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CONVEX ANALYSIS IN GROUPS AND SEMIGROUPS: A SAMPLER

JONATHAN M. BORWEIN AND OHAD GILADI

This paper is dedicated to R. Tyrell Rockafellar on the occasion of his eightieth birthday

Abstract. We define convexity canonically in the setting of monoids. We show that many
classical results from convex analysis hold for functions defined on such groups and semi-
groups, rather than only vector spaces. Some examples and counter-examples are also
discussed.

Part I: Basic convex analysis

1. Introduction

The notion of convexity is classical [Roc97], and heavily used in diverse contexts [BV10,
Chapter 1]. While normally considered in the concrete setting of vector spaces — either Rd

or infinite dimensional — it has often been examined in very general axiomatic form, see
[BHT82] and [vdV93]. In the vector space case, x is said to be a convex combination of
x1, . . . , xn if there exist α1, . . . , αn ∈ (0, 1) such that

x =
n∑

i=1

αixi,
n∑

i=1

αi = 1. (1.1)

If we assume for a moment that αi is of the form αi =
mi∑n
i=1 mi

where m1, . . . , mn ∈ N =

{1, 2, . . . }, then (1.1) becomes

mx =

n∑

i=1

mixi, m =

n∑

i=1

mi. (1.2)

In (1.1) we must be able to define αx for α ∈ R and x ∈ X . More generally, (1.1) can be
used whenever X is a module. On the other hand, in (1.2) we use only the additive structure
of X , i.e., we may assume that X is merely an additive semigroup. (See Section 2 for the
exact definitions.) Using (1.2), we show how one can build a canonical theory of convexity for
additive groups and semigroups. We refer the reader to [Mur03,vdV93] for more information
on abstract convexity in all its manifestations. Some aspects of convex analysis in a more
abstract setting have also been studied in [Ham05,JLMS07,LMS04]. Note that in [LMS04]
for example, it is only required that a function is convex over geodesic curves (in this case,
in the Heisenberg group). Thus, the various notions of convexity do not always coincide.
See also Remark 1 in [LMS04].

In a similar fashion to (1.2), one can define convex functions on additive groups and
semigroups (again, see Section 2). It is then natural to ask whether one may obtain useful
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analogues of known results for convex functions. It turns out that under only minimal as-
sumptions on the underlying monoid or group, it is possible to reconstruct many classical
results from the theory of convex functions such as Hahn-Banach type theorems, Fenchel du-
ality, certain constrained optimisation results, and more. We dedicate Section 3 to exhibiting
concrete examples of groups and their convex sets and convex hulls. It turns out that even
in simple examples, the structure of convex sets is subtle and can differ significantly from
the structure of convex sets in vector spaces.

The rest of the paper is dedicated to generalising classical results of the theory of convexity
to more general settings. While many of the results presented here hold when we assume that
the underlying space is a module (see Section 2.2), for the sake of concreteness we formulate
most of the results for groups and semigroups. In Section 4 we discuss the interpolation of
subadditive and convex function. In short, the question (say, in the convex case) is: given
two functions f and g with g ≤ f and f , and −g are convex, can we find an affine function a
such that g ≤ a ≤ f . Such questions were studied in [MO53] and generalised in [Kau66]. We
show that interpolation is possible for convex functions on semigroups which are semidivisible
(see Section 2.2).

Part II of this paper (Sections 5 and 6) is dedicated to the study of convex operators be-
tween (semi)groups. We define some well known and widely used notions, such as directional
derivatives and conjugate functions in the groups setting. In Section 5, we show that some
of the best known results, such as the the max formula, sandwich theorems and Fenchel
type duality theorems extend to this general setting. Finally, in Section 6 we briefly discuss
optimisation over groups before making some concluding remarks in Section 7.

2. Convex basics

We define convex sets and functions and examine some basic properties.

2.1. Convexity in algebraic structures. A semiring is a commutative semigroup under
addition and a semigroup under multiplication. A (left) semimodule over a semiring is a
commutative monoid (i.e., semigroup), satisfying all axioms of a module over a ring except
the existence of an additive inverse.

Definition 2.1 (Convex set in semimodule). Assume thatX is a semimodule over a semiring
R, and A ⊆ X . Let r1, . . . , rn ∈ R\{0}, and x1, . . . , xn ∈ A. Assume that there exists x ∈ X
satisfying

rx =

n∑

i=1

rixi, r =

n∑

i=1

ri.

If x ∈ A for every choice of n ∈ N, r1, . . . , rn ∈ R \ {0} and x1, . . . , xn ∈ A, then A is said to
be convex.

Herein we always assume that N = {1, 2, . . .}, i.e., all positive integers. If R is a ring,
not just a semiring, then we assume it is equipped with a compatible partial order, i.e., that
we have r + r1 ≤ r + r2 whenever r1 ≤ r2 and r · r1 ≤ r · r2 whenever r1 ≤ r2 and r ≥ 0,
and in Definition 2.1, we take only elements that are strictly positive. In particular, if R
is a field with a compatible partial order, R+ is the collection of all positive elements, and
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r1, . . . , rn ∈ R+ \ {0}, then we have
n∑

i=1

ri = r =⇒
n∑

i=1

ri
r
= 1, rx =

n∑

i=1

rixi =⇒ x =

n∑

i=1

ri
r
xi,

which gives the standard definition of convexity (e.g., over R or Q). As in vector spaces, we
can also define convex cones.

Definition 2.2 (Convex cone in semimodule). A set A ⊆ X is said to be a convex cone if
in Definition 2.1 the assumption

∑n

i=1 ri = r is not imposed.

Every commutative group is a module over the Z. Herein, we will focus on additive
groups and semigroups. By a monoid we mean an additive semigroup with a unit. As noted
in [Ham05], a monoid with a nontrivial idempotent element cannot be embedded in a group.
Clearly every monoid is a semimodule over the semiring Z+. Thus, the elements in Definition
2.1 are positive integers, denoted mj instead of rj .

For a general commutative group, one cannot always solve the equation
(

n∑

i=1

mi

)

x =

n∑

i=1

mixi. (2.1)

Yet, equation (2.1) is very useful in some cases. Thus, we recall the following.

Definition 2.3 (Divisible group). An additive group X is said to be divisible if for every
n ∈ N, nX = X . Alternatively, X is divisible if for every y ∈ X and for every n ∈ N, there
exists x ∈ X such that nx = y.

Definition 2.4 (Semidivisible group). An additive group is said to be p-semidivisible is
there exists p ∈ N prime such that pX = X , and X is said to be semidivisible if it is
p-semidivisible for some prime p.

We can similarly define divisible and semidivisible monoids, as well as divisible and semidi-
visible semimodules. In particular, all divisible submodules and divisible submonoids are
convex cones. A notion which is stronger than the above two is the following.

Definition 2.5 (Uniquely divisible group). An additive group X is said to be uniquely
divisible if for every n ∈ N and for every y ∈ X , there exists a unique x ∈ X such that
satisfies nx = y. Alternatively, X is said to be uniquely divisible if it is divisible and for
every n ∈ N, the map x 7→ nx is an injective map.

Similarly, we can consider the following notion.

Definition 2.6 (Uniquely divisible monoid). A monoid X is said to be uniquely divisible if
it is divisible and for every n ∈ N, the map x 7→ nx is an injective map.

Note that in monoids, singletons are convex if and only if the monoid is uniquely semidi-
visible, since we want

∑n
i=1mix = (

∑n
i=1mi) x to be the same as (

∑n
i=1mi) y if and only

if x = y. Divisibility and semidivisibility are important for the structure theory of infinite
abelian groups. See for example [Fuc70,Rob96]. We also refer the reader to [KTW11,Law10]
for some more recent examples relating to divisible groups.

Remark 2.1. A subgroup of a divisible group need not be divisible, or even semidivisible.
As a simple example, take X = R and Z ⊆ X . ⋄
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Remark 2.2 (Divisibility in abelian groups). It is known that every abelian group is a
subgroup of a divisible group. Moreover, the quotient of a divisible group is again divisible,
e.g., R/Z and Q/Z. Also, the torsion subgroup TG (of all elements of finite order) is divisible
and the quotient G/TG is a Q-vector space. Finally, the divisible groups are exactly the
injective abelian groups. ⋄
Remark 2.3. If X is p-semidivisible, i.e., pX = X then for every l ∈ N we have plX =
pl−1(pX) = pl−1X = · · · = pX = X . ⋄
Remark 2.4. Assume X = nX for some n ∈ N. Write n = pm1

1 · · ·pml

l . Then X =
pm1
1 · · · pml

l X = p1
(
pm1−1
1 · · · pml

l

)
X ⊆ p1X ⊆ X and so X = p1X . Thus, for us the assump-

tion that p is prime in Definition 2.4 plays no significant rôle. ⋄
As mentioned above, convexity has an entirely axiomatic approach. We refer the reader

to [vdV93] for more information about this rich topic. We will present only the basic defini-
tions and the return to the more concrete case of convexity in algebraic structures.

Definition 2.7 (Convexity). A collection C of subsets of a set X is said to be a convexity
(also an alignment), if it contains the empty set and is closed under intersections and directed
unions.

It is straightforward to check the convex sets defined by Definition 2.1 form a convexity.
Given the Definition 2.7, we can also define the convex hull.

Definition 2.8 (Convex hull). If A ⊆ X , define

conv(A) =
⋂

A⊆B
B convex

B.

The convex hull is a closure operator, i.e., it satisfies the following: 1. A ⊆ B =⇒
conv(A) ⊆ conv(B); 2. A ⊆ conv(A); 3. conv(conv(A)) = conv(A); 4. conv(∅) = ∅; 5.
Closure under intersections and directed unions.

In the case of monoids, we have the following concrete result.

Proposition 2.1 (Convex hull in monoid). If X is a monoid and A ⊆ X, the convex hull
of A is given by

conv(A) =

{

x ∈ X

∣
∣
∣
∣
∣
mx =

n∑

i=1

mixi, xi ∈ A, mi ∈ N, m =

n∑

i=1

mi

}

. (2.2)

Proof. Clearly the set on the right side of (2.2) is convex and contains A. If A ⊆ B and B
is convex, then B contains the set on the right side of (2.2). �

A map T : X1 → X2 between two monoids is said to be additive if T (x1+x2) = Tx1+Tx2

for all x1, x2 ∈ X1. It is well known that a linear image of a convex set in a vector space is
again convex. We establish a similar fact for additive bijections between monoids.

Proposition 2.2 (Convexity under additive bijection). Assume that X1, X2 are monoids
and T : X1 → X2 is an additive bijection. If A ⊆ X1 is convex, then TA ⊆ X2 is convex.

Proof. Assume that m,m1, . . . , mn ∈ N and y1, . . . , yn ∈ TA, y ∈ X2 are such that my =
∑n

i=1miyi, m =
∑n

i=1mi. Since T is onto, there exists x ∈ X1 such that Tx = y. Since
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y1, . . . , yn ∈ TA, there exist x1, . . . , xn ∈ A such that y1 = Tx1, . . . , yn = Txn. Hence,
we have T (mx) = mTx = my =

∑n
i=1miyi =

∑n
i=1miTxi = T (

∑n
i=1mixi). Since T is

injective, we have mx =
∑n

i=1mixi. Since x1, . . . , xn ∈ A and A is convex, it follows that
x ∈ X . Thus, y = Tx ∈ TA and TA is convex. �

Remark 2.5. If X1 is divisible then in the proof of Proposition 2.2 we always have y such
that my =

∑n
i=1miyi. If T is additive and A is convex, we must have y ∈ TA. Hence, in

this case we need not assume that T is a bijection. ⋄
For the inverse image, we have a more general result.

Proposition 2.3 (Convexity under inverse additive map). Assume that X1 and X2 are
monoids and T : X1 → X2 is additive. Assume that A ⊆ X2 is convex. Then T−1A ⊆ X1 is
convex.

Proof. Assume that x1, . . . , xn ∈ T−1A = {x | Tx ∈ A}, m,m1, . . . , mn ∈ N and x ∈ X1 are
such that mx =

∑n

i=1mixi, m =
∑n

i=1mi. Since x1, . . . , xn ∈ T−1A, we have Tx1, . . . , Txn ∈
A. Since T is additive, we have

∑n

i=1miTxi = T (
∑n

i=1mixi) = T (mx) = mTx. Since A is
convex, we have Tx ∈ A. Thus, x ∈ T−1A, which completes the proof. �

As we shall see, studying convexity in such a general setting also brings about a better
understanding of this notion in the standard setting of vector spaces. One complaint about
convexities is that there are too many of them and that in different settings one has to adjoin
many additional axioms. This is one more motivation for the current study.

2.2. Classes of functions. Here we consider several classes of functions defined on semi-
modules, particularly on monoids, classes which are well studied in the vector spaces setting.
In order to define convex functions, we need to consider an ordered semimodule, i.e., a semi-
module with a partial order ≤. Given a semimodule X over a semiring R, we say that a
partial order ≤ is compatible with the module operations, if rx1 ≤ rx2, x+ x1 ≤ x+ x2 for
all x ∈ X , r ∈ R, whenever x1 ≤ x2.

Definition 2.9 (Convex function). Let X, Y be a semimodules over a semiring R. Assume
that Y is equipped with a compatible partial order ≤. A function f : X → Y is said to be
convex if for every n ∈ N, every r1, . . . , rn ∈ R \ {0} and every x1, . . . , xn ∈ X ,

rf(x) ≤
n∑

i=1

rif(xi), (2.3)

for every x satisfying,

rx =

n∑

i=1

rixi, r =

n∑

i=1

ri.

f : X → Y is said to be concave if −f is convex. Clearly the sum of two convex functions
is convex.

Remark 2.6. As in Definition 2.1, if we have modules over a ring rather that over a semiring,
we assume we have a partial order on the ring that is compatible with the ring operations,
and then in Definition 2.9, we consider only strictly positive elements from the ring. ⋄
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Remark 2.7. We often consider a maximal element in Y , ∞. Also, in the case where Y is
a module, not just a semimodule, we may also consider a minimal element −∞. In order
for (2.3) to make sense, we assume for a convex function that ∞−∞ = 0 · ∞ = ∞. ⋄
Definition 2.10 (Affine function). Let X, Y be semimodules over a semiring R. Then
f : X → Y is said to be affine if for every n ∈ N, every r1, . . . , rn ∈ R \ {0} and every
x1, . . . , xn ∈ X ,

rf(x) =

n∑

i=1

rif(xi),

whenever x ∈ X satisfies,

rx =

n∑

i=1

rixi, r =

n∑

i=1

ri.

Clearly every affine function is both convex and concave. For an affine function, we again
cannot allow it to attain ±∞.

We can, however, consider the following notion.

Definition 2.11 (Generalised affine function). Assume that X, Y are semimodules over
a semiring R. Possibly Y contains a maximal element ∞ or a minimal element −∞. A
function f : X → Y ∪{±∞} is said to be generalized affine if it is both convex and concave.

Generalised affine functions are either affine or ‘very’ infinite.

Proposition 2.4. Assume that X and Y are groups, and a : X → Y ∪{±∞} is generalised
affine. Then either a is everywhere finite, or a = +∞, or a = −∞, or a attains both values
+∞ and −∞.

Proof. Assume that a is not everywhere finite, and that it is not identically +∞ or −∞.
Assume for example that there exist x1, x2 ∈ X such that a(x1) > α for all α ∈ R and a(x2)
is finite. We have 2x2 =

(
x2+(x1−x2)

)
+
(
x2− (x1−x2)

)
= x1+

(
2x2−x1), and so since a

is concave we have 2a(x2) ≥ a(x1) + a(2x2 − x1) > α+ a(2x2 − x1). Therefore we must have
a(2x2 − x1) = −∞. If we assume a(x1) = −∞ rather than +∞, the proof is similar. �

Definition 2.12 (Subadditive function). Assume that X, Y are semimodules over a semiring
R, and assume that Y is equipped with a partial order ≤. A function f : X → Y ∪ {±∞}
is said to be subadditive if for every x, y ∈ X ,

f(x+ y) ≤ f(x) + f(y).

The function x 7→ √
x is subadditive on [0,+∞) but not convex. As we will mostly be

concerned with groups and monoids, we now focus on functions with subadditive properties
over N.

Definition 2.13 (N-sublinear functions). Assume thatX, Y are semimodules over a semiring
R, and assume that Y is equipped with a partial order ≤. A function f : X → Y ∪{±∞} is
said to be N-sublinear if it is subadditive and in addition it is positively homogeneous, i.e.,
f(mx) = mf(x) for every x ∈ X and every m ∈ N ∪ {0}.
Definition 2.14 (Generalised N-linear function). Assume thatX, Y are as in Definition 2.13.
A function f : X → Y ∪ {±∞} is said to be generalised N-linear if both f and −f are N-
sublinear.

6



If f is a generalised N-linear function and f is finite, then for every choice of positive
integers m1, . . . , mn ∈ N, we have f (

∑n
i=1mixi) =

∑n
i=1mif(xi). The functions that satisfy

this property are exactly the additive functions on semimodules over Z+.
If f is N-sublinear and mx =

∑n

i=1mixi, where m =
∑n

i=1mi, then

mf(x) = f(mx) = f

(
n∑

i=1

mixi

)

≤
n∑

i=1

f(mixi) =
n∑

i=1

mif(xi).

In particular, every N-sublinear function on a monoid is convex. Also we have the following.

Proposition 2.5. Assume that X is a monoid, (Y,≤) a monoid with a compatible lattice
order ≤, and f1, . . . , fk : X → Y ∪ {±∞} are convex (N-sublinear, subadditive). Then the
function max{f1, . . . , fk} is also convex (N-sublinear, subadditive).

Proof. If f1, . . . , fk are convex and m,m1, . . . , mn ∈ N, x, x1, . . . , xn ∈ X are such that
mx =

∑n
i=1mixi, m =

∑n
i=1mi, then

m · max
1≤j≤k

{fj(x)} = max
1≤j≤k

{
mfj(x)

}

≤ max
1≤j≤k

{
n∑

i=1

mifj(xi)

}

(∗)
≤

n∑

i=1

mi · max
1≤j≤k

{fj(xi)}.

In (∗) we used the fact that ≤ is a lattice order, compatible with the group operations on
Y . The case of sublinear or subadditive functions is easy. We omit the proof. �

Proposition 2.6. Assume that X, Y are monoids. Then it suffices in Definition 2.9 that
r = pl for a fixed prime p and all l ∈ N.

Proof. Indeed, if r 6= pl, then there exists l ∈ N such that r < pl. Thus,

(
pl − r

)
x+

n∑

i=1

rixi = plx.

By the convexity property,

plf(x) ≤
(
pl − r

)
f(x) +

n∑

i=1

rif(xi),

which gives

rf(x) ≤
n∑

i=1

rif(xi),

as required. �

Proposition 2.6 implies the following.

Proposition 2.7. Assume that X, Y are monoids. Assume that f : X → Y is subadditive
and there exists p ∈ N such that f(px) = pf(x) for every x ∈ X, then f is convex. If Y is a
group, then f is in fact N-sublinear.

7



Proof. By Proposition 2.6, it is enough to assume in Definition 2.9 that r = pl, l ∈ N.
Assume then that plx =

∑n
i=1mixi. We have,

plf(x)
(∗)
= f(plx) = f

(
n∑

i=1

mixi

)
(∗∗)
≤

n∑

i=1

mif(xi),

where in (∗) we used the homogeneity assumption on f , and in (∗∗) we used the subadditivity
of f . To prove the second assertion, let m ∈ N. Then there exist m′, l ∈ N such that
m+m′ = pl. Thus, we have

(m+m′)f(x) = f
(
(m+m′)x

)
≤ f(mx) +m′f(x) ≤ (m+m′)f(x).

Thus, we have

(m+m′)f(x) = f(mx) +m′f(x),

and since Y is a group, this implies that f(mx) = mf(x) for all m ∈ N and all x ∈ X . This
complete the proof. �

2.3. Properties of convex functions. It is well known that a convex function on a
(semi)normed vector space is continuous at x0 if and only if f is bounded from above in
a neighbourhood of x0. If the space is normed, we derive a Lipschitz condition. See [BV10,
Zăl02]. We establish a similar fact for convex functions on topological monoids into [−∞,∞].
For a set B ⊆ X in an additive group and m ∈ N define 1

m
B =

{
x
∣
∣ mx ∈ B

}
. It is straight-

forward to show that if B is convex, 1
m
B is convex for all m ∈ N. Also, a set B ⊆ X is said

to be symmetric if −B = B. Again, if B is symmetric, then 1
m
B is symmetric. We have the

following.

Proposition 2.8. Let X be an additive group, f : X → [−∞,∞] a convex function, and
assume that there is a symmetric B ⊆ X and M ∈ R such that f(x) ≤ f(x0) + M for all
x ∈ x0 +B. Then for every y ∈ 1

m
B, we have |f(x0 + y)− f(x0)| ≤ M

m
.

Proof. First, note that if u ∈ B then −u ∈ B and by convexity we have 2f(x0) ≤ f(x0 +
u) + f(x0 − u) ≤ f(x0 + u) + f(x0) + M and so f(x0 + u) ≥ f(x0) − M . If f(x0) = −∞
then f = −∞ on x0 + B. Assume then that f(x0) > −∞. Let y ∈ 1

m
B. Then there

exists u ∈ B such that my = u. Thus, we have m(x0 + y) = (x0 + u) + (m − 1)x0 and
then using convexity of f gives mf(x0 + y) ≤ f(x0 + u) + (m − 1)f(x0) ≤ M . This gives
f(x0+y)−f(x0) ≤ 1

m

(
f(x0+u)−f(x0)

)
≤ M

m
. Also, by convexity, we have f(x0)−f(x0+y) ≤

f(x0 − y)− f(x0) ≤ M
m
, which completes the proof. �

In a topological group the group operations are continuous, and we obtain:

Corollary 2.1 (Continuity). Assume that X is a topological group and f : X → [−∞,∞]
is convex. Then f is bounded from above in around x0 if and only if f is continuous at x0.

We next show convex minorants inherit continuity of a majorant.

Corollary 2.2 (Minorants). Assume that X is a topological group and f, g : X → [−∞,∞].
Suppose that g is bounded above in a neighbourhood of x0, f is a convex minorant of g and
f(x0) is finite. Then f is continuous at x0.

8



Proposition 2.9 (Three-slope lemma for monoids). Let X be a monoid, and x, x1, x2 ∈ X,
m1, m2 ∈ N such that (m1 +m2)x = m1x1 +m2x2. Then for any convex function f : X →
(−∞,∞] we have

f(x)− f(x1)

m2
≤ f(x2)− f(x1)

m1 +m2
≤ f(x2)− f(x1)

m1
.

Proof. By convexity, we have (m1 + m2)f(x) ≤ m1f(x1) + m2f(x2), from which both in-
equalities follow easily. �

Except in a divisible setting we do not capture convexity using only three points – we can
not induct.

Proposition 2.10 (Monotone composition). Assume that X is a monoid. If f : X →
(−∞,∞] is sublinear and increasing and g : X → (−∞,+∞) is convex and non-decreasing,
then f ◦ g is also convex.

Proof. Assume that mx =
∑n

i=1mixi, mi ∈ N, m =
∑n

i=1mi. Then,

mf(g(x)) = f
(
mg(x)

)
≤ f

(
m1g(x1) + · · ·+mng(xn)

)
≤

n∑

i=1

mif(g(xi)),

as required. �

Remark 2.8 (Midpoint convexity and measurability). It is well known that measurability
forces a midpoint convex function on R to be convex and an additive function to be lin-
ear. There are certainly analogous results to be discovered in appropriate monoids, see for
example [Ros09]. ⋄
2.4. Operations on functions. We next extend some well-known vector operations on
convex and subadditive functions.

Definition 2.15 (Subadditive and sublinear minorants). Assume that X is a monoid and
f : X → (−∞,∞]. Define

p(x) = inf

{
n∑

i=1

f(xi)

∣
∣
∣
∣
∣

n∑

i=1

xi = x, n ∈ N

}

.

Then p is the largest function satisfying p ≤ f and also p(x+ y) ≤ p(x) + p(y). Define also

po(x) = inf

{
p(mx)

m

∣
∣
∣
∣
m ∈ N

}

,

where p is defined as above.

Now po is positively homogeneous as we have

po(m0x) = m0 inf

{

1

m0m

n∑

i=1

f(xi)

∣
∣
∣
∣
∣
m ∈ N,

n∑

i=1

xi = m0x

}

= m0 inf

{

1

m

n∑

i=1

f(xi)

∣
∣
∣
∣
∣
m ∈ N,

n∑

i=1

xi = x

}

,
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where the last equality holds since for every x1, . . . , xn ∈ X , we can choose x′
1, . . . , x

′
n′ ∈ X

satisfying 1
m

∑n
i=1 f(xi) =

1
m0m

∑n′

i=1 f(x
′
i). Also po is subadditive since

1

m1

n∑

i=1

f(xi) +
1

m2

n′

∑

i=1

f(x′
i) =

1

m1m2

(
n∑

i=1

m2f(xi) +

n′

∑

i=1

m1f(x
′
i)

)

,

where
∑n

i=1 xi = m1x,
∑n′

i=1 x
′
i = m2y. Choosing a finite index set I which is m2 copies of

each xi for 1 ≤ i ≤ n and m1 copies of each x′
i for 1 ≤ i ≤ n′ we get

∑

i∈I xi = m1m2(x+ y).
Thus,

1

m1

n∑

i=1

f(xi) +
1

m2

n′

∑

i=1

f(x′
i) =

1

m1m2

∑

i∈I
f(xi) ≥ po(x+ y).

Taking infima over m1, m2 implies that po is sublinear.

Definition 2.16 (N-Sublinear minorant). Assume that X is a monoid and f, g : X →
(−∞,∞]. Define

f ∧ g(x) = inf

{
n1f(x1) + n2g(x1)

n

∣
∣
∣
∣
n1x1 + n2x2 = nx

}

.

It is straightforward to check that if f , g are N-sublinear, so is f ∧ g.

3. Examples

Example 3.1 (Vector spaces). If X is a real vector space, then by definition, x ∈ conv(A)
if for every n ∈ N, every α1, . . . , αn ∈ (0, 1) and every x1, . . . , xn ∈ A,

(
n∑

i=1

αi

)

x =

n∑

i=1

αixi.

Taking βi =
αi∑
αi

> 0, this is equivalent to

x =
n∑

i=1

βixi,
n∑

i=1

βi = 1,

which is the standard definition of a convex hull in a vector space over R. ⋄
Example 3.2 (R as a Q-module). Consider X = R as a vector space over Q. In such case
x ∈ conv(A) if for every n ∈ N, every q1, . . . , qn ∈ Q+ \ {0} and every x1, . . . , xn ∈ A,

qx =
n∑

i=1

qixi, q =
n∑

i=1

qi,

which is equivalent to

x =

n∑

i=1

q′ixi,

n∑

i=1

q′i = 1, q′i ∈ [0, 1] ∩Q,

i.e., we take only rational convex combinations. ⋄
We now present examples of monoids and of the behaviour of the hull operator.
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Example 3.3 (The lattice Zd). Consider X = Zd with the addition induced from Rd. For
every A ⊆ X , we have

convZd(A) = convRd(A) ∩ Zd, (3.1)

where convRd(A) is the standard convex hull of A in Rn. To see this, first note that if
x ∈ convZd(A), then there exist x1, . . . , xn ∈ A, and m1, . . . , mn, m ∈ N such that mx =
∑n

i=1mixi, m =
∑n

i=1mi. This implies that

x =

n∑

i=1

mi

m
xi,

n∑

i=1

mi

m
= 1,

which means that x ∈ convRd(A), and so convZd(A) ⊆ convRd(A) ∩ Zd. To prove to other
inclusion, use induction on the dimension. If d = 1, and x ∈ convR(A)∩Z, then x is an integer
which is also a convex combination of two other integers x1, x2. Therefore, we can write
x = q1x1+q2x2 with q1, q2 ∈ Q, and so there existm1, m2, m ∈ Z such thatmx = m1x1+m2x2

and m = m1 +m2. To prove the general case, assume that x ∈ convRd(A) ∩ Zd. Then there
exist x1, . . . , xn ∈ A and α1, . . . , αn ≥ 0 with

∑n

i=1 αi = 1 such that x =
∑n

i=1 αixi. By

Carathéodory’s Theorem [Mat02], we can write x =
∑n′

i=1 αjxj , where n′ ≤ d+ 1 (we might
have to rearrange the points x1, . . . , xn). If dim

(
span{x1, . . . , xn′}

)
< d, use the induction

hypothesis to conclude that we can write x =
∑n′

i=1 qixi, with qi ∈ Q. Otherwise, we have
the following linear system.

[
x1 x2 . . . xd+1

1 1 . . . 1

]




α1
...

αd+1



 = x.

where x1, . . . , xd+1 are written as column vectors. In this case, one can show that the system
has a unique solution. Thus the matrix is invertible. Since the matrix has integer coefficients,

it follows that the qi’s are rational. And so once again we can write x =
∑n′

1 qixi with qi ∈ Q,
which implies that x ∈ convZd(A). ⋄
Example 3.4 (General lattices in Rd). We say that v1, . . . , vk ∈ Rd are independent over Z
if

k∑

i=1

mivi = 0, mi ∈ Z =⇒ mi = 0.

Assume that Γ = spanZ{v1, . . . , vk}, where v1, . . . , vk ∈ Rd are independent over Z. Let
T : Rk → Rd be defined as

T (α1, . . . , αk) =

k∑

i=1

αivi.

T is linear and T (Zk) = Γ. Also, since v1, . . . , vk are independent over Z, it follows that T
∣
∣
Zk

is invertible. Finally, since Γ is a Z-module, it follows from Proposition 2.1 that

convΓ(A) =

{
n∑

i=1

qiai

∣
∣
∣
∣
∣
ai ∈ A, qi ∈ Q ∩ [0, 1],

n∑

i=1

qi = 1

}

.
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Hence,

convΓ(A) = T
(
convZk

(
T−1A

))

(∗)
= T

(
convRk

(
T−1A

)
∩ Zk

)

(∗∗)
= T

(
convRk

(
T−1A

))
∩ TZk

(∗∗∗)
= convRd(A) ∩ Γ,

where in (∗) we used Example 3.3, in (∗∗) we used the invertibility of T over Zk, and in
(∗ ∗ ∗) we used the linearity of T . ⋄
Example 3.5 (Dyadic rationals). Let X be the rational numbers of the form m

2n
, where

m,n ∈ Z. We have that X is 2-semidivisible as X = 2X , since m
2n

= 2 m
2n−1 , but for any odd

number k we do not have 1 = k · m
2n
. Thus, X is not divisible. ⋄

Example 3.6 (Arctan semigroup). Let X = ([0,∞),⊕) with addition defined by

a⊕ b =
a+ b

1 + ab
.

Note that if a, b 6= 0 then a ⊕ b = 1
a
⊕ 1

b
. The unit is 0 as a ⊕ 0 = a. Also, for all a ≥ 0,

a ⊕ 1 = 1. Hence, conv({0}) = {0} and conv({1}) = {1}. For every a > 0 we have
a⊕a = 1

a
⊕ 1

a
. Thus, if a 6= 1 then 1

a
∈ conv({a}). This means that {0} and {1} are the only

convex singletons. Also, since a⊕ 1 = 1 for every a ∈ X , then for every A ⊆ X , we have

conv(A ∪ {1}) = conv(A) ∪ {1}.
Finally, note that for every a ≥ 0, we have

3a = a⊕ a⊕ a =
3a+ a3

1 + 3a2
,

and the function a 7→ 3a+a3

1+3a2
is onto [0,∞). Thus, X is 3-semidivisible. On the other hand,

a ⊕ a = 2a
1+a2

≤ 1, and so X is not divisible. In fact is is divisible precisely for all odd
numbers. ⋄

The next example illustrates that finding convex or affine functions on a group is solving
potentially subtle functional equations and inequalities

Example 3.7 (Hyperbolic group). Let Xp be the collection of all 2× 2 symmetric matrices

of the form e
2πil
p M(θ), where M(θ) =

[
cosh(θ) sinh(θ)
sinh(θ) cosh(θ)

]

, θ ∈ R and 0 ≤ l ≤ p− 1. Then

Xp is a group under the standard matrix multiplication, as we have
(

e
2πil1

p M(θ1)
)

·
(

e
2πil2

p M(θ2)
)

= e
2πi(l1+l2)

p M(θ1 + θ2).

In particular, the group is commutative. Also, if p|n, we have that M(θ)n =
(

e
2πil
p M(θ)

)n

=

M(nθ) for all 0 ≤ l ≤ p− 1. Thus, in this case we have nXp ( Xp. Otherwise, if p ∤ n, then

we have
(

e
2πl
p M(θ)

)n

= e
2πnl
p M(nθ). Since θ 7→ nθ and e

2πl
p 7→ e

2πnl
p is one-to-one and onto

(the second since p ∤ n), it follows that in this case nXp = Xp. Altogether, we conclude that
Xp is n-divisible if and only if p ∤ n.
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Next, we would like to show that it is easy to produce convex functions on the group

Xp. Indeed, if f : R → R is a convex function then defining F
(
e

2πil
p M(θ)

)
= f(θ) is also

convex. To see this, for m1, . . . , mn ∈ N and x1, . . . , xn, x ∈ X satisfying mx =
∑n

i=1mixi,

m =
∑n

i=1mi, assume that x = e
2πil
p M(θ), x1 = e

2πil1
p M(θ1), . . . , xn = e

2πiln
p M(θn). Thus,

we have

e
2πiml

p M(mθ) = e
2πi
p

∑n
j=1 mj ljM(m1θ1 + . . .mnθn). (3.2)

Note that if e
2πil
p M(θ) is the identity matrix, then l = θ = 0. Therefore, if e

2πil1
p M(θ1) =

e
2πil1

p M(θ1), then l1 = l2 and θ1 = θ2. In particular, (3.2) implies that mθ =
∑n

i=1miθi.
Hence, we have

mF (x) = mf(θ) ≤
n∑

i=1

mif(θi) =
n∑

i=1

miF (xi).

Note that restriction to M(θ) (determinant one) is a divisible subgroup. Also, consider
the group

XR =
{

eitM(θ)
∣
∣
∣ t, θ ∈ R

}

,

again with the standard multiplication. Then XR is a divisible group, since for every t, θ ∈ R
and every n ∈ N, we have

eitM(θ) =
(

ei
t
nM(θ/n)

)n

.

Note that for every p, Xp is a semidivisible subgroup of XR. Finally, note that if we consider
XR as a topological space, equipped with the topology induced from R4, then XR is connected
since we can write XR = Φ(R2), where Φ : (t, θ) 7→ eitM(θ) is continuous. See [BG15] for a
more detailed discussion on convexity in topological groups. ⋄
Example 3.8 (Finite groups). If X is a finite group then by the pigeon hole principle there
exists m ∈ N such that mx = 0 = m · 0. Thus x ∈ conv({0}) for every x ∈ X . Hence, X
and ∅ are the only convex sets in X . ⋄
Example 3.9 (Circle group). Let T = R/Z with the standard coset addition. In this case,
if x = [m/n] m,n ∈ N then nx = [0]. Thus,

conv({0}) =
{
x ∈ T

∣
∣ x has finite order

}
.

Also, for every x ∈ X , x + y ∈ conv({x}) for every y ∈ X which is of finite order. Thus,
there are no convex singletons in X . ⋄
Example 3.10 (Prüfer group). This is a subgroup of the circle group T, which is given by

Z(p∞) =
{
exp

(
2πim/pn

) ∣
∣ m,n ∈ N ∪ {0}

}
,

i.e., all pn-th roots of unity. Every element in this group has a finite order and so by the
previous example (and also by example 3.8), the only two convex sets are ∅ and the entire
group. It is also known that Z(p∞) is divisible. To see this, note that it is enough to show
that X = qX for every prime q. Let x = exp

(
2πim/pn

)
. If n = 0 then x = 1 = 1q. Assume

then that n > 0. If q = p then x = yq where y = exp
(
2πim/pn+1

)
. If q 6= p then since the
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greatest common divisor of pn and q is 1, there exist a, b ∈ Z such that apn + bq = 1. So
x = xapn+bq = xapnxbq = xbq. Choosing y = xb, then x = yq, as needed. ⋄
Example 3.11 (Extensions of Q). Consider X = Q + θQ, where θ is irrational, with the
addition operation then the mapping Φ : a+ θb 7→ (a, b) is a group homomorphism from X
to Q2. Thus

convX(A) = Φ−1
(
convQ2(Φ(A))

)
.

Similarly, we can consider extensions of Q be any number of algebraically independent num-
bers. ⋄
Example 3.12 (Half line with multiplication). If X = ((0,∞), ·), this semigroup is isomor-
phic to (R,+) via x 7→ log(x). Thus,

convX(A) = exp
(
conv(R,+)(log(A))

)
. (3.3)

If instead we choose X = ([0,∞), ·), then if 0 ∈ A, we have

convX(A) = {0} ∪ exp
(
conv(R,+)(log(A))

)
,

if 0 /∈ A then (3.3) still holds. ⋄
Example 3.13 (σ-algebras with symmetric differences). Given a set S, let X be a σ-algebra
of subsets of S. For A,B ∈ X , let A+B = A△B = (A∪B)\(A∩B). Clearly A△B = B△A.
Also, note that for every A ∈ F , A△∅ = A, and A△A = ∅. Thus, ∅ is the additive
unit and A = −A. It also follows that from every A ∈ X and n ∈ N, 2nA = ∅ and
(2n− 1)A = (2nA)△A = ∅△A = A. Thus, 2nX = {∅} ( X and (2n− 1)X = X , and so X
is (2n−1)-semidivisible but not 2n-semidivisible. Next, assume that A1, . . . , An, A ∈ X and
m1, . . . , mn, m ∈ N are such that mA =

∑n

i=1miAi and m =
∑n

i=1mi. Then by the above
arguments we have in fact

mA =
∑

i:2∤mi

miAi =
∑

i:2∤mi

Ai.

Thus, if A ⊆ X , then we can write

conv(A) =

{

A ⊆ X

∣
∣
∣
∣
∣
A =

n∑

i=1

Ai, Ai ∈ A, n ∈ N

}

.

Note that we always have ∅ ∈ conv(A) since A+A = ∅ = 2∅. This group can also be studied
as a topological group. See [BG15]. ⋄

4. Interpolation of scalar-valued functions

We begin with a slight extension of a seminal result.

Theorem 4.1 (Kaufman [Kau66]). Let X be a monoid and f, g : X → [−∞,∞) satisfying
g ≤ f , where f and −g are subadditive. Then there exists a function a : X → R which is
additive and satisfies g ≤ a ≤ f .

Theorem 4.1 is a generalization of Kaufman’s Hahn-Banach result which itself extends the
seminal result by Mazur and Orlicz [MO53]. Under the assumption that X is semidivisible,
the following holds.
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Convex case Subadditive case

Figure 1. Separation in groups

Theorem 4.2 (Interpolation of convex functions). Assume that X is a semidivisible monoid,
and f : X → [−∞,∞] and −g : X → [−∞,∞] are convex. Then there exists a function
a : X → [−∞,∞] which is generalised affine and satisfies g ≤ a ≤ f .

We illustrate the two results in Figure 1.

Proof. First, since f , −g are convex and g ≤ f , we have

mf(x) ≥
n∑

i=1

mig(xi),

mx =
n∑

i=1

mixi, m =
n∑

i=1

mi.

(4.1)

If f = g, then f is generalised affine and the proof is complete. Assume then that there
exists x0 ∈ X and r ∈ R such that f(x0) > r > g(x0). In such case, either we have

mf (x) ≥ m0r +

n∑

i=1

mig(xi), (4.2)

whenever we have

mx = m0x0 +

n∑

i=1

mixi, m = m0 +

n∑

i=1

mi,

or else

(m′ −m′
0)f(y) +m′

0r ≥
n′

∑

i=1

m′
ig(yi), (4.3)

whenever we have

m′
0x0 + (m′ −m′

0)y =
n′

∑

i=1

m′
iyi, m′ =

n∑

i=1

m′
i, m′

0 ≤ m′.
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To see this, assume that neither (4.2) nor (4.3) hold. Multiplying (4.2) by m′ and (4.3) by
m, we can find integers m0, . . . , mn, m

′
0, . . . , m

′
n′ ∈ N and elements x1, . . . , xn, y1, . . . , yn′ ∈ X

satisfying

m = m0 +
n∑

i=1

mi, mx = m0x0 +
n∑

i=1

mixi, (4.4)

m′ =

n′

∑

i=1

m′
i, m′

0 ≤ m′, m′
0x0 + (m′ −m′

0)y =

n′

∑

i=1

m′
iyi, (4.5)

such that

m′
0

n∑

i=1

mig(xi) +m0

n′

∑

i=1

m′
ig(yi) > m′

0mf(x) +m0(m
′ −m′

0)f(y)

≥
(
m′

0m+m0(m
′ −m′

0)
)
f(z),

where z satisfies
(
m′

0m+m0(m
′ −m′

0)
)
z = m′

0mx+m0(m
′ −m′

0)y

(4.4)
= m′

0m0x0 +m′
0

n∑

i=1

mixi +m0(m
′ −m′

0)y

(4.5)
= m0

n′

∑

i=1

m′
iyi +m′

0

n∑

i=1

mixi. (4.6)

Such z always exists since X is semidivisible, i.e., X = plX for some prime p and l ∈ N and
by Proposition 2.6 we may assume that m′

0m+m0(m
′ −m′

0) = pl. Now, we have

m′
0

n∑

i=1

mi +m0

n′

∑

i=1

m′
i

(4.4)∧(4.5)
= m′

0(m−m0) +m0m
′

= m′
0m−m′

0m0 +m0m
′

= m′
0m+m0(m

′ −m′
0).

Hence, we have

(
m′

0m+m0(m
′ −m′

0)
)
f(z)

(∗)
≥

(
m′

0m+m0(m
′ −m′

0)
)
g(z)

(∗∗)
≥ m′

0

n∑

i=1

mig(xi) +m0

n′

∑

i=1

m′
ig(yi), (4.7)

where in (∗) we used the fact that g ≤ f and in (∗∗) we used the fact that g is concave.
Now, (4.7) is a contradiction to (4.1). Thus, we must have that either (4.2) or (4.3) hold.
Assume first that (4.2) holds. Define

h(x) = sup

[

1

k

(

k0r +
n∑

i=1

kig(xi)

)]

, (4.8)

where the supremum is taken over all k, k0, k1, . . . , kn ∈ N and y1, . . . , yn ∈ X such that
kx = k0x0 +

∑n
i=1 kiyi and k = k0 +

∑n
i=1 ki. By choosing k1 = · · · = kn = 0, we have
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h(x0) ≥ r > g(x0). Since g is concave we also have that h ≥ g, and by (4.2) it follows that
h ≤ f . Next, we would like to show that h is concave, and that (4.1) holds for h instead of g.
To show the concavity, let m1, . . . , mn ∈ N, and x1, . . . , xn, x ∈ X such that mx =

∑n

i=1mixi

and m =
∑n

i=1mi. Let ǫ > 0, and for each 1 ≤ i ≤ n, choose ki, ki,0, . . . , ki,ni
∈ N and

yi,1, . . . , yi,n′ ∈ X such that kix = ki,0x0 +
∑ni

j=1 ki,jyi,j, ki = ki,0 +
∑ni

j=1 ki,j such that

kih(xi)−
kiǫ

m
≤ ki,0r +

ni∑

j=1

ki,jg(yi,j). (4.9)

Now, we have
(

m

n∏

i=1

ki

)

x =

n∑

i=1

(

mi

∏

j 6=i

kj

)

kixi

=

n∑

i=1

(

mi

∏

j 6=i

kj

)(

ki,0x0 +

ni∑

j=1

ki,jyi,j

)

=

n∑

i=1

(

miki,0
∏

j 6=i

kj

)

x0 +

n∑

i=1

(

mi

∏

j 6=i

kj

)(
ni∑

j=1

ki,jyi,j

)

.

Also, we have

m

n∏

i=1

ki =

n∑

i=1

(

miki,0
∏

j 6=i

kj

)

+

n∑

i=1

(

mi

∏

j 6=i

kj

)
ni∑

j=1

ki,j.

Thus, by the definition of h (4.8), we have

mh(x) ≥ 1
∏n

i=1 ki

[
n∑

i=1

(

miki,0
∏

j 6=i

kj

)

r +
n∑

i=1

(

mi

∏

j 6=i

kj

)
ni∑

j=1

ki,jg(yi,j)

]

=
1

∏n

i=1 ki

n∑

i=1

mi

∏

j 6=i

kj

[

ki,0r +

ni∑

j=1

ki,jg(yi,j)

]

(4.9)

≥ 1
∏n

i=1 ki

n∑

i=1

(

mi

∏

j 6=i

kj

)(

kih(xi)−
kiǫ

m

)

=

n∑

i=1

mih(xi)− ǫ.

Since ǫ is arbitrary, it follows that h is concave. Finally, we would like to show that if
mx =

∑n

i=1mixi, m =
∑n

i=1, then
∑n

i=1mih(xi) ≤ mf(x). This follows from the fact that
h is concave together with the fact that h ≤ f . The existence and the properties of h show
that g is not the maximal element in the class of all concave functions that satisfy (4.1).
Analogously, if (4.3) holds, define

h′(x) = inf

[
1

k′

(
k′
0r + (k′ − k′

0)f(y)
)
]

, (4.10)
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Figure 2. Failure of finite affine separation

where the infimum is taken over all k′
0 ≥ 0, k′ ∈ N, and y ∈ X such that k′x = k′

0x0 +
(k′ − k′

0)y. If k′ = k′
0 we define the right side of (4.10) to be r. Choosing k′ = k′

0 gives
h′(x0) ≤ r < f(x0) and choosing k0 = 0 gives h′(x) ≤ f(x) for all x ∈ X . Since (4.3) holds
and g is concave, we also have that g ≤ h′ and (4.1) holds with h′ instead of f . Also, in an
analogous way to the previous case, one can show that h′ is convex. To conclude the proof,
define the following ordered set D of all pairs of the form (h, h′), where h is concave, h′ is
convex, and (4.1) holds if we replace g by h or f by h′. Define the partial order on D to
be (h, h′) ≤ (w,w′) ⇐⇒ h ≤ w and w′ ≤ h′. Since (g, f) ∈ D, this chain is non-empty
and therefore has a maximal element. By the above consideration we conclude the maximal
element is generalised affine. �

Remark 4.1. Note that we used the semidivisibility only to show that either (4.2) or (4.3)
must hold. We did not use this fact again in the proof. ⋄
Remark 4.2. Similarly, the results hold if we work in a semimodule. ⋄

Remark 4.3. In general we cannot expect the affine function a to be better than generalised
affine in Theorem 4.2, even if X is a vector space. This is illustrated by the example of
f(x) = −√

x if x ≥ 0 and f(x) = −∞ if x < 0 and g(x) = −f(−x), where X = R. The only
separator comes from letting a to be +∞ when x > 0, −∞ when x < 0 and 0 when x = 0.
See Figure 2. ⋄

On the other hand, using Proposition 2.4, we have the following.

Corollary 4.1. Assume that X is a group. If either f or g is everywhere finite and the
other function is somewhere finite, then a is finite and affine.

The vector space version of the following result is used in [Hol75] as the basis for Hahn-
Banach theory. Once established, one imposes additional core conditions on A,B to show
cl C∩cl D is a separating half-space. Here one uses the algebraic closure. We take a different
(more modern) approach in the next section.

Corollary 4.2 (Stone’s lemma for monoids). Assume that X is a semidivisible monoid and
A,B ⊆ X are disjoint convex sets. Then there exist C,D ⊆ X disjoint and convex such that
A ⊆ C, B ⊆ D and C ∪D = X.
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Proof. Let f = ιA, g = −ιB , where

ιA(x) =

{

0 x ∈ A

∞ x /∈ A
,

and similarly for ιB. Then f,−g : X → [−∞,∞] are convex. Use Theorem 4.2 to deduce the
existence of a generalised affine function a : X → [−∞,∞] with −ιB ≤ a ≤ ιA. Choosing

C =
{
x ∈ X

∣
∣ a(x) < 0

}
, D =

{
x ∈ X

∣
∣ a(x) ≥ 0

}
,

concludes the proof. �

Theorem 4.2 also implies the following.

Corollary 4.3. Assume that X is semidivisible monoid and f : X → [−∞,∞] is convex.
Then f is the supremum over its generalised affine minorants.

Proof. Clearly we have

f(x) ≥ sup
{
a(x)

∣
∣ a ≤ f, a is affine

}
. (4.11)

To show that equality holds, assume to the contrary that we have a strict inequality in (4.11).
The function g which equals the supremum at x and −∞ everywhere else is concave. By
Theorem 4.2, there exists an affine function a such that

sup
{
a(x)

∣
∣ a ≤ f, a is affine

}
< a(x) < f(x),

which is a contradiction. �

Example 4.1 (Non separation). In the non-divisible setting, Theorem 4.2 fails even for
everywhere finite functions. Take for example X = Z2. Let A = convR2

({
(0, 2), (1, 0)

})
and

B = convR2

({
(0, 1), (2, 0)

})
, and

f(x) = 2
√
5dA(x)− 1,

g(x) = −2
√
5dB(x) + 1.

where dA(x) = infa∈A ‖x − a‖R2 . Note that for every x ∈ Z2 such that x /∈ A, we have
dA(x) ≥ 1√

5
. Similarly, if x ∈ Z2 and x /∈ B, we have dB(x) ≥ 1√

5
. For every x ∈ Z2, either

x /∈ A or x /∈ B and so dA(x) + dB(x) ≥ 1√
5
. Hence,

f(x)− g(x) = 2
√
5
(
dA(x) + dB(x)

)
− 2 ≥ 0,

and so g ≤ f on Z2. Also, f and −g are convex, since they are convex on all of R2 (the
distance to a convex set in a vector space is a convex function). Assume that a is affine and
satisfies g ≤ a ≤ f . By the choice of f and g, a has to be finite everywhere. Since a is affine,
we can write a(m1, m2) = c+α1m1+α2m2, where c, α1, α2 ∈ R. Since a ≤ f , we can choose
x = (0, 2) and x = (1, 0) and obtain

c+ 2α2 ≤ −1, c+ α1 ≤ −1.

Similarly, since a ≥ g we get

c+ 2α1 ≥ 1, c+ α2 ≥ 1.

Altogether, we get both c ≤ −3 and c ≥ 3. ⋄
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Figure 3. Convex separation in a lattice

Example 4.2. Let (X,∧) be a semimodule induced by a semilattice X . This is divisible
since x ∧ x = x. Thus, conv(S) is the sub semilattice generated by S. In this case convex
and subadditive functions coincide, and so Theorems 4.1 and 4.2 both assert the un-obvious
result that disjoint sub meet-lattices lie in partitioning sublattices. See Figure 3. Note
that since X contains nontrivial idempotent elements, it cannot be embedded in a group
(see [Ham05]). See also [Pon14] for a study of convexity in semilattices. ⋄

Part II: Convex operators on groups

5. Analysis of convex operators on groups

We turn now to results for operators on groups. By Example 3.2 and Remark 2.2, we
could derive many of these results using Q-modules but we prefer to highlight the use of
only monoidal structure.

5.1. Subdifferential calculus of operators. Here we assume that X , Y are groups, and
f : X → (Y ∪ {∞},≤), where ∞ is a maximal element with respect to the partial order ≤
on Y . Assume also that ≤ is compatible with the group operation, i.e., if x ≥ y iff x−y ≥ 0.
We also assume that the order is at least inductive, i.e., that every countable chain has an
upper bound. In Subsection 5.3, we will need to further assume that ≤ is a complete order,
i.e., that every order bounded set has an infimum and supremum. Of course Y may be R as
before.

Remark 5.1. A partial order in a Banach space is order complete if and only it is latticial.
Moreover, order completeness of the range characterises the Hahn-Banach extension theorem
holding. By contrast if the cone has a bounded complete base, the order is inductive. Thus,
in Euclidean space all pointed closed convex cones induce inductive orders. (See [BV10,
Bor82,BPT84,BT92] for much more on these technicalities in the vector space setting.) ⋄

As in Definition 2.12, f is said to be subadditive if f(x+y) ≤ f(x)+f(y). We can similarly
define N-sublinear and convex functions.

Definition 5.1 (Domain of convex function). Let X, Y be groups and f : X → Y ∪ {∞}
be convex. Define the domain of f to be the set

dom(f) =
{
x ∈ X

∣
∣ f(x) < ∞

}
.

It is easily shown that the domain of a convex function of a convex subset of X . The core
of the domain is then:
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Definition 5.2 (Core of domain). Let X, Y be groups and let f : X → Y ∪{∞} be a convex
function. Define the core of the domain of f to be

core(dom(f)) =
{
x ∈ X

∣
∣ ∀h ∈ X, ∃n ∈ N, ∃g ∈ X, ng = h, f(x+ g) < ∞

}
.

By choosing h = 0, it follows that core(dom(f)) ⊆ dom(f). More generally, we can define
the core of a convex function.

Definition 5.3 (Core of convex set). Let X be a group and C ⊆ X a convex set. Define
the core of C to be the set

core(C) =
{
x ∈ X

∣
∣ ∀h ∈ X, ∃n ∈ N, ∃g ∈ X, ng = h, x+ g ∈ C

}
.

Again, we have core(C) ⊆ C. Now we define the directional derivative.

Definition 5.4 (Directional derivative). Let X be a group, (Y ∪ {∞}) a group with an
inductive order, and f : X → Y ∪ {∞} a convex function. For x ∈ core(dom(f)), define

fx(h) = inf
{
n
(
f(x+ g)− f(x)

) ∣
∣ ng = h, f(x+ g) < ∞

}
.

Before proceed to the study of directional derivatives, we need the following technical
proposition.

Proposition 5.1. Assume that {an}n∈N and {bn}n∈N are two decreasing sequences in an
inductive and compatible cone. Then

inf
n∈N

{
an + bn

}
= inf

n∈N
an + inf

n∈N
bb.

Proof. Let n,m ∈ N with n > m. Then since {bn}n∈N is decreasing, we have an+bn ≤ an+bm.
Thus, we have

inf
n∈N

{
an + bn

}
≤
[
inf
n∈N

an
]
+ bm.

Taking the infimum over m gives infn∈N
{
an + bn

}
≤ infn∈N an + infm∈N bm. The converse

inequality is clear. This completes the proof. �

We have the following.

Proposition 5.2 (One-sided derivatives, I). Assume that a group X is a p-semidivisible
group, and (Y,≤) is a group with an inductive order. Assume also that f : X → Y ∪ {∞}
is convex and x ∈ core(dom(f)). Then fx is an everywhere finite, N-sublinear function.

Proof. For arbitrarily large n, n′ ∈ N with n < n′ we can find g, g′ ∈ X such that ng =
n′g′ = h and f(x+ g) < ∞, f(x+ g′) < ∞. We have n′(x+ g′) = n(x+ g) + (n′ − n)x, and
so by convexity n′f(x+ g′) ≤ nf(x+ g) + (n′ − n)f(x). Therefore, we have

n′(f(x+ g′)− f(x)) ≤ n(f(x+ g)− f(x)).

Also, if g, g′ ∈ X are such that ng = n′g′ = h, then (n+ n′)x = n(x− g) + n′(x+ g) and so
again by convexity, we have

n(f(x)− f(x− g)) ≤ n′(f(x+ g′)− f(x)).

Thus, the sequence
{
n
(
f(x+g)−f(x)

) ∣
∣ ng = h, f(x+g) < ∞

}
is decreasing and bounded

from below. Since ≤ is an inductive order on Y , fx(h) exists and is finite. To show that
fx(0) ≤ 0, note that we can choose g = 0 in Definition 5.4 and obtain fx(0) ≤ 0. To prove
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the positive homogeneity of fx, choose, g, g
′ ∈ X such that plg = ph and plg′ = h. Then we

have pl+1(x + g′) = pl+1x + ph = pl+1x + plg = (pl+1 − pl)x + pl(x + g). Thus, since f is
convex, we have

pl+1f(x+ g′) ≤ (pl+1 − pl)f(x) + plf(x+ g),

or in other words,

pl+1
(
f(x+ g′)− f(x)

)
≤ pl

(
f(x+ g)− f(x)

)
.

Taking the limit as l → ∞ and using the fact that the sequence in Definition 5.4 is decreasing,
we get pfx(h) ≤ fx(ph). On the other hand, we have,

pfx(h) = inf
{
pn
(
f(x+ g)− f(x)

∣
∣ ng = h

}

(∗)
≥ inf

{
pn
(
f(x+ g)− f(x)

∣
∣ png = ph

}

(∗∗)
= fx(ph).

In (∗) we used the fact that if pg = h then png = ph (but we might have a bigger set on
which we take the infimum). In (∗∗) we used the fact in Definition 5.4 the infimum is taken
over a decreasing sequence. This shows that px(ph) = pfx(h). Finally, to show subadditivity,
note that p(x+ g1 + · · ·+ gp) = (x+ pg1) + · · ·+ (x+ pgp), and so by convexity of f ,

p(f(x+ g1 + · · ·+ gp)− f(x))

≤
(
f(x+ pg1)− f(x)

)
+ · · ·+

(
f(x+ pgp)− f(x)

)
. (5.1)

Multiply (5.1) by n and then choose g1, . . . , gp such that ng1 = h1, . . . , ngp = hp. This is
possible since we may assume without loss of generality that n = pl for some l ∈ N, and this
is because the sequence

{
n
(
f(x+ g)− f(x)

) ∣
∣ ng = h, f(x+ g) < ∞

}
is decreasing. We get

p
(
nf(x+ g1 + · · ·+ gp)− f(x))

)
≤

p∑

j=1

n
(
f(x+ gj)− f(x)

)
(5.2)

By Definition 5.4, we have

p
(
nf(x+ g1 + · · ·+ gp)− f(x))

)
≥ pfx(h1 + · · ·+ hp). (5.3)

To evaluate the right side of (5.2), note that for each 1 ≤ j ≤ p, the sequence
{
n
(
f(x+ gj)− f(x)

) ∣
∣ ngj = hj , f(x+ gj) < ∞

}

is decreasing. Thus, using Proposition 5.1 and taking the infimum over the right side of (5.2),
we get,

inf

{
p
∑

j=1

n
(
f(x+ gj)− f(x)

)

∣
∣
∣
∣
∣
ngj = phj , f(x+ gj) < ∞, 1 ≤ j ≤ p

}

=

p
∑

j=1

inf
{

n
(
f(x+ gj)− f(x)

)
∣
∣
∣ ngj = phj , f(x+ gj) < ∞, 1 ≤ j ≤ p

}

=

p
∑

j=1

fx(phj). (5.4)
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Combining (5.3) and (5.4), we get

pfx(h1 + . . . hp) ≤ fx(ph1) + · · ·+ fx(php),

and so, since fx(phj) = pfx(hj), 1 ≤ j ≤ p, we get

fx(h1 + . . . hp) ≤ fx(h1) + · · ·+ fx(hp).

Note that here we used the fact that ≤ is compatible with the group operations on Y , and
therefore we have py1 ≤ py2 =⇒ y1 ≤ y2. Next, note that since is assumed to be p prime,
p ≥ 2. Choosing h3 = · · · = hp = 0, we get

f(h1 + h2) ≤ fx(h1) + fx(h2) + fx(h3) + · · ·+ fx(hp)

(∗)
≤ fx(h1) + fx(h2) + 0

= fx(h1) + fx(h2).

where in (∗) we used the fact that fx(0) ≤ 0. Altogether we have that fx is subadditive and
f(px) = pf(x). Now apply Proposition 2.7 to deduce that f is N-sublinear, and the proof is
complete. �

Remark 5.2. The proof of Proposition 5.2 shows that the sequence n
(
f(x + g) − f(x)

)
,

ng = h, f(x+ g) < ∞, is decreasing. If we assume that we have both pX = X and qX = X ,
then in (5.4), we can choose n = pl or n = ql for every l ∈ N and the infimum would be the
same in both cases. ⋄

In the case when f is not only convex, but actually N-sublinear, we have the following
stronger result.

Proposition 5.3 (One-sided derivatives, II). Assume that X is a group, (Y,≤) is a group
with an inductive order, and f : X → Y ∪ {∞} is N-sublinear map, and x ∈ core(dom(f)).
Then fx is an everywhere finite N-sublinear map, that satisfies in addition fx(0) = 0, fx(x) =
−fx(−x) = f(x).

Proof. When f is N-sublinear, (5.4) becomes

fx(h) = inf
{
f(nx+ h)− nf(x)

∣
∣ f(nx+ h) < ∞

}
.

Since f is positively homogeneous, it is easy to see that fx(x) = −fx(−x) = f(x) and
fx(0) = 0. To show the positive homogeneity of fx, use the fact that, as in the proof of
Proposition 5.2, the sequence

{
f(nx + h) − nf(x)

}
is decreasing, and so we have for all

m ∈ N,

fx(mh) = inf
{
f(nx+mh)− nf(x)

∣
∣ f(nx+mh) < ∞

}

= inf
{
f(mkx+mh)−mkf(x)

∣
∣ f(mkx+mh) < ∞

}

= m inf
{
f(kx+ h)− kf(x)

∣
∣ f(kx+ h) < ∞

}

= mfx(h).

To show the subadditivity, take n1, n2 ∈ N. Since f is subadditive, we have,

fx(h1 + h2) ≤ f((n1 + n2)x+ h1 + h2)− (n1 + n2)f(x)

≤
(
f(n1x+ h1)− n1f(x)

)
+
(
f(n2x+ h2)− n2f(x)

)
.
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Taking the infimum over all n1, n2 ∈ N such that f(n1x + h1) < ∞, f(n2x + h2) < ∞, the
subadditivity follows. �

Given two monoids X and Y , let L(X, Y ) be the collection of all additive maps between
X and Y . As in the vector space setting, define the following:

∂f(x0) =
{

a ∈ L(X, Y )
∣
∣
∣ f(x0) + a(h) ≤ f(x0 + h)

}

.

In the vector space setting it is usually required that a(x− x0) ≤ f(x)− f(x0). However, in
order to avoid taking differences, we use the above definition. Let L(X, Y ) be the space of
all additive maps between X and Y . Then it follows that ∂f(x0) ⊆ L(X, Y ).

Proposition 5.4. Assume that X is a p-semidivisible group, (Y,≤) is a group with an
inductive order, and f : X → Y ∪ {∞} is subadditive and satisfies f(px) = pf(x) for all
x ∈ X. If x ∈ core(dom(f)), then fx ≤ f and

fx(x) + fx(−x) ≤ 0.

Proof. To prove the first assertion, note that

fx(h)
(∗)
= inf

{
n
(
f(x+ g)− f(x)

) ∣
∣ ng = h, f(x+ g) < ∞

}

= inf
{
pl
(
f(x+ g)− f(x)

) ∣
∣ plg = h, f(x+ g) < ∞

}

≤ inf
{
plf(g)

∣
∣ plg = h, f(x+ g) < ∞

}

(∗∗)
= f(h),

where in (∗) we used the fact that
{
n
(
f(x + g) − f(x)

) ∣
∣ ng = h, f(x + g) < ∞

}
is a

decreasing sequence and in (∗∗) we used the fact that f(px) = pf(x). To prove the second
assertion, choose g such that pg = x and note that

fx(x) + fx(−x) ≤ p
(
f(x+ g)− f(x)

)
+m

(
f(x− g)− f(x)

)

= f((p+ 1)x) + f((p− 1)x)− 2pf(x)

≤ 0,

where in the last inequality we used the subadditivity of f . �

Proposition 5.5. If (Y,≤) satisfies that for every m ∈ N my1 ≤ my2 =⇒ y1 ≤ y2 then
∂p(x0) is convex in L(X, Y ).

Proof. For a1, . . . , an, a ∈ L(X, Y ), assume that ma =
∑n

i=1miai, m =
∑n

i=1mi. Then we
have

m
(
f(x0) + a(x)

)
=

n∑

i=1

(f(x0) + ai(x)) ≤
n∑

i=1

mif(x) = mf(x).

By the assumption on Y , it follows that f(x0) + a(x) ≤ f(x). �
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5.2. The maximum or max formula. We show that the well known max formula [BV10,
BL06] holds in this generality.

Theorem 5.1 (Max formula). Assume that X is a p-semidivisible group, that (Y,≤) is an
additive group with an inductive order, and f : X → Y ∪ {∞} is convex. Assume also that
for some x0 ∈ core(dom(f)), we have

fx0(x0) + fx0(−x0) ≤ 0. (5.5)

Then we have

fx0(h) = max
{
a(h)

∣
∣ a ∈ ∂f(x0)

}
. (5.6)

In particular, f admits additive minorants, and ∂f(x0) 6= ∅. The maximal element in (5.6)
is bounded.

Proof. Define C to be the set of all pairs (ϕ, S), where S ⊆ X , and ϕ : X → Y ∪ {∞} is
N-sublinear and satisfies ϕ ≤ fx0, and sups∈S

(
ϕ(s) + ϕ(−s)

)
≤ 0. Define a partial order on

C by

(ϕ1, S1) ≤ (ϕ2, S2) ⇐⇒ ϕ1 ≥ ϕ2, S1 ⊆ S2.

(C,≤) is inductive, as both ≤ and ⊆ are inductive orders. By Proposition 5.2, we have
fx0(0) = 0, implying that (fx0 , {0}) ∈ C and so C 6= ∅. Therefore, C has a maximal element
(ϕ̄, S̄). We claim that we must have S̄ = X . Otherwise, choose y ∈ X \ S̄. Since (ϕ̄, S̄) ∈
C, in particular it follows that the function ϕ̄ satisfies the hypotheses of Proposition 5.4.
Also, y ∈ core(dom(f)) since ϕ̄ ≤ fx0 and fx0 is everywhere finite (by Proposition 5.2).
Therefore, Proposition 5.4 implies that ϕ̄y ≤ ϕ̄ and ϕ̄y(y) + ϕ̄y(−y) ≤ 0. This means that
(ϕ̄y, S̄ ∪ {y}) ∈ C, which is a contradiction to the maximality of (ϕ̄, S̄). Thus, we have
S̄ = X . Next, we claim that ϕ̄ is additive on X . If not, then since ϕ̄ is subadditive,
there must exist x, h ∈ X such that ϕ̄(x + h) − ϕ̄(h) < ϕ̄(x). But then ϕ̄x ≤ ϕ̄ which
is again a contradiction to the maximality of (ϕ̄, S̄). Since ϕ̄ ≤ fx0 and by (5.5) we have
ϕ̄(−x0) ≤ fx0(−x0) ≤ −fx0(x0), it follows that ϕ̄(x0) = fx0(x0) and ϕ̄ is bounded. Choosing
a = ϕ̄ proves (5.6). Since x ∈ core(dom(f)), Definition 5.4 implies that the maximal element
in (5.6) is indeed bounded. This completes the proof. �

An instructive setting is when Y is the symmetric matrices endowed with the (non-lattical)
semidefinite order.

Remark 5.3 (Well posedness). If f is N-sublinear and ng = x, then by positive homogeneity,
we have n

(
f(x − g) − f(x)

)
= f((n − 1)x) − f(nx) = −f(x) and n

(
f(x + g) − f(x)

)
=

f((n+ 1)x)− f(nx) = f(x). In particular, fx(x) + fx(−x) ≤ 0 for every x ∈ core(dom(f)).
Thus, every N-sublinear function satisfies the assumptions of Theorem 5.1. ⋄
Remark 5.4. Using Proposition 5.3, we have that Theorem 5.1 holds if f is N-sublinear,
even if we omit the subdivisibility assumption. ⋄
5.3. Fenchel-Rockafellar duality. As in vector spaces, define the additive dual group of
a group X to be

X∗ =
{
ϕ : X → R

∣
∣ ϕ is additive

}
.
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Then X∗ is an additive group with the addition being point-wise addition. We emphasise
that X∗ is not the group of homomorphisms of X . How rich a notion this is depends on the
given group.

Consider now (Z,≤) which is order complete. We still require that ≤ is compatible with
the group operation. Define the conjugate function f ⋆ : X∗ → Z ∪ {∞} to be

f ⋆(ϕ) = sup
x∈X

{
ϕ(x)− f(x)

}
. (5.7)

The conjugate function has been studied extensively in the vector space setting. See for ex-
ample [BL06,BV10,Roc97]. Note that f ∗(ϕ) = +∞ will happen if (5.7) has no upper bound.
Before proving the Fenchel duality theorem for groups, we need the following proposition.

Proposition 5.6. Assume that X1, X2, Z are groups, where X1 is semidivisible and (Z,≤) is
an order complete group. Let T : X1 → X2 be additive, and assume that f : X1 → Z ∪ {∞}
and g : X2 → Z ∪ {∞} are convex. If we define h : X2 → Z ∪ {∞} by

h(u) = inf
x∈X1

[
f(x) + g(Tx+ u)

]
,

then h is convex, and it domain is given by

dom(h) = dom(g)− Tdom(g). (5.8)

Proof. First, note that since g is convex and T is additive, it follows that g◦T : X1 → Z∪{∞}
is convex. Next, to show the convexity of h, let m1, . . . , mn ∈ N, u1, . . . , un, u ∈ X2 such
that mu =

∑n

i=1miui, m =
∑n

i=1mi. Let x1, . . . , xn ∈ X1. By Proposition 2.6, we may
assume that m = pl, where p is a prime satisfying pX = X . Hence, there exists x ∈ X1 such
that mx =

∑n

i=1mixi. We have

mh(u) ≤ m
(
f(x) + g(Tx+ u)

)

≤
n∑

i=1

mi

(
f(xi) + g(Txi + ui)

)
.

Taking the infimum over x1, . . . , xn ∈ X , we get

mh(u) ≤
n∑

i=1

mih(ui).

The proof of (5.8) is immediate. This completes the proof. �

Theorem 5.2 (Fenchel-Young inequality for groups). Suppose that X, Z, are groups, Z is
order complete, and f : X → Z ∪ {∞}. Then for every x ∈ X and every ϕ ∈ X∗,

f(x) + f ⋆(ϕ) ≥ ϕ(x).

Equality holds if and only if ϕ ∈ ∂f(x).

Proof. By definition (5.7), ϕ(x) − f(x) ≤ f ⋆(ϕ) which implies f(x) + f ⋆(ϕ) ≥ ϕ(x). If
ϕ ∈ ∂f(x), then f(x) + ϕ(y − x) ≤ f(y) and so f(x) − ϕ(x) ≤ f(y) − ϕ(y). Taking the
infimum over the right side gives f(x)−ϕ(x) ≤ −f ⋆(ϕ) which then gives f(x)+f ⋆(ϕ) = ϕ(x).
Conversely, by the definition of f ⋆, if f(x) + f ⋆(ϕ) = ϕ(x) then ϕ(y−x) ≤ f(y)− f(x), and
so ϕ ∈ ∂f(x) as required. �
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Example 5.1. If X is a meet lattice then additive functions are identically 0, since for every
m ∈ N we have

f(x) = f(

m times
︷ ︸︸ ︷
x ∧ · · · ∧ x) = mf(x).

Hence X∗ = {0} and Theorem 5.2 simply gives f(x) ≥ infx∈X f(x). ⋄
For an additive map T : X1 → X2 define the adjoint T ∗ : X∗

2 → X∗
1 in the usual way

(T ∗x∗
2)(x1) = x∗

2(Tx1), x1 ∈ X1, x∗
2 ∈ X∗

2 .

We are now in a position to state and prove the Fenchel duality theorem.

Theorem 5.3 (Weak and strong Fenchel duality). Let X1, X2, Z, be groups, and (Z,≤) an
order complete group. Given f : X1 → Z ∪ {∞}, g : X2 → Z ∪ {∞} and an additive map
T : X1 → X2, define

P = inf
x∈X1

{
f(x) + g(Tx)

}
,

D = sup
ϕ∗∈X∗

2

{
− f ⋆(T ∗ϕ)− g⋆(ϕ)

}
.

Then P ≥ D (weak duality). In particular, if P = −∞ then D = −∞. If, in addition, X1

is semidivisible, f and g are convex and we assume

0 ∈ core
(
dom(g)− T dom(f)

)
,

then P = D (strong duality) and D is attained when finite.

Proof. To prove weak duality, note that P ≥ D is equivalent to

inf
x∈X1
ϕ∈X∗

2

[

f(x) + f ⋆(T ∗ϕ) + g(Tx) + g⋆(−ϕ)
]

≥ 0.

By Theorem 5.2, we have f(x)+f ⋆(T ∗ϕ) ≥ (T ∗ϕ)(x) and g(Tx)+ g⋆(−ϕ) ≥ −ϕ(Tx). Then
by the definition of T ∗ we have (T ∗ϕ)(x)− ϕ(Tx) = 0.

To prove strong duality, define h : X2 → Z ∪ {∞},
h(u) = inf

x∈X1

{
f(x) + g(Tx+ u)

}
.

By Proposition 5.6, h is convex and dom(h) = dom(g)− T dom(f) is a convex set. Since we
assume that 0 ∈ core

(
dom(g)− T dom(f)

)
, applying Theorem 5.1 for h and x0 = 0 implies

that there exists ϕ : X2 → Z ∪ {∞} additive such that ϕ(u) ≤ h(u)− h(0) (note that since
we choose x0 = 0 in Theorem 5.1, the condition hx0(x0) + hx0(−x0) ≤ 0 holds, as hx(0) = 0
always). Hence,

h(0) ≤ h(u)− ϕ(u) ≤ f(x) + g(Tx+ u)− ϕ(u)

=
[
f(x)− (T ∗ϕ)(x)

]
+
[
g(Tx+ u)− (−ϕ(Tx+ u))

]
.

Taking the infimum over x ∈ X1, u ∈ X2 implies

h(0) ≤ −f ⋆(T ∗ϕ)− g⋆(−ϕ) ≤ D.

Since h(0) = P , strong duality follows. Again the dual supremum is attained when finite. �
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Example 5.2. If X2 is a meet lattice, then X∗
2 = {0} and

D = −f ⋆(0)− g⋆(0) = inf
x∈X1

f(x) + inf
x∈X2

g(x)

which is clearly smaller than P . ⋄
Remark 5.5. Assume that in Theorem 5.3 we have N-sublinear functions rather than convex
functions. Then if we use Proposition 5.3, Theorem 5.3 still holds even if we omit the
subdivisibility assumption. ⋄

Next we discuss applications of Theorem 5.3. One of the classical applications, is a rep-
resentation for the subdifferential of a sum of convex functions. We show that such a result
holds for groups as well.

Theorem 5.4 (Sum rule for subdifferentials). Suppose f : X1 → Z∪{∞}, g : X2 → Z∪{∞},
for (Z,≤) an order complete group and T : X1 → X2 is additive. Then

∂
(
f + g ◦ T

)
(x0) ⊇ ∂f(x0) + T ∗∂g(x0).

If, in addition, X1 is semidivisible, 0 ∈ core
(
dom(g)− T dom(f)

)
,while f and g are convex,

then equality holds.

Proof. The first inclusion follows immediately. To prove the equality case, let φ ∈ ∂
(
f +

g ◦ T
)
(x0). Then the function (f − φ) + g ◦ T is minimised at x0. Assume without loss of

generality that the minimum is 0. By the strong Fenchel duality result with P = D = 0,
there exists ϕ ∈ X∗

2 such that

0 = −(f − φ)⋆(T ∗ϕ)− g⋆(−ϕ) = −f ⋆(T ∗ϕ+ φ)− g⋆(−ϕ).

Hence, for every x1 ∈ X1 and x2 ∈ X2, we have

0 ≤ (f − φ)(x1)− T ∗ϕ(x1) + g(x2) + ϕ(x2). (5.9)

In particular, choosing x1 = x0, we have for all x2 ∈ X2,

−ϕ(x− Tx0) ≤ (f − φ)(x0) + g(x2) = g(x2)− g(Tx0),

where in the last equality we used our assumption that (f − φ)(x0) + g(Tx0) = 0. Thus, we
have −ϕ ∈ ∂g(Tx0). Also, by (5.9), we have

sup
x1∈X1

(
− g(Tx1)− T ∗ϕ(x1)

)
≤ inf

x1∈X1

(
(f − φ)(x1)− T ∗ϕ(x1)

)
.

Thus there exists z0 ∈ Z such that for all x1 ∈ X1,

−g(Tx1) ≤ (T ∗ϕ)(x1) + z0 ≤ (f − φ)(x1)

and equality holds when x1 = x0. Hence z0 = 0 and T ∗ϕ+ φ ∈ ∂f(x0), which completes the
proof of the theorem. �

Another application of Theorem 5.3 is a Hahn-Banach theorem for groups.

Theorem 5.5 (Hahn-Banach theorem for groups). Let X be a group, X ′ ⊆ X a subgroup,
and (Z,≤) an order complete group. Assume that f : X → Z is N-sublinear and h : X ′ → Z
is additive such that h ≤ f on X ′. Then there exists h̄ : X → Z additive such that h̄ ≤ f
and h̄ = h on X ′.
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•
(0, 0)

Figure 4. Single minorant in R

Proof. Choose X1 = X2 = X and let T : X → X be the identity map. Choose g : X ′ →
Z ∪ {∞} to be g = −h + ιX′ , where

ιX′(x) =

{

0 x ∈ X ′,

∞ x /∈ X ′.

Since f : X → Z, dom(f) = X . Also, dom(g) = X ′. Thus 0 ∈ core(dom(f) − Tdom(g))
and we can thus use Theorem 5.3. Note that by Remark 5.5 we do not need to assume
subdivisibility as we are dealing with N-sublinear functions. Now, by Theorem 5.3, we have

0 ≤ inf
x∈X

{
f(x)− h(x) + ιX′(x)

}

= inf
x∈X

{
f(x) + g(x)

}

= sup
ϕ∈X∗

{
− f ⋆(ϕ)− g⋆(−ϕ)

}
. (5.10)

Thus, there exists ϕ ∈ X∗ such that for all x ∈ X ′, f ⋆(ϕ) ≤ ϕ(x)−h(x). Since f is sublinear,
f(0) = 0 and so it follows that f ⋆(ϕ) ≥ 0 or in other words h(x) ≤ ϕ(x), x ∈ X ′. Since X ′

is a subgroup and ϕ is additive, we have h(x) = ϕ(x) on X ′ and g⋆(−ϕ) = 0. Now (5.10)
implies that f ⋆(ϕ) = 0, which implies that ϕ(x) ≤ f(x) for all x ∈ X . �

Remark 5.6. If X and Z are groups and f, g : X → Z ∪ {∞} are additive with g ≤ f ,
then f = g. However, if X is only a semigroup, this is no longer always true. As a result,
we cannot expect strong Hahn-Banach type theorems on arbitrary semigroups. ⋄
Theorem 5.6 (Sandwich theorem for groups). Assume that X1 is a semidivisible group,
X2 a group, and (Z ∪ {∞},≤) a group with complete order. Let f : X1 → Z ∪ {∞},
−g : X2 → Z ∪ {∞} be convex and T : X1 → X2 be additive, such that g ◦ T ≤ f . Assume
that 0 ∈ core(dom(g)− T dom(f)). Then there exists an additive function a : X → Z such
that g ◦ T ≤ a ≤ f .

Proof. Using Theorem 5.3, we have P ≤ 0 and so there exists ϕ ∈ X∗
2 such that (−g)⋆(−ϕ) ≤

−f ⋆(T ∗ϕ). This implies that

sup
x∈X1

(
− g(Tx)− T ∗ϕ(x)

)
≤ inf

x∈X1

(
f(x)− T ∗ϕ(x)

)
. (5.11)

T ∗ϕ is the required additive function. If P = −∞ in Theorem 5.3, then P < −α < 0 for
every α > 0 and so inequality (5.11) still holds. �

Remark 5.7. By Proposition 5.3, Theorem 5.6 holds if we replace convex functions by
N-sublinear, even if we omit the subdivisibility assumption. ⋄
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Remark 5.8. Even for X = R, the only additive minorant may be a = 0. Consider the
subadditive (non-convex) function f(x) =

√

|x|. See Figure 4. ⋄

6. Subadditive optimisation

Let f, g1, . . . , gk : X → [−∞,∞] and b ∈ R. Define v : Rk → [−∞,∞] by

v(b) = v(b1, . . . , bk) = inf
{
f(x)

∣
∣ x ∈ X, g1(x) ≤ b1, . . . , gk(x) ≤ bk

}
. (6.1)

v is also known as the value function. We have the following.

Proposition 6.1 (Subadditive and sublinear value functions). Assume that X is a monoid
and f, g1, . . . , gk : X → [−∞,∞] are subadditive. Then the function v : Rk → [−∞,∞]
defined by (6.1) is subadditive. If, in addition, X is assumed to be p-semidivisible and
f, g1, . . . , gk satisfy f(px) = pf(x), gi(px) = pgi(x), 1 ≤ i ≤ k then v satisfies v(px) = pv(x).
In particular, by Proposition 2.7, v is convex.

Proof. Let x1, x2 ∈ X be such that gi(x1) ≤ bi, g(x2) ≤ ci, 1 ≤ i ≤ k. Since g1, . . . , gk are
subadditive, gi(x1 + x2) ≤ gi(x1) + gi(x2) ≤ bi + ci, 1 ≤ i ≤ k. Thus, of b = (b1, . . . , bk),
c = (c1, . . . , ck), then

v(b+ c) ≤ f(x1 + x2) ≤ f(x1) + f(x2),

where we used the subadditivity of f . Taking the infimum over the right side, the first
assertion follows. To prove the second assertion, we only need to prove positive homogeneity.
Indeed, for every x ∈ X , since X is p-semidivisible, there exists y ∈ X satisfying x = py. As
a result,

v(pb) = inf
{
f(x)

∣
∣ x ∈ X, g1, (x) ≤ pb1, . . . , gk(x) ≤ pbk

}

= inf
{
f(py)

∣
∣ y ∈ X, g1(py) ≤ pb1, . . . , gk(py) ≤ pbk

}

= inf
{
pf(y)

∣
∣ y ∈ X, pg1(y) ≤ pb1, . . . , pgk(y) ≤ pbk

}

= p inf
{
f(y)

∣
∣ y ∈ X, g1(y) ≤ b1, . . . , gk(y) ≤ bk

}

= pv(b),

and we are done. �

Remark 6.1. The result holds if the module is over a semidivisible semiring R and f and
g are subadditive functions. ⋄

In the sublinear case, we may now apply Theorem 5.1 to the function h of Proposition 6.1
to describe h in terms of additive minorants.

Example 6.1. Let b ∈ R, and let

inf
{
− x

∣
∣ 2x ≤ b, x ∈ Z

}
= −

⌈
b

2

⌉

.

Thus, in the nondivisible setting, even if k = 1 and f and g1 are additive, v need not be
homogeneous. ⋄
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In general integer programming [Wil97,AV95] adding the sub additive, but notN-homogeneous,
ceiling function ⌈ · ⌉ allows one to reconstruct integer value functions but the additive mino-
rants do not suffice. This is discussed in [TW81,BJ82]. It is interesting to ask what class of
groups allows an analogue of the ceiling?

We note also that methods that were originally developed to study linear programming
results in vector spaces, such as the cutting-plane method [Kel60], can also be used to
study integer linear programming problems. See also [AV95,LL02] and the survey [BV] for
more information on the cutting-planes method, and [BJ82,Gom58,GB60, LL02] for more
information on integer programming.

6.1. Lagrange multipliers in action. Suppose now that we have an optimisation problem
with m constraints:

inf
{
f(x)

∣
∣ g1(x) ≤ 0, . . . , gk(x) ≤ 0

}
.

Let g(x) = (g1(x), . . . , gk(x)) ∈ Rm. Define the Lagrangian function L : X ×Rk → (−∞,∞]
to be

L(x, λ) = f(x) + λ · g(x).
Here, λ · g(x) is the standard inner product in Rk. We say that λ̄ ∈ Rk is a Lagrange
multiplier if the Lagrangian function L( · , λ̄) has the same infimum as f on X . We will now
show that Lagrange multipliers can be used to compute the subdifferential of the maximum
of convex function. In the vector space case, this fact has several different proofs. We chose
this particular version to show the use of Lagrange multipliers in the group setting.

Theorem 6.1. Let X be a semidivisible group and fi : X → (−∞,∞] be convex functions,
where i ∈ I, I being a finite index set. Let f = max1≤i≤k fi. For x0 ∈

⋂

i∈I(x0)
core(dom(fi)),

where I(x0) = {1 ≤ i ≤ k | fi(x0) = f(x0)}. Then we have

∂f(x0) = conv

(
⋃

i∈I(x0)

∂fi(x0)

)

.

Proof. The inclusion⊇ follows immediately from the fact the subdifferential is convex (Propo-
sition 5.5 with Y = R). To prove the other inclusion, consider the constrained minimisation
problem

inf
{
t
∣
∣ t ∈ R, x ∈ X, f1(x) ≤ t, . . . , fk(x) ≤ t

}
. (6.2)

Note that this infimum equals infx∈X f(x). Assume first that 0 ∈ ∂f(x0), which means
that the infimum in (6.2) is attained at x0. Define the following auxiliary value function
v : RI(x0) → [−∞,∞],

v(b) = inf
{
t
∣
∣ fi(x)− t ≤ bi, i ∈ I(x0)

}
.

We have v(b) ≥ f(x0)−maxi∈I(x0) |bi| > −∞. Also, since we assumed that

x0 ∈
⋂

i∈I(x0)

core(dom(fi)),

it follows that 0 ∈ core(dom(v)). By Proposition 6.1, v is convex. Thus, by Theorem 5.1,
there exists λ̄ ∈ ∂v(0) (again we are allowed to use the max formula because we are at
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x0 = 0). We note also that if b ∈ R
I(x0)
+ then we also have v(b) ≤ f(x0) (infimum over a

larger set) and also v(0) = f(x0). Thus, we have

f(x0) = v(0) ≤ v(b) + λ̄ · b ≤ f(x0) + λ̄ · b,

which means that λ̄ ∈ R
I(x0)
+ . Hence,

t ≥ v((fi(x)− t)i∈I(x0))

≥ v(0)− λ̄ · (fi(x)− t)i∈I(x0)

= f(x0)− λ̄ · (fi(x)− t)i∈I(x0),

and so

t+ λ̄ · (fi(x)− t)i∈I(x0) ≥ f(x0),

which means that λ̄ is a minimiser for the Lagrangian function. In other words, we can find
λ̄ ∈ RI(x0) that minimises

t+
∑

i∈I(x0)

λi(fi(x)− t) = t



1−
∑

i∈I(x0)

λi



+
∑

i∈I(x0)

λifi(x). (6.3)

We must have
∑

i∈I(x0)
λ̄i = 1. If not, then we can choose t that would make (6.3) go to

−∞. Thus, we have
∑

i∈I(x0)

λ̄ifi(x0) ≤
∑

i∈I(x0)

λ̄ifi(x),

and so 0 ∈ ∂
(
∑

i∈I(x0)
λ̄ifi

)

(x0). If, in general, we have that φ ∈ ∂f(x0), then 0 ∈ ∂(f −
φ)(x0) and then we repeat the same argument to conclude that φ ∈ ∂

(
∑

i∈I(x0)
λ̄ifi

)

(x0).

Altogether, we get

∂f(x0) ⊆
⋃






∂
( ∑

i∈I(x0)

λifi

)

(x0)

∣
∣
∣
∣
∣
λi ≥ 0,

∑

i∈I(x0)

λi = 1






.

Now, Theorem 5.4 implies that the right side is equal to

conv

(
⋃

i∈I(x0)

∂fi(x0)

)

,

and so we have

∂f(x0) ⊆ conv

(
⋃

i∈I(x0)

∂fi(x0)

)

,

which proves the other inclusion and concludes the proof. �

Remark 6.2. Combining Theorem 6.1 with Proposition 2.5 allows us to consider subadditive
optimisation problems with finitely many constraints.
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7. Conclusion

This paper grew out of a lecture that the first author gave in 1983 and then put aside until
2015 when the second author joined him in recreating and extending the original results.
One original intention was to better understand the difficulty of integer programming as
that of programming over a non-divisible group. See also [BEE+14,FGL05]. In so doing we
have uncovered many interesting connections but as of now made little progress directly for
integer programming.

Surely there are many other classical results for which one can find elegant and even useful
generalisations. Hopefully this paper will serve as an invitation to others to join the pursuit.
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