)), which is given by the quadratic form

(3.9) Q := Q0 +QE +Qg,

where

(3.10)































Q0(v, z, λ) :=

∫ T

0

(

z⊤t Hxx zt + 2vtHux zt
)

dt,

QE(v, z, λ) := D2ℓβ,Ψ(z0, zT )
2,

Qg(v, z, λ) :=

∫ T

0

z⊤t g′′ ztdµt,

We recall that the Lagrangian L was defined in (2.14).

Proposition 3.4. For every multiplier λ ∈ Λ, we have

(3.11) D2
(u,x)2L(û, x̂, λ)(v, z)2 = Q(v, z, λ), for all (v, z) ∈ C.
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As a consequence of Proposition 3.2 and Theorem A.9 in the Appendix, the
following result holds.

Theorem 3.5 (Second order necessary condition). Assume that (û, x̂) is a weak
minimum of problem (P). Then

(3.12) max
λ∈Λ

Q(v, z, λ) ≥ 0, for all (v, z) ∈ C.

3.4. Goh transformation and primitives of critical directions. For (v, z0) ∈
L∞ × R

n, and z := z[v, z0] being the solution of the linearized state equation
(2.19)-(2.20), let us set,

(3.13) yt :=

∫ t

0

vsds; ξt := zt − ytf1(x̂t), for t ∈ [0, T ].

This change of variables is calledGoh transformation [18]. Defining Et := Atf1(x̂t)−
d
dtf1(x̂t) (where A was defined in (2.18)), observe that ξ is solution of

(3.14) ξ̇t = Atξt + ytEt,

on the interval [0, T ], with initial condition

ξ0 = z0.

Consider the set of strict primitive critical directions

PS :=
{

(y, h, ξ) ∈ W 1,∞ × R× (W 1,∞)n : y0 = 0, yT = h, (ẏ, ξ + yf1) ∈ CS
}

,

and let PS denote its closure with respect to the L2×R×(H1)n−topology. The final
value yT of y is involved in the definition of PS since it becomes an independent
variable when we consider its closure. We provide a characterization of PS in
Theorem 3.7 below.

Let us note that if (v, z) ∈ CS is a strict critical direction, then (y, ξ) given by
Goh transform (3.13) satisfies the following conditions:

(3.15)

{

(i) g′(x̂t)(ξt + ytf1(x̂t)) = 0 on C,
(ii) y is constant on each B arc,

and if (v, z) satisfies the linearized endpoint relations (3.1), then

(3.16)

{

φ′(x̂0, x̂T )
(

ξ0, ξT + hf1(x̂T )
)

≤ 0,

Φ′(x̂0, x̂T )
(

ξ0, ξT + hf1(x̂T )
)

∈ TΦ,

where we set h := yT . In the sequel we let 0 =: τ̂0 < τ̂1 < · · · < τ̂N := T denote the
union of the set of junction times with {0, T }.

A B arc starting at time 0 (respectively ending at time T ) is called a B0±

(respectively BT±) arc.

Proposition 3.6. Any (y, h, ξ) ∈ PS verifies (3.15)-(3.16) and

(3.17)















(i) y is continuous at the BC, CB and BB junctions,
(ii) yt = 0, on B0± if a B0± arc exists,
(iii) yt = h, on BT± if a BT± arc exists,
(iv) limt↑T yt = h, if T ∈ C.
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Proof. Let (y, h, ξ) ∈ PS be the limit of a sequence (yk, ykT , ξ
k)k ⊂ PS in the

L2 × R × (H1)n−topology. By the Ascoli-Arzelà theorem, if (yk) is equi-bounded
and equi-Lipschitz continuous over an interval [a, b], then yk → y uniformly over
[a, b] and the limit function y is Lipschitz continuous on [a, b]. Consequently, we
obtain that y is constant over B arcs, and continuous at BC, CB and BB junctions.
We can prove the other statements by an analogous reasoning. �

Define the set

(3.18) P2
S :=

{

(y, h, ξ) ∈ L2 × R× (H1)n : (3.14)-(3.17) hold
}

.

Then the following characterization holds.

Theorem 3.7. We have that P2
S = PS.

Proof. That PS ⊂ P2
S follows from Proposition 3.6. Let us prove the converse

inclusion. Define the linear space

(3.19) Z :=















(y, yT , ξ) ∈ W 1,∞ × R×





N
∏

j=1

W 1,∞(τ̂j−1, τ̂j)
n





y0 = 0, (3.14) holds at each (τ̂j−1, τ̂j), and (3.15) holds















,

that is obtained from PS by removing condition (3.16) and allowing ξ to be discon-
tinuous at the junctions τ̂j , j = 1, . . .N − 1.

Let (y, h, ξ) ∈ P2
S . For any ε > 0, we now construct (yε, yε,T , ξε) ∈ Z such that

yε,T = h and

(3.20) ‖y − yε‖2 + ‖ξ − ξε‖∞ = o(1).

First set

(3.21) yε,t := yt, ξε,t := ξt, on B ∪ C.

On S, define yε in such a way that yε ∈ W 1,∞(0, T ), the values at the junction
times are fixed in the following way:

(3.22)











yε(τ̂j+) = y(τ̂j−), if τ̂j > 0 is an entry point of an S arc,

yε(τ̂j−) = y(τ̂j+), if τ̂j < T is an exit point of an S arc,

yε,0 = 0, if 0 ∈ S; yε,T = h, if T ∈ S,

and ‖y− yε‖2 < ε. Such an yε exists, see [6, Lemma 8.1]. Define ξε over each S arc
by integrating (3.14) over the respective arc with y = yε and the initial condition
ξε,τ = ξτ , where τ denotes the entry point of the arc. Then (yε, yε,T , ξε) ∈ Z
satisfies the estimate (3.20). In particular, we have

|ξε(τ̂j−)− ξε(τ̂j+)| = |ξε(τ̂j−)− ξ(τ̂j)| = o(1), for all j = 1, . . . , N − 1,(3.23)

|φ′(x̂0, x̂T )(ξε,0, ξε,T + f1(x̂T )yε,T )− φ′(x̂0, x̂T )(ξ0, ξT + f1(x̂T )h)| = o(1),(3.24)

|Φ′(x̂0, x̂T )(ξε,0, ξε,T + f1(x̂T )yε,T )− Φ′(x̂0, x̂T )(ξ0, ξT + f1(x̂T )h)| = o(1).(3.25)

Notice that the cone PS is obtained from Z by adding the constraints in (3.16)
and the continuity conditions

(3.26) ξ(τ̂j−)− ξ(τ̂j+) = 0, for all j = 1, . . . , N − 1.
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In view of Hoffman’s lemma [22] and estimates (3.23)-(3.25), we get that there

exists (ỹε, ỹε,T , ξ̃ε) ∈ PS such that

(3.27) ‖ỹε − yε‖2 + ‖ξ̃ε − ξε‖∞ = o(1).

Finally, from (3.20) and (3.27) we have that

(3.28) ‖ỹε − y‖2 + ‖ξ̃ε − ξ‖∞ = o(1),

and hence, the density of PS in P2
S follows. �

3.5. Goh transformation on the Hessian of Lagrangian. Next, we want to
express each of the quadratic functions in (3.9)-(3.10) as functions of (y, h, ξ). For
the terms that are quadratic in z, it suffices to replace z by ξ + f1(x̂)y as given
in Goh transform. With this aim, set for (y, h, ξ) ∈ L2 × R × (H1)n and λ :=
(β,Ψ, p, dµ) ∈ Λ,

ΩT (y, h, ξ, λ) :=2hHux,T ξT + hHux,T f1(x̂T )h,

Ω0(y, h, ξ, λ) :=

∫ T

0

(

ξ⊤t Hxxξt + 2ytMξt + ytRyt
)

dt,

ΩE(y, h, ξ, λ) := D2ℓβ,Ψ(ξ0, ξT + f1(x̂T )h)
2,

Ωg(y, h, ξ, λ) :=

∫ T

0

(ξt + f1(x̂t)y)
⊤g′′(x̂t)(ξt + f1(x̂t)y)dµt,

Ω := ΩT +Ω0 +ΩE + Ωg,

(3.29)

with

(3.30) M := f⊤
1 Hxx − Ḣux −HuxA,

(3.31) R := f⊤
1 Hxxf1 − 2HuxE − d

dt
(Huxf1).

Here, when we omit the argument of M, R, H or its derivatives, we mean that they
are evaluated at (x̂, û, λ).

Remark 3.8. Easy computations show that R does not depend on u. More precisely,
R is given by

(3.32) R(x̂t, λt) = pt
[

[f0, f1], f1
]

(x̂t) + g′(x̂t)f
′
1(x̂t)f1(x̂t)νt,

where ν is the density of dµ given in (2.36).

Proposition 3.9. Let (v, z) ∈ L2 × (H1)n be a solution of (2.19) and let (y, ξ) be
defined by the Goh transformation (3.13). Then, for any λ ∈ Λ,

(3.33) Q(v, z, λ) = Ω(y, yT , ξ, λ).

Proof. Take (v, z) and (y, ξ) as in the statement. It is straightforward to prove that

(3.34) QE(v, z, λ) = ΩE(y, yT , ξ, λ), and Qg(v, z, λ) = Ωg(y, yT , ξ, λ).

In order to prove the equality between Q0 and Ω0, let us replace each occurrence
of z in Q0, by its expression in the Goh transformation (3.13), i.e. change z by
ξ + f1(x̂)y. The first term in Q0 can be written as

(3.35)

∫ T

0

z⊤Hxxzdt =

∫ T

0

(ξ + f1y)
⊤Hxx(ξ + f1y)dt.
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Let us consider the second term in Q0 :
∫ T

0

vHux(ξ + f1y)dt =

∫ T

0

(

vHuxξ + vHuxf1y
)

dt.(3.36)

Integrating by parts the first term in previous equation we get
∫ T

0

vHuxξdt = [yHuxξ]
T
0 −

∫ T

0

y
(

Ḣuxξ +Huxξ̇
)

dt

= yTHux,T ξT −
∫ T

0

y
(

Ḣuxξ +HuxAξ +HuxEy)dt.

(3.37)

For the second term in the right hand-side of (3.36) we obtain
∫ T

0

vHuxf1ydt = [yHuxf1y]
T
0 −

∫ T

0

y

(

d

dt
(Huxf1)y +Huxf1v

)

dt.(3.38)

This identity yields the following

(3.39)

∫ T

0

vHuxf1ydt =
1
2yTHux,T f1yT − 1

2

∫ T

0

y2
d

dt
(Huxf1) dt.

From (3.35), (3.37) and (3.39) we get the desired result. �

3.6. Second order necessary condition in the new variables. We can obtain
the following new necessary condition in the variables after Goh’s transformation.

Theorem 3.10. If (û, x̂) is a weak minimum, then

(3.40) max
λ∈Λ

Ω(y, h, ξ, λ) ≥ 0, for all (y, h, ξ) ∈ P2
S .

Proof. Let us assume first that the qualification condition (2.21)(i) does not hold.
Therefore, there exists a nonzero element ΨE in [ImDΦ̄E(û, x̂0)]

⊥. Hence, the
multiplier λ composed by such ΨE , and having (β,ΨI , dµ) := 0 and the associated
costate p, is a Lagrange multiplier, as well as its opposite −λ. Therefore, either
Ω(y, h, ξ, λ) or Ω(y, h, ξ,−λ) is greater or equal zero, and the conclusion follows.

Let us now consider the case when (2.21)(i) holds true. Then, the corresponding
abstract problem (PA) (defined in the Appendix A.1) verifies the qualification con-

dition (A.5)(i). Recall the definition of Λ̂ in (A.10), and the corresponding set Λ̂1

(see (2.16)). In view of Theorem A.5, Λ̂1 is non empty and bounded. Furthermore,
due to the Banach-Alaoglu Theorem, and since the space of continuous functions
in [0, T ] is separable, we get that Λ̂1 is weakly* sequentially compact.

Consider now (y, h, ξ) ∈ P2
S . By Theorem 3.7, there exists a sequence (yk, ykT , ξ

k)
in PS such that

(3.41) (yk, ykT , ξ
k) → (y, h, ξ), in the L2 × R× (H1)n-topology.

By Proposition 3.9, for all λ ∈ Λ,

(3.42) Ω(yk, ykT , ξ
k, λ) = Q(vk, zk, λ),

where vk := d
dty

k and zk := ξk + f1y
k. For each (vk, zk), due to Theorem 3.5, there

exists λk ∈ Λ for which

(3.43) Q(vk, zk, λk) ≥ 0.
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Let λ̂k be the corresponding element of Λ̂1 given by the bijection (A.11), and

consider λ̄k ∈ Λ such that λ̂k = (1, λ̄k). Then

(3.44) Q(vk, zk, λ̄k) ≥ 0,

in view of (3.43) and since λ̄k is obtained from λk by multiplying by a positive

scalar. Given that Λ̂1 is weakly* sequentially compact, there exists a subsequence

(λ̂kj )j weakly* convergent to λ̂ = (1, λ̄) ∈ Λ̂1, where λ̄ ∈ Λ. Thus, λ̄k
∗
⇀ λ̄ in Λ and

we get

(3.45) Ω(y, h, ξ, λ̄) = lim
k→∞

Ω(yk, ykT , ξ
k, λ̄k) = lim

k→∞
Q(vk, zk, λ̄k) ≥ 0.

This concludes the proof.
�

4. Second order sufficient conditions

In this section we show a second order sufficient condition in terms of the uni-
form positivity of Ω and guaranteeing that the nominal solution (û, x̂) is a strict
Pontryagin minimum whenever this condition is satisfied.

To state the main result of this section (see Theorem 4.5) we need to introduce
the following concepts.

Definition 4.1. We say that (û, x̂) is a Pontryagin minimum of problem (P) if for
any M > 0, there exists εM > 0 such that (û, x̂) is a minimum in the set of feasible
trajectories (u, x) satisfying

(4.1) ‖x− x̂‖∞ + ‖u− û‖1 < εM , ‖u− û‖∞ < M.

A sequence (vk) ⊂ L∞ is said to converge to 0 in the Pontryagin sense if ‖vk‖1 → 0
and there exists M > 0 such that ‖vk‖∞ ≤ M, for all k ∈ N.

Definition 4.2. Let us define the function γ : L2 × R× R
n → R, given by

(4.2) γ(y, h, x0) :=

∫ T

0

y2t dt+ h2 + |x0|2.

We say that (û, x̂) satisfies the γ−growth condition in the Pontryagin sense if there
exists ρ > 0 such that, for every sequence of feasible variations (vk, δxk) having
(vk) convergent to 0 in the Pontryagin sense and δxk,0 → 0, one has

(4.3) φ(x̂0 + δxk,T , x̂T + δxk,T )− φ(x̂0, x̂T ) ≥ ργ(yk, yk,T , δxk,0),

for k large enough, where yk,t :=
∫ t

0
vk,sds, for t ∈ [0, T ].

Definition 4.3. We say that (û, x̂) satisfies strict complementarity condition for the
control constraints if the following conditions hold:

(i) max
λ∈Λ

Hu(ût, x̂t, pt) > 0, for all t in the interior of B−,

(ii) min
λ∈Λ

Hu(ût, x̂t, pt) < 0, for all t in the interior of B+,

(iii) max
λ∈Λ

Hu(û0, x̂0, p0) > 0, if 0 ∈ B−, and max
λ∈Λ

Hu(ûT , x̂T , pT ) > 0, if T ∈ B−,

min
λ∈Λ

Hu(û0, x̂0, p0) < 0, if 0 ∈ B+, and min
λ∈Λ

Hu(ûT , x̂T , pT ) < 0, if T ∈ B+.
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Consider the following extended cones of critical directions (compare to P2
S de-

fined in (3.18)):

(4.4)
P̂2 := {(y, h, ξ) ∈ L2 × R× (H1)n : (3.14)-(3.16), (3.17)(ii)-(iii) hold},
ˆ̂P2 := {(y, h, ξ) ∈ P̂2 : (3.17)(iv) holds},

and

(4.5) P2
∗ :=

{

ˆ̂P2, if T ∈ C and [µ(T )] > 0, for some (β,Ψ, p, dµ) ∈ Λ,

P̂2, otherwise.

Let us recall the definition of Legendre form (see e.g. [21]):

Definition 4.4. Let W be a Hilbert space. We say that a quadratic mapping Q :
W → R is a Legendre form if it is sequentially weakly lower semi continuous such
that, if wk → w weakly in W and Q(wk) → Q(w), then wk → w strongly.

Theorem 4.5. Suppose that the following conditions hold true:

(i) (û, x̂) satisfies strict complementarity for the control constraint and the
complementarity for the state constraint (3.4)(ii);

(ii) for each λ ∈ Λ, Ω(·, λ) is a Legendre form in the linear space {(y, h, ξ) ∈
L2 × R× (H1)n : (3.14) holds}; and

(iii) there exists ρ > 0 such that

(4.6) max
λ∈Λ

Ω(y, h, ξ, λ) ≥ ργ(y, h, ξ0), for all (y, h, ξ) ∈ P2
∗ .

Then (û, x̂) is a Pontryagin minimum satisfying γ−growth.

Remark 4.6. We have that Ω(·, λ) is a Legendre form iff there exists α > 0, such
that, for every λ ∈ Λ,

(4.7) R(x̂t, λt) + f1(x̂t)
⊤g′′(x̂t)f1(x̂t)νt > α, on [0, T ],

where ν is the density of dµ, which vanishes on [0, T ]\C, and is given by the ex-
pression (2.36) on the set C. See [21] for more details.

The remainder of this section is devoted to the proof of Theorem 4.5. We first
show the technical results in Lemma 4.7, Propositions 4.8 and 4.10, and then give
the proof of the Theorem 4.5.

For the lemma below recall the definition of the Lagrangian function L which
was given in (2.14).

Lemma 4.7. Let (u, x) ∈ L2 × (H1)n be a solution of (2.1), and set (δx, δu) :=
(x, u)− (x̂, û). Then, the following expression for the Lagrangian function holds for
every multiplier λ ∈ Λ,

(4.8) L(u, x, λ) = L(û, x̂, λ) + Q̃(δu, δx, λ) + r (δu, δx, λ),

where

Q̃(δu, δx, λ) :=

∫ T

0

Huδudt+Q(δu, δx, λ)

and

r (δu, δx) := O
(

|(δx0, δxT )|3
)

+

∫ T

0

{

1
2Huxx(δu, δx, δx) + p(û+ δu)O

(

|δx|3
)}

dt+

∫ T

0

O
(

|δx|3
)

dµ.



CONTROL-AFFINE PROBLEMS WITH STATE CONSTRAINTS 17

Proof. Let us consider the following second order Taylor expansions, written in
compact form,

ℓβ,Ψ(x0, xT ) = ℓβ,Ψ +Dℓβ,Ψ(δx0, δxT ) +
1
2D

2ℓβ,Ψ(δx0, δxT )
2 +O

(

|(δx0, δxT )|3,
fi(xt) = fi,t +DfiδxT + 1

2D
2fiδx

2
t +O

(

|δx|3
)

, i = 0, 1,

g(xt) =
1
2g +Dgδxt +

1
2g

′′δx2
t +O

(

|δx|3
)

.

(4.9)

Observe that

(4.10) Dℓβ,Ψ(δx0, δxT ) = [p δx]T0 =

∫ T

0

p(−fxδx+ ˙δx)dt−
∫ T

0

g′(x̂)δxdµ.

Using the identities (4.9) and (4.10) in the following equation

(4.11) L(u, x, λ) = ℓβ,Ψ(x0, xT ) +

∫ T

0

p
(

f0 + uf1 − ẋ
)

dt+

∫ T

0

g(x)dµ,

we obtain the desired expression for L(u, x, λ). The result follows.
�

In view of the previous Lemma 4.7 and [6, Lemma 8.4] we can prove the following:

Proposition 4.8. Let (vk) ⊂ L∞ be a sequence converging to 0 in the Pontryagin
sense and (xk,0) a sequence in R

n converging to x̂0. Set uk := û+ vk, and let xk be
the corresponding solution of equation (2.1) with initial value equal to xk,0. Then,
for every λ ∈ Λ, one has

(4.12) L(uk, xk, λ) = L(û, x̂, λ) +
∫ T

0

Hu(t)vk,tdt+Q(vk, zk, λ) + o(γk),

where zk := z[vk, xk,0 − x̂0], yk,t :=
∫ t

0
vk,sds and γk := γ(yk, yk,T , xk,0 − x̂0).

Remark 4.9. Notice that Lemma 8.4 in [6] was proved for γ depending only on (y, h)
since the initial value x0 was fixed throughout the article, while here γ depends also
on the initial variation of the state. The extension of Lemmas 8.3 and 8.4 in [6] for
the case with variable initial state are immediate, and the proofs are given in detail
in [5].

Proposition 4.10. Let (p, dµ) ∈ (BV )n∗ ×M verify the costate equation (2.10)-
(2.11), and let (v, z) ∈ L2 × (H1)n satisfy the linearized state equation (2.19).
Then,

(4.13)

∫ T

0

g′(x̂t)ztdµt +Dℓβ,Ψ(z0, zT ) =

∫ T

0

Hu(t)vtdt.

Proof. Note that
∫ T

0

g′(x̂t)ztdµt = −
∫ T

0

n
∑

j=1

zj,tdpj,t −
∫ T

0

ptfx(ût, x̂t)ztdt

= −
∫ T

0

n
∑

j=1

zj,tdpj,t −
∫ T

0

pt(żt − f1(x̂t)vt)dt

= −[pz]T+
0− +

∫ T

0

Hu(t)vtdt.

(4.14)
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The wanted result follows from latter equation and the boundary conditions (2.11).
�

Proof. (of Theorem 4.5). Let us suppose on the contrary that the conclusion does
not hold. Hence, there should exist a sequence (vk, xk,0) ⊂ L∞ × R

n of non iden-
tically zero functions having (vk) converging to 0 in the Pontryagin sense and
xk,0 → x̂0, and such that, setting uk := û + vk, the corresponding solutions xk

of (2.1) are feasible and

(4.15) φ(xk,0, xk,T ) ≤ φ(x̂0, x̂T ) + o(γk),

where yk,t :=
∫ t

0 vk,sds and γk := γ(yk, yk,T , xk,0 − x̂0). Set zk := z[vk, zk,0] with
zk,0 := xk,0 − x̂0. Take any λ = (β,Ψ, p, dµ) ∈ Λ, and multiply inequality (4.15) by
β (which is nonnegative), afterwards add the nonpositive term Ψ·Φ(xk,0, xk,T ) +
∫ T

0 g(xk)dµ to the left hand-side of the resulting inequality, and obtain the following:

(4.16) L(uk, xk, λ) ≤ L(û, x̂, λ) + o(γk).

Set (ȳk, h̄k, ξ̄k,0) := (yk, yk,T , zk,0)/
√
γk. Note that the elements of this sequence

have unit norm in L2 × R × R
n. By the Banach-Alaoglu Theorem, extracting if

necessary a subsequence, we may assume that there exists (ȳ, h̄, ξ̄0) ∈ L2 ×R×R
n

such that

(4.17) ȳk ⇀ ȳ, and (h̄k, ξ̄k,0) → (h̄, ξ̄0),

where the first limit is given in the weak topology of L2. Define ξ̄ as the solution
of (3.14) associated to ȳ and the initial condition ξ̄0.

The remainder of the proof is split in two parts:
Fact 1: The weak limit (ȳ, h̄, ξ̄) belongs to P2

∗ .
Fact 2: The inequality (4.16) contradicts the hypothesis of uniform positivity

(4.6).
Proof of Fact 1. Recall the definition of the cone P2

∗ given in equation (4.5).
The proof of Fact 1 into four parts, in which we establish: A) condition (3.15)(ii),
B) (3.17)(ii)-(iii), C) (3.15)(i) and (3.17)(iv), and D) that (ȳ, h̄, ξ̄) satisfies (3.16).

A) Let us show that (ȳ, h̄, ξ̄) verifies (3.15)(ii), i.e. ȳ is constant on each B arc.
From (4.12), (4.16) and the equivalence between Q and Ω stated in Proposition 3.9,
it follows that

(4.18) − Ω(ξk, yk, hk, λ) + o(γk) ≥
∫ T

0

Hu(t)vk,tdt ≥ 0,

where ξk is solution of (3.14) corresponding to yk. The last inequality in (4.18)
holds in view of the minimum condition (2.12) and since û+ vk satisfies the control
constraint (2.4). By the continuity of the mapping Ω over the space L2×R× (H1)n

and from (4.18) we deduce that

0 ≤
∫ T

0

Hu(t)vk,tdt ≤ O(γk).

Hence, since the integrand in previous inequality is nonnegative for all k ∈ N, we
have that

(4.19) lim
k→∞

∫ T

0

Hu(t)ϕt

vk,t√
γk

dt = 0,
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for any nonnegative C1 function ϕ : [0, T ] → R. Let us consider, in particular, such
a function ϕ having its support included in a B arc (c, d). Integrating by parts in
(4.19) and in view of (4.17), we obtain

0 = lim
k→∞

∫ d

c

d

dt
(Hu(t)ϕt) ȳk,tdt =

∫ d

c

d

dt
(Hu(t)ϕt) ȳtdt.

Over (c, d), vk has constant sign and therefore, ȳ is either nondecreasing or nonin-
creasing. Thus, we can integrate by parts in the previous equation to get

(4.20)

∫ d

c

Hu(t)ϕtdȳt = 0.

Take now any t0 ∈ (c, d). By the strict complementary condition for the control
constraint assumed here (see Definition 4.3), there exists a multiplier a multi-

plier λ̂ = (β̂, Ψ̂, p̂, dµ̂) ∈ Λ such that Hu(ût0 , x̂t0 , p̂t0) > 0. Hence, in view of
the continuity of Hu on B,1 there exists ε > 0 such that Hu(ût, x̂t, p̂t) > 0 on
(t0 − 2ε, t0 + 2ε) ⊂ (c, d). Choose ϕ such that suppϕ ⊂ (t0 − 2ε, t0 + 2ε), and
Hu(ût, x̂t, p̂t)ϕt = 1 on (t0 − ε, t0 + ε). Since dȳ ≥ 0, equation (4.20) yields

0 =

∫ d

c

Hu(ût, x̂t, p̂t)ϕtdȳt ≥
∫ t0+ε

t0−ε

Hu(ût, x̂t, p̂t)ϕtdȳt

=

∫ t0+ε

t0−ε

dȳt = ȳt0+ε − ȳt0−ε.

(4.21)

As both ε and t0 ∈ (c, d) are arbitrary we deduce that

(4.22) dȳt = 0, on B.

Hence, (ȳ, h̄, ξ̄) satisfies (3.15)(ii).
B) Assume now that a B0± arc exists, and let us prove that ȳ = 0 on B0± (see

the definition of B0± in the paragraph preceding Proposition 3.6). Let B0± be
equal to [0, t1] for some t1 > 0. Assume without loss of generality that û = umin on
[0, t1]. Notice that by the strict complementarity condition for the control constraint
(condition (i) of the present theorem) there exists λ′ = (β′,Ψ′, p′, dµ′) ∈ Λ and
ε, δ > 0 such that Hu(ût, x̂t, p

′
t) > δ for all t ∈ [0, ε], and thus, by considering in

(4.19) a nonnegative Lipschitz continuous function ϕ : [0, T ] → R being equal to

1/δ on [0, t], we obtain ȳk,t =

∫ t

0

vk,s√
γk

ds → 0, since vk ≥ 0 on [0, t1]. Hence ȳ = 0

on [0, ε]. This last assertion, together with (4.22), imply that ȳ = 0 on B0±.
Suppose that T is in a boundary arc BT±. Let BT± = [tN , T ]. Then, we can

derive that for some ε > 0, ȳk,T − ȳk,t =

∫ T

t

vk,s√
γk

ds → 0 for all t ∈ [T − ε, T ], by

an argument analogous to the one above. Thus, ȳt = h̄ on [T − ε, T ], and hence,
by (4.22) we get that

(4.23) ȳ = h̄, on (tN , T ], if T ∈ B.

Therefore, (ȳ, h̄, ξ̄) verifies (3.17)(ii)-(iii)
C) Let us prove that (ȳ, h̄, ξ̄) satisfies (3.15)(i) and (3.17)(iv). For all t ∈ [0, T ],

a first order Taylor expansion gives

(4.24) 0 ≥ g(xk,t) = g(x̂t) + g′(x̂t)δxk,t +O(|δxk,t|2).
1Actually Hu is continuous on B since p does not jump on B.
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From latter estimate and [6, Lemma 8.12], we deduce that

(4.25) g′(x̂t)zk,t ≤ o(
√
γ
k
) +O(|δxk,t|2), for all t ∈ C.

Let ϕ ≥ 0 be some continuous function with support in C. From (4.25), we get
that

∫ T

0

ϕtg
′(x̂t)(ξk,t+f1(x̂t)yk,t)dt =

∫ T

0

ϕtg
′(x̂t)zk,tdt

≤ ‖ϕ‖∞
∫ T

0

(

o(
√
γ
k
) +O(|δxk,t|2)

)

dt ≤ o(
√
γ
k
),

(4.26)

where the last inequality follows from [6, Lemma 8.4]. Therefore, dividing by
√
γk

and passing to the limit, we obtain

(4.27)

∫ T

0

ϕtg
′(x̂t)(ξ̄t + f1(x̂t)ȳt)dt ≤ 0.

Since ϕ is an arbitrary nonnegative continuous function with support in C (and C
is a finite union of intervals), we deduce that

(4.28) g′(x̂t)(ξ̄t + f1(x̂t)ȳt) ≤ 0, for a.a. t ∈ C.

In particular, if T ∈ C, we get from (4.25):

(4.29) g′(x̂T )(ξ̄T + f1(x̂T )h̄) ≤ 0 if T ∈ C.

Take (β,Ψ, p, dµ) ∈ Λ. By Proposition 4.10 and since umin ≤ û+ vk ≤ umax, we
have

(4.30) Dℓβ,Ψ(x̂0, x̂T )(zk,0, zk,T ) +

∫ T

0

g′(x̂t)zk,tdµt =

∫ T

0

Hu(t)vk,tdt ≥ 0.

On the other hand, a first order Taylor expansion of ℓβ,Ψ and [6, Lemma 8.12] lead
to

(4.31) Dℓβ,Ψ(x̂0, x̂T )(zk,0, zk,T ) = ℓβ,Ψ(xk,0, xk,T )− ℓβ,Ψ(x̂0, x̂T ) + o(
√
γ
k
).

Hence, by (4.30),

0 ≤ ℓβ,Ψ(xk,0, xk,T )− ℓβ,Ψ(x̂0, x̂T ) + o(
√
γ
k
) +

∫ T

0

g′(x̂t)zk,tdµt

≤ βφ(xk,0 , xk,T )− βφ(x̂0, x̂T ) + o(
√
γ
k
) +

∫ T

0

g′(x̂t)zk,tdµt,

(4.32)

where the last inequality holds since
∑n1+n2

i=n1+1 ΨiΦi(xk,0, xk,T ) ≤ 0. Observe now

that, due to (4.15), βφ(xk,0, xk,T )− βφ(x̂0, x̂T ) ≤ o(γk). Hence, by latter estimate
and from (4.32), we deduce that

(4.33)
1√
γk

∫ T

0

g′(x̂t)zk,tdµt =

∫ T

0

g′(x̂t)(ξ̄k,t + f1(x̂t)ȳk,t)dµt ≥ o(1).
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Since dµt has an essentially bounded density over [0, T ), we have that

0 ≤ lim inf
k→∞

∫ T

0

g′(x̂t)(ξ̄k,t + f1(x̂t)ȳk,t)dµt

= lim
k→∞

(

∫

[0,T )

g′(x̂t)(ξ̄k,t + f1(x̂t)ȳk,t)dµt + g′(x̂T )(ξ̄k,T + f1(x̂T )ȳk,T )[µ(T )]
)

=

∫

[0,T )

g′(x̂t)(ξ̄t + f1(x̂t)ȳt)dµt + g′(x̂T )(ξ̄T + f1(x̂T )h̄)[µ(T )].

(4.34)

In view of (4.28), (4.29) and the complementary condition for the state constraint
(3.4)(ii), we get from (4.34) that

(4.35) g′(x̂t)(ξ̄t + f1(x̂t)ȳt) = 0, for a.a. t ∈ C,

and

(4.36) g′(x̂T )(ξ̄T + f1(x̂T )h̄) = 0, whenever T ∈ C and [µ(T )] > 0.

Then, (ȳ, h̄, ξ̄) satisfies (3.15)(i). Furthermore, if T ∈ and [µ(T )] > 0 for some
λ ∈ Λ, it holds

(4.37) h̄ = − g′(x̂T )ξ̄T
g′(x̂T )f1(x̂T )

= lim
t↑T

− g′(x̂t)ξ̄t
g′(x̂t)f1(x̂t)

= lim
t↑T

ȳ(t),

so that (3.17)(iv) holds.
D) We shall now prove (3.16). Let i = 1, . . . , n1 + n2, then

Φ′
i(x̂0, x̂T )(ξ̄0, ξ̄T + f1(x̂T )h̄) = lim

k→∞
Φ′

i(x̂0, x̂T )
(ξk,0, ξk,T + f1(x̂T )yk,T )√

γk

= lim
k→∞

Φ′
i(x̂0, x̂T )

(zk,0, zk,T )√
γk

.

(4.38)

A first order Taylor expansion of Φi at (x̂0, x̂T ) and [6, Lemma 8.12] yield

(4.39) Φ′
i(x̂0, x̂T )

(zk,0, zk,T )√
γk

=
Φi(xk,0, xk,T )− Φi(x̂0, x̂T )√

γk
+ o(1).

Thus, from (4.38)-(4.39) we get

Φ′
i(x̂0, x̂T )(ξ̄0, ξ̄T + f1(x̂T )h̄) = 0, for i = 1, . . . , n1,

Φ′
i(x̂0, x̂T )(ξ̄0, ξ̄T + f1(x̂T )h̄) ≤ 0, for i = n1 + 1, . . . , n1 + n2, with Φi(x̂0, x̂T ) = 0.

For the endpoint cost, we can obtain analogous expressions to (4.38)-(4.39), and
then, from (4.15) we get

(4.40) φ′(x̂0, x̂T )(ξ̄0, ξ̄T + f1(x̂T )h̄) ≤ 0.

Hence, (3.16) is verified.
We conclude that (ȳ, h̄, ξ̄) ∈ P2

∗ , this is, Fact 1 follows.
Proof of Fact 2. From equation (4.12) in Proposition 4.8 we obtain that

(4.41) Ω(yk, hk, ξk, λ) = L(uk, xk, λ)−L(û, x̂, λ)−
∫ T

0

Hu(t)vk,tdt+o(γk) ≤ o(γk),
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where the last inequality follows from (4.16) and since Hu(t)vk,t ≥ 0, a.e. on [0, T ].
Hence,

(4.42) lim inf
k→∞

Ω(yk, hk, ξk, λ) ≤ lim sup
k→∞

Ω(yk, hk, ξk, λ) ≤ 0.

Let us recall that, for each λ ∈ Λ, the mapping Ω(·, λ) is a Legendre form in the
Hilbert space {(y, h, ξ) ∈ L2×R× (H1)n : (3.14) holds} (in view of hypothesis (iii)
of the current theorem). In particular, for λ̄ ∈ Λ reaching the maximum in (4.6)
for the critical direction (ȳ, h̄, ξ̄), one has

(4.43) ργ(ȳ, h̄, ξ̄0) ≤ Ω(ȳ, h̄, ξ̄, λ̄) = lim inf Ω(ȳk, h̄k, ξ̄k, λ̄) ≤ 0,

where the equality holds since Ω is a Legendre form and the last inequality follows
from (4.42). In view of (4.43), we get that (ȳ, h̄, ξ̄0) = 0 and limΩ(ȳk, h̄k, ξ̄k, λ̄) = 0.
Consequently, (ȳk, h̄k, ξ̄k,0) converges strongly to (ȳ, h̄, ξ̄0) = 0, which is a contra-
diction since (ȳk, h̄k, ξ̄k,0) has unit norm in L2 × R × R

n. We conclude that (û, x̂)
is a Pontryagin minimum satisfying γ−growth in the Pontryagin sense. �
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Appendix A. On second-order necessary conditions

A.1. General constraints. We will study an abstract optimization problem of
the form

(A.1) min f(x); GE(x) = 0, GI(x) ∈ KI ,

where X , YE , YI are Banach spaces, f : X → R, GE : X → YE , and GI : X → YI

are functions of class C2, and KI is a closed convex subset of YI with nonempty
interior. The subindex E is used to refer to ‘equalities’ and I to ‘inequalities’.

Setting

(A.2) Y := YE × YI , G(x) := (GE(x), GI(x)), K := {0}KE
×KI ,

we can rewrite problem (A.1) in the more compact form

(PA) min f(x); G(x) ∈ K.

We use F (PA) to denote the set of feasible solutions of (PA).

Remark A.1. We refer to [10] for a systematic study of problem (PA). Here we
will take advantage of the product structure (that one can find in essentially all
practical applications) to introduce a non qualified version of second order necessary
conditions specialized to the case of quasi radial directions, that extends in some
sense [10, Theorem 3.50]. See Kawasaki [25] for non radial directions.

The tangent cone (in the sense of convex analysis) to KI at y ∈ KI is defined as

(A.3) TKI
(y) := {z ∈ YI : dist(y + tz,KI) = o(t), with t ≥ 0},

and the normal cone to KI at y ∈ KI is

(A.4) NKI
(y) := {z∗ ∈ Y ∗

I : 〈z∗, y′ − y〉 ≤ 0, for all y′ ∈ KI}.
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In what follows, we shall study a nominal feasible solution x̂ ∈ F (PA) that may
satisfy or not the qualification condition
(A.5)
{

(i) DGE(x̂) is onto,
(ii) there exists z ∈ KerDGE(x̂) such that GI(x̂) +DGI(x̂)z ∈ int(KI).

The latter condition coincides with the qualification condition in (2.21) which was
introduced for the optimal control problem (P).

Remark A.2. Condition (A.5) is equivalent to the Robinson qualification condition
in [39]. See the discussion in [10, Section 2.3.4].

The Lagrangian function of problem (PA) is defined as

(A.6) L(x, λ) := βf(x) + 〈λE , GE(x)〉 + 〈λI , GI(x)〉,
where we set λ := (β, λE , λI) ∈ R+×Y ∗

E×Y ∗
I . Define the set of Lagrange multipliers

associated with x ∈ F (PA) as

(A.7) Λ(x) := {λ ∈ R+ × Y ∗
E ×NKI

(GI(x)) : λ 6= 0, DxL(x, λ) = 0}.
Let yI ∈ int(KI), yI 6= GI(x̂). We consider the following auxiliary problem,

where (x, γ) ∈ X × R:

(APA)
min
x,γ

γ; f(x)− f(x̂) ≤ γ, GE(x) = 0, γ ≥ −1/2,

yI + (1 + γ)−1
(

GI(x) − yI
)

∈ KI .

Note that we recognize the idea of a gauge function (see e.g. [40]) in the last
constraint.

Lemma A.3. Assume that x̂ is a local solution of (PA). Then (x̂, 0) is a local
solution of (APA).

Proof. We easily check that (x̂, 0) ∈ F (APA). Now take (x, γ) ∈ F (APA). Let us
prove that if −1/2 ≤ γ < 0, then x cannot be closed to x̂ (in the norm of the
Banach space X). Assuming that −1/2 ≤ γ < 0, we get GE(x) = 0, GI(x) ∈
KI + (−γ)yI ⊆ KI , and f(x) < f(x̂). Since x̂ is a local solution of (PA), the x
cannot be too closed to x̂. The conclusion follows. �

The Lagrangian function of (APA), in qualified form, is

(A.8) γ + β(f(x) − f(x̂)− γ) + 〈λE , GE(x)〉+ 〈λI , yI + (1 + γ)−1(GI(x) − yI)〉.
or equivalently

(A.9) L(x, λ) + (β0 − β)γ +
(

(1 + γ)−1 − 1
)

〈λI , GI(x) − yI〉.
Setting λ̂ = (β0, β, λE , λI), we see that the set of Lagrange multipliers of the aux-
iliary problem (APA) at (x̂, 0) is

(A.10) Λ̂ :=

{

λ̂ ∈ R+ × R+ × Y ∗
E ×NKI

(GI(x̂)) : λ 6= 0,
DxL(x̂, λ) = 0; β + 〈λI , GI(x̂)− yI〉 = 1

}

.

Proposition A.4. Suppose that (A.5)(i) holds. Then, the mapping

(A.11) (β, λE , λI) 7→
(β + 〈λI , GI(x) − yI〉, β, λE , λI)

β + 〈λI , GI(x)− yI〉
is a bijection between Λ(x̂) and Λ̂1 (recall the definition in (2.16)).
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Proof. Since (A.5)(i) holds, then we necessarily have that (β, λI) 6= 0 for all λ =
(β, λE , λI) ∈ Λ(x̂). Therefore, if λI = 0 then β > 0 and β+〈λI , GI(x)−yI〉 > 0. If by
the contrary, λI 6= 0, then 〈λI , GI(x)− yI〉 > 0 and again, β+ 〈λI , GI(x)− yI〉 > 0.

Hence, the mapping in (A.11) is well-defined and is a bijection from Λ(x̂) to Λ̂1, as
we wanted to show. �

Theorem A.5. Let x̂ be a local solution of (PA), such that DGE(x̂) is surjective.

Then Λ̂1 is non empty and bounded.

Proof. By lemma A.3, (x̂, 0) is a local solution of (APA). In addition the qualifi-
cation condition for the latter problem at the point (x̂, 0) states as follows: there
exists (z, δ) ∈ KerDGE(x̂)× R such that

Df(x̂)z < δ, δ > 0,

GI(x̂) +DGI(x̂)z − δ(GI(x̂)− yI) ∈ int(KI).

These conditions trivially hold for (z, δ) = (0, 1). Hence, in view of classical results
by e.g. Robinson [39], the conclusion follows. �

A.2. Second order necessary optimality conditions. Let us introduce the
notation [a, b] to refer to the segment {ρa+(1− ρ)b; for ρ ∈ [0, 1]}, defined for any
pair of points a, b in an arbitrary vector space Z.

Definition A.6. Let y ∈ K. We say that z ∈ Y is a radial direction to K at y if
[y, y+εz] ⊂ K for some ε > 0, and a quasi-radial direction if dist(y+σz,K) = o(σ2)
for σ > 0.

Note that any radial direction is also quasi-radial, and both radial and quasi
radial directions are tangent. With x̂ ∈ F (PA), we associate the critical cone

(A.12) C(x̂) := {z ∈ X : Df(x̂)z ≤ 0, DGE(x̂)z = 0, DGI(x̂)z ∈ TK(GI(x̂))}.
Definition A.7. We say that z ∈ C(x̂) is a radial (quasi radial) critical direction for
problem (PA) if DGI(x̂)z is a radial (quasi radial) direction to KI at GI(x̂). We
write CQR(x̂) for the set of quasi radial critical directions. The critical cone C(x̂)
is quasi radial if CQR(x̂) is a dense subset of C(x̂).

It is immediate to check that CQR(x̂) is a convex cone.
We next state primal second order necessary conditions for the problem (PA).

Consider the following optimization problem, where z ∈ X , w ∈ X and θ ∈ R:

(Qz)



























min
w,θ

θ,

Df(x̂)w +D2f(x̂)(z, z) ≤ θ,

DGE(x̂)w +D2GE(x̂)(z, z) = 0,

DGI(x̂)w +D2GI(x̂)(z, z)− θ(G(x̂)− yI) ∈ TK(GI(x̂)).

Theorem A.8. Let (x̂, 0) be a local solution of (APA), such that DGE(x̂) is sur-
jective, and let h ∈ CQR(x̂). Then problem (Qz) is feasible, and has a nonnegative
value.

Proof. We shall first show that (Qz) is feasible. Since DGE(x̂) is surjective, there
exists w ∈ X such that DGE(x̂)w+D2GE(x̂)(z, z) = 0. Since TK(GI(x̂)) is a cone,
the last equation divided by θ > 0 is equivalent to

(A.13) θ−1
(

DGI(x̂)w +D2GI(x̂)(z, z)
)

+ yI −G(x̂) ∈ TK(GI(x̂)).



CONTROL-AFFINE PROBLEMS WITH STATE CONSTRAINTS 25

Since yI ∈ int(KI), we have that yI −G(x̂) ∈ intTK(GI(x̂)), and therefore the last
constraint of (Qz) holds when θ is large enough. So it does the first constraint, and
hence, (Qz) is feasible.

We next have to show that we cannot have (w, θ0) ∈ F (Qz) with θ0 < 0. Let us
suppose, on the contrary, that there is such a feasible solution (w, θ0). Set θ := 1

2θ0.

Then Df(x̂)w + D2f(x̂)(z, z) < θ. Using (A.13) and yI ∈ int(Ki), we can easily
show that, for some ε > 0:

(A.14) DGI(x̂)w +D2GI(x̂)(z, z)− θ(GI(x̂)− yI) + εB ∈ TK(GI(x̂)).

Consider, for σ > 0, the path

(A.15) xσ := x̂+ σz + 1
2σ

2w.

By a second order Taylor expansion we obtain that GE(xσ) = o(σ2). Since DGE(x̂)
is onto, by Lyusternik’s theorem [27], there exists a path x′

σ = xσ + o(σ2), such
that GE(x

′
σ) = 0. Assuming, without loss of generality, that GI(x̂) = 0, we get

(A.16) GI(x
′
σ) = σDGI(x̂)z +

1
2σ

2
[

DGI(x̂)w +D2GI(x̂)(z, z)
]

+ o(σ2).

Setting

(A.17)

{

k1(σ) := (1 − σ)−1σDGI(x̂)z,

k2(σ) := σ
(

DGI(x̂)w +D2GI(x̂)(z, z)
)

,

we can rewrite (A.16) as

(A.18) GI(x
′
σ) = (1− σ)k1(σ) +

1
2σk2(σ) + o(σ2).

Since z is a quasi radial critical direction, there exists k′1(σ) ∈ KI such that

(A.19) σDGI(x̂)z = k′1(σ) + o(σ2),

and so,

(A.20) GI(x
′
σ) ∈ (1− σ)KI +

1
2σk2(σ) + o(σ2).

Using (A.14) and GI(x̂) = 0 we obtain

(A.21) k2(σ) + σθyI + σεB ∈ KI .

Therefore, for σ > 0 small enough

(A.22) GI(x
′
σ) ∈ (1− 1

2σ)KI +
1
2σKI − 1

2σ
2(θyI + o(1)) ⊂ KI ,

where we have used the fact that since 0 = GI(x̄) ∈ KI , we have that (remember
that θ < 0): 1

2σ
2(−θ)(yI + εB) ⊂ KI .

We check easily that f(x′
σ) < 0, and so, we have constructed a feasible path for

(APA), contradicting the local optimality of (x̂, 0).
We conclude that such a solution (w, θ0) of (Qz) with θ0 < 0 cannot exist and,

therefore, (Qz) has nonnegative value. �

We now present dual second order necessary conditions.

Theorem A.9. Let x̂ be a local minimum of (PA), that satisfies the qualification
condition (A.5). Then, for every z ∈ CQR(x̂),

(A.23) max
λ∈Λ(x̂)

D2
xxL(x̂, λ)(z, z) ≥ 0.
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Proof. Since problem (Qz) is qualified with a finite nonnegative value, by the convex
duality theory [14], its dual has a nonnegative value and a nonempty set of solutions.
The Lagrangian of problem (Qz) in qualified form (β0 = 1) can be written as

(A.24) DxL(x̂, λ)w +D2
xxL(β, x̂, λ)(z, z) +

(

1− β + 〈λI , G(x̂)− yI〉
)

θ,

where λ = (β, λE , λI) as before, and so, the dual problem of (Qz) can be written
as

Max
λ∈Λ(x̂)

D2
xxL(β, x̂, λ)(z, z); β + 〈λI , G(x̂)− yI〉)θ = 1.

The conclusion follows. �

Remark A.10. Whereas the above theorem follows from Cominetti [12] or Kawasaki
[25], our proof avoids the concepts of second order tangent set and its associated
calculus, used in these references. This considerably simplifies the proof.
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