
On the mixing set with a knapsack constraint

Ahmad Abdi Ricardo Fukasawa

October 12, 2015

Abstract

We study a substructure appearing in mixed-integer programming reformulations of chance-constrained

programs with stochastic right-hand-sides over a finite discrete distribution, which we call the mixing set with

a knapsack constraint. Recently, Luedtke et al. (2010) and Küçükyavuz (2012) studied valid inequalities for

such sets. However, most of their results were focused on the equal probabilities case (when the knapsack

constraint reduces to a cardinality constraint). In this paper, we focus on the general probabilities case (general

knapsack constraint).

We characterize the valid inequalities that do not come from the knapsack polytope and use this characteri-

zation to generalize the results previously derived for the equal probabilities case. Our results allow for a deep

understanding of the relationship that the set under consideration has with the knapsack polytope. Moreover,

they allow us to establish benchmarks that can be used to identify when a relaxation will be useful for the

considered types of reformulations of chance-constrained programs.

1 Introduction

Many optimization problems in real world applications allow to some extent a number of violated constraints,

which results in a decrease in the quality of service, as well as a decrease in the cost of production. These

optimization problems have been a main motive to study probabilistic (in particular, chance-constrained) pro-

gramming. A difficulty when dealing with these optimization problems is that the feasible region is not necessar-

ily convex. In this paper, we consider mixed-integer programming (MIP) reformulations of chance-constrained

programs with joint probabilistic constraints in which the right-hand-side vector is random with a finite discrete

distribution1. This model was first proposed in Sen [16], studied in Ruszczyński [15], and extended by Luedtke

et. al [14] and Küçükyavuz [12]. This reformulation gives rise to a mixing-type set [10] subject to an additional

knapsack constraint, which is the focus of this paper.2

1Sometimes the finite discrete distribution given is an approximation of an unknown continuous distribution, obtained via a Sample

Average Approximation (SAA) technique.
2Prior to our work, the main focus seems to have been on the equal probabilities case, justified by employing the SAA technique. Our

more general framework of the general probabilities case allows for more sophisticated techniques such as Importance Sampling. See the

recent work of Barrera et. al [6] for further details.

1

Formally, consider the following chance-constrained programming problem

min c>x

s.t. P(Bx ≥ ξ) ≥ 1− ε
x ∈ X,

(PLP)

whereX is a polyhedron,B is a matrix with d rows, ξ is a random variable in Rd with finite discrete distribution,

ε ∈ (0, 1), and c is an arbitrary cost vector. Let ξ take values ξ1, . . . , ξn with probabilities π1, . . . , πn, respec-

tively. We may assume without loss of generality that ξj ≥ 0, for all j ∈ [n] := {1, . . . , n} (by a mere simple

linear transformation). Thus, since ε < 1, Bx ≥ 0 for every feasible solution x to (PLP). By definition, for each

j ∈ [n], πj > 0 and
∑n
j=1 πj = 1. We can reformulate the chance constraint in (PLP) using linear inequalities

and auxiliary binary variables as follows: let z ∈ {0, 1}n where zj = 0 guarantees that Bx ≥ ξj . Then (PLP) is

equivalent to
min c>x

s.t. y = Bx

y + ξjzj ≥ ξj ∀j ∈ [n]∑n
j=1 πjzj ≤ ε

z ∈ {0, 1}n
x ∈ X.

(CMIP)

We may assume for all j ∈ [n] that πj ≤ ε. Indeed, if πj > ε for some j ∈ [n], then zj = 0 for all feasible

solutions (x, y, z) to the above system, so we may as well drop the index j. Now let

D :=

(y, z) ∈ Rd+ × {0, 1}n :

n∑
j=1

πjzj ≤ ε; y + ξjzj ≥ ξj , ∀j ∈ [n]

 .

Then (PLP) can be rewritten as
min c>x

s.t. Bx ∈ projyD
x ∈ X.

This motivates us to study the set D. For each κ ∈ [d], let

Dκ :=

{
(yκ, z) ∈ R+ × {0, 1}n :

∑n
j=1 πjzj ≤ ε

yκ + ξjκzj ≥ ξjκ, ∀j ∈ [n]

}
. (1)

Then observe that

D =
⋂
κ∈[d]

{
(y, z) ∈ Rd+ × {0, 1}n : (yκ, z) ∈ Dκ

}
.

Therefore, instead of D, we study the lower dimensional sets Dκ.

Fix κ ∈ [d] and for notational convenience, let hj := ξjκ for each j ∈ [n]. Let
∑
j∈[n] ajzj ≤ p be a valid

inequality for Dκ where a ∈ Rn+, p ∈ R+, aj ≤ p for all j ∈ [n], and
∑
j∈[n] aj > p. Observe that this

inequality may be the knapsack constraint
∑n
j=1 πjzj ≤ ε. In this paper, we focus on the set

Q :=

(y, z) ∈ R+ × {0, 1}n :

n∑
j=1

ajzj ≤ p; y + hizi ≥ hi, ∀i ∈ [n]

 .

2

Specifically, we try to understand the convex hull of Q. We assume without loss of generality that h1 ≥ h2 ≥
. . . ≥ hn ≥ 0.

Note that the assumption that aj ≤ p for all j ∈ [n] implies that Q is a full-dimensional set. (The points

(h1 + 1, 0), (h1, e1), . . . , (h1, en) are in Q, where ej is the jth n-dimensional unit vector.) Also, the assumption

that
∑
j∈[n] aj > p implies that y ≥ hn, for all y ∈ Q. Observe that the set Q contains as a substructure

the intersection of a mixing-type set, introduced by Günlük and Pochet [10], and a knapsack constraint (hence

the title of our paper). Various structural properties of conv(Q) were studied in [14] and [12] when the knap-

sack constraint
∑
j∈[n] ajzj ≤ p is a cardinality constraint. In [14], a characterization of all valid inequalities

for conv(Q) was given3, and in both [14] and [12], explicit classes of facet-defining inequalities were introduced.

Our contributions

The main contribution of this paper is to generalize the results in [14] and [12]. In particular, we show that the

extended formulation and polynomial time separation that these two papers obtain for the cardinality constrained

case follow from the results that we establish for LP relaxations of the knapsack set. We also introduce a class

of explicit facet-defining inequalities for conv(Q), and give a necessary condition on the constant right-hand-

side term for any inequality to be facet-defining. Additionally, we provide a compact extended formulation for

(CMIP) similar to the one given in [12]. Finally, we present computational experiments to illustrate how our

results can be used to set benchmarks to identify when a relaxation is useful and worth a deeper investigation.

Outline

In this paper, we do not make any assumptions on the knapsack constraint. In §2 we characterize the set of all

valid inequalities for conv(Q). In §3 we study how different relaxations of the knapsack polytope can be used

to obtain relaxations of conv(Q). We discuss in §4 some properties of facet-defining inequalities of conv(Q)

and introduce an explicit class of facet-defining inequalities. In §5 we provide a compact integer extended

formulation for the whole set (CMIP) that we are interested in. Computational experiments are provided in §6
and a conclusion in §7.

2 A characterization of valid inequalities for conv(Q)

To start, let ν := max
{
k ∈ Z :

∑k
j=1 aj ≤ p

}
. Note 0 < ν < n. Define for each k ∈ {0, 1, . . . , ν} the

knapsack set

Pk :=

z ∈ {0, 1}n :

n∑
j=1

ajzj ≤ p; z1 = · · · = zk = 1

 ,

3As shown in Luedtke [13], some valid inequalities for Q are also of value in the extremely general case where each mixing constraint is

replaced by a set of arbitrary linear constraints.

3

and define φ : {0, 1, . . . , ν} × Rn → R, as follows: for 0 ≤ k ≤ ν and α ∈ Rn, let

φ(k, α) := min


n∑

j=k+1

αjzj : z ∈ Pk

 .

Note φ(k, α) ≤ 0.

The following theorem characterizes the set of all valid inequalities for conv(Q).

Theorem 1. Take (γ, α, β) ∈ R× Rn × R. Then

γy +
∑
j∈[n]

αjzj ≥ β (2)

is a valid inequality for conv(Q) if, and only if, γ ≥ 0 and

γhk+1 +

k∑
j=1

αj + φ(k, α) ≥ β, ∀ 0 ≤ k ≤ ν. (3)

Proof. Suppose that (2) is a valid inequality of conv(Q) for some (γ, α, β) ∈ R × Rn × R. Since (1,0)

is in the recession cone of conv(Q), it follows that γ ≥ 0. Take 0 ≤ k ≤ ν. Choose z∗ ∈ Pk so that∑n
j=k+1 αjz

∗
j = φ(k, α). Let y∗ = hk+1. Observe that (y∗, z∗) ∈ Q as z∗1 = . . . = z∗k = 1. Hence, since (2) is

valid for Q, it follows that

β ≤ γy∗ +
∑
j∈[n]

αjz
∗
j

= γhk+1 +

k∑
j=1

αj +

n∑
j=k+1

αjz
∗
j

= γhk+1 +

k∑
j=1

αj + φ(k, α).

Since this holds for all 0 ≤ k ≤ ν, it follows that (3) holds.

Conversely, suppose that γ ≥ 0 and (3) holds. Let (y∗, z∗) ∈ Q. Let h0 := +∞. Since
∑n
j=1 ajz

∗
j ≤ p

there exists 0 ≤ k ≤ ν for which z∗1 = . . . = z∗k = 1 but z∗k+1 = 0. Observe that z∗ ∈ Pk. Since z∗k+1 = 0 we

get that y∗ ≥ hk+1, and so as γ ≥ 0 it follows that

γy∗ +
∑
j∈[n]

αjz
∗
j ≥ γhk+1 +

k∑
j=1

αj +

n∑
j=k+1

αjz
∗
j

≥ γhk+1 +

k∑
j=1

αj + φ(k, α)

≥ β

as (3) holds. Therefore, (2) is valid for (y∗, z∗), and since this is true for all (y∗, z∗) ∈ Q, (2) is a valid inequality

for conv(Q).

4

The following proposition states that conv(Q) has all the facets of the knapsack polytope as a subset of its

facets.

Proposition 2. The inequality ∑
j∈[n]

αjzj ≥ β (4)

defines a facet of conv(Q) if and only if it defines a facet of conv(P0)

Proof. The proof of this proposition is straightforward from Theorem 1 and the following facts: (i) any valid

inequality for conv(P0) is also valid for conv(Q) and conversely (ii) any inequality of the form (4) valid for

conv(Q) is also valid for conv(P0).

We end this section by collecting the coefficient vectors of all valid inequalities of conv(Q) as follows:

C :=

(γ, α, β) ∈ R+ × Rn × R : γhk+1 +

k∑
j=1

αj + φ(k, α) ≥ β,∀0 ≤ k ≤ ν

 .

Following the terminology of [10], we refer to C as the coefficient polyhedron of Q. It is worth mentioning that

the coefficient polyhedron C is reminiscent of the polar of a polyhedron.

3 A relaxation scheme for conv(Q)

The results in the previous section suggest that in order for us to describe conv(Q), we must be able to obtain

the convex hull of the knapsack polytope. Since this is a far-stretched task in itself, we consider in this section

what happens if we have a polyhedral relaxation of the knapsack polytope.

For each 0 ≤ k ≤ ν, let Rk be a (strengthened) LP relaxation of Pk in the following sense: for some matrix

Ak and column vector bk we have Rk =
{
z ∈ [0, 1]n : Akz ≤ bk

}
, Rk ∩ {0, 1}n = Pk, and

Rk ⊆

z ∈ [0, 1]n :

n∑
j=1

ajzj ≤ p; z1 = · · · = zk = 1

 . (5)

For each 0 ≤ k ≤ ν, define ϕ : {0, 1, . . . , ν} × Rn → R as follows:

ϕ(k, α) := min


n∑

j=k+1

αjzj : z ∈ Rk

 .

Observe that ϕ is a lower bound on φ as Pk ⊆ Rk. Let

Cϕ :=

(γ, α, β) ∈ R+ × Rn × R : γhk+1 +

k∑
j=1

αj + ϕ(k, α) ≥ β, ∀ 0 ≤ k ≤ ν


and

Qϕ :=

(y, z) ∈ R+ × [0, 1]n : γy +

n∑
j=1

αjzj ≥ β, ∀ (γ, α, β) ∈ Cϕ

 .

5

Notice that Cϕ ⊆ C and consequently, conv(Q) ⊆ Qϕ. In words, what we are doing is picking polyhedral

relaxations R0, . . . , Rν of the knapsack sets P0, . . . , Pν and defining a relaxation Qϕ of conv(Q) based on

them, which is argued in the following proposition.

Proposition 3. Qϕ is an LP relaxation of Q, i.e. Qϕ ∩
(
R+ × {0, 1}n

)
= Q and

Qϕ ⊆

(y, z) ∈ R+ × [0, 1]n :

n∑
j=1

ajzj ≤ p; y + hizi ≥ hi, ∀i ∈ [n]

 .

Proof. We first prove that
∑n
j=1 ajzj ≤ p is a valid inequality for Qϕ. It suffices to show (0,−a,−p) ∈ Cϕ.

Take 0 ≤ k ≤ ν. Then, as (5) holds, it follows that

0 · hk+1 +

k∑
j=1

(−aj) + ϕ(k,−a) ≥ −
k∑
j=1

aj +
(k∑
j=1

aj − p
)

= −p.

As this is true for all 0 ≤ k ≤ ν, it follows that (0,−a,−p) ∈ Cϕ and so
∑n
j=1 ajzj ≤ p is a valid inequality

for Qϕ.

Given i ∈ [n] we next prove y+hizi ≥ hi is valid forQϕ. It suffices to show (γ, α, β) := (1, hiei, hi) ∈ Cϕ,

where ei is the ith unit vector in Rn. Choose 0 ≤ k ≤ ν. Observe that ϕ(k, hiei) ≥ 0, and in fact, ϕ(k, hiei) = 0

since
∑k
j=1 ej ∈ Pk ⊆ Rk. If k < i then

γhk+1 +

k∑
j=1

αj + ϕ(k, α) = hk+1 ≥ hi = β.

Otherwise, k ≥ i and so

γhk+1 +

k∑
j=1

αj + ϕ(k, α) = hk+1 + hi ≥ hi = β.

Hence, (1, hiei, hi) ∈ Cϕ implying that y + hizi ≥ hi.
As a result,

Qϕ ⊆
{

(y, z) ∈ R+ × [0, 1]n :

n∑
j=1

ajzj ≤ p; y + hizi ≥ hi, ∀i ∈ [n]
}
.

It remains to show Qϕ ∩
(
R+ × {0, 1}n

)
= Q. The inclusion relation above implies that Qϕ ∩

(
R+ ×

{0, 1}n
)
⊆ Q, and since Q ⊆ Qϕ, it follows that Qϕ ∩

(
R+×{0, 1}n

)
⊇ Q. Thus, Qϕ ∩

(
R+×{0, 1}n

)
= Q,

finishing the proof.

3.1 Compact extended formulations for Qϕ and Cϕ

Having shown that we can define a relaxation of conv(Q) based on LP relaxations of the knapsack polytope, we

now start with a theorem that proposes an alternate formulation of Qϕ. It provides insight into the structure of

Qϕ in terms of disjunctive programming and allows the derivation of the extended formulations discussed in this

subsection.

6

Theorem 4. For each 0 ≤ k ≤ ν, let Sk :=
{

(hk+1, z) : z ∈ Rk
}

. Then

Qϕ = conv

(
ν⋃
k=0

Sk

)
+
{

(y, z) ∈ R+ × Rn : z = 0
}
. (6)

Proof. Observe that

Cϕ =
{

(γ, α, β) ∈ R+ × Rn × R : γy +

n∑
j=1

αjzj ≥ β, ∀ (y, z) ∈
ν⋃
k=0

Sk
}
.

It is therefore clear that

S := conv

(
ν⋃
k=0

Sk

)
+
{

(y, z) ∈ R+ × Rn : z = 0
}
⊆ Qϕ.

Suppose, for a contradiction, there exists a point (y∗, z∗) ∈ Qϕ − S. Then there is a valid inequality γ∗y +∑n
j=1 α

∗
jzj ≥ β∗ for S that is violated by (y∗, z∗). However, (γ∗, α∗, β∗) ∈ Cϕ, implying that

γ∗y∗ +

n∑
j=1

α∗jz
∗
j ≥ β∗,

as (y∗, z∗) ∈ Qϕ, a contradiction. Therefore, S = Qϕ, as required.

Given the results in Theorem 4, we can now apply Balas’s theory of disjunctive programming [2, 3] to (6),

enabling us to get the following extended formulation for Qϕ. Recall that Rk =
{
z ∈ [0, 1]n : Akz ≤ bk

}
for

0 ≤ k ≤ ν.

Corollary 5. Qϕ = projy,zEQϕ for

EQϕ :=
{

(y, z, λ, ω) ∈ R+ × [0, 1]n × Rν+1
+ × R(ν+1)n

+ : (7)− (11)
}

where

ν∑
k=0

λk = 1 (7)

ν∑
k=0

ωk = z (8)

ωk ≤ λk1, ∀0 ≤ k ≤ ν (9)

Akωk ≤ bkλk, ∀0 ≤ k ≤ ν (10)

y ≥
ν∑
k=0

hk+1λk. (11)

Moreover, we can actually get an extended formulation for Cϕ as well, according to the following proposi-

tion.

7

Proposition 6. Cϕ = projγ,α,βECϕ for

ECϕ :=
{

(γ, α, β, σ, ρ) ∈ R+ × Rn × R× R
∑ν
k=0 nk

− × R(ν+1)n
− : (12); (13)

}
where

γhk+1 +

k∑
j=1

αj + (bk)>σk + (ρk)>1 ≥ β, ∀ 0 ≤ k ≤ ν (12)

(Ak)>σk + ρk ≤ αk, ∀ 0 ≤ k ≤ ν (13)

and where, for each 0 ≤ k ≤ ν, αk = (0, 0, . . . , 0, αk+1, αk+2, . . . , αn) ∈ Rn.

Proof. For 0 ≤ k ≤ ν and α ∈ Rn, we know that

ϕ(k, α) = min
∑n
j=k+1 αjzj

s.t. Akz ≤ bk
z ≤ 1

z ≥ 0.

which, by strong LP duality, is equal to

ϕ(k, α) = max (bk)>σk + (ρk)>1

s.t. (Ak)>σk + ρk ≤ αk
σk, ρk ≤ 0.

Note now that weak LP duality implies Cϕ ⊇ projγ,α,βECϕ, and by strong LP duality, we have Cϕ ⊆
projγ,α,βECϕ. Therefore, Cϕ = projγ,α,βECϕ.

We note that these results generalize the previous results of [14, 12] where the extended formulations were

considered by using the LP relaxation of the cardinality constrained case, which in that case coincides with the

convex hull of the knapsack polytope.

3.2 On the strength of the relaxations

Here we consider what can be said about the strength of the proposed relaxations, given knowledge about the

strength of the LP relaxations of the knapsack polytope. Our first theorem shows that if the relaxation is exact

for a given subset of variables, then all the inequalities that are allowed to use negative coefficients for the same

subset of variables are guaranteed to be considered in the relaxation.

To do so, let us define for any subset J ⊆ [n] the sets

RJk = Rk ∩ {z ∈ Rn : zj = 0,∀j /∈ J : j > k}

P Jk = Pk ∩ {z ∈ Rn : zj = 0,∀j /∈ J : j > k},

that is, the sets Rk and Pk when we restrict ourselves only to variables in J . We now want to consider what

happens when the relaxations RJk are exact.

8

Theorem 7. Suppose, for a given subset J ⊆ [n], we have that

min


n∑

j=k+1

αjzj : z ∈ RJk

 = min


n∑

j=k+1

αjzj : z ∈ P Jk

 , ∀α ∈ Rn.

Take (y∗, z∗) ∈ Qϕ. Then γy∗ +
∑
j∈[n] αjz

∗
j ≥ β, for all (γ, α, β) ∈ C such that {j ∈ [n] : αj < 0} ⊆ J .

Proof. Choose (γ, α, β) ∈ C such that {j ∈ [n] : αj < 0} ⊆ J . Observe that, in this case, the argument of

φ(k, α) will be in RJk since for all j with αj ≥ 0 we can just set zj = 0 and either improve or not change

the value of φ(k, α). Similarly, the argument of ϕ(k, α) will be in P Jk . Therefore, we have that φ(k, α) =

ϕ(k, α) for all 0 ≤ k ≤ ν, and so (γ, α, β) ∈ Cϕ. As a consequence, since (y∗, z∗) ∈ Qϕ, we have that

γy∗ +
∑
j∈[n] αjz

∗
j ≥ β, as desired.

While this theorem may seem strange at first, what it is saying is that as long as we can describe completely

the convex hull of the knapsack polytope restricted to a set J , then we are guaranteed that all the points in Qϕ
satisfy all the inequalities where the only negative coefficients allowed are in J . For instance, when we are in

the cardinality constrained case, we have that J = [n] and so this says that all inequalities of conv(Q) must be

satisfied by Qϕ. As another special case, for instance, one can derive the following corollary.

Corollary 8. Suppose that

Rk ⊆

z ∈ [0, 1]n :

∑n
j=k+1bdajczj ≤

⌊
d
(
p−

∑k
j=1 aj

)⌋
,

∀d ∈
{

1
aj

: j ∈ [n]
}  .

Take (y∗, z∗) ∈ Qϕ. Then, for each (γ, α, β) ∈ C with the property that ai = aj for all αi, αj < 0, we have

γy∗ +
∑
j∈[n]

αjz
∗
j ≥ β.

In particular, if a1 = a2 = · · · = an then Qϕ = conv(Q).

Next we study the case where ϕ is guaranteed to approximate φ. More precisely, suppose there exists an

δ ∈ (0, 1) such that for every 0 ≤ k ≤ ν,

(�) max
{
w>z : z ∈ Pk

}
≥ (1− δ) max

{
w>z : z ∈ Rk

}
for all w ∈ Rn.

That is, we have that for each 0 ≤ k ≤ ν and α ∈ Rn,

(�′) (1− δ)ϕ(k, α) ≥ φ(k, α) ≥ ϕ(k, α).

(Recall φ(k, α) ≤ 0.) We now show that such approximation factor can be translated into the inequalities in the

following way. For any α ∈ Rn, let S−(α) :=
∑(

αj : 1 ≤ j ≤ n, αj < 0
)
. Then, the next lemma shows that

we are guaranteed that all inequalities for conv(Q) are not violated by much if we consider Qϕ.

Proposition 9. If (γ, α, β) ∈ C and R0, R1, . . . , Rν satisfy (�), then

(γ, α, β + δS−(α)) ∈ Cϕ.

9

Proof. Take (γ, α, β) ∈ C. By (�′), for each 0 ≤ k ≤ ν,

γhk+1 +
∑
j≤k

αj + ϕ(k, α) ≥ γhk+1 +
∑
j≤k

αj + φ(k, α) + δϕ(k, α) ≥ β + δϕ(k, α).

On the other hand,

δϕ(k, α) = δmin

∑
j>k

αjz
∗
j : z∗ ∈ Rk

 ≥ δS−(α),

so

γhk+1 +
∑
j≤k

αj + ϕ(k, α) ≥ β + δS−(α).

Since this is true for all 0 ≤ k ≤ ν, it follows that (γ, α, β + δS−(α)) ∈ Cϕ.

One application of Proposition 9, for instance, is to consider Bienstock’s approximate formulation for the

knapsack polytope. As shown in Bienstock [8], for every 0 ≤ k ≤ ν and δ > 0, there exists a polyhedron Rδk of

dimension O
(
δ−1n1+d1/δe

)
that is described by O

(
δ−1n2+d1/δe

)
constraints whose projection onto z satisfies

the desired property (�).

4 Facet-defining inequalities for conv(Q)

The results in the previous section allow us to study several different relaxations of conv(Q) by studying relax-

ations of the knapsack polytope.

In this section, we focus on developing new classes of facet-defining inequalities for conv(Q) that do not

arise from facet-defining inequalities for the knapsack set P0. By Theorem 1 and Proposition 2, such inequalities

must have the form y +
∑
j∈[n] αjzj ≥ β.

We begin this section by giving an overview of the known classes of facet-defining inequalities for conv(Q).

We then describe a property of facet-defining inequalities for conv(Q) that generalizes the results for the previ-

ously known facet-defining inequalities. Finally, we will introduce a new explicit class of facet-defining inequal-

ities that subsumes all the previously known classes.

The first proposed class of facet-defining inequalities for conv(Q) were the so-called strengthened star in-

equalities.

Theorem 10 ([14]). The strengthened star inequalities

y +

a∑
j=1

(htj − htj+1
)ztj ≥ ht1 , ∀ T = {t1, . . . , ta} ⊆ {1, . . . , ν} (14)

with t1 < . . . < ta and hta+1
:= hν+1 are valid for conv(Q). Moreover, (14) is facet-defining for conv(Q) if

and only if ht1 = h1.

10

As shown in [10, 1, 9], the strengthened star inequalities can be separated in polynomial time and are suffi-

cient to describe the convex hull of{
(y, z) ∈ R+ × {0, 1}n : y + hizi ≥ hi, ∀ i ∈ [n]

}
.

However, as one may expect, when a knapsack constraint is enforced (to obtain Q), the convex hull becomes

much more complex, so the facet-defining inequalities become more difficult to find.

In 2010, Luedtke et al. [14] found a general class of facet-defining inequalities for conv(Q). Subsequently,

Küçükyavuz [12] introduced a larger and subsuming class of facet-defining inequalities for conv(Q), called the

(T,ΠL) inequalities. Here, we only state the latter class.

Theorem 11 ([12]). Suppose that a1 = · · · = an = 1, p is a positive integer and m ∈ [p]. Suppose further that

(i) T := {t1, . . . , ta} ⊆ [m] where t1 < · · · < ta,

(ii) L ⊆ {m+ 2, . . . , n} is of size p−m and ΠL := (`1, . . . , `p−m) is a permutation of the elements of L such

that `j > m+ j, for j ∈ [p−m].

Set ta+1 := m+ 1. Let ∆1 := hm+1 − hm+2, and for 2 ≤ j ≤ p−m, define

∆j := max
{

∆j−1, hm+1 − hm+1+j −
∑(

∆i : `i > m+ j, i < j
)}
.

Then the (T,ΠL) inequality

y +

a∑
j=1

(htj − htj+1)ztj +

p−m∑
j=1

∆j(1− z`j) ≥ ht1 (15)

is valid for conv(Q). Furthermore, (15) is facet-defining inequality for conv(Q) if and only if ht1 = h1. �

Observe that the (T, ∅) inequalities are simply the strengthened star inequalities. A common aspect of The-

orems 10 and 11 (and the other class of facet-defining inequalities in Luedtke et al. [14]) is the condition on the

right-hand-side constant for the inequality to be facet-defining. The following result provides a generalization of

those conditions to any facet-defining inequality of conv(Q).

Proposition 12. If

y +
∑
j∈[n]

αjzj ≥ β (16)

is valid for conv(Q) then β ≤ h1 + φ(0, α). Moreover, if (16) is facet-defining for conv(Q), then β =

h1 + φ(0, α).

Proof. Take z∗ ∈ P0 so that
∑
j∈[n] αjz

∗
j = φ(0, α). As (h1, z

∗) ∈ Q we have

h1 + φ(0, α) = h1 +
∑
j∈[n]

αjz
∗
j ≥ β.

11

Suppose now that (16) is facet-defining. Since conv(Q) is full-dimensional and (16) is a facet-defining inequality

different from z1 ≤ 1, it follows that there is a point (y′, z′) ∈ Q on the facet defined by (16) such that z′1 = 0.

Then y′ = y′ + h1z
′
1 ≥ h1, and since z′ ∈ P0, it follows that

β = y′ +
∑
j∈[n]

αjz
′
j ≥ h1 + φ(0, α).

Hence, β = h1 + φ(0, α).

We note that for (14) we have φ(0, α) = 0 and for (15) we have φ(0, α) = −
p−m∑
i=1

∆i, so the above theorem

implies the previously stated results on the right-hand-side constants of the inequalities.

We now introduce a class of valid inequalities for conv(Q) subsuming all the preceding classes of facet-

defining inequalities. Let s0 := 0 and for each m ∈ [n], let sm :=
∑m
j=1 aj .

Theorem 13. Choose m ∈ {0, 1, . . . , ν} such that p − sm ≤ n − m − 1. Let s be an integer such that

p− sm ≤ s ≤ n−m− 1. For 1 ≤ j ≤ s, let m(j) := max{k : k ∈ [n], j ≥ sk − sm}. Suppose that

(V1) T := {t1, . . . , ta} ⊆ {1, . . . ,m} where t1 < · · · < ta,

(V2) L := {`1, . . . , `s} ⊆ {m+ 2, . . . , n} where `1, . . . , `s are pairwise distinct,

(V3) aj ≥ 1 for all j ∈ L.

Set ta+1 := m+ 1. Choose ∆ ∈ RL such that 0 ≤ ∆`1 ≤ ∆`2 ≤ · · · ≤ ∆`s and∑(
∆`i : `i > m(j), i ≤ j

)
−
∑(

∆`i : `i ≤ m(j), i > j
)
≥ hm+1 − hm(j)+1

for all 1 ≤ j ≤ s. Then

y +

a∑
j=1

(htj − htj+1
)ztj +

∑
i∈L

∆i(1− zi) ≥ ht1 (17)

is a valid inequality for conv(Q).

A proof is included in §4.2. Under certain conditions described below, (17) becomes a facet-defining in-

equality for conv(Q).

Theorem 14. Choose m ∈ {0, 1, . . . , ν} such that p − sm ≤ n − m − 1 and p − sm is an integer. For

1 ≤ j ≤ p− sm, let m(j) := max{k : k ∈ [n], j ≥ sk − sm}. Suppose that

(F1) T := {t1, . . . , ta} ⊆ {1, . . . ,m} where t1 < · · · < ta and ht1 = h1,

(F2) L ⊆ {m+ 2, . . . , n} is of size p− sm and (`1, . . . , `p−sm) is a permutation of the elements of L such that

`j > m(j), for all 1 ≤ j ≤ p− sm,

(F3) aj = 1 for all j ∈ L, and ai ≤ sm for all i ∈ [n]− L.

12

Set ta+1 := m+ 1. Let ∆`1 := hm+1 − hm(1)+1, and for 2 ≤ j ≤ p− sm, define

∆`j := max
{

∆`j−1
, hm+1 − hm(j)+1 −

∑(
∆`i : `i > m(j), i < j

)}
.

Then (17) is a facet-defining inequality for conv(Q).

A proof can be found in §4.3. The class above coincides with the (T,ΠL) inequalities in the case when

a1 = · · · = an = 1 and p is an integer.

Let us explain how this theorem implies that the (T,ΠL) inequalities (15) are facet-defining for conv(Q).

Observe that, in the context of Theorem 11, sj = j, for all 0 ≤ j ≤ n. Let s := p − m and note that

m(j) = m+ j, for all 1 ≤ j ≤ s. Furthermore, `j > m+ j = m(j) for all 1 ≤ j ≤ s. Hence, by Theorem 14,

the (T,ΠL) inequalities (15) are facet-defining for conv(Q).

Observe that Theorems 13 and 14 can also be applied to any scalar multiple of the knapsack constraint, and

this will potentially give us more facet-defining inequalities. That is, one can apply Theorem 14 to
∑
j∈[n] dajzj ≤

dp, for any arbitrary positive real number d. This is explained in the following example.

Example 1. Let a = (2, 1.5, 2.5, 1, 1, 1, 2, 1, 0.5, 0.5) and

h = (809, 405, 202, 100, 60, 40, 30, 25, 23, 20) for n = 10 and p = 9. Note that ν = 6. For m = 6,

T = {1, 3, 5} and L = ∅, the (strengthened star) inequality

y + (809− 202)z1 + (202− 60)z3 + (60− 30)z5 ≥ 809

is facet-defining for conv(Q).

Next set m = 3, T = {1, 2, 3} and L = {`1 = 5, `2 = 6, `3 = 8}. Then m(1) = 4,m(2) = 5,m(3) = 6 and

the hypotheses of Theorem 14 are satisfied. Thus the inequality

y+(809− 405)z1 + (405− 202)z2 + (202− 100)z3

+ 40(1− z5) + 60(1− z6) + 70(1− z8) ≥ 809

is facet-defining for conv(Q).

Furthermore, one can replace a and p with the equivalent choice of 2a and 2p. In this case, set m = 5,

T = {1, 2, 5} and L = {`1 = 9, `2 = 10}. Then m(1) = 5,m(2) = 6 and the hypotheses of Theorem 14 are

once again satisfied. Thus the inequality

y + (809− 405)z1 + (405− 60)z2 + (60− 40)z5 + 0(1− z9) + 10(1− z10) ≥ 809

is facet-defining for conv(Q).

4.1 Separation of a subset of proposed facet-defining inequalities

Separating over all proposed facet-defining inequalities (17) seems to be hard, the bottleneck being minimizing

for a fixed z∗ the expression
∑
i∈L ∆i(1− z∗i) over all possible L’s, as the choice of L affects the values of ∆.

To circumvent this difficulty, Küçükyavuz [12] retricted the choices for L so as to control the values of ∆. With

not much more work, we can obtain a similar result for our general setting:

13

Proposition 15. There is an exact separation algorithm with running time O(p4) that separates over the pro-

posed facet-defining inequalities (17) for which there is a partition of L into parts F,G where the following

hold:

(1) m(1) < m(2) < · · · < m(p− sm),

(2) F = {m(1) + 1, . . . ,m(r) + 1} for some 1 ≤ r ≤ p− sm,

(3) G ⊆ {m(p− sm) + 1,m(p− sm) + 2, . . . , n}.

The proof of this result is almost identical to that in [12], so we refrain from including it.

4.2 Proof of Theorem 13

We prove Theorem 13 using the following two claims. Let R := [n]− L and define α ∈ Rn as follows:

αi :=


htj − htj+1

, if i = tj for some 1 ≤ j ≤ a;

0, if i ∈ R− T ;

−∆i, if i ∈ L.

Claim 1. We have

φ(k, α) ≥

{ ∑
j∈L αj , if 0 ≤ k ≤ m;∑
(α`i : i > sk − sm), if m+ 1 ≤ k ≤ ν.

Proof of Claim. Since αi < 0 only for indices i ∈ L, it follows immediately that, for 0 ≤ k ≤ m,

φ(k, α) ≥
∑
j∈L

αj .

Next choose m+ 1 ≤ k ≤ ν and let z ∈ Pk. Then

|{j ∈ L : j > k, zj = 1}| =
∑

j∈L,j>k

zj ≤
∑

j∈L,j>k

ajzj by (V 3)

≤ p−
∑
j≤k

aj

= p− sk

≤ |L| − sk + sm

= |{`i ∈ L : i > sk − sm}|.

Therefore, as αi ≥ 0 for all i ∈ [n]− L and 0 ≥ α`1 ≥ · · · ≥ α`p−sm , it follows∑
j>k

αjzj ≥
∑

j∈L,j>k

αjzj ≥
∑(

α`i : i > sk − sm
)
.

Since this is true for all z ∈ Pk, we must have

φ(k, α) ≥
∑(

α`i : i > sk − sm
)
,

as claimed. ♦

14

Claim 2.
(
1, α, ht1 +

∑
i∈L αi

)
∈ C.

Proof of Claim. Let 0 ≤ k ≤ ν. If 0 ≤ k ≤ m, choose j ∈ {0, 1, . . . , a} so that tj < k + 1 ≤ tj+1, where

t0 := 0. In this case, φ(k, α) ≥
∑
i∈L αi by Claim 1, so

hk+1 +

k∑
i=1

αi + φ(k, α) ≥ htj+1
+

j∑
i=1

(hti − hti+1
) +

∑
i∈L

αi

= ht1 +
∑
i∈L

αi.

Otherwise we have m+ 1 ≤ k ≤ ν. Then∑
i∈R,i≤k

αi =
∑
i∈T

αi = ht1 − hm+1.

By Claim 1,

φ(k, α) ≥
∑(

α`i : i > sk − sm
)
.

Let j := sk − sm. Note that m(j) = max{r : j ≥ sr − sm} = k as ai > 0 for all i ∈ [n]. Then

hk+1 +

k∑
i=1

αi + φ(k, α)

= hk+1 +
∑

i∈R,i≤k

αi +
∑

i∈L,i≤k

αi + φ(k, α)

≥ hk+1 + ht1 − hm+1 +
∑(

α`i : `i ≤ k
)

+
∑(

α`i : i > j
)

= ht1 + hk+1 − hm+1 +
∑
i∈L

αi −
∑(

α`i : `i > k, i ≤ j
)

+
∑(

α`i : `i ≤ k, i > j
)

= ht1 + hk+1 − hm+1 +
∑
i∈L

αi +
∑(

∆`i : `i > k, i ≤ j
)
−
∑(

∆`i : `i ≤ k, i > j
)

≥ ht1 + hk+1 − hm+1 +
∑
i∈L

αi + hm+1 − hk+1

= ht1 +
∑
i∈L

αi.

As a result,
(
1, α, ht1 +

∑
i∈L αi

)
∈ C, proving Claim 2. ♦

Observe that Claim 2 implies that (17) is a valid inequality for conv(Q), as (17) is equivalent to

y +
∑
j∈[n]

αjzj ≥ ht1 +
∑
i∈L

αi. (18)

15

4.3 Proof of Theorem 14

As in the proof of Theorem 13, let R := [n]− L and define α ∈ Rn as follows:

αi :=


htj − htj+1

, if i = tj for some 1 ≤ j ≤ a;

0, if i ∈ R− T ;

−∆i, if i ∈ L.

We first show that (17) is a valid inequality for conv(Q). Observe first that (V1)-(V3) are satisfied. It is clear by

definition that 0 ≤ ∆`1 ≤ · · · ≤ ∆`s . Moreover, for each 1 ≤ j ≤ p− sm,

hm+1 − hm(j)+1 ≤ ∆`j +
∑(

∆`i : `i > m(j), i < j
)

=
∑(

∆`i : `i > m(j), i ≤ j
)

(†)

=
∑(

∆`i : `i > m(j), i ≤ j
)
−
∑(

∆`i : `i ≤ m(j), i > j
)
. (‡)

Above, (†) holds since `j > m(j), and (‡) holds since `i > m(i) ≥ m(j) for all i > j. As a result, Theorem 13

applies and implies that (17) is indeed a valid inequality for conv(Q).

We will next find n+ 1 affinely independent points in Q that satisfy (17), or equivalently (18), at equality:

1. For each k := tj ∈ T , let yk := hk and define zk ∈ {0, 1}n as follows:

zki :=

{
1, if i < k or i ∈ L;

0, otherwise.

We have (yk, zk) ∈ Q, because zki = 1 for i = 1, . . . , k − 1, and

n∑
i=1

aiz
k
i =

∑
i<k

aiz
k
i +

∑
i∈L

zki = sk−1 + |L| = sk−1 + p− sm ≤ p.

Moreover, (yk, zk) satisfies (18) at equality:

yk +

a∑
i=1

(hti − hti+1
)zkti +

∑
i∈L

αiz
k
i = htj +

j−1∑
i=1

(hti − hti+1
) +

∑
i∈L

αi

= htj + ht1 − htj +
∑
i∈L

αi

= ht1 +
∑
i∈L

αi.

2. For each k := `j ∈ L, let f(j) := min{f ∈ [j] : ∆`j = ∆`f }. By definition we must have, for each

`j ∈ L,

∆`j = ∆`f(j) = hm+1 − hm(f(j))+1 −
∑(

∆`i : `i > m(f(j)), i < f(j)
)
,

and so

α`j +
∑(

α`i : `i > m(f(j)), i < f(j)
)

= hm(f(j))+1 − hm+1. (?)

16

Now let yk := hm(f(j))+1 and define zk ∈ {0, 1}n as follows:

zkt :=


0, if t = `i > m(f(j)) and i < f(j),

or t = `j ,

or t ∈ R and t > m(f(j));

1, otherwise.

Observe that `j > m(j) ≥ m(f(j)). We have (yk, zk) ∈ Q, because zki = 1 for i = 1, . . . ,m(f(j)), and

n∑
i=1

aiz
k
i =

∑
i≤m(f(j))

ai + |{`i ∈ L : `i > m(f(j)), i ≥ f(j), i 6= j}|

= sm(f(j)) + |{`i ∈ L : `i > m(f(j)), i ≥ f(j)}| − 1

= sm(f(j)) + |{`i ∈ L : i ≥ f(j)}| − 1 (??)

= sm(f(j)) + |L| − f(j)

= sm(f(j)) + p− sm − f(j)

≤ p by the definition of m.

Above, (??) holds because i ≥ f(j) implies that `i > m(i) ≥ m(f(j)). Moreover, (yk, zk) satisfies (18)

at equality:

yk +

a∑
i=1

(hti − hti+1)zkti +
∑
i∈L

αiz
k
i

= hm(f(j))+1 + ht1 − hm+1 +
∑
i∈L

αi − α`j −
∑(

α`i : `i > m(f(j)), i < f(j)
)

= hm(f(j))+1 + ht1 − hm+1 +
∑
i∈L

αi + hm+1 − hm(f(j))+1 by (?)

= ht1 +
∑
i∈L

αi.

3. For all k ∈ R− T , let yk := h1 and define zk ∈ {0, 1}n as follows:

zki :=

{
0, if i ∈ R− {k};
1, otherwise.

Notice (yk, zk) ∈ Q, because

n∑
i=1

aiz
k
i = ak + |L| = ak + p− sm ≤ p

by (F3). Moreover,

yk +

a∑
i=1

(hti − hti+1
)zkti +

∑
i∈L

αiz
k
i = h1 +

∑
i∈L

αi = ht1 +
∑
i∈L

αi.

17

4. Lastly, let y0 := hm+1 and define z0 ∈ {0, 1}n as follows:

z0i :=

{
1, if i < m+ 1 or i ∈ L;

0, otherwise.

Then (y0, z0) ∈ Q because z0i = 1 for all i < m+ 1, and

n∑
i=1

aiz
k
i =

∑
i<m+1

aiz
k
i +

∑
i∈L

zki = sm + |L| = sm + p− sm = p.

Moreover,

y0 +

a∑
i=1

(hti − hti+1)z0ti +
∑
i∈L

αiz
0
i = hm+1 +

a∑
i=1

(hti − hti+1) +
∑
i∈L

αi

= hm+1 + ht1 − hm+1 +
∑
i∈L

αi

= ht1 +
∑
i∈L

αi.

Hence, the face defined by (17) contains (y0, z0), (y1, z1), . . . , (yn, zn), which are, by a routine argument,

affinely independent points in Q. As a result, (17) is a facet-defining inequality for conv(Q).

5 A compact extended formulation for (CMIP)

So far we have only focused on the single-constraint chance-constrained problem. We now briefly turn to the

general problem. In this section, we propose an extended formulation for the set given by

y = Bx (19)

x ∈ X (20)

y + ξjzj ≥ ξj , ∀ j ∈ [n] (21)
n∑
j=1

ajzj ≤ p (22)

z ∈ {0, 1}n. (23)

Let Qκ := Dκ and hj,κ := ξjκ for all j ∈ [n] and κ ∈ [d]. Let (1κ, 2κ, . . . , nκ) be a permutation of [n] such that

h1κ,κ ≥ h2κ,κ ≥ . . . ≥ hnκ,κ, for all κ ∈ [d]. Let νκ := max{t :
∑
j≤t ajκ ≤ p}, for all κ ∈ [d].

18

Theorem 16. The formulation

νκ+1∑
j=1

λjκ,κ = 1, ∀ κ ∈[d] (24)

yκ −
νκ+1∑
j=1

hjκ,κλjκ,κ ≥ 0, ∀ κ ∈[d] (25)

zi −
νκ+1∑
j=1

ωijκ,κ = 0, ∀ κ ∈[d], i ∈ [n] (26)

(
p−

j−1∑
i=1

aiκ

)
λjκ,κ −

n∑
i=j

aiκω
iκ
jκ,κ
≥ 0, ∀ κ ∈ [d], j ∈ [νκ + 1] (27)

λj,κ ≥ ωij,κ ≥ 0, ∀ κ ∈[d], j ∈ [νκ + 1], i ∈ [n] (28)

ωiκjκ,κ ≥ λjκ,κ, ∀ κ ∈[d], j ∈ [νκ + 1], i ∈ [j − 1] (29)

λj,κ ≥ 0, ∀ κ ∈[d], j ∈ [νκ + 1] (30)
n∑
j=1

ajzj ≤ p (31)

y = Bx (32)

x ∈ X (33)

λ ∈ {0, 1}d+
∑d
κ=1 νκ (34)

is an extended formulation for the set given by (19)-(23). The continuous relaxation of the extended formulation

defined by (24)-(33) is at least as strong as the continuous relaxation of the formulation defined by (19)-(22).

We would like to point out that the extended formulation given above is almost the same as the one given

in [12], Theorem 8 except that our formulation replaces their (extended knapsack cover) constraint ([12]:32) by

constraint (27). It is not difficult to see that neither of the constraints ([12]:32) and (27) dominate the other.

However, the proof of Theorem 16 is precisely the same as the proof of that theorem, so we omit it.

6 Computational experiments

One of the advantages of our results is that they allow us to establish benchmarks to identify which are good

and useful relaxations to use in the context of chance constrained problems. To illustrate this, we carried out

computational experiments to establish how well does one relaxation perform compared with another.

The setup that we chose to set the benchmarks is the same one proposed in [12], that is, the probabilistic

lot-sizing problem (originally described in [7]). In this setting, we have that the right-hand-sides ξjκ represent

cumulative demands in time period κ = 1, . . . , d under scenario j = 1, . . . , n and the probabilistic constraint

is used to ensure that the probability of shortage of products (or equivalently of not being able to fully satisfy

demands) is relatively low.

19

We generated random instances by considering that all the data is integer and is generated randomly and

independently of each other according to the following uniform distributions below:

• the demands in any given time period and in any given scenario are Uniform(1,100),

• the variable production costs are Uniform(1,10),

• the setup costs are Uniform(1,1000)

• the holding costs are Uniform(1,5)

• the coeefficients aj of the knapsack constraint of Q are Uniform(1,100)

(the interpretation of these coefficients aj is that they are a rescaling of the probabilities πj , which we

consider as aj
n∑
l=1

al

).

We generated 20 such random instances for each given combination of values of n (number of scenarios), d

(number of time periods) and ε ∈ [0, 1] (value used to determine the right-hand-side p in the knapsack constraint

of Q).

Value p is determined as follows: given a set of knapsack coefficients {aj}nj=1 we let p =

⌊
ε
(n∑
j=1

aj
)⌋

.

That way the knapsack constraint
n∑
j=1

ajzj ≤ p is just a rescaling of the constraint
n∑
j=1

πjzj ≤ ε, and we deal

only with integer parameters.

The algorithm that was used to compare the relaxations is described in Algorithm 1 below. In it, some

computational choices are implicitly described, such as a minimum violation tolerance in order to declare a cut

as violated, the cut normalization and a maximum number of iterations that we allow for the cuts to not improve

the bound (to avoid potential issues like cycling).

The separation LP (35) presented in Algorithm 1 is used to separate all inequalities that can be generated

using Proposition 6, and that it is used to try to separate the current LP solution from Dκ for a certain κ ∈ [d].

We also note that the algorithm depends on input parameter K which defines from which of the sets Dκ will

the algorithm try to separate the current solution. Besides the choice of K, the algorithm implicitly depends

on the choice of knapsack relaxation Rk chosen (in the definition of ECϕ). Therefore we use Algorithm 1 to

benchmark different choices of Rk as follows: after completion of Algorithm 1 we compute the final lower

bound obtained (and thus the gap) for a particular choice of Rk and use this value to evaluate how good this

choice of relaxation is. We explicitly choose to ignore the time, because we do not claim that this is the approach

that should be used if you are trying to solve such instances faster. Instead, what our approach serves is to

try to identify what is the potential of each choice of relaxation in terms of lower bound improvement. With

such results in hand, one can be guided as to where to look for better cuts, knowing that the reason certain

classes of cuts are or are not successful is because of the relaxation they are derived from and not because of the

success/failure of some separation heuristic.

20

Algorithm 1: Benchmarking algorithm
Data: Formulation (CMIP) for our problem and a subset K ⊆ [d]

repeat
Solve the LP relaxation of (CMIP) with any additional cuts that have been found so far.

Let (x∗, y∗, z∗) be the optimal solution to this relaxation.

for every κ ∈ K do
Solve the following separation LP:

min γy∗κ +
∑
j∈[n]

αjz
∗
j − β

s.t. (γ, α, β) ∈ projγ,α,βECϕ
||(γ, α, β)||∞ ≤ 1.

(35)

if The optimal value is < −0.001 then
(γ, α, β) defines a cut γy∗κ +

∑
j∈[n]

αjz
∗
j ≥ β separating (x∗, y∗, z∗) from Dκ as defined in

(1) (and thus from the set of feasible solutions to (CMIP)).

Add such cut to the LP relaxation of (CMIP).
end

end

if The LP bound did not improve in the last 10 iterations then
Stop. Finish cut generation.

end

until No cuts are found;

We report the gap closed by the end of the algorithm, calculated as follows: given the optimal (or best known)

integer solution value zIP for a given problem, the value zLP of the relaxation of (CMIP) without any cuts and

the value zfinal obtained at completion of Algorithm 1, the gap closed is defined as zfinal−zLP
zIP−zLP .

We benchmarked different relaxations using the same separation procedures. The results are summarized in

Table 1. All computations are done on an Intel Core 2 Duo with 2 CPUs of 3.06GHz with 16 GB RAM, using

CPLEX 12.4. Below we describe what the columns of Table 1 represent.

Choice of K
Typically, when trying to add cuts to strengthen an LP relaxation, the natural choice for K is K = [d].

However, for our experiments, we also chose to generate cuts from a single relaxation Dκ, that is, for a set K
such that |K| = 1. The reasoning for that is to try to isolate the effect of cuts for Dκ for a single κ from the

combined effect that several cuts can have in closing the gap (much like in the general MIP case where cuts

generated from different constraints may have a combined effect that may mitigate or boost the advantages that

each cut has individually).

We thus tried four different choices for K: K = {1}, K = {d/2}, K = {d}, and K = [d]. These are the

values represented in the first column of Table 1 by K = 1, d/2, d and All, respectively.

Columns 2-4

21

The next three columns in Table 1 represent the data parameters of the instance as described above.

Choice of knapsack relaxation

The next six columns represent the average gaps closed over the 20 instances generated obtained by each

choice of relaxation. Column R0 represents the results using only CPLEX generated cuts (i.e. not using Algo-

rithm 1). Columns R1-R5 use only cuts generated using (35) (no CPLEX cuts) for different choices of polyhedral

relaxations Rk of the knapsack.

Column R1 presents results defining Rk as the LP relaxation of the knapsack Pk, R2 uses the relaxation

proposed in [12] (obtained by using a single extended cover inequality) and R3 combines both relaxations. Note

that, even though in principle the results in R3 should dominate R1 and R2, this does not always happen since

we abort the cut generation process if there has not been a bound improvement for some prespecified number of

iterations.

One can argue that these bounds will probably not be too good since the knapsack relaxations used are not

too strong. Therefore, we used strengthened formulations for the knapsack relaxation Rk in bounds R4 and R5.

The bound presented in column R4 uses the LP relaxation of the knapsack combined with the Chvátal-Gomory

cuts of the form
n∑
j=1

bajal czj ≤ b
p
al
c, for all l = 1, . . . , n.

Column R5 represents the bound obtained by using the LP relaxation of the knapsack strengthened with

cover inequalities. The way we obtained cover inequalities for a relaxation Rk was by using CPLEX’s cut

generator in the following manner. We set up a completely separate Integer Program whose feasible region is

purely

{
z ∈ {0, 1}n :

n∑
j=1

ajzj ≤ p ; z1 = . . . = zk = 1

}
. We then repeat the following procedure 100 times:

1. Generate random objective function coefficients for each zj variable with the coefficients being drawn

from Uniform(1,100).

2. Turn off all CPLEX preprocessing, heuristics and also all cuts except covers and cliques, which are left on

in aggressive mode.

3. Let CPLEX solve only the root node of the Branch-and-cut tree and collect all cuts generated by CPLEX.

4. Add all these cuts to a cut pool (discarding repeated cuts) keeping up to a maximum of 500 cuts in this

pool.

The relaxation Rk will then consist of the original LP relaxation of the knapsack strengthened with any cut in

the cut pool after this procedure.

We chose to generate cover cuts in this way to make use of CPLEX’s existing heuristics for separating such

cuts, which are likely much better than anything we could implement for the purpose of this test. Once more we

point out that this is a particularly very time consuming process and is not recommended for efficiency.

Finally, column SS represents the gap closed by the strengthened star inequalities [14] (note that the results

in columns R0, . . . , R5 did not include any strengthened star inequalities).

22

K d n ε (%) Gap closed(%)
R0 R1 R2 R3 R4 R5 SS

1 10 100 5 48.34 18.15 18.15 18.15 18.15 18.15 4.91
1 10 100 10 46.39 14.29 14.30 14.29 14.29 14.30 5.13
1 10 100 20 41.44 11.78 11.78 11.78 11.78 11.82 4.97
d/2 10 100 5 48.34 20.41 20.43 20.41 20.32 20.41 14.78
d/2 10 100 10 46.39 18.04 18.03 18.04 18.04 18.04 14.34
d/2 10 100 20 41.44 21.48 21.50 21.48 21.47 21.51 20.72
d 10 100 5 48.34 33.09 33.42 33.44 33.44 33.33 30.27
d 10 100 10 46.39 38.06 38.15 38.05 38.05 38.05 37.57
d 10 100 20 41.44 34.17 34.34 34.17 34.17 34.14 34.24

All 10 100 5 48.34 59.39 59.26 59.39 59.39 61.62 62.42
All 10 100 10 46.39 66.66 66.34 66.70 66.72 70.65 69.18
All 10 100 20 41.44 73.00 72.65 72.95 72.95 78.89 74.19
1 20 100 5 21.59 7.09 7.09 7.09 6.79 7.10 2.61
1 20 100 10 16.18 6.96 6.96 6.96 6.96 6.96 2.31
1 20 100 20 15.90 5.75 5.76 5.75 5.75 5.80 1.76
d/2 20 100 5 21.59 11.86 11.94 11.86 11.86 11.86 10.55
d/2 20 100 10 16.18 13.46 13.49 13.46 13.46 13.45 12.45
d/2 20 100 20 15.90 15.56 15.62 15.56 15.56 15.59 14.97
d 20 100 5 21.59 23.09 23.12 23.09 23.08 23.11 22.70
d 20 100 10 16.18 22.91 22.92 22.90 22.89 22.91 22.27
d 20 100 20 15.90 23.27 23.30 23.27 23.27 23.30 22.76

All 20 100 5 21.59 61.64 61.46 61.61 61.66 64.91 65.80
All 20 100 10 16.18 71.06 70.78 71.05 71.03 76.61 74.09
All 20 100 20 15.90 77.22 76.85 77.13 77.20 83.29 78.79

Table 1: Benchmarks obtained from different relaxations

From the experiments, we can see that, when using a single choice of Dκ (i.e. |K| = 1), the choice of

relaxation Rk has very little impact in the final bound. Moreover, one can see that the choice of κ matters, as

choosing κ = d has much more impact in the bound than choosing κ = 1. This makes sense, since the constraint

for κ = d considers all cumulative demands from the first until the last period, so strengthening Dκ potentially

impacts previous periods implicitly as well. On the other extreme, for κ = 1, the only period involved in Dκ is

the first one and so strengthening it will not affect any other future periods.

Moreover, we can observe a significant gain in bound by use of any of the relaxations when K = [d]. How-

ever, no significant advantage comes from using any of the relaxations R1, R3 or R4 instead of R2 as proposed

in [12]. Thus, at least for the problem and instances in consideration, the best approach would probably be to

stick to the inequalities proposed in [12]. However, one can note that using relaxation R5 allows a significant

additional gap to be closed (up to 6% extra). Though significant, it is not clear if such improvement is big enough

to justify a big effort to implement any cut separation using relaxation R5 more efficiently for practical purposes.

However, we note that in some problems, closing 6% extra gap may be the difference to allow the solution of a

23

problem in reasonable time. In any case, if this extra gap closed is indeed crucial, then our results point to where

to look for new cuts next.

The comparison with the strengthened star inequalities is also very interesting. When looking at the results

for |K| = 1, we see that if we just focus on κ = 1, compared to the strengthened stars, the inequalities that can

be derived from the results in this paper close a lot more gap. However, when one considers κ = d/2, or κ = d,

the impact of the extra effort is quite diminished. In fact, considering K = [d], one sees that the impact of the

extra inequalities is much smaller (sometimes even worse than using just strengthened stars).

These results show the usefulness of our results in that they allow us to set the appropriate benchmarks and

point to a definitive answer in terms of which direction to pursue to find useful inequalities. One comment

that is worth making is that it is not contradictory that the strengthened star inequalities close more gaps than

the inequalities proposed using relaxations R1, . . . , R5 since the strengthened star inequalities are derived using

integrality of the variables directly, whereas the framework proposed uses linear relaxations of the knapsack (so

no integrality is directly used).

7 Conclusion

In this paper, we studied several different properties of the mixing set with a knapsack constraint and identified

the key difficulty in describing its convex hull, namely that one must be able to describe the convex hull of the

knapsack polytope. Since that problem by itself is hard, we were able to devise a theory that allows one to

use any polyhedral relaxation of the knapsack polytope and translate that knowledge into a similar polyhedral

knowledge about the desired set. We derived extended formulations for both the set of points defined by this

relaxation and the cuts obtained by them. Moreover, these results generalize the results obtained in two previous

papers [12, 14] dealing with the same set and we also were able to generalize a particular class of facet-defining

inequalities for such set.

Finally, our computational experiments show how these theoretical results can be used to set benchmarks for

identifying useful relaxations for particular chance-constrained programs.

References

[1] Atamtürk, A., Nemhauser, G.L., Savelsbergh, M.W.P.: The mixed vertex packing problem. Math. Program.

89, 35-53 (2000)

[2] Balas, E.: Disjunctive programming: properties of the convex hull of feasible points. Discrete Appl. Math.

89, 1-44 (1998)

[3] Balas, E.: Disjunctive programming and a hierarchy of relaxations for discrete optimization problems.

SIAM J. Algebraic Discrete Methods 6, 466-486 (1985)

[4] Balas, E.: Facets of the knapsack polytope. Math. Program. 8, 146-164 (1975)

24

[5] Balas, E., Zemel, E.: Facets of the knapsack polytope from minimal covers. SIAM J. Appl. Math. 34,

119-148 (1978)

[6] Barrera, J., Homem-de-Mello, T., Moreno, E., Pagnoncelli, B.K., Canessa, G.: Chance-constrained prob-

lems and rare events: an importance sampling approach. Manuscript available at http://www.optimization-

online.org/DB HTML/2014/02/4250.html

[7] Beraldi, P., Ruszczyński, A.: A branch and bound method for stochastic integer programs under probabilis-

tic constraints. Optim. Methods Softw. 17, 359-382 (2002)

[8] Bienstock, D.: Approximate formulations for 0-1 knapsack sets. Oper. Res. Lett. 36, 317-320 (2008)

[9] Guan, Y., Ahmed, S., Nemhauser, G.L.: Sequential pairing of mixed integer inequalities. Discrete Optim.

4, 21-39 (2007)

[10] Günlük, O., Pochet, Y.: Mixing mixed-integer inequalities. Math. Program. 90, 429-457 (2001)

[11] Hammer, P.L., Johnson, E.L., Peled, U.N.: Facets of regular 0-1 polytopes. Math. Program. 8, 179-206

(1975)

[12] Küçükyavuz, S.: On mixing sets arising in chance-constrained programming. Math. Program. 132(1), 31-

56 (2012)

[13] Luedtke, J.: A branch-and-cut decomposition algorithm for solving chance-constrained mathematical pro-

grams with finite support. Math. Program. 146, 219-244 (2014)

[14] Luedtke, J., Ahmed, S., Nemhauser, G.: An integer programming approach for linear programs with prob-

abilistic constraints. Math. Program. 122(2), 247-272 (2010)

[15] Ruszczyński, A.: Probabilistic programming with discrete distributions and precedence constrained knap-

sack polyhedra. Math. Program. 93, 195-215 (2002)

[16] Sen, S.: Relaxations for probabilistically constrained programs with discrete random variables. Oper. Res.

Lett. 11, 81-86 (1992)

[17] Wolsey, L.A.: Faces for linear inequality in 0-1 variables. Math. Program. 8, 165-178 (1975)

25

