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Approximation Algorithms for Inventory Problems with
Submodular or Routing Costs

Viswanath Nagarajan∗ Cong Shi∗

Abstract

We consider the following two deterministic inventory optimization problems over a finite planning horizon
T with non-stationary demands.

• Submodular Joint Replenishment Problem.This involves multiple item types and a single retailer who
faces demands. In each time step, any subset of item-types can be ordered incurring a joint ordering
cost which is submodular. Moreover, items can be held in inventory while incurring a holding cost. The
objective is find a sequence of orders that satisfies all demands and minimizes the total ordering and
holding costs.

• Inventory Routing Problem.This involves a single depot that stocks items, and multipleretailer locations
facing demands. In each time step, any subset of locations can be visited using a vehicle originating from
the depot. There is also cost incurred for holding items at any retailer. The objective here is to satisfy all
demands while minimizing the sum of routing and holding costs.

We present a unified approach that yieldsO
(

log T

log log T

)

-factor approximation algorithms for both problems

when the holding costs are polynomial functions. A special case is the classic linear holding cost model, wherein
this is the first sub-logarithmic approximation ratio for either problem.

Key words: Inventory Management, Approximation Algorithms, Submodular Function, Joint Replenishment
Problem, Inventory Routing Problem

1 Introduction

Deterministic inventory theory provides streamlined optimization models that attempt to capture tradeoffs in man-
aging the flow of goods through a supply chain. We consider twoclassical models in deterministic inventory
theory: theJoint Replenishment Problem(JRP) and theInventory Routing Problem(IRP). These inventory models
have been studied extensively in the literature (see, e.g.,[1], [21]) and recently there has been significant progress
on many variants of these models (see, e.g., [23], [22], [24], [10], [17]). In this paper, we present a unified approach
that yields approximation algorithms for both models with generalized cost structure – the JRP with submodular
setup cost and the IRP with arbitrary embedding metric.

The JRP with deterministic and non-stationary demand is a fundamental yet notoriously difficult problem in in-
ventory management. In these models, there are multiple item types, and we need to coordinate a sequence of
(joint) orders to satisfy the demands for different item types before their respective due dates. Ordering inventory
in a time period results in setup costs (or fixed ordering costs), and holding inventory before it is due results in
holding costs. The objective is to find a feasible ordering policy to satisfy every demand point on time over a
finite planning horizon so as to minimize the sum of setup and holding costs. The JRP is a natural extension of the
classical economic lot-sizing model that considers the optimal trade-off between setup costs and holding costs for
a single item type (see [32]). With multiple item types, the JRP adds the possibility ofsaving costs via coordinated
replenishment, a common phenomenon in supply chain management.

∗Industrial & Operations Engineering, University of Michigan, Ann Arbor, MI,{viswa, shicong}@umich.edu

1

http://arxiv.org/abs/1504.06560v1


Most of the literature on deterministic JRP is on theadditive joint setup cost structure. Under this structure,
there is a one-time setup cost if any item type is ordered, andthere is an individual item setup cost for each item
type ordered; the joint setup cost for this particular orderis simply the sum of the one-time setup cost and these
individual item setup costs. The additive joint setup cost structure loses significant amount of modeling power
and flexiblity (see [25], [13], [28], [10]). In this paper, we adopt the joint setup cost structure introduced recently
in [10] that satisfies two natural properties known asmonotonicityandsubmodularity. The monotonity property
means that the joint setup cost increases with the set of itemtypes ordered. The submodularity property captures
economies of scale in ordering more item types, i.e., the marginal cost of adding any specific item type to a given
order decreases in the set of item types included.

The IRP is also a classical problem in inventory management that captures the trade-off between the holding costs
for inventory and the routing costs for replenishing the inventory at various locations in a supply chain (see, e.g.,
[7], [12], [14], [17]). The problem involves multiple item types that are stocked in a single depot, that must be
shipped to meet the demand for these item types arising at multiple retailers specified over the course of a planning
horizon. Similar to the JRP, the costs of holding a unit of inventory at each retailer are specified to compute the
inventory holding costs. Different than the JRP, we consider transportation (or vehicle routing) costs in some metric
defined by the depot and retailers in the IRP, instead of jointsetup costs considered in the JRP.

1.1 Main Results and Contributions

We present a unified approach that yieldsO
(

log T
log log T

)

-approximation algorithms for both the JRP with submod-

ular setup costs and the IRP with any embedding metric, when the holding costs are polynomial functions (which
subsumes conventional linear costs as a special case). Thisis the first sub-logarithmic approximation ratio for
either problem under these cost structures.

We remark that if the setup cost function in submodular-JRP is time-dependent then the problem (even with zero
holding costs) becomes as hard to approximate as set cover [15]. The same observation is true if the metric in IRP
is time-dependent. So our sub-logarithmic ratio approximation algorithm relies crucially on the uniformity of these
costs over time.

For the submodular JRP, Cheung et al. [10] obtained constant-factor approximation algorithms under several spe-
cial submodular functions (i.e., tree, laminar and cardinality). In contrast, we consider general submodular func-
tions with special (polynomial) holding costs.

For the IRP, Fukunaga et al. [17] considered a restricted class of “periodic policies” and obtained a constant-factor
approximation algorithm. Whereas our result is for arbitrary policies and polynomial holding costs.

A straightforward modification of our algorithm for polynomial holding costs also yieldsO(log T )-approximation
algorithms for submodular JRP and IRP with arbitrary (monotone) holding costs. The submodular JRP result
improves upon the approximation ratio ofO(log(NT )) by [10]. The IRP result is incomparable to theO(log n)
approximation ratio mentioned in [17], wheren is the number of retailers.

1.2 Our Approach

At a high-level, the algorithm for submodular JRP has the following steps. (The algorithm for IRP is very similar
– we in fact present an algorithm for a unified problem formulation.) First, we solve a natural time-indexed LP
relaxation that was also used in [10]. Then we construct a “shadow interval” for each demand point that corresponds
to fractionally ordering half unit of the item. We also stretch each shadow interval appropriately (depending on
the degree of the holding cost function) so as to obtain an optimal trade-off between holding and setup costs: this

is what results in theO
(

log T
log log T

)

approximation ratio. Next, we partition these stretched intervals into multiple

groups based on well-separated widths. Finally we place a separate sequence of orders for each group, and argue
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using submodularity of the setup cost function that the total setup cost of each group is bounded by the LP setup
cost. This step relies on thefractional subadditivityproperty of submodular functions.

It turns out that we do not require the full strength of submodular functions: the algorithm and analysis work even
for functions satisfying an approximate notion of fractional subadditivity (see Definition2.1) as long as the natural
LP relaxation can be solved approximately. This allows us toalso obtain an approximation algorithm for IRP
since the TSP cost function satisfies1.5-approximate fractional subadditivity and there is a2+o(1) approximation
algorithm for its LP relaxation (see Section4 for details).

We believe that some of our techniques may be useful in obtaining a constant factor approximation algorithm for
both problems in their full generality.

1.3 Literature review

As mentioned earlier, most of the existing literature on deterministic JRP with non-stationary demand uses the
additive joint setup cost structure. Arkin et al. [4] showed that the additive JRP is NP-hard. Nonner and Sviridenko
[24] further showed that the additive JRP is in fact APX-hard with nonlinear holding cost structure. There have
been several approximation algorithms for the additive JRP(see [10] and the references therein). The state-of-the-
art approximation algorithms for the additive JRP are due to[23], [22] and [6], with approximation ratios 2, 1.80
and 1.791, respectively.

Due to the limited modeling power of the additive JRP, Cheunget al. [10] first studied the submodular JRP in
which the setup costs are submodular. They gave anO(log(NT ))-approximation algorithm for the general sub-
modular JRP (whereN is number of items andT is number of periods). They also analyzed three special cases
of submodular functions which are laminar, tree and cardinality cases. They showed that the laminar case can be
solved optimally in polynomial time using dynamic programming, and obtained a 3-approximation for the tree
case and a 5-approximation for the cardinality case. Our work contributes to the literature by giving approximation
algorithms for the general submodular JRP with special holding cost structures.

The IRP has also been studied extensively in the literature (see [7], [12], [14], [17] for an overview of this problem).
The problem can be cast a mathematical program (see, e.g., [8]) and solution approaches typically involve heuris-
tics that trade-off between holding and transportation costs (see [2, 3], [9], [11], [31], [5]). Closer to our work,
Fukunaga et al. [17] gave constant factor approximation algorithms for the IRPrestricting to periodic schedules.
In contrast, our results do not require the schedule to be periodic but require polynomial holding costs.

1.4 Structure of this paper and some notations

We organize the remainder of the paper as follows. In Section2, we present a unified formulation for the submodu-
lar JRP and the IRP with arbitrary embedding metric, and state our main result. In Section3, we propose a unified
approximation algorithm for both problems. In Section4, we discuss how to solve the LP relaxation efficiently.
We conclude our paper in Section5.

Throughout the paper, we use the notation⌊x⌋ and ⌈x⌉ frequently, where⌊x⌋ is defined as the largest integer
value which is smaller than or equal tox; and⌈x⌉ is defined as the smallest integer value which is greater thanor
equal tox. Additionally, for any real numbersx andy, we denotex+ = max{x, 0}, x ∨ y = max{x, y}, and
x ∧ y = min{x, y}. The notation:= reads “is defined as”.

2 A Unified Formulation for the JRP and the IRP

In this section, we formally describe a unified problem statement that includes two classical deterministic inven-
tory problems as special cases, i.e., the joint replenishment problem (JRP) with submodular setup costs and the
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inventory routing problem (IRP) with arbitrary embedding metric. We also present a unified framework for this
problem, and state our main result.

2.1 Problem Statement

There areN elements (e.g., item types in the JRP or retailers in the IRP)that are needed to serve external demands
over a finite planning horizon ofT periods; these elements are denoted by the ground setN = {1, . . . , N}, and
the time periods are denoted by the setT = {1, . . . , T}. For each time periodt ∈ T and each elementi ∈ N ,
there is a known demanddit ≥ 0 units of that element. We useD to denote the set of all strictly positive demand
points(i, t) with dit > 0. To satisfy these demands, an order may be placed in each timeperiod. Each demand
point (i, t) ∈ D has to be served by an order containing elementi before or at time periodt, i.e., no backlogging
or lost-sales are allowed.

The inventory system incurs two types of cost – the joint ordering cost and the holding cost.

• The joint ordering cost is a function of the elements that place strictly positive orders in any given period.
More specifically, for any time periodt and a subset of elementsS ⊆ N , the joint ordering cost of ordering
demand for elements inS in periodt is a function ofS, which is denoted byf(S).

• Because the setup cost of ordering an element is independentof the number of units ordered, there is an
incentive to place large orders to meet the demand not just for the current time period, but for subsequent
time periods as well. This is balanced by a cost incurred by holding inventory over time periods. We usehist
to denote the holding cost incurred by ordering one unit of inventory in periods, and using it to meet the
demand for elementi in periodt. We assume thathist is non-negative and, for each demand point(i, t), is a
nonincreasing function ofs, i.e., holding inventory longer is always more costly. Thus, if the demand point
(i, t) is served by an order at time periods, then the system incurs a holding cost ofH i

st := dith
i
st.

The goal is to coordinate a sequence of (joint) orders to satisfy all the demand points on time so as to minimize the
sum of joint ordering and holding costs over theT periods.

The above unified problem statement encompasses two classical deterministic inventory problems described below.

The submodular JRP.The JRP involves multiple item types and a single retailer who faces demands. In each
time step, any subset of item-types can be ordered incurringa joint ordering cost which is submodular. The
objective is find a sequence of orders that satisfies all demands and minimizes the total ordering and holding costs.
The elements in the above problem statement are the item types in the JRP; and the joint ordering costf(·) is
commonly referred to as the setup cost (or equivalently, thefixed ordering cost) in the JRP.

The submodular JRP considers a special class off(·) called submodular functions (see, e.g., [10]). More precisely,
we assume that the functionf(·) is non-negative, monotone non-decreasing, and also submodular. The non-
negativity and monotonicity assert that for everyS1 ⊆ S2 ⊆ N , we have0 ≤ f(S1) ≤ f(S2). Submodularity
requires that for every setS1, S2 ⊆ N , we have

f(S1) + f(S2) ≥ f(S1 ∪ S2) + f(S1 ∩ S2).

There is an equivalent definition that conveys the economiesof scale more clearly. That is, for every setS1 ⊆
S2 ⊆ N and any item typei ∈ N , we havef(S2 ∪ {i}) − f(S2) ≤ f(S1 ∪ {i}) − f(S1), i.e., the additional cost
of adding an item type to the joint order is decreasing as moreitem types have been included in that order.

The IRP with arbitrary embedding metric. The IRP involves a single depotr that stocks items, and a set of
retailer locations (denoted by the ground setN ) facing demands. In each time step, any subset of locations can be
visited using a vehicle originating from the depot. The objective here is to satisfy all demands while minimizing
the sum of routing and holding costs. The elements in the above unified problem statement are the retailers in the
IRP; and the joint ordering costf(·) is the shipping or routing cost.
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The IRP is specified by a complete graph on verticesV with a metric distance functionw :
(V
2

)

→ R+ that satisfies
symmetry (i.e.w(ba) = w(ab) for anya, b ∈ V ) and triangle inequality (i.e.w(ab) + w(bc) ≥ w(ac) for any
a, b, c ∈ V ). The vertex setV = N ∪ r, containing the depot and the set of retailers. The shippingor routing cost
f(S) can be defined as the travelling salesman (TSP) cost of visiting the retailers inS ⊆ V . Formally,

f(S) := minimum length of tour that visits each vertex inS ∪ {r}, ∀S ⊆ N . (1)

2.2 IP Formulation and its LP Relaxation

The unified problem described above can be written as an integer programming problem as follows (see also [10]).
First we define two types of binary variablesySs andxist such that

ySs =

{

1, if the subset of elementsS ⊆ N is ordered in periods,

0, otherwise.

xist =

{

1, if the demand point(i, t) is satisfied using an order from periods,

0, otherwise.

Then the integer programming (IP) formulation is given by

(IP) min
∑

S⊆N

T
∑

s=1

f(S)ySs +
∑

(i,t)∈D

t
∑

s=1

H i
stx

i
st (2)

s.t.
t

∑

s=1

xist = 1, ∀(i, t) ∈ D

xist ≤
∑

S:i∈S⊆N

ySs , ∀(i, t) ∈ D,∀s = 1, . . . , t

xist, y
S
s ∈ {0, 1}, ∀(i, t) ∈ D,∀s = 1, . . . , t,∀S ⊆ N .

The first constraint in (2) enforces that every demand point(i, t) must be served by an order before or in time
periodt. The second constraint in (2) ensures that the joint orderS has to contain elementi if any demand(i, t)
is served at time periods. There is a natural linear programming (LP) relaxation of (IP) that relaxes the integer
constraints onxist andySs to non-negativity constraints.

To obtain approximation algorithms for the IP (2) using our framework, we only need to assume that the set function
f(·) satisfies an approximate notion of fractional subaddivitity (which is much weaker than submodularity).

Definition 2.1 (β-approximate fractional subadditivity) The set functionf(·) is β-approximate fractional sub-
additive, if for any collection{Si, λi} of weighted subsets with0 ≤ λi ≤ 1 and

∑

i|v∈Si
λi ≥ 1 for eachv ∈ S,

we havef(S) ≤ β ·∑ λif(Si). Namely, if the setsSi form a fractional coverof S ⊆ N , then the cost ofS is at
mostβ times the sum of the costsf(Si) weighted by the corresponding coefficients.

It is known that if a function is submodular, then it is also fractional subadditive (see [16]), i.e., the notion of
submodularity is stronger. For the submodular JRP, the setup cost functionf(S) is submodular and hence also
fractional subadditive (or equivalently,1-approximate fractional subadditive).

For the IRP with arbitrary embedding metric, the vehicle routing costf(S) although not submodular, can be shown
to be1.5-approximate fractional subadditive. This follows from the fact that the natural LP-relaxation for TSP has
an integrality gap at most1.5 (see [33] and [27]).

Note that the LP relaxation of (2) has an exponential number of variables; we need to ensure that this LP relaxation
can be (at least approximately) solved efficiently.
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Definition 2.2 (γ-approximate LP solution) We say that a feasible LP solution isγ-approximate, if its objective
value is at mostγ times the optimal LP objective value.

Using the ellipsoid method one can compute efficiently: an exact LP solution for the submodular JRP and a
(2 + o(1))-approximate LP solution for IRP. We delegate the discussion on this to Section4 for better readability
of this paper.

2.3 Our Main Results

Assumption 2.3 (α-degree polynomial holding cost)For each elementi ∈ N and1 ≤ s ≤ t ∈ T , the holding
cost of holding an inventory unit of elementi from periods to t is

hist = (t− s)αh̄it,

for some base per-unit holding costh̄it > 0 and someα ≥ 1.

Note that whenα = 1, this reduces to the conventional linear holding cost. We also haveH i
st = dit(t− s)αh̄it.

Now we are in a position to formally state our main result (which will be proved in the following section).

Theorem 2.4 Under Assumption2.3, there is anO
(

αβγ · log T
log log T

)

-approximation algorithm for the integer pro-

gram defined in (2), provided thatf(·) is β-approximate fractional subadditive, and aγ-approximate solution to
the LP relaxation of(2) can be found in polynomial time.

Corollary2.5below is an immediate consequence of Theorem2.4, since

1. β = γ = 1 for the submodular JRP;

2. β = 1.5 andγ = 2 + o(1) for the IRP.

Corollary 2.5 Under Assumption2.3, there is anO
(

log T
log log T

)

-approximation algorithm for both the submodular

JRP and the IRP with arbitrary embedding metric.

To the best of our knowledge, this is the first sub-logarithmic approximation ratio for either problem.

We remark that it is immediate that our approach yieldsO(log T )-approximation algorithms for submodular JRP
and IRP with arbitrary (monotone) holding costs (i.e., waiving Assumption2.3).

3 LP-Rounding Algorithm

We present an LP-rounding algorithm for the integer program(2) under Assumption2.3 in Section3.1, and then
carry out a worst-case performance analysis in Section3.2.

3.1 Algorithm Description

We describe our procedure of rounding aγ-approximate solution(y, x) of (LP). We setρ := ⌊(log T )1/(2α)⌋.
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Step 1 – Constructing extended shadow intervals. We first construct what-we-callextended shadow intervals
as follows. For each demand point(i, t), we take theγ-approximate LP solution and find a time periods′(i,t) such
that

t
∑

s=s′
(i,t)

xist ≥ 1/2 and
t

∑

s=s′
(i,t)

+1

xist < 1/2,

i.e., finding the closests to the left oft such that the sum ofx variables for(i, t) contains a half point. Then[s′(i,t), t]

is called theshadow intervalfor this particular demand point(i, t). We also measure its lengthl(i,t) := t− s′(i,t).

Next for each demand point(i, t), we round the lengthl(i,t) up to the nearest power ofρ. If s′(i,t) = t then we set
s∗(i,t) = t. Else we find the smallest integerm ≥ 1 such thatρm ≥ t− s′(i,t), and then stretch the original shadow
interval fromt to s∗(i,t) where

s∗(i,t) = t− ρm ≤ s′(i,t).

We call the interval[s∗(i,t), t] theextended shadow intervalfor the demand point(i, t), and also measure its length
l∗(i,t) := t− s∗(i,t). Figure1 below gives a graphical representation of this step.

ts'(i,t)

demand di
t>0

extending the length of shadow interval 

for (i,t) to the nearest power of �

 first time sum of xi
st crosses 1/2

s*(i,t)

Figure 1: Illustration of an extended shadow interval for demand point(i, t).

Step 2 – Partitioning demand points according to extended shadow intervals. Next we partition the demand
points according to the length of their extended shadow intervals. For each demand point(i, t), its lengthl∗(i,t) falls
into exactly one of the values below (recall by constructionl∗(i,t) is either zero or an integer power ofρ).

{0, ρ1, ρ2, . . . , ρk−2, ρk−1 ∧ T}, wherek = 1 +
⌈

logρ T
⌉

.

In this way, we have partitioned the demand points intok = O
(

α log T
log log T

)

number of groups as follows,

L0 =
{

(i, t) ∈ D : l∗(i,t) = 0
}

and Lm =
{

(i, t) ∈ D : l∗(i,t) = ρm ∧ T )
}

, ∀ m ∈ {1, . . . , k − 1}.

That is, the shadow intervals within each groupLm share the same length:

wm :=

{

0 if m = 0
ρm ∧ T if m ∈ {1, 2, . . . , k − 1}

Step 3 – Placing orders. Based on the above partition of demand points, we describe our ordering procedure.

Now fix anm ∈ {0, 1, . . . , k−1} and focus on the demand groupLm. Let τj = 1+ j ·wm (≤ T ) for j = 0, 1, . . ..
We place a tentative (joint) order in each periodτj (j = 0, 1, . . .), i.e., once everywm periods. In each period
τj ≤ T (j = 0, 1, 2 . . .), we identify the set of elements

Aj
m =

{

i : (i, t) ∈ Lm andτj ∈ [s∗(i,t), t]
}

,

7



i.e., all the elements withinLm whose shadow intervals contain (or intersect with) time period τj. We then place
an actual joint order that serves the demand points associated withAj

m in periodτj. Figure2 gives one specific
example of how the algorithm places these orders.

We repeat the above procedure for all groupsm = 0, 1, . . . , k − 1. In any given period, if there is more than one
joint order (across different groups), we simply merge theminto a single joint order.

1 T

Focusing on the set of demand points Lm

�1 ...

 shadow intervals:  element 4

element 3

element 2

element 1

element 4

element 2

elements ordered:                          {2,4}                                                     {1}             {4,3,2}                                 

time  periods: �2 �3 �4 �5 �6

Elements: item types in JRP / 

                retailers in the IRP

Figure 2: Placing actual orders for the demand points withinLm

This concludes the description of our LP-rounding algorithm.

3.2 Worst-case Analysis

We shall prove that our LP-rounding algorithm gives anO
(

αβγ log T
log log T

)

-approximation for the unified problem.

For brevity, we just call theγ-approximate solution(y, x) to the LP relaxation of (2) theγ-approximate LP solution.

Analysis of Holding Cost

Lemma 3.1 Let [s′(i,t), t] be the shadow interval for some demand point(i, t). Then we have

H i
s′
(i,t)

t ≤ 2 ·
t

∑

s=1

H i
stx

i
st, (3)

wherexist’s are in theγ-approximate LP solution.

Proof: By the construction of shadow intervals, we have
∑t

s=s′
(i,t)

+1 x
i
st < 1/2. Now since

∑t
s=1 x

i
st = 1 by the

first constraint in (2), we must have
∑s′

(i,t)

s=1 xist ≥ 1/2. Hence we have

H i
s′
(i,t)

t ≤ 2 ·
s′
(i,t)
∑

s=1

H i
s′
(i,t)

tx
i
st ≤ 2 ·

s′
(i,t)
∑

s=1

H i
stx

i
st ≤ 2 ·







s′
(i,t)
∑

s=1

H i
stx

i
st +

t
∑

s=s′
(i,t)

+1

H i
stx

i
st






= 2 ·

t
∑

s=1

H i
stx

i
st, (4)

where the second inequality is due toHs′
(i,t)

t ≤ Hst for all s ≤ s′(i,t) by monotonicity of holding costs. �

Lemma 3.2 The total holding cost for the solution found by the LP-rounding algorithm is at most

O(
√

log T ) ·
∑

(i,t)∈D

t
∑

s=1

H i
stx

i
st,

wherexist’s are in theγ-approximate LP solution.
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Proof: By the polynomial holding cost structure, for each demand point (i, t) in someLm, we have

H i
s∗
(i,t)

t = dit(t− s∗(i,t))
α = dit(wm)αh̄i,

H i
s′
(i,t)

t = dit(t− s′(i,t))
α ≥ dit(wm/ρ)αh̄i,

where the inequality follows from the construction of extended shadow intervals. Hence it is clear that

H i
s∗
(i,t)

t ≤ ραH i
s′
(i,t)

t.

By the LP-rounding algorithm, for each demand point(i, t), we must have placed a (joint) order containing element
i inside its extended shadow interval[s∗(i,t), t]. Due to monotonicity of holding costs, the worst-case (thatgives the
highest possible holding cost) happens when our algorithm places the order at exactly time periods∗(i,t) to satisfy
the demand point(i, t). Hence, the total holding cost associated with the demand point (i, t) is upper bounded by

H i
s∗
(i,t)

t ≤ ραH i
s′
(i,t)

t ≤ 2ρα ·
t

∑

s=1

H i
stx

i
st,

where the second inequality follows from Lemma3.1. Now settingρ = ⌊(log T )1/(2α)⌋ yields the result. �

The intuition behind Lemma3.2 is that when we stretch the shadow interval to the nearest integer power ofρ,
the holding cost within the extended shadow interval does not grow too large due to the polynomial holding cost
structure. In particular it grows by at most a factor ofO(

√
log T ). On the other hand, stretching the shadow

intervals in this manner gives us a tighter bound on the ordering cost (as shown below).

Analysis of Ordering Cost

To analyze the ordering cost component, we introduce the following bridging problem:

(Covering-LP) min
∑

S⊆N

T
∑

s=1

f(S)zSs (5)

s.t.
t

∑

s=s∗
(i,t)

∑

S:i∈S⊆N

zSs ≥ 1, ∀(i, t) ∈ D

zSs ≥ 0, ∀s = 1, . . . , t,∀S ⊆ N .

The intuition behind introducing this bridging problem is as follows: if our algorithm places an order to satisfy
the demand within its extended shadow interval then Lemma3.2 implies that the holding cost can be bounded by
O(

√
log T ) times the LP holding cost. Thus, the problem reduces to finding a “cover” for these intervals as defined

in Problem (5). In the remainder of the worst-case analysis, we will focuson analyzing this Covering-LP.

Lemma 3.3 The optimal objective value of the Covering-LP is at most

2 ·
∑

S⊆N

T
∑

s=1

f(S)ySs .

whereySs ’s are in theγ-approximate LP solution.

9



Proof: We first checkz̄Ss = 2ySs (whereySs is theγ-approximate LP solution) is feasible to the Covering-LP
defined in (5). It is obvious that̄zSs = 2ySs ≥ 0 for all s = 1, . . . , t and for allS ⊆ N . It suffices to verify the first
set of constraints. Indeed, for each(i, t) ∈ D, we have

t
∑

s=s∗
(i,t)

∑

S:i∈S⊆N

z̄Ss =

t
∑

s=s∗
(i,t)

∑

S:i∈S⊆N

2ySs ≥
t

∑

s=s∗
(i,t)

2xist ≥ 1, (6)

where the first inequality follows from the second constraint in (2), and the second inequality follows from the fact
that

∑t
s=s∗

(i,t)
xist ≥

∑t
s=s′

(i,t)
xist ≥ 1/2 (by the definition of shadow intervals and their extensions).

Hence, the optimal objective value of the Covering-LP

∑

S⊆N

T
∑

s=1

f(S)zSs ≤
∑

S⊆N

T
∑

s=1

f(S)z̄Ss = 2
∑

S⊆N

T
∑

s=1

f(S)ySs , (7)

where the first inequality follows from thatzSs is optimal whilez̄Ss is feasible. �

Fix anm ∈ {0, 1, . . . , k − 1} and we focus our attention on the demand groupLm (which have equal length
of shadow intervals). We shall show that the total ordering cost associated with the setLm by our LP-rounding
algorithm can be upper bounded by2β times the Covering-LP cost. Our proof strategy relies on thenotion of
approximate fractional subadditivity (see Definition2.1).

Lemma 3.4 The total ordering cost associated with the setLm by our LP-rounding algorithm is at most

2β ·
∑

S⊆N

T
∑

s=1

f(S)zSs .

wherezSs ’s are the optimal Covering-LP solutions.

Proof: Recall that for each demand groupLm, the LP-rounding algorithm places a tentative (joint) order in each
periodτj ≤ T (j = 0, 1, . . .). Then in each time periodτj the algorithm identifies the elementsAj

m within Lm

whose shadow intervals contain (or intersect with)τj and places an actual (joint) orderAj
m that includes all of

these “intersecting” elements.

Now take anyτj ≤ T : since the length of the shadow intervals inLm is exactlywm, all the shadow intervals
associated with the orderAj

m must lie within the interval(τj−1, τj+1] (see Figure2 as an example). Our LP-
rounding algorithm places an actual (joint) orderAj

m in periodτj and incurs an ordering costf(Aj
m). We will

show that the Covering-LP provides us with a fractional cover of Aj
m which will be used to upper boundf(Aj

m).

Indeed, for each demand point(i, t) associated with the orderAj
m, we have

∑

S:i∈S⊆N

τj+1
∑

s>τj−1

zSs =

τj+1
∑

s>τj−1

∑

S:i∈S⊆N

zSs ≥
t

∑

s=s′
(i,t)

∑

S:i∈S⊆N

zSs ≥ 1, (8)

where the first inequality holds because every shadow interval associated with the orderAj
m must lie within the

interval(τj−1, τj+1] and the last inequality follows from the first constraint in the Covering-LP (5).

Sincef(·) is β-approximate fractional subadditive, then according to Definition 2.1,

f(Aj
m) ≤ β ·

∑

S:S⊆N

τj+1
∑

s>τj−1

zSs f(S). (9)

10



It is then immediate that the ordering cost associated with the setLm by our LP-rounding algorithm

∑

j≥0

f(Aj
m) ≤ β ·

∑

S:S⊆N

∑

j≥0

τj+1
∑

s>τj−1

zSs f(S) ≤ 2β ·
∑

S:S⊆N

T
∑

s=1

zSs f(S). (10)

�

Lemma 3.5 The total ordering cost for the solution by our LP-rounding algorithm is at most

O
(

αβ
log T

log log T

)

·
∑

S⊆N

T
∑

s=1

f(S)ySs ,

whereySs ’s are in theγ-approximate LP solution.

Proof: By Lemmas3.3and3.4, for each groupLm (m = 0, 1, . . . , k− 1), we conclude that the total ordering cost
associated with the setLm in our LP-rounding algorithm is at most

2β ·
∑

S⊆N

T
∑

s=1

f(S)zSs ≤ 4β ·
∑

S⊆N

T
∑

s=1

f(S)ySs ,

wherezSs ’s are the optimal Covering-LP solution andySs ’s are theγ-approximate LP solution. Then the result

follows from the fact that the number of groupsk = O
(

α log T
log log T

)

. �

Now we are ready to prove our main result Theorem2.4.

Proof of Theorem 2.4: Combining the results from Lemmas3.2and3.5, the total holding and ordering costs for

the solution by our LP-rounding algorithm is at mostO
(

αβ logT
log log T

)

times theγ-approximate LP solution. �

Remark: TheO
(

log T
log log T

)

approximation ratio is the best tradeoff achievable (in ourapproach) between the loss

in holding and ordering costs, even under linear holding costs. Recall that for a given setW of widths for extended
shadow intervals, the loss in ordering cost is just the number |W | of distinct widths and the loss in holding cost
depends on the aggregate stretch-factor incurred when the width of each shadow interval is increased to a value in
W . Even if we allow for an arbitrary setW of widths (that may depend on the LP solution) and compute theworst

ratio (using a “factor revealing linear program” as in [19]) then we obtainO
(

log T
log log T

)

as the approximation ratio.

A Special Case with Perishable Goods

We now consider a special holding cost which models perishable items with a fixed life-timec > 0. For each
demand point(i, t), we can only start satisfying this orderc periods beforet, i.e., the ordering window is[t− c, t].
This setting is equivalent to the following holding cost structure. For eachi ∈ N and1 ≤ s ≤ t ∈ T ,

hist =

{

0 if t− c ≤ s ≤ t,

∞ if s < t− c.

We also haveH i
st = dith

i
st.

In this setting, for each demand point(i, t), the extended shadow interval is simply[t− c, t] with lengthc. Hence
our LP-rounding algorithm and its worst-analysis will apply with just a single group, and we obtain:

Theorem 3.6 When items are perishable with a fixed life-time and the holding cost is negligible, the LP-rounding
algorithm gives a2-approximation for the submodular JRP, and a(6 + o(1))-approximation for the IRP.
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4 Solving the LP Relaxation

As mentioned earlier in Section2, the LP relaxation has an exponential number of variables and we first argue that
there is an efficient way of solving this LP. We can readily write the dual of (LP) as

(DLP) max
∑

(i,t)∈D

bit (11)

s.t. bit ≤ H i
st + b̄ist, ∀(i, t) ∈ D,∀s = 1, . . . , t

f(S)−
∑

i∈S

T
∑

t=s

b̄ist ≥ 0, ∀s = 1, . . . , T,∀S ⊆ {1, . . . N}

b̄ist ≥ 0, ∀(i, t) ∈ D,∀s = 1, . . . , t.

The bit and b̄ist are the dual variable corresponding to the first and second constraints in the LP relaxation of (2).
Note that the dual formulation (11) has an exponential number of constraints.

Submodular JRP

In the submodular JRP, the left hand side of the second constraint f(S) −∑

i∈S

∑T
t=s b̄

i
st is clearly submodular.

Thus, there is an efficient separation oracle by using submodular function minimization [26] to find violated con-
straints. This implies that the dual problem (and thereforethe primal) can be efficiently solved using the ellipsoid
method. This was also discussed in [10].

Approximately Solving the LP for IRP

The TSP costsf(·) are not submodular, and in fact the above separation problemis NP-hard. However, there is an
approximate separation oracle (see Lemma4.3) which suffices to compute an approximately optimal solution to
(DLP). The main ingredient is an approximation algorithm for the following auxiliary problem:

Definition 4.1 (Minimum ratio TSP) The input is a metric(V,w) with a designated depotr ∈ V and rewards
a : V → R+ on vertices. The goal is to find a subsetS ⊆ V that minimizes:

f(S)

a(S)
, wheref(S) is the TSP cost as defined in(1) anda(S) =

∑

i∈S

ai.

Theorem 4.2 (Garg [18]) There is a(2 + o(1))-approximation algorithm for the minimum ratio TSP problem.

Proof: The algorithm for minimum ratio TSP uses the2-approximation algorithm for the relatedk-TSP problem
(i.e. given a metric, depotr and targetk, find a minimum length tour from the depot that visits at leastk vertices).
The algorithm which is based on standard scaling arguments,is given below for completeness:

1. Guess (by enumerating over|V | choices) the maximum reward vertexu in an optimal solution.

2. Remove all vertices with reward more thanau.

3. For eachv ∈ V set its new reward̄av to be the largest integer such thatāv · au
n2 ≤ av.

4. For eachk = 1, · · · , n3, run thek-TSP algorithm with targetk on the modified metric containinḡav co-
located vertices at eachv ∈ V .

5. Output the best ratio solution found (over all choices ofu andk).

12



It is easy to see that this algorithm runs in polynomial time since each̄av ≤ n2. We now show that it has an
approximation ratio ofγ = 2 + o(1). LetS∗ denote an optimal solution andu ∈ S∗ the maximum reward vertex.
Consider the run of the above algorithm for this choice ofu: note that none of the vertices fromS∗ is removed. By
the definition of new rewards, we haveav − au

n2 < āv · au
n2 ≤ av for all v ∈ S∗. So au

n2

∑

v∈S∗ āv > a(S∗)− au
n ≥

(1 − 1/n)a(S∗), which implies (as̄a is integer valued) that̄a(S∗) ≥ k := ⌈n2

au
(1 − 1

n)a(S
∗)⌉. For this choice of

k, thek-TSP algorithm is guaranteed to find a subsetS ⊆ V with ā(S) ≥ k andf(S) ≤ 2 · f(S∗). The ratio of
this solution is:

f(S)

a(S)
≤ 2f(S∗)

a(S)
≤ n2

au
· 2f(S)
ā(S)

≤ 2

1− 1/n
· f(S

∗)

a(S∗)
.

Hence the above algorithm achieves a2 + o(1) approximation guarantee for minimum ratio TSP. �

Let γ = 2 + o(1) denote the approximation guarantee for minimum ratio TSP from Theorem4.2. We now show
that this algorithm leads to an approximate separation oracle.

Lemma 4.3 There is a polynomial time algorithm, that given vectorsb = {bit : (i, t) ∈ D} andb̄ = {b̄ist : (i, t) ∈
D, 1 ≤ s ≤ t}, outputs one of the following:

1. A constraint in (DLP) that is violated by(b, b̄).

2. Certificate that( 1γb,
1
γ b̄) is feasible in (DLP).

Proof: The first set of constraints in (DLP) and non-negativity ofb̄ist are easy to verify since they are polynomial
in number. Below we assume that these are satisfied.

In order to verify the second set of constraints in (DLP), we use Theorem4.2. For eachs ∈ [T ] define an instance
Is of minimum ratio TSP on metric(V,w), depotr and with rewardsav :=

∑T
t=s b̄

v
st for all v ∈ V . LetAs denote

the solution found by the approximation algorithm of Theorem 4.2onIs.
If any solutionAs has ratio less than one then it provides a violated constraint for (b, b̄). This corresponds to the
first condition in the lemma.

If every solutionAs has ratio at most one, we will show that the second condition in the lemma holds. The non-
negativity constraints are clearly satisfied by( 1γb,

1
γ b̄). To check the first set of constraints in (DLP), note that for

any(i, t) ∈ D ands ∈ [T ],
1

γ

(

bit − b̄ist
)

≤ max
{

0, bit − b̄ist
}

≤ H i
st.

To check the second set of constraints, note that for anys ∈ [T ] we have by the approximation guarantee in
Theorem4.2,

min
S⊆V

f(S)
∑

v∈S

∑T
t=s b̄

v
st

≥ 1

γ
.

This implies that( 1γb,
1
γ b̄) satisfies all these constraints. �

Using the above separation oracle for (DLP) within the ellipsoid algorithm, we obtain aγ-approximately optimal
solution to (DLP), see eg. [20]. Then solving (LP) restricted to the (polynomially many) variables that are dual to
the constraints generated in solving (DLP), we obtain aγ-approximately optimal solution to (LP) as well.

Running time. Using the linear programming algorithms in [29, 30] along with some preprocessing, the running
time of the above approach is dominated byÕ(D3T 3) plusÕ(DT 2) calls1 to a subroutine for:

• submodular function minimization in case of JRP.

• minimum-ratio TSP in case of IRP.
1TheÕ notation hides logarithmic factors.
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5 Concluding Remarks

We presented anO
(

log T
log log T

)

-approximation algorithm for submodular-JRP and IRP when holding costs are poly-

nomial functions. Moreover, this approach applies to any ordering cost for which the correponding LP relaxation
can be solved approximately and the ordering cost satisfies an approximate notion of fractional subadditivity. Ob-
taining a constant-factor approximation algorithm for submodular JRP and IRP on general metrics (even with linear
holding costs) remain the main open questions.
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