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Abstract

We consider the following two deterministic inventory epization problems over a finite planning horizon
T with non-stationary demands.

e Submodular Joint Replenishment Problefrhis involves multiple item types and a single retailer who
faces demands. In each time step, any subset of item-typebecardered incurring a joint ordering
cost which is submodular. Moreover, items can be held inntoy while incurring a holding cost. The
objective is find a sequence of orders that satisfies all ddmand minimizes the total ordering and
holding costs.

e Inventory Routing ProblenThis involves a single depot that stocks items, and multiglailer locations
facing demands. In each time step, any subset of locationbeaisited using a vehicle originating from
the depot. There is also cost incurred for holding items wtratailer. The objective here is to satisfy all
demands while minimizing the sum of routing and holding sost

We present a unified approach that yie@d{lolgoﬁ)gT -factor approximation algorithms for both problems

when the holding costs are polynomial functions. A spe@akds the classic linear holding cost model, wherein
this is the first sub-logarithmic approximation ratio fotheir problem.

Key words: Inventory Management, Approximation Algorgh®ubmodular Function, Joint Replenishment
Problem, Inventory Routing Problem

1 Introduction

Deterministic inventory theory provides streamlined wptiation models that attempt to capture tradeoffs in man-
aging the flow of goods through a supply chain. We consider d¢lassical models in deterministic inventory
theory: theJoint Replenishment ProblefdRP) and thénventory Routing ProbleriRP). These inventory models
have been studied extensively in the literature (see,[@lg[R1]) and recently there has been significant progress
on many variants of these models (see, e@gl, [R2], [B4], [LQ], [[LT]). In this paper, we present a unified approach
that yields approximation algorithms for both models wigngralized cost structure — the JRP with submodular
setup cost and the IRP with arbitrary embedding metric.

arxiv:1504.06560v1 [cs.DS] 24 Apr 2015

The JRP with deterministic and non-stationary demand isnddmental yet notoriously difficult problem in in-
ventory management. In these models, there are multipte tiypes, and we need to coordinate a sequence of
(joint) orders to satisfy the demands for different itemegoefore their respective due dates. Ordering inventory
in a time period results in setup costs (or fixed orderingg)psind holding inventory before it is due results in
holding costs. The objective is to find a feasible orderinticgdo satisfy every demand point on time over a
finite planning horizon so as to minimize the sum of setup andihg costs. The JRP is a natural extension of the
classical economic lot-sizing model that considers thaxaittrade-off between setup costs and holding costs for
a single item type (se@8]). With multiple item types, the JRP adds the possibilitsafing costs via coordinated
replenishment, a common phenomenon in supply chain mareagem
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Most of the literature on deterministic JRP is on taditive joint setup cost structure. Under this structure,
there is a one-time setup cost if any item type is ordered tlaae is an individual item setup cost for each item
type ordered; the joint setup cost for this particular oridesimply the sum of the one-time setup cost and these
individual item setup costs. The additive joint setup cdsicsure loses significant amount of modeling power
and flexiblity (see@3], [L3], [29], [LQ]). In this paper, we adopt the joint setup cost structureihiced recently

in [[LJ] that satisfies two natural properties knownnasnotonicityand submodularity The monotonity property
means that the joint setup cost increases with the set oftitpas ordered. The submodularity property captures
economies of scale in ordering more item types, i.e., thayimalrcost of adding any specific item type to a given
order decreases in the set of item types included.

The IRP is also a classical problem in inventory managenientcaptures the trade-off between the holding costs
for inventory and the routing costs for replenishing theemory at various locations in a supply chain (see, e.g.,
(@1, [, [[4], [[L7]). The problem involves multiple item types that are statkea single depot, that must be
shipped to meet the demand for these item types arising dipheuletailers specified over the course of a planning
horizon. Similar to the JRP, the costs of holding a unit okmwory at each retailer are specified to compute the
inventory holding costs. Different than the JRP, we considgmsportation (or vehicle routing) costs in some metric
defined by the depot and retailers in the IRP, instead of g@iip costs considered in the JRP.

1.1 Main Results and Contributions

We present a unified approach that yie«t’ds(lo{goﬁng)—approximation algorithms for both the JRP with submod-

ular setup costs and the IRP with any embedding metric, winehaolding costs are polynomial functions (which
subsumes conventional linear costs as a special case).isTthis first sub-logarithmic approximation ratio for
either problem under these cost structures.

We remark that if the setup cost function in submodular-JRfme-dependent then the problem (even with zero
holding costs) becomes as hard to approximate as set f@eiThe same observation is true if the metric in IRP
is time-dependent. So our sub-logarithmic ratio approximnaalgorithm relies crucially on the uniformity of these
costs over time.

For the submodular JRP, Cheung et fljj [obtained constant-factor approximation algorithms ursdeeral spe-
cial submodular functions (i.e., tree, laminar and caiitiy)a In contrast, we consider general submodular func-
tions with special (polynomial) holding costs.

For the IRP, Fukunaga et alLl 7] considered a restricted class of “periodic policies” abthined a constant-factor
approximation algorithm. Whereas our result is for arlpytiaolicies and polynomial holding costs.

A straightforward modification of our algorithm for polyn@ahholding costs also yield® (log T')-approximation
algorithms for submodular JRP and IRP with arbitrary (mone) holding costs. The submodular JRP result
improves upon the approximation ratio Oflog(NT')) by [LQ]. The IRP result is incomparable to tii&log n)
approximation ratio mentioned ifLf], wheren is the number of retailers.

1.2 Our Approach

At a high-level, the algorithm for submodular JRP has thivahg steps. (The algorithm for IRP is very similar
— we in fact present an algorithm for a unified problem forrtiata) First, we solve a natural time-indexed LP
relaxation that was also used [i]. Then we construct a “shadow interval” for each demandtgbiat corresponds

to fractionally ordering half unit of the item. We also stieteach shadow interval appropriately (depending on
the degree of the holding cost function) so as to obtain aimaptrade-off between holding and setup costs: this

is what results in th& (lololgTT> approximation ratio. Next, we partition these stretchadrivals into multiple
g log

groups based on well-separated widths. Finally we plac@arate sequence of orders for each group, and argue

2



using submodularity of the setup cost function that thel ®etup cost of each group is bounded by the LP setup
cost. This step relies on thectional subadditivityproperty of submodular functions.

It turns out that we do not require the full strength of submadfunctions: the algorithm and analysis work even
for functions satisfying an approximate notion of fracebeubadditivity (see DefinitioR.J) as long as the natural
LP relaxation can be solved approximately. This allows uals® obtain an approximation algorithm for IRP
since the TSP cost function satisfies-approximate fractional subadditivity and there -a0(1) approximation
algorithm for its LP relaxation (see Sectifrior details).

We believe that some of our techniques may be useful in ahtailm constant factor approximation algorithm for
both problems in their full generality.

1.3 Literature review

As mentioned earlier, most of the existing literature oredeinistic JRP with non-stationary demand uses the
additive joint setup cost structure. Arkin et 4] fhowed that the additive JRP is NP-hard. Nonner and Svikidle
[B4] further showed that the additive JRP is in fact APX-hardhwibnlinear holding cost structure. There have
been several approximation algorithms for the additive (ge® [LQ] and the references therein). The state-of-the-
art approximation algorithms for the additive JRP are dui@8, [R3] and [], with approximation ratios 2, 1.80
and 1.791, respectively.

Due to the limited modeling power of the additive JRP, Cheengl. first studied the submodular JRP in
which the setup costs are submodular. They gav®@dng(NT))-approximation algorithm for the general sub-
modular JRP (wheré&V is number of items and’ is number of periods). They also analyzed three speciakcase
of submodular functions which are laminar, tree and calitjneases. They showed that the laminar case can be
solved optimally in polynomial time using dynamic programg) and obtained a 3-approximation for the tree
case and a 5-approximation for the cardinality case. Oukwontributes to the literature by giving approximation
algorithms for the general submodular JRP with specialihgldost structures.

The IRP has also been studied extensively in the literasge[], [L2], [[L4], [[L]] for an overview of this problem).
The problem can be cast a mathematical program (see,[#)gang solution approaches typically involve heuris-
tics that trade-off between holding and transportatiortsc¢see @, Bl, [Hl, [L3, [B, [H]). Closer to our work,
Fukunaga et al[l[{] gave constant factor approximation algorithms for the H8tricting to periodic schedules.
In contrast, our results do not require the schedule to bedgierut require polynomial holding costs.

1.4 Structure of this paper and some notations

We organize the remainder of the paper as follows. In SeBiare present a unified formulation for the submodu-
lar JRP and the IRP with arbitrary embedding metric, anestat main result. In Sectidj we propose a unified
approximation algorithm for both problems. In Sectfnve discuss how to solve the LP relaxation efficiently.
We conclude our paper in Sectifin

Throughout the paper, we use the notatjarj and [z| frequently, where/z| is defined as the largest integer
value which is smaller than or equaltpand|z] is defined as the smallest integer value which is greaterdghan
equal toz. Additionally, for any real numbers andy, we denoter™ = max{xz,0}, z V y = max{z,y}, and

x Ay = min{z,y}. The notation= reads “is defined as”.

2 A Unified Formulation for the JRP and the IRP

In this section, we formally describe a unified problem steget that includes two classical deterministic inven-
tory problems as special cases, i.e., the joint replenishpmblem (JRP) with submodular setup costs and the
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inventory routing problem (IRP) with arbitrary embeddingtnic. We also present a unified framework for this
problem, and state our main result.

2.1 Problem Statement

There ar@V elements (e.g., item types in the JRP or retailers in the tRa&t)are needed to serve external demands
over a finite planning horizon df' periods; these elements are denoted by the grount’set{1,..., N}, and

the time periods are denoted by the $et= {1,...,T'}. For each time period € 7 and each elemerite N,
there is a known demant}; > 0 units of that element. We uge to denote the set of all strictly positive demand
points (z,t) with d;; > 0. To satisfy these demands, an order may be placed in eaclpénw. Each demand
point (i,t) € D has to be served by an order containing elenmidrgfore or at time period, i.e., no backlogging

or lost-sales are allowed.

The inventory system incurs two types of cost — the joint ondecost and the holding cost.

e The joint ordering cost is a function of the elements thatelstrictly positive orders in any given period.
More specifically, for any time periodand a subset of elementsC N, the joint ordering cost of ordering
demand for elements ifi in periodt is a function ofS, which is denoted by (.5).

e Because the setup cost of ordering an element is indepeondéme number of units ordered, there is an
incentive to place large orders to meet the demand not jughécurrent time period, but for subsequent
time periods as well. This is balanced by a cost incurred liiing inventory over time periods. We usé,
to denote the holding cost incurred by ordering one unit eémtory in periods, and using it to meet the
demand for elemenitin periodt. We assume that, is non-negative and, for each demand pdint), is a
nonincreasing function of, i.e., holding inventory longer is always more costly. Théithe demand point
(i,t) is served by an order at time perisgthen the system incurs a holding costif, := d;;h,.

The goal is to coordinate a sequence of (joint) orders tefyadil the demand points on time so as to minimize the
sum of joint ordering and holding costs over tHigeriods.

The above unified problem statement encompasses two ebdsterministic inventory problems described below.

The submodular JRP. The JRP involves multiple item types and a single retaileo fétes demands. In each
time step, any subset of item-types can be ordered incugijmnt ordering cost which is submodular. The
objective is find a sequence of orders that satisfies all ddsnand minimizes the total ordering and holding costs.
The elements in the above problem statement are the iters typthe JRP; and the joint ordering co&t) is
commonly referred to as the setup cost (or equivalentlyfi¥eel ordering cost) in the JRP.

The submodular JRP considers a special clagg-9fcalled submodular functions (see, e.fif). More precisely,
we assume that the functiofy-) is non-negative, monotone non-decreasing, and also sublarodThe non-
negativity and monotonicity assert that for evety C S, C N, we have) < f(S;) < f(S2). Submodularity
requires that for every sé;, So C N, we have

f(S1) + f(S2) = f(S1US2) + f(51N Sa).

There is an equivalent definition that conveys the econowiiesale more clearly. That is, for every sgt C
Sy C N and any item typeé € N, we havef (S U {i}) — f(S2) < f(S1 U{i}) — f(S1), i.e., the additional cost
of adding an item type to the joint order is decreasing as ritene types have been included in that order.

The IRP with arbitrary embedding metric. The IRP involves a single depeotthat stocks items, and a set of
retailer locations (denoted by the ground &6tfacing demands. In each time step, any subset of locatambe
visited using a vehicle originating from the depot. The obje here is to satisfy all demands while minimizing
the sum of routing and holding costs. The elements in theeahaified problem statement are the retailers in the
IRP; and the joint ordering cogt(-) is the shipping or routing cost.
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The IRP is specified by a complete graph on verticesith a metric distance functiom : (‘2/) — R, that satisfies
symmetry (i.e.w(ba) = w(ab) for anya,b € V) and triangle inequality (i.ew(ab) + w(bc) > w(ac) for any
a,b,c € V). The vertex seV' = N U r, containing the depot and the set of retailers. The shippirrguting cost
f(S) can be defined as the travelling salesman (TSP) cost oingditie retailers irt’ C V. Formally,

f(S) = minimum length of tour that visits each vertexS$nJ {r}, VS CN. (1)

2.2 |IP Formulation and its LP Relaxation

The unified problem described above can be written as anenfgggramming problem as follows (see alg@]].
First we define two types of binary variablgg andz, such that

S 1, if the subset of element$ C N is ordered in period,
0, otherwise

1, ifthe demand pointi, t) is satisfied using an order from peried
€T =
st 0, otherwise

Then the integer programming (IP) formulation is given by

T t
(P)  min > NS+ > D Hial, )

SCN s=1 (i,t)eD s=1
st > ali=1,  V(i,t)eD

Ty < Z vs, V(i,t) € D,Vs=1,...,t
SHESCN
2y €{0,1},  V(it)eD,NVs=1,...,t,¥S CN.

The first constraint inff) enforces that every demand poifit¢) must be served by an order before or in time
periodt. The second constraint il ensures that the joint ordéf has to contain elemeritif any demand(, ¢)

is served at time period. There is a natural linear programming (LP) relaxation &%) (that relaxes the integer
constraints or:’, andy? to non-negativity constraints.

To obtain approximation algorithms for the [B) (sing our framework, we only need to assume that the setifumc
f () satisfies an approximate notion of fractional subadd(tithich is much weaker than submodularity).

Definition 2.1 (3-approximate fractional subadditivity) The set functiory(-) is S-approximate fractional sub-
additive, if for any collection.S;, \;} of weighted subsets with< ); < 1 and Zi\vesi A; > 1 foreachv € S,
we havef(S) < 8-> X\if(Si). Namely, if the sets; form afractional coverof S C N, then the cost of is at
mostf times the sum of the cosf$S;) weighted by the corresponding coefficients.

It is known that if a function is submodular, then it is alsadiional subadditive (seff]), i.e., the notion of
submodularity is stronger. For the submodular JRP, thepsatat functionf(S) is submodular and hence also
fractional subadditive (or equivalentli;approximate fractional subadditive).

For the IRP with arbitrary embedding metric, the vehicletimyicostf (.S) although not submodular, can be shown
to bel.5-approximate fractional subadditive. This follows frone tlact that the natural LP-relaxation for TSP has
an integrality gap at modt5 (see B3] and 7).

Note that the LP relaxation offf has an exponential number of variables; we need to ensairénik LP relaxation
can be (at least approximately) solved efficiently.



Definition 2.2 (v-approximate LP solution) We say that a feasible LP solution-sapproximate, if its objective
value is at most times the optimal LP objective value.

Using the ellipsoid method one can compute efficiently: aacex P solution for the submodular JRP and a
(2 + o(1))-approximate LP solution for IRP. We delegate the discussiothis to Sectiof for better readability
of this paper.

2.3 Our Main Results

Assumption 2.3 (-degree polynomial holding cost)For each element € A/ and1 < s < t € T, the holding
cost of holding an inventory unit of eleméritom periods to ¢ is

hie = (t = 5)*hi,
for some base per-unit holding cost > 0 and somex > 1.

Note that wheny = 1, this reduces to the conventional linear holding cost. We bbveH?, = d.(t — s)“h..
Now we are in a position to formally state our main result @bhwill be proved in the following section).

loglogT
gram defined inf), provided thatf(-) is S-approximate fractional subadditive, anchaapproximate solution to
the LP relaxation of(B) can be found in polynomial time.

Theorem 2.4 Under AssumptioR.3 there is an® <o¢57 . JogT )-approximation algorithm for the integer pro-

CorollaryP.Bbelow is an immediate consequence of Theopednsince

1. B =~ = 1 for the submodular JRP;

2. f=1.5andy =2+ o(1) for the IRP.

Corollary 2.5 Under AssumptioR.3, there is anO <1o§i§T) -approximation algorithm for both the submodular

JRP and the IRP with arbitrary embedding metric.

To the best of our knowledge, this is the first sub-logarithapproximation ratio for either problem.

We remark that it is immediate that our approach yielti$og T")-approximation algorithms for submodular JRP
and IRP with arbitrary (monotone) holding costs (i.e., waivAssumptior.3).

3 LP-Rounding Algorithm

We present an LP-rounding algorithm for the integer prog@mnder Assumptiof.3in SectionB.1, and then
carry out a worst-case performance analysis in SefSign

3.1 Algorithm Description

We describe our procedure of rounding-approximate solutiofy, x) of (LP). We setp := | (log T)*/(®) .



Step 1 — Constructing extended shadow intervals. We first construct what-we-cadixtended shadow intervals
as follows. For each demand poifitt), we take they-approximate LP solution and find a time periqgt) such
that

t t
Y oal,>1/2and Y 2l <1/2

s:s’(i’t) s:s’(i’t)+1

i.e., finding the closestto the left oft such that the sum af variables for(i, ¢) contains a half point. The[@’(i " t]

is called theshadow intervafor this particular demand poirft, t). We also measure its length ;) ==t — 3/(i7t)'

Next for each demand poift, ¢), we round the lengtly; ;) up to the nearest power of If s’(i n =t then we set

s’(ki p =t Else we find the smallest integer > 1 such thapy™ >t — s’(i " and then stretch the original shadow
interval from¢ to s’& H where

Sl =t =" < 854

We call the interva[s’(*i t),t] the extended shadow intervedr the demand poingi, ¢), and also measure its length

la. p =t s’(:. "t Figurefl below gives a graphical representation of this step.

first time sum of x crosses 1/2 demand d;>0
L ] ] ] 1 ] ] ] ] ] 1 1 1 ] ] ]
S* (it S'(it) t

-

extending the length of shadow interval
for (i,t) to the nearest power of p

Figure 1: lllustration of an extended shadow interval fomded point(i, ¢).

Step 2 — Partitioning demand points according to extended stdow intervals. Next we partition the demand
points according to the length of their extended shadowvate. For each demand poifit ¢), its Iengthl’(kl. n falls
into exactly one of the values below (recall by construcl'@g is either zero or an integer power of.

{0, 05, 0%, ..., pF 72, p" "V AT}, wherek =1 + ﬂogp T—‘ .

In this way, we have partitioned the demand points inte © (a%) number of groups as follows,

Lo= {(i,t) €Dy, :o} and L, = {(z’,t) €D, :pm/\T)}, Yme{l,... k—1}

That is, the shadow intervals within each grafyp share the same length:

] 0 ifm=20
W= AT ifme {12, k—1}

Step 3 — Placing orders. Based on the above partition of demand points, we describerdering procedure.

Now fix anm € {0, 1,...,k—1} and focus on the demand grodp,. Let7; = 1+j - w,, (< T)forj =0,1,....
We place a tentative (joint) order in each perigd(; = 0,1,...), i.e., once everyv,, periods. In each period
7, <T (j=0,1,2...), we identify the set of elements

A, = {z :(i,t) € L andr; € [Sfi,twt]} ’
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i.e., all the elements withif,,, whose shadow intervals contain (or intersect with) timequer;. We then place
an actual joint order that serves the demand points assdaeith A7, in period ;. Figurel gives one specific
example of how the algorithm places these orders.

We repeat the above procedure for all growps= 0,1, ...,k — 1. In any given period, if there is more than one
joint order (across different groups), we simply merge thetm a single joint order.

Elements: item types in JRP /

Focusing on the set of demand points L, retailers in the IRP

element 1
shadow intervals: element 2 — clement 4
element 4 — clement 3
element 2
L 1 1 1 1 1 1 ]
time periods: 1 T T, T3 Ty Ts Te T
elements ordered: {2,4} {1} {4,3,2}

Figure 2: Placing actual orders for the demand points withjn

This concludes the description of our LP-rounding algonith

3.2 Worst-case Analysis

We shall prove that our LP-rounding algorithm gives(’a(aﬁfybg’igip

For brevity, we just call the-approximate solutioiy, ) to the LP relaxation ofd) the-approximate LP solution

)—approximation for the unified problem.

Analysis of Holding Cost

Lemma 3.1 Let [s’(i " t] be the shadow interval for some demand p¢int). Then we have

¢
H;’(L 't <2 Z Hyxy,, )
sS=

wherex,’s are in they-approximate LP solution.
Proof: By the construction of shadow intervals, we h@}é:s,_ o zt, < 1/2. Now sinceY ' _, i, = 1 by the
first constraint inf), we must hav ‘i{) x%, > 1/2. Hence we have
HZ(Z ot <2 Z H;’(i?t)twét <2 Z Hgagy <2 Z Hgay + Z Hyargy | =2- Z Hyxg, (4)
s=1 s=1 s=1 5:5’(2,%)-1-1 s=1
where the second inequality is dueHg/ ot < Hy forall s < s( " by monotonicity of holding costs. |
Lemma 3.2 The total holding cost for the solution found by the LP-raouagdalgorithm is at most
O( logT Z t'm;tv
(i,t)eD s=1

wherex,’s are in they-approximate LP solution.



Proof: By the polynomial holding cost structure, for each demaridtp@, t) in someL,,,, we have
Hé;(ki,t)t = di(t — s’(kivt))o‘ - di(wm)af_li,
Hi, f— d7t’(t _ (i7t))a 2 di(wm/p)a}—lz7

s(i’t)t

),

where the inequality follows from the construction of exted shadow intervals. Hence it is clear that

L, < p*H: .
Hs“’t)t >p Hs(i,t)t
By the LP-rounding algorithm, for each demand pdgint ), we must have placed a (joint) order containing element
1 inside its extended shadow inter\[aa‘i t),t]. Due to monotonicity of holding costs, the worst-case (/s the
highest possible holding cost) happens when our algoritlawep the order at exactly time perisg y to satisfy
the demand pointi, t). Hence, the total holding cost associated with the demamd (ot) is upper bounded by

t
Hy o <pOHG <207 Z; Hiyy,
5=
where the second inequality follows from Lem@d. Now settingp = | (log 7)) | yields the result. u

The intuition behind Lemm@.2 is that when we stretch the shadow interval to the nearesgeéntpower ofy,

the holding cost within the extended shadow interval doegyrmw too large due to the polynomial holding cost
structure. In particular it grows by at most a factor®@f\/log 7). On the other hand, stretching the shadow
intervals in this manner gives us a tighter bound on the orderost (as shown below).

Analysis of Ordering Cost

To analyze the ordering cost component, we introduce thewolg bridging problem:

T
(Covering-LP) ~ min " > f(5)2 (5)
SCN s=1
t
st. > > =1, Wit)eD
s:s?‘i’t) S:1eSCN
22 >0 Vs=1,...,t, VS CN.

s — Y

The intuition behind introducing this bridging problem s fllows: if our algorithm places an order to satisfy

the demand within its extended shadow interval then Lef@d@mplies that the holding cost can be bounded by
O(y/Tog T') times the LP holding cost. Thus, the problem reduces to findifcover” for these intervals as defined

in Problem [). In the remainder of the worst-case analysis, we will fosusnalyzing this Covering-LP.

Lemma 3.3 The optimal objective value of the Covering-LP is at most
T
2- %> ().
SCN s=1

wherey?’s are in they-approximate LP solution.



Proof: We first checkz? = 2y (wherey? is the y-approximate LP solution) is feasible to the Covering-LP
defined in ). It is obvious thatz;9 = 2y§ >0foralls=1,...,tandforallS C V. It suffices to verify the first
set of constraints. Indeed, for eaght) € D, we have

Z YyooE= Z > o2l > 22x3t>1 (6)
s=s{, )SZESCN s=s{, )SZESCN =5(5,0)

where the first mequallty foIIows from the second constrair(d), and the second inequality follows from the fact
that> ' _ 5t xty > Zi—s( . x, > 1/2 (by the definition of shadow intervals and their extensions)

Hence, the opt|mal objective value of the Covering-LP

T T T
SN < YD p9)E = Z (7)
N s=1

SCN s=1 SCN s=1 SC
where the first inequality follows from thaf' is optimal whilez? is feasible. |
Fixanm € {0,1,...,k — 1} and we focus our attention on the demand gralp (which have equal length

of shadow intervals). We shall show that the total orderiogt @ssociated with the sét,, by our LP-rounding
algorithm can be upper bounded By times the Covering-LP cost. Our proof strategy relies onrtbgéon of
approximate fractional subadditivity (see Definitnd).

Lemma 3.4 The total ordering cost associated with the Sgt by our LP-rounding algorithm is at most

T
28 )Y f(S)

SCN s=1
wherez2’s are the optimal Covering-LP solutions.

Proof: Recall that for each demand group,, the LP-rounding algorithm places a tentative (joint) orideeach
periodr; < T (j = 0,1,...). Then in each time period; the algorithm identifies the elements,, within £,
whose shadow intervals contain (or intersect withjand places an actual (joint) order, that includes all of
these “intersecting” elements.

Now take anyr; < T since the length of the shadow intervalsdp, is exactlyw,,, all the shadow intervals
associated with the ordet?, must lie within the mterval(TJ 1,Tj+1) (see Figurg] as an example). Our LP-
rounding algorithm places an actual (joint) ordé}, in period 7; and incurs an ordering co;Ft(A] ). We will
show that the Covering-LP provides us with a fractional cafed?, which will be used to upper bounﬁ{Aﬁn).

Indeed, for each demand poifit t) associated with the ordet’,, we have

Tj+1 Tj+1 t
S S S
PID DD DD D= DED DI =3 ®)
S:eSCN s>Tj—1 $>Tj—1 SHeSCN S:Sl(i " S:HeSCN

where the first inequality holds because every shadow iatessociated with the ordet, must lie within the
interval (1;_1, 7j+1] and the last inequality follows from the first constraintlie tCovering-LP ).

Sincef(-) is 3-approximate fractional subadditive, then according tdiriéon P.1,

Tj+1

ALY <B- Y > ZF(S). (9)

S:SCN s>Tj—1

10



It is then immediate that the ordering cost associated Wilset’,,, by our LP-rounding algorithm

Ti+1

T
MoFAL) < B YT YT Y TR <28 > > A f(9). (10)

7>0 S:SCN j>0 s>7j1 S:SCN s=1

Lemma 3.5 The total ordering cost for the solution by our LP-roundirigaithm is at most
log T >
0 (as 3 50s)
loglog 7 SCN s=1
wherey?’s are in they-approximate LP solution.

Proof: By Lemmag3.3andB.4, for each grougC,,, (m = 0,1,...,k — 1), we conclude that the total ordering cost
associated with the s, in our LP-rounding algorithm is at most

T T
283 N f(9)F <48 > D f(S)ws
SCN s=1 SCN s=1

where z2’s are the optimal Covering-LP solution apd's are thevy-approximate LP solution. Then the result

follows from the fact that the number of groups= O <%£§>§T> |

Now we are ready to prove our main result Theof2sh

Proof of TheoremP.4 Combining the results from Lemm@s2 andB.5, the total holding and ordering costs for
the solution by our LP-rounding algorithm is at m(&l(aﬁ log T ) times they-approximate LP solution. B

loglogT
Remark: TheO (%) approximation ratio is the best tradeoff achievable (inapproach) between the loss
in holding and ordering costs, even under linear holdingscdzecall that for a given sét” of widths for extended
shadow intervals, the loss in ordering cost is just the nunihg of distinct widths and the loss in holding cost
depends on the aggregate stretch-factor incurred whenittte @f each shadow interval is increased to a value in
W. Even if we allow for an arbitrary sét” of widths (that may depend on the LP solution) and computevtirst

ratio (using a “factor revealing linear program” asfidl]) then we obtair® <1Og’§)§T> as the approximation ratio.

A Special Case with Perishable Goods

We now consider a special holding cost which models perishisgms with a fixed life-timec > 0. For each
demand pointi, t), we can only start satisfying this ordeperiods before, i.e., the ordering window i — ¢, t].
This setting is equivalent to the following holding cosusture. For eache N and1 <s<te T,

; {0 ift—c<s<t,
hst = .
o fs<t—ec
We also haved’, = dih’,.
In this setting, for each demand poitt), the extended shadow interval is simply- ¢, t] with lengthc. Hence
our LP-rounding algorithm and its worst-analysis will applith just a single group, and we obtain:

Theorem 3.6 When items are perishable with a fixed life-time and the hgldiost is negligible, the LP-rounding
algorithm gives &-approximation for the submodular JRP, and@+ o(1))-approximation for the IRP.

11



4 Solving the LP Relaxation

As mentioned earlier in Sectidh the LP relaxation has an exponential number of variabldsaafirst argue that
there is an efficient way of solving this LP. We can readilytevthe dual of (LP) as

(DLP)  max > b (11)
(i,t)eD
st b <HL, 4V,  VY(i,t)eDVs=1,...,t
T
F)=> 370, >0,  V¥s=1,.. T VSC{l.. N}

€S t=s
b, >0,  V(i,t)eD,Vs=1,...,L

Thebi anddi, are the dual variable corresponding to the first and seconst@ints in the LP relaxation of).
Note that the dual formulatioffLf) has an exponential number of constraints.

Submodular JRP

In the submodular JRP, the left hand side of the second @msfi(S) — >, >/, b, is clearly submodular.
Thus, there is an efficient separation oracle by using subfaoéunction minimizationf§] to find violated con-
straints. This implies that the dual problem (and therethesprimal) can be efficiently solved using the ellipsoid
method. This was also discussed ][

Approximately Solving the LP for IRP

The TSP costg|(-) are not submodular, and in fact the above separation proSI&R-hard. However, there is an
approximate separation oracle (see Lenfr@ which suffices to compute an approximately optimal sotutio
(DLP). The main ingredient is an approximation algorithmtfee following auxiliary problem:

Definition 4.1 (Minimum ratio TSP) The input is a metri¢V, w) with a designated depoat € V' and rewards
a:V — Ry on vertices. The goal is to find a subsetC V' that minimizes:

f(5)

5 wheref(S) is the TSP cost as defined(@ anda(S) = > a;.

icS
Theorem 4.2 (Garg [Lg]) There is a2 + o(1))-approximation algorithm for the minimum ratio TSP problem

Proof: The algorithm for minimum ratio TSP uses t2@pproximation algorithm for the relatédd TSP problem
(i.e. given a metric, depoatand target, find a minimum length tour from the depot that visits at Idasertices).
The algorithm which is based on standard scaling argumisngsyen below for completeness:

1. Guess (by enumerating ovéf| choices) the maximum reward vertexn an optimal solution.
2. Remove all vertices with reward more than
3. Foreach € V setits new reward, to be the largest integer such thgt- %4 < a,.

4. For eachk = 1,---,n?, run thek-TSP algorithm with targek on the modified metric containing, co-
located vertices at eache V.

5. Output the best ratio solution found (over all choices andk).
12



It is easy to see that this algorithm runs in polynomial tirmes eacha, < n?. We now show that it has an
approximation ratio ofy = 2 + o(1). Let.S* denote an optimal solution ande S* the maximum reward vertex.
Consider the run of the above algorithm for this choice:ofote that none of the vertices frofit is removed. By
the definition of new rewards, we hawg — % < a, - % < a, forallv € S*. So% > . a, > a(S*) — % >
(1 —1/n)a(S*), which implies (as: is integer valued) that(S*) > k := (2—2(1 — 1)a(S*)]. For this choice of
k, the k-TSP algorithm is guaranteed to find a subSet V' with a(S) > k éndf(S) < 2. f(S*). The ratio of
this solution is:

f(S) _2/(87) _n® 2f(S) _ 2 f(5)

a(S) = a(S) ~ay, a(S) ~1-1/n a(S*)’
Hence the above algorithm achieve® & o(1) approximation guarantee for minimum ratio TSP. |

Lety = 2 + o(1) denote the approximation guarantee for minimum ratio T8 flheorenf.2 We now show
that this algorithm leads to an approximate separation@rac

Lemma 4.3 There is a polynomial time algorithm, that given vectbrs: {b; : (i,t) € D} andb = {b%, : (i,t) €
D, 1 < s < t}, outputs one of the following:

1. A constraint in (DLP) that is violated bib, b).
2. Certificate tha(%b, %B) is feasible in (DLP).

Proof: The first set of constraints in (DLP) and non-negativitypgfare easy to verify since they are polynomial
in number. Below we assume that these are satisfied.

In order to verify the second set of constraints in (DLP), we Theorenff.2. For eachs € [T define an instance
Z of minimum ratio TSP on metrifV, w), depotr and with rewards,, := Zf:s by, forallv € V. Let A; denote
the solution found by the approximation algorithm of Theo#&2on Z.

If any solution A, has ratio less than one then it provides a violated consti@ir{b, b). This corresponds to the
first condition in the lemma.

If every solutionA, has ratio at most one, we will show that the second conditicthé lemma holds. The non-
negativity constraints are clearly satisfied(t%ﬁb, %b). To check the first set of constraints in (DLP), note that for
any(i,t) € Dands € [T,

(01— 0) < max 0,0~ L, } < £,

To check the second set of constraints, note that forsamy [T] we have by the approximation guarantee in

Theorenfd.2,
. f(9) 1
min —T_v 2 —.
Scv EUES zt:s bst v
This implies tha{=b, = b) satisfies all these constraints. u

Using the above separation oracle for (DLP) within the sbid algorithm, we obtain a-approximately optimal
solution to (DLP), see eg2fl]. Then solving (LP) restricted to the (polynomially mangyiables that are dual to
the constraints generated in solving (DLP), we obtainapproximately optimal solution to (LP) as well.

Running time.  Using the linear programming algorithms along with some preprocessing, the running
time of the above approach is dominated®{D37?) plus O(DT?) calld] to a subroutine for:

e submodular function minimization in case of JRP.

e minimum-ratio TSP in case of IRP.

1The O notation hides logarithmic factors.
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5 Concluding Remarks

loglogT
nomial functions. Mogreiver, this approach applies to amenng cost for which the correponding LP relaxation
can be solved approximately and the ordering cost satigfiepjroximate notion of fractional subadditivity. Ob-
taining a constant-factor approximation algorithm formmaldlular JRP and IRP on general metrics (even with linear
holding costs) remain the main open questions.

We presented a® (£>—approximation algorithm for submodular-JRP and IRP wheldihg costs are poly-
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