
i

Ringkamp, M., Ober-Blöbaum, S., Leyendecker, S.: On the time transformation of
mixed integer optimal control problems using a consistent fixed integer control func-
tion. Mathematical Programming, 1–31 (2016). DOI 10.1007/s10107-016-1023-5

@Article{ringkamp2016time,

author="Ringkamp, Maik and Ober-Bl{\"o}baum, Sina and Leyendecker, Sigrid",

title="On the time transformation of mixed integer optimal control problems

using a consistent fixed integer control function",

journal="Mathematical Programming",

year="2016",

pages="1--31",

abstract="Nonlinear control systems with instantly changing dynamical behavior

can be modeled by introducing an additional control function that is integer

valued in contrast to a control function that is allowed to have continuous

values. The discretization of a mixed integer optimal control problem (MIOCP)

leads to a non differentiable optimization problem and the non differentiability

is caused by the integer values. The paper is about a time transformation

method that is used to transform a MIOCP with integer dependent constraints

into an ordinary optimal control problem. Differentiability is achieved by

replacing a variable integer control function with a fixed integer control

function and a variable time allows to change the sequence of active integer

values. In contrast to other contributions, so called control consistent fixed

integer control functions are taken into account here. It is shown that these

control consistent fixed integer control functions allow a better accuracy in

the resulting trajectories, in particular in the computed switching times. The

method is verified on analytical and numerical examples.",

issn="1436-4646",

doi="10.1007/s10107-016-1023-5",

url="http://dx.doi.org/10.1007/s10107-016-1023-5"

}

The final publication is available at Springer via
http://dx.doi.org/10.1007/s10107-016-1023-5



Noname manuscript No.
(will be inserted by the editor)

On the time transformation of mixed integer optimal control
problems using a consistent fixed integer control function

Maik Ringkamp · Sina Ober-Blöbaum ·
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1 Introduction

In the optimal control of mixed integer control systems, the aim is to find feasi-
ble state and continuous as well as integer valued control trajectories such that an a
priori defined objective functional is optimized. Different differential equations are
selected by changing the integer dependent right-hand side instantly with a chang-
ing integer control value. Such problems occur for example in the optimal control of
moving vehicles [28,16,17,39,26,19], where a different right-hand side represents
the dynamical behavior of the vehicle within a different driving mode, e.g., a gear
of a car. Other MIOCPs include integer control functions to treat contact problems
in robotics [7,8,43] or processes involving valves [40,6]. Some of the authors use
binary instead of integer control functions. Due to the huge variety of different scien-
tific backgrounds, the terminology often differs while the problem classes are related.
For example, instead of the optimal control of mixed integer control systems [16,17,
39,26,19], some authors prefer to write optimal control of hybrid systems [7,8,43],
or of switched dynamical systems [21].

In ordinary OCPs the dynamical behavior does not change instantly and OCPs
do not include integer valued control functions. The numerical methods of choice
to locally solve many OCPs in practice are discretize-then-optimize approaches us-
ing a gradient based optimization method (e.g., cf. [15,33]) to solve the discretized
OCP (e.g., [5,30,34,18,12,13,10]). Applying a discretize-then-optimize approach to
a MIOCP leads to a mixed integer nonlinear program (MINLP) that is in general not
differentiable with respect to the integer variables, thus gradient based optimization
methods cannot be applied to solve the MINLP at once. MINLPs combine combina-
torial and nonlinear optimization and are known to be hard to solve globally [32,38].
In practice, often local solutions of the MIOCP are accepted (c.f. [7] Remark 6).

Different approaches are used throughout the literature that numerically solve a
MIOCP by decoupling the problem in a discrete (i.e. in our setting integer) and a con-
tinuous part. This allows to solve the purely continuous parts in an inner procedure
by a discretize-then-optimize approach using gradient based optimization methods.
The integer parts are optimized by an outer procedure. In [7], the MIOCP is decou-
pled by discretizing the set of possible switching times and states. The result is a
set of purely continuous OCPs, each corresponding to a fixed integer control value.
The best combination of the computed optimal trajectories approximates the optimal
solution of the MIOCP and is found by a graph search. Another method applied in
[21] uses a fixed switching sequence (i.e. a fixed integer control function), solves the
resulting OCP and changes the integer values partially. The procedure is repeated
until no feasible change of the integer values exists that reduces the objective. Other
approaches avoid a decoupling in discrete and continuous parts by a relaxation of
discrete variables. Branch and bound tree search methods are often used [7,20,16]
to solve MIOCPs numerically. They are a mixture of a decoupling and a relaxation.
Each node of the tree represents a MIOCP that is solved while the integer control
function is fixed at some time nodes and relaxed at the remaining time nodes. Further
integer values are fixed if the tree depth increases, until each integer value is fixed
at the leafs. Subtrees are not investigated if the computed lower bound is greater or
equal to the current upper bound. Computing the lower bound is a crucial part of the
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procedure and has a huge influence on the computational effort, since global optimal-
ity cannot be guaranteed for the solution of general nonconvex OCPs and too coarse
underestimates avoid the pruning of subtrees. Similarly, the selection of an appro-
priate initial guess is a crucial part in numerical optimal control methods that rely
on a pure relaxation without a decoupling and a well chosen initial guess can lead
to a global solution, even though local optimization methods are applied. In general
global optimality can not be guaranteed except if the discretized problem is convex
(c.f. [15,32] for details on global optimization). In [38,4,39,9], a binary control func-
tion allows to change the right-hand sides instantly. The used relaxation guarantees
that the optimized relaxed binary control trajectory can be approximated arbitrarily
close by a binary control, c.f. [38,39] for theoretical aspects and the consideration
of different rounding strategies to yield the desired binary values from the relaxed
values.

The method that is developed here relies on a transformation into a purely con-
tinuous problem and originates back to [11, p. 47]. There, a time transformation tw is
used to prove a maximum principle and later, e.g., in [28] or [17], to solve a MIOCP
numerically. A comparison of the method with a branch and bound approach is done
in [17] and reveals a significant reduction of computational time. An improvement in
the accuracy of the computed switching times is the main contribution of this paper.
The time transformation method utilizes a fixed integer control function v̄N,n instead
of the variable integer control function v to avoid integer optimization variables. The
time interval I is partitioned into N major intervals I j and each I j = [t j−1, t j[ into n mi-
nor intervals Ii

j = [τ i−1
j ,τ i

j[. The function v̄N,n is defined to be constant on each of the
minor intervals Ii

j and the time transformation tw allows to scale the minor intervals. A
different sequence of integer control values is achieved by scaling some of the minor
intervals to zero. The above mentioned right-hand side F is defined on the isolated
values v(t)∈V = {1, . . . ,nV }⊆N and does not need to be defined on relaxed values,
nor to be differentiable with respect to the corresponding component. An extension to
the integer dependent domains Dl respectively integer dependent mixed state-control
constraints g is made here, as briefly introduced by the authors in [37] and recently
published by Palagachev and Gerdts in [36]. Former publications that use the time
transformation utilize a fixed integer control function v̄N,n with the sequence of inte-
ger values (1, . . . ,nV ) for each major interval I j. The approach presented here takes
other sequences into account. A property for fixed integer control functions named
control consistency is introduced. An upper bound for the number of needed major
time intervals I j is identified providing that a minimal switching time distance ∆Tmin
is supposed and that the utilized fixed integer control function v̄N,n is control con-
sistent (CC). Counterexamples show that the number of needed major intervals and
therefore also the number of needed discretization variables is unbounded if the fixed
integer control function is not CC (NCC) as it is utilized in prior publications. As
a result, using a NCC fixed integer control function with an insufficient number of
major intervals can lead to a gap in the value of the objective function as well as in
the computed trajectories. This is in contrast to a CC fixed integer control function,
where the number of needed major intervals is a priori known, provided that ∆Tmin is
known, or at least given as a tolerance.
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Section 2 delivers definitions regarding MIOCPs. In Section 3 the time transfor-
mation as in [17] is introduced formally and extended to problems involving integer
dependent constraints. CC fixed integer control functions are defined and their ad-
vantages over NCC fixed integer control functions are highlighted theoretically and
in academic examples. The resulting time transformed MIOCP (TMIOCP) is dis-
cretized in Section 4 and the computation of a numerical example is presented in
Section 5. Section 6 concludes the paper and gives a short outlook.

2 Mixed integer optimal control

In the following section, the MIOCP is introduced. Nonlinear control systems with
a finite number nV ∈ N of different right-hand sides Fl(x,u), l ∈ V = {1, . . . ,nV }
are used to model dynamical behavior that can change instantly. An integer valued
control function v ∈ L ∞(I,V ) controls which of the right-hand sides Fl is active
at which time, resulting in a mixed integer differential equation ẋ = F(x,u,v) with
F(x,u, l) = Fl(x,u) for all l ∈ V . Here, the values l ∈ V of v are selected without loss
of generality as natural numbers (c.f. Remark 1), each right-hand side Fl does not
need to depend explicitly on the specific value l ∈ V . The functions x ∈W 1,∞(I,Rnx)
and u ∈L ∞(I,Rnu) represent the continuous state and the continuous control of the
nonlinear control system ẋ = F(x,u, l) for each l ∈ V and I = [t0, t f ] represents a time
interval. Similarly, the corresponding domain Dl = {(x,u)∈Rnx×Rnu |g(x,u, l)≤ 0}
of the system can change with a changing value l ∈ V of the integer control function
v. That allows to restrict the active right-hand side Fl to a specific domain Dl what
is important, for example in contact dynamics, where the switch from one right-hand
side Fl1 to another right-hand side Fl2 is caused by a changing domain.

Remark 1 Other authors (e.g., [28,36]) use a finite set of vectors {v1, . . . ,vnV
} ⊆Rnv

with nv ≥ 1. The here used natural numbers 1, . . . ,nV ∈ N can be interpreted as an
enumeration of these vectors v1, . . . ,vnV

.

Definition 2 Mixed integer optimal control problem MIOCP
Let [t0, t f ] ⊆ R+

0 be a closed interval, Fl : D̃l → Rnx , g0 : D̃0 → Rng0 and gl : D̃l →
Rng continuously differentiable functions for all l ∈ V = {1,2, . . . ,nV } ⊆ N and
g(x,u, l) = gl(x,u) for (x,u) ∈ D̃l ⊆ Rnx ×Rnu , l ∈ {0}∪V . Then, a mixed integer
optimal control problem in short MIOCP is defined as follows

min
x,u,v

J(x,u,v) =

t f∫
t0

B(x(t),u(t),v(t)) dt (1)

s. t. ẋ(t) = F(x(t),u(t),v(t)) for a.e. t ∈ [t0, t f ] (2)
g0(x(t),u(t))≤ 0 for a.e. t ∈ [t0, t f ] (3)

g(x(t),u(t),v(t))≤ 0 for a.e. t ∈ [t0, t f ] (4)
r(x(t0),x(t f )) = 0 (5)

v(t) ∈ V for a.e. t ∈ [t0, t f ]. (6)
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Here, J is called the objective functional and is defined by continuously differentiable
functions Bl : D̃l→R with B(x,u, l)=Bl(x,u), l ∈V . Equation (5) is called boundary
condition and is defined by a continuously differentiable function r : X̃0× X̃0→ Rnr .

Remark 3 Equation (3) can in principle be included in (4). The equations are sepa-
rated here because they are treated differently in the time transformation in Section
3. For each l ∈ {0}∪V , the set D̃l ⊆ Rnx ×Rnu is supposed to be a sufficiently large
superset of Dl = {(x,u) ∈ Rnx ×Rnu |gl(x,u) ≤ 0}. The later used numerical opti-
mization method must ensure that (x,u) ∈ D̃l is satisfied at every iteration to ensure
that the used functions are defined and differentiable. The x-part of the superset is in
the following shortly denoted as X̃l = {x ∈ Rnx |∃u ∈ Rnu : (x,u) ∈ D̃l}.

Definition 4 Feasible solution
For a given MIOCP a function (x∗,u∗,v∗) with x∗ ∈W 1,∞([t0, t f ],Rnx),
u∗ ∈ L ∞([t0, t f ],Rnu) and v∗ ∈ L ∞([t0, t f ],V ) is called feasible solution, feasible
trajectory or short feasible if it fulfills the equations (2)-(6). The function x∗ is called
the (continuous) state, u∗ the (continuous) control, and v∗ the integer (or discrete)
control function.

Remark 5 Here, the vector space L ∞(I,Rn) is the space of all functions f with f :
I→Rn (Lebesgue-) measurable and essentially bounded, thus ‖ f‖∞ := ess supt∈[t0,t f ]

‖ f (t)‖ < ∞. The vector space W 1,∞(I,Rn) is defined as the space of all functions f
with f : I→ Rn absolutely continuous and where f and the derivative f (1) are essen-
tially bounded, so ‖ f‖1,∞ := max{‖ f‖∞,‖ f (1)‖∞}< ∞. For more details, e.g., confer
the definitions given in [18, p. 60].

Let us assume that the feasible solution (x∗,u∗,v∗) of a MIOCP has a discrete con-
trol v∗ that is constant on both sub intervals ]T0,T1[, ]T1,T2[⊆ [t0, t f ],T0 < T1 < T2,
with v∗(t1) = l1 6= l2 = v∗(t2) for a.e. t1 ∈]T0,T1[, t2 ∈]T1,T2[. Then, T1 is called a
switching time. The exact definition of all switching times and the sequence of all the
corresponding integer values lk is given below.

Definition 6 For a discrete control v : [t0, t f ]→ V , let ns ∈ N, T0 := t0,Tns+1 := t f
and Tk ∈ [t0, t f ] for k ∈ {1, . . . ,ns} such that

– Tk−1 < Tk for k ∈ {1, . . . ,ns +1}
– v(τ) is constant for a.e. τ ∈ ]Tk−1,Tk[,k ∈ {1, . . . ,ns +1}
– v(τk) 6= v(τk+1) for a.e. τk ∈ ]Tk−1,Tk[,τk+1 ∈ ]Tk,Tk+1[,k ∈ {1, . . . ,ns}.

The set {Tk}ns
k=1 is called the switching time set, every Tk is called a switching time

and (lk)
ns+1
k=1 with lk = v(τk) for a.e. τk ∈ ]Tk−1,Tk[ the switching sequence. An example

with ns = 3 switching times is depicted in Figure 1.

Remark 7 The definition implicitly restricts the number of switching times ns to be
finite. That is appropriate, in order to gain an approximation of the discrete control
v by a finite representation later. Moreover, discrete controls v with so called Zeno
behavior (meaning an unlimited number of switching times on a finite time interval)
are excluded by that restriction.
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τ

T1 T2 T3t0 t f

1 2 3 1

Fig. 1: An example of ns = 3 switching times T1,T2,T3 ∈ [t0, t f ] with the correspond-
ing switching sequence (1,2,3,1), where each color represents one of the integer
values.

If a switching sequence is given and only the computation of optimal switching times
is desired, the resulting discretized OCP is an NLP (as in [25,14,27,13]). Thus, s
allowed switching sequences lead to s different NLPs which can in principle be solved
in parallel, to yield an optimal solution of the MIOCP. In practice a discretized OCP
with N time steps and nV possible integer values for each step leads to s= nN

V possible
switching sequences and therefore a large number of parallel processes. Doing this
means to decouple the combinatorial problem (discrete part) from the optimization
(continuous part). Instead we consider the mixed problem without knowing the order
of the switching sequence. The switching sequence is optimized here by including
v as an optimization parameter in the MIOCP. The problem is time transformed in
the next section, in order to replace the discrete control v that is feasible only on the
isolated integer values v(t) ∈ V , by a control w(t) ∈ R that has feasible values on
a connected subset of R such that gradient based minimization methods as SQP or
interior point methods (e.g., cf. [33], or [15]) can be used to solve the discretized
problem.

3 Time transformation

The time transformation in combination with a fixed integer control function v̄N,n
and a partition of the time interval I in major I j and minor intervals Ii

j is introduced
in Section 3.1, similar as in [17]. There, the considered systems have a single mixed
state-control domain

D0 = {(x,u) ∈ Rnx ×Rnu |g0(x,u)≤ 0} (7)

for all the integer values l ∈ V and the mixed state-control constraint function g in
Equation (4), that depends also on l ∈ V , is excluded. A generalization to a DAE of
index-one is given in [19] and [18] and a generalization that also includes Equation
(4) is given here, in Section 3.2 and in [29,37,36]. That leads to systems that may
have a different mixed state-control domain

Dl = {(x,u) ∈ Rnx ×Rnu |g(x,u, l)≤ 0} (8)

for each l ∈ V . Additional relaxed binary control functions are needed for the gen-
eralization in [29], this is avoided here as well as in [37,36]. Section 3.3 gives an
answer to the question, under which condition it is possible to transform a given inte-
ger control function v to a fixed integer control function v̄N,n. The needed property is
defined as control consistency and a rigorous proof shows that for any discrete control
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function v a time transformation tw exists such that the CC fixed integer control func-
tion v̄N,n equals the transformed discrete control function v ◦ tw almost everywhere
on active minor intervals Ii

j. Examples show that this is not always true for a fixed
integer control function that is not consistent to the integer control function v and that
the lack of consistency can lead to the need of arbitrary many minor intervals or a
solution with a worse objective value as the solution of the MIOCP.

3.1 Time transformation for the MIOCP with integer independent constraints

The MIOCP from Definition 2 without Equation (4) is transformed to an auxiliary
optimal control problem that does not depend on a discrete valued control function v
in the following, similar as in [17]. Therefore, the time interval I is partitioned into
several minor and major intervals, and a fixed integer control function v̄N,n is selected
that assigns an integer value to each of the minor intervals, as depicted in Figure 2.
Then, the time is transformed by a control w that allows to deactivate some of the
minor intervals Ii

j such that the length of these time transformed intervals tw(Ii
j) is

equal to zero. The time transformed minor intervals with positive length are active
and applying the fixed integer control function v̄N,n leads to the sequence of active
integer values. An example is illustrated in Figure 3. Finally, the auxiliary optimal
control problem is defined in Definition 20. To introduce the time transformation
accurately and to allow rigorous proofs, some definitions are necessary first.

Definition 8 Ordered partition
For a given compact interval I ⊆ R representing the time, an ordered partition of I
into N ∈ N intervals is defined as a set {I j}N

j=1 of non empty intervals I j ⊆ I with

– I j1 ∩ I j2 = /0 for all j1, j2 ∈ {1, . . . ,N} with j1 6= j2

–
N⋃

j=1
I j = I

– sup I j = inf I j+1 for all j ∈ {1, . . . ,N−1}.
In words, the intervals I j are disjoint, their union equals the complete interval I and
they are ordered such that the upper bound of an interval equals the lower bound of
the interval with the next index.

Example 9 For a given switching time set {Tk}ns
k=1 the set {Ik}ns+1

k=1 with I1 = [t0,T1[,
Ins+1 = [Tns , t f ] and Ik = [Tk−1,Tk[ for k ∈ {2, . . . ,ns} is an ordered partition of [t0, t f ].

Remark 10 The ordered partition in Example 9 is desired, but unknown a priori. In-
stead in the following, always ordered partitions {I j}N

j=1 with intervals I j that have
the same length ∆ I j are used. Thus, if ∆ I is the length of I and N the number of
intervals, then the length of each interval I j is ∆ I j =

∆ I
N .

Definition 11 Ordered partition in major and minor intervals (of the same length)
For a given compact interval I ⊆ R with length ∆ I, an ordered partition of I in N
major and n minor intervals (of the same length) is defined as a set {Ii

j}
N,n
j=1,i=1 with

– ∆ I j := length{I j}= ∆ I
N for all j ∈ {1, . . . ,N}
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– ∆ Ii
j := length{Ii

j}=
∆ I j
n for all j ∈ {1, . . . ,N}, i ∈ {1, . . . ,n}

– {I j}N
j=1 is an ordered partition of I

– {Ii
j}n

i=1 is an ordered partition of I j for all j ∈ {1, . . . ,N}.

Here, each I j =
n⋃

i=1
Ii

j is called a major interval and each Ii
j is called a minor interval.

In the following the boundaries of the intervals are always shortly denoted by t j−1 :=
inf I j, t j := sup I j and τ

i−1
j := inf Ii

j,τ
i
j := sup Ii

j. The next definition is used to describe
a function that assigns a specific integer value li ∈ V to each of the minor intervals
Ii

j.

Definition 12 Fixed integer control function
For a given set V = {1, . . . ,nV } ⊂ N and an ordered partition {Ii

j}
N,n
j=1,i=1 of an in-

terval I in N major and n minor intervals, a function v̄N,n : I→ V that is constant on
each minor interval Ii

j is called a fixed integer control function.

Remark 13 A fixed integer control function v̄N,n is an integer control function with
v̄N,n ∈L ∞(I,R), in particular it fulfills the set constraint (6) for I = [t0, t f ].

The following example of a fixed integer control function is used in [17].

Example 14 Let I = [t0, t f ] and
(

Ii
j

)N,n

j=1,i=1
be an ordered partition in major and mi-

nor intervals with n = nV . Then define li := i for all i ∈ {1, . . . ,n} and moreover for
all minor intervals Ii

j the fixed integer control function v̄N,n ∈L ∞(I,V ) as

v̄N,n(τ) := li⇔ τ ∈ Ii
j. (9)

The expression is well-defined because for each τ ∈ I there exists exactly one minor
interval Ii

j with τ ∈ Ii
j. The sequence

(
li
)n

i=1 is the switching sequence on each major

interval I j and the switching sequence
(

li
j

)N,n

j=1,i=1
on I can be defined analogously.

Figure 2 depicts the fixed integer control function for an example with nV = 3 minor
and N = 3 major intervals.

τ

τ1
1 τ2

1 τ1
2 τ2

2 τ1
3 τ2

3t0 t1 t2 t3

1 2 3 1 2 3 1 2 3

Fig. 2: Fixed integer control function for an example with three integer values.

Replacing the variable discrete control function v in the MIOCP by a fixed integer
control function v̄N,n would lead to a fixed switching sequence. Using a controllable
time transformation tw : I → I in addition, allows to influence the length of each
time transformed minor interval tw(Ii

j) and therefore how much time is spent in the
corresponding system with integer value li ∈ V . A controllable time transformation
is defined in the following.
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Definition 15 Time transformation
Let v̄N,n ∈L ∞(I,V ) be a fixed integer control function and let w ∈L ∞(I,R) fulfill
the properties

w(τ)≥ 0 for a.e. τ ∈ I, (10)

∆ I j =
∫
I j

w(s)ds. (11)

Then, a time transformation tw : I→ I is defined by

tw(τ) := t0 +
τ∫

t0

w(s)ds (12)

and therefore absolutely continuous with t ′w = dtw
dτ

(τ) = w(τ) almost everywhere on
I according to the fundamental theorem of calculus. Thus, tw ∈W 1,∞(I, I) holds. The
function w is called a time control.

Remark 16 Equation (10) assures that the transformed time does not move back-
wards and Equation (11) assures that tw(I j) = I j holds and therefore that the major
interval length is fixed. This assures that a certain accuracy of the approximated tra-
jectories can be guaranteed and prevents that corresponding major time nodes t j−1
and t j coincide in the later numerical computation of a discretized version. Numeri-
cal computations of the example in Section 5 reveal that leaving out Equation (11) in
practice can lead to undesirably large time steps in the middle of the trajectories as
also stated for the numerical example in [17, p. 173].

Remark 17 The inverse function of the time transformation tw is defined here as in
[17, p. 173]

τw(t) := inf{τ ∈ I| tw(τ) = t}. (13)

Remark 18 The time control w is assumed to be constant on each minor interval Ii
j,

in a later discretized version. Moreover, in Theorem 26 such a piecewise constant
time control is constructed to prove that a fixed integer control function v̄N,n equals
a time transformed variable integer control v◦ tw almost everywhere on active minor
intervals Ii

j. Therefore the following notation is introduced here

wi
j := w(τ) for τ ∈ Ii

j. (14)

Then, the time transformation (12) can be given explicitly for each τ ∈ Ii
j as

tw(τ) = t j−1 +
i−1

∑
k=1

∆ Ik
j w

k
j +(τ− τ

i−1
j )wi

j. (15)

Figure 3 illustrates the transformed time and the fixed integer control function
from Example 14 for possible constants wi

j and moreover depicts the resulting active
minor intervals Ii

j. The term active is properly defined in the following.
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τ

w(τ)

τ1
1 τ2

1 τ1
2 τ2

2 τ1
3 τ2

3t0 t1 t2 t3
0

1

2

3

w1
1

w2
1

w3
1

w1
2 w2

2

w3
2

w1
3

w2
3

w3
3

τ

tw(τ)

τ1
1 τ2

1 τ1
2 τ2

2 τ1
3 τ2

3t0 t1 t2 t3

t0

t1

t2

t3

1

3

3

1

2

Fig. 3: Transformed time tw(τ) over τ for possible constants wi
j for an example with

three integer values. The bottom picture further illustrates the resulting sequence of
active integer values on the tw-axis.

Definition 19 Active integer values
For a given time transformation tw ∈ W 1,∞(I, I) with fixed integer control function
v̄N,n ∈ L ∞(I,V ) and ordered partition in major and minor intervals {Ii

j}
N,n
j=1,i=1, a

minor interval Ii
j ⊆ I is called active if the time transformed minor interval tw(Ii

j) has
nonzero length

tw(τ i
j)− tw(τ i−1

j ) =
∫
Ii

j

w(s)ds. (16)

Otherwise, Ii
j is called inactive. Accordingly, the corresponding integer value li

j =

v̄N,n(τ),τ ∈ Ii
j is called active in the switching sequence

(
li

j

)N,n

j=1,i=1
.

In the case that w is constant for each minor interval Ii
j, it follows from Definition

19 that Ii
j is active if and only if wi

j > 0. For the fixed integer control function from
Example 14 with e.g. three integer values and w2

j = 0, no time is spent in the system
corresponding to integer value 2 and the sequence of active integer values in the
major interval I j is (1,3) if w1

j ,w
3
j > 0. Figure 4 illustrates the possible switches in

between a major time interval. So far, just switches from a lower integer value to a
higher integer value are possible in a major time interval. A switch from a higher to
a lower number is only possible at a time node t j at the boundary between two major
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2

1 3

w1
j ,w

2
j>0

w1
j ,w

3
j>0

w2
j=0

w2
j ,w

3
j>0

Fig. 4: Possible switches in a major time interval by using the time transformation for
an example with three integer values.

intervals I j and I j+1. As a result, at least nV major intervals are necessary to achieve
the sequence of active integer values (nV , . . . ,1). In Section 3.3, fixed integer control
functions v̄N,n are introduced for which a switch from a lower to a higher number as
well as a switch from a higher to a lower number is possible in the interior of each
major interval.

The motivation of solving a time transformed problem instead of the MIOCP as
defined in Section 2 is that replacing the discrete valued control function v by the
real valued time control w in combination with the fixed integer control v̄N,n leads,
after a discretization, to an ordinary optimization problem instead of a mixed integer
optimization problem.

As discussed in the beginning of Section 3, the method described here so far and
in [17] is restricted to solve problems with a single mixed state-control domain D0.
That means, the function g from Definition 2 is not included in the time transformed
optimal control problem. Thus, the time transformed MIOCP with integer indepen-
dent state-control constraints results in:

Definition 20 Time transformed MIOCP with integer independent state-control con-
straints
For a MIOCP with the notation as in Definition 2, a fixed integer control func-
tion (Definition 12) v̄N,n ∈L ∞(I,V ) and a time transformation (Definition 15) tw ∈
W 1,∞(I, I) with time control w ∈ L ∞(I,R) is used to define the time transformed
mixed integer optimal control problem with integer independent constraints:

min
x,u,w

J∗(x,u,w) =
∫
I

w(τ)B(x(τ),u(τ), v̄N,n(τ)) dτ (17)

s. t. ẋ(τ) = w(τ)F(x(τ),u(τ), v̄N,n(τ)) for a.e. τ ∈ I (18)
g0(x(τ),u(τ))≤ 0 for a.e. τ ∈ I (19)
r(x(t0),x(tN)) = 0 (20)

w(τ)≥ 0 for a.e. τ ∈ I (21)

∆ I j =
∫
I j

w(s)ds. (22)
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3.2 Time transformation for the MIOCP with integer dependent constraints

In extension to Section 3.1 in the following section, the time transformation is applied
to the more general case of systems that may have a different mixed state-control
domain Dl for each integer value l ∈ V similar as in [37,36]. Here, (x(τ),u(τ))∈Dli

j

must hold only if integer value li
j ∈ V and therefore the corresponding minor interval

Ii
j is active. Thus, the equation

g(x(τ),u(τ), v̄N,n(τ))≤ 0 for a.e. τ ∈ Ii
j (23)

must be fulfilled if Ii
j is active and needs not to be fulfilled if Ii

j is inactive. It follows
from Definition 19 that w(τ) = 0 for a.e. τ ∈ Ii

j if and only if Ii
j is inactive. Therefore,

by multiplying the function g with w(τ) the resulting equation

w(τ)g(x(τ),u(τ), v̄N,n(τ))≤ 0 for a.e. τ ∈ Ii
j (24)

is always fulfilled if Ii
j is inactive and equivalent to Equation 23 if Ii

j is active. As
a result, Equation (24) is included in the time transformed MIOCP and assures that
(x(τ),u(τ)) ∈ Dli

j
holds only if the minor interval Ii

j is active. The time transformed
MIOCP with integer independent state-control constraints results in:

Definition 21 Time transformed MIOCP with integer dependent state-control con-
straints (TMIOCP)
A time transformed mixed integer optimal control problem with integer dependent
constraints, or short TMIOCP is defined as in Definition 20, but with the additional
constraint:

w(τ)g(x(τ),u(τ), v̄N,n(τ))≤ 0 for a.e. τ ∈ I. (25)

Remark 22 Equation (25) is a generalization of Equation (19) and therefore g0 is
theoretically not necessary here. On the other hand, whenever possible rewriting (25)
as (19) is recommended for a numerical computation of a discretization as in Section
5.

The influence of different fixed integer control functions v̄N,n is analyzed in the fol-
lowing section.

3.3 Time transformation with CC fixed integer control function

In the following section, control consistency is introduced and an example of a CC
fixed integer control function is given in Example 24. As supposed in Remark 7 the
number of switching times ns of the integer control functions v ∈L ∞ is assumed to
be finite. If in addition, the smallest distance

∆Tmin := min
k∈{1,...,ns−1}

{Tk+1−Tk} (26)
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of all switching times Tk is known, a partition of the time interval I into N major
intervals I j, j ∈ {1, . . . ,N} of the same length ∆ I j can be selected such that each
closed interval I j contains at most one of the switching times Tk. Therefore, select the
number of major intervals N ∈ N such that

∆ I j =
∆ I
N

< ∆Tmin. (27)

In Theorem 26, a time transformation tw is constructed such that a given fixed integer
control function v̄N,n equals the time transformed integer control v◦ tw almost every-
where on active minor intervals Ii

j. Therefore, the fixed integer control function v̄N,n
has to be consistent to v, what is defined in the following. Moreover, N is selected
such that at most one of the switching times Tk is in each major interval I j, even
though more switching times can in principle be achieved with v̄N,n (c.f. Remark
29 for details). Such an N can in general be selected for a given smallest distance
∆Tmin according to Equation (27). If the smallest switching time distance is unknown
a priori, it is common usage to assume a smallest switching time distance ∆Tmin as a
tolerance (e.g., in [38, p. 14] the switching time distance is restricted by specifying
a finite set of possible switching times) for a later numerical approximation. The re-
sulting total number of needed minor intervals for the consistent v̄N,n is then bounded
by Nn. Example 30 gives an integer control function v for which the transformation
to a CC fixed integer control function v̄N,n is possible using a total number of Nn = 3
minor intervals, but the total number of necessary minor intervals is unbounded if
the NCC fixed integer control function from Example 14 is used instead. Example
31 illustrates that a TMIOCP with a CC fixed integer control function can be used to
yield the same analytic solution as the MIOCP. However, the selected TMIOCP with
a fixed integer control function that is NCC yields a different solution with a higher
objective value even though the total number of minor intervals is higher then in the
case of consistency.

Definition 23 Control consistency
A fixed integer control function v̄N,n ∈L ∞(I,V ) is consistent to a discrete control
v ∈L ∞(I,V ), if for all j ∈ {1, . . . ,N} and a.e. t̃1, t̃2 ∈ I j with t̃1 < t̃2 exist τ1,τ2 ∈ I j
with

– τ1 < τ2
– v̄N,n(τ1) = v(t̃1), v̄N,n(τ2) = v(t̃2).

The function v̄N,n is called control consistent if it is consistent to each discrete control
v ∈L ∞(I,V ), that has at most one switch per major interval I j.

The fixed integer control function from Example 14 is for example not consistent
to a control v with one switching time T1 in the interior I̊ j of I j and v(t̃1) = 2 > 1 =
v(t̃2) for t̃1 < T1 < t̃2 with t̃1, t̃2 ∈ I j, because v̄N,n(τ1)≤ v̄N,n(τ2) holds for all τ1,τ2 ∈ I j
with τ1 < τ2. The following example shows a fixed integer control function v̄N,n that
is consistent to each discrete control v : I→ V that has at most one switch per major
interval I j.
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Example 24 Let I = [t0, t f ] and
(

Ii
j

)N,n

j=1,i=1
be an ordered partition in major and

minor intervals with n = 2nV − 1. Then, define the fixed integer control function
v̄N,n ∈L ∞(I,V ) as

v̄N,n(τ) :=

{
i⇔ τ ∈ Ii

j for i ∈ {1, . . . ,nV }
n+1− i⇔ τ ∈ Ii

j for i ∈ {nV +1, . . . ,n}.
(28)

Figure 5 depicts that fixed integer control function for an example with nV = 3 integer
values and N = 3 major and n = 5 minor intervals. Figure 6 illustrates that a switch

τ

τ1
1 τ2

1 τ3
1 τ4

1 τ1
2 τ2

2 τ3
2 τ4

2 τ1
3 τ2

3 τ3
3 τ4

3t0 t1 t2 t3

1 2 3 2 1 1 2 3 2 1 1 2 3 2 1

Fig. 5: Fixed integer control function that is consistent to each control that has one
switch per major interval, illustrated for an example with three integer control vari-
ables.

from an integer value la
j ∈ V to each other integer value lb

j ∈ V is possible for the
specific v̄N,n in the interior of each major interval I j. Here again w is assumed to be
constant on each minor interval Ii

j.

3

2 2

1 1

w1
j ,w

2
j>0

w1
j ,w

3
j>0

w2
j=0

w2
j ,w

3
j>0

w3
j ,w

4
j>0

w3
j ,w

5
j>0

w4
j=0

w4
j ,w

5
j>0

Fig. 6: Possible switches in the interior of a major interval by using the time transfor-
mation for an example with three integer values.

Remark 25 Another example of a CC fixed integer control function can be achieved
by composing a permutation π : V → V with the function v̄N,n from Example 24 to
π ◦ v̄N,n ∈L ∞(I,V ). For example the fixed integer control function that is composed
with the permutation π : V → V ,π(l) = nV +1− l is depicted in Figure 7.

In the following main theorem of this contribution, a time transformation tw is
constructed such that the given CC fixed integer control function v̄N,n equals the time
transformed integer control v◦ tw almost everywhere on active minor intervals Ii

j.

Theorem 26 Let v ∈L ∞(I,V ), I = [t0, t f ] be an integer control with switching time
set {Tk}ns

k=1 and N ∈ N such that v has at most one switching time in each major in-
terval I j (e.g., as selected in Equation (27)). Moreover let v̄N,n ∈L ∞(I,V ) be a fixed
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τ

τ1
1 τ2

1 τ3
1 τ4

1 τ1
2 τ2

2 τ3
2 τ4

2 τ1
3 τ2

3 τ3
3 τ4

3t0 t1 t2 t3

3 2 1 2 3 3 2 1 2 3 3 2 1 2 3

Fig. 7: CC fixed integer control function resulting from the fixed integer control func-
tion from Example 24 composed with the permutation from Remark 25, illustrated
for an example with three integer control variables.

integer control function, that is consistent to v. Then, a time control w ∈L ∞(I,R)
that is constant on each minor interval Ii

j exists such that the corresponding time
transformation tw ∈W 1,∞(I, I) fulfills

v̄N,n(τ) = v(tw(τ)) (29)

for all τ ∈ {τ̃ ∈ I|w(τ̃)> 0, tw(τ̃) 6∈ {T1, . . . ,Tns}}. Moreover it holds that the set

{τ̃ ∈ I|w(τ̃)> 0, tw(τ̃) ∈ {T1, . . . ,Tns}} (30)

is a set of measure zero.

Proof In the following, the time control w is defined separately for each major in-
terval I j, j ∈ {1, . . . ,N} to construct a representation of v by v̄N,n. The control con-
sistency is used to select minor intervals Ii

j of I j in the correct order in which the
fixed integer control function v̄N,n has the same value as the integer control function
v. A time control w is defined that scales the selected minor intervals such that the
possibly existing switching time Tk ∈ I j coincides for v̄N,n and v and that scales all
the remaining minor intervals to zero. With more details, two cases are considered:

1) It exists a switching time in the interior of I j, thus ∃k ∈ {1, . . . ,ns} with Tk ∈
I̊ j: Due to the selection of N, there is no switching time in [t j−1,Tk[ and ]Tk, t j]
and therefore v is constant on [t j−1,Tk] \ {T1, . . . ,Tns} and constant on [Tk, t j] \
{T1, . . . ,Tns}. Using that v̄N,n is consistent to v and that v̄N,n is constant on each
minor interval, it follows that minor intervals Ii1

j , I
i2
j ⊂ I j exist with i1 < i2 and

v̄N,n(τ) = v(t̃) ∀τ ∈ Ii1
j , t̃ ∈ [t j−1,Tk]\{T1, . . . ,Tns} (31)

v̄N,n(τ) = v(t̃) ∀τ ∈ Ii2
j , t̃ ∈ [Tk, t j]\{T1, . . . ,Tns}. (32)

Define the piecewise constant time control

w(τ) :=


Tk−t j−1

∆ I
i1
j

if τ ∈ Ii1
j

t j−Tk

∆ I
i2
j

if τ ∈ Ii2
j

0 otherwise

(33)
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for all τ ∈ I j. Then, with the time transformation from Equation (15) it follows for
τ ∈ I j

tw(τ) =



t j−1 if τ ∈ [t j−1,τ
i1−1
j ]

t j−1 +(τ− τ
i1−1
j )

Tk−t j−1

∆ I
i1
j

if τ ∈ Ii1
j

Tk if τ ∈ [τ i1
j ,τ

i2−1
j ]

Tk +(τ− τ
i2−1
j )

t j−Tk

∆ I
i2
j

if τ ∈ Ii2
j

t j if τ ∈ [τ i2
j , t j],

(34)

and therefore

tw(τ) ∈

{
[t j−1,Tk] ∀τ ∈ Ii1

j

[Tk, t j] ∀τ ∈ Ii2
j .

(35)

It follows, that the equations (31) and (32) can be combined to

v̄N,n(τ) = v(tw(τ)) ∀τ ∈ {τ̃ ∈ Ii1
j ∪ Ii2

j | tw(τ̃) 6∈ {T1, . . . ,Tns}}. (36)

The time control is defined such that w(τ)> 0⇔ τ ∈ Ii1
j ∪ Ii2

j , therefore it holds

v̄N,n(τ) = v(tw(τ)) (37)

for all τ ∈ {τ̃ ∈ I j|w(τ̃)> 0, tw(τ̃) 6∈ {T1, . . . ,Tns}}. Moreover according to Equa-
tion (33) and (34)

{τ̃ ∈ I j|w(τ̃)> 0, t(τ̃) ∈ {T1, . . . ,Tns}} (38)

⊆
(

Ii1
j ∪ Ii2

j

)
∩
(
[t j−1,τ

i1−1
j ]∪ [τ i1

j ,τ
i2−1
j ]∪ [τ i2

j , t j]
)

(39)

⊆ {τ i1−1
j ,τ i1

j ,τ
i2−1
j ,τ i2

j } (40)

is a set of measure zero.
2) A switching time in the interior of I j does not exists, thus @k ∈ {1, . . . ,ns} with

Tk ∈ I̊ j: The proof for this case can be done analogously to case 1) with the main
difference that just one of the minor intervals Ii1

j is scaled by w(τ) = n > 0 for

τ ∈ Ii1
j and all the others by w(τ) = 0 for τ ∈ I j \ Ii1

j .

In both cases w(τ) is constant on each minor interval with w(τ) ≥ 0 and for all
j ∈ {1, . . . ,N} equation (11) is fulfilled because∫

I j

w(s)ds =
n

∑
i=1

∆ Ii
jw

i
j = ∆ I j. (41)

Remark 27 The equation v̄N,n(τ) = v(tw(τ)) holds for a.e. τ ∈ Ii
j if the minor interval

Ii
j is active and cannot be guaranteed to hold for τ ∈ Ii

j with tw(τ)∈ {T1, . . . ,Tns}. The
reason is that the function v̄N,n is constant on the left-closed and right-open minor in-
tervals Ii

j and the function v is constant on the interior of tw(Ii
j), but possibly different

on the boundary.
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Remark 28 A conclusion of Theorem 26 is that for all integer control functions v and
for all consistent fixed integer control functions v̄N,n there exists a time transformation
tw such that the following holds

li
j = v(t) for a.e. t ∈ tw(Ii

j), (42)

with li
j = v̄N,n(τ) for τ ∈ Ii

j. This follows directly from Theorem 26 for those mi-
nor intervals Ii

j with w(τ) > 0 for τ ∈ Ii
j and it avoids the definition of the set {τ̃ ∈

I|w(τ̃) > 0, tw(τ̃) 6∈ {T1, . . . ,Tns}}. For those minor intervals Ii
j with w(τ) = 0 for

τ ∈ Ii
j (i.e. for inactive minor intervals) it holds tw(Ii

j) is a set of measure zero and
therefore Equation (42) is also true. An alternative and even shorter conclusion is that
v◦ tw equals v̄N,n almost everywhere on active minor intervals Ii

j.

Remark 29 On the one hand, the assumption that v has at most one switch per major
interval can be relaxed for specific fixed integer control functions, resulting in a lower
number of needed major intervals N. For example for v̄N,n from Example 24, a func-
tion v with the switching sequence (1,2,1) in a major interval can be transformed to
v̄N,n. Thus, instead of N = 2 major intervals for the two switches (1,2) and (2,1),
N = 1 major interval is enough. On the other hand, if v has the switching sequence
(2,1,2) in one major interval, a transformation for N = 1 major interval cannot be
found and N = 2 major intervals are needed instead. In general, v and its switching
sequence are not known a priori and N is unknown. If the minimal switching time
distance ∆Tmin is known, or a priori given as a tolerance, a number of major intervals
N can be selected as in Equation (27) to guarantee that v can be transformed to a CC
v̄N,n.

The following example gives an answer to the question whether v can be transformed
to v̄N,n if the switching time T1 is at the boundary of a major interval I j and how many
major intervals N are necessary for that. First, a time control for the CC fixed integer
control function from Example 24 is selected such that v can be transformed to v̄N,n
as proved in Theorem 26, respectively Remark 28. Then, it is exemplified for the not
consistent fixed integer control function from Example 14, that the transformation
is possible if the switching time T1 is at the boundary of a major interval. However,
the number of needed major intervals N that yields to a switching time at the bound-
ary turns out to be unbounded. In contrast, N = 1 major intervals are enough for the
CC fixed integer control function in the example. A high number of major intervals
can result in a higher number of discretization points in the computation of the dis-
cretized problem. The discretization and the number of needed points is discussed
more specifically in the next section.

Example 30 Let v ∈L ∞(I,V ), I = [0,1],V = {1,2} be an integer control function
with one switching time T1 in the interior of the interval I̊ with

v(t) =

{
2 for t ∈ [0,T1]

1 for t ∈ ]T1,1].
(43)

First, let v̄N,3 be the CC fixed integer control function as in Example 24. Here, in
particular that means N = 1 major interval and n = 3 minor intervals are enough
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for the only switching time T1. By selecting the time transformation as in the proof
of Theorem 26 it follows that v ◦ tw equals v̄1,3 almost everywhere on active minor
intervals Ii

j and the total number of needed minor intervals is Nn = 3. Then, assume
that the used fixed integer control function is not consistent to v. As illustrated in
Figure 4 for the case of 3 integer values, v cannot be transformed to such a fixed
integer control function, if the switching time is in the interior of a major interval
I j. That is always the case for T1 ∈ [0,1] \Q, because the values at the boundary of
the major intervals given by t j =

j
N , j ∈ {0, . . . ,N} are rational. Thus, assume that

T1 ∈ [0,1]∩Q and for simplicity here let T1 = 1
N for an arbitrary N ∈ N. Then, the

partition of I into N major intervals leads to one major interval with switching time
T1 at the boundary. The resulting total number of minor intervals is then Nn and as
the switching time T1 = 1

N and therefore N is selected arbitrarily, the total number
of needed minor intervals can be arbitrary high. For example in the case of the fixed
integer control function v̄N,2 from Example 14 with n = 2, v ◦ tw equals v̄N,2 almost
everywhere on active minor intervals Ii

j if the time transformation tw with w(τ) = 2

for τ ∈ I2
1 ∪

N⋃
j=2

I1
j and w(τ) = 0 for I1

1 ∪
N⋃

j=2
I2

j is used.

Theorem 26 can be used to show that the optimal solution (x,u,v) of a MIOCP
can be transformed to a solution (x∗,u∗,w) of a TMIOCP with the same objective
value J∗(x∗,u∗,w) as J(x,u,v), if the used fixed integer control function v̄N,n is con-
sistent to the optimal integer control function v. Therefore a time control function w
as constructed in Theorem 26 is used to obtain the time transformation tw and the
transformed state and control

x∗(τ) := x(tw(τ)), u∗(τ) := u(tw(τ)). (44)

If v̄N,n is not consistent to v, the transformation to (x∗,u∗,w) with the same value
J∗(x∗,u∗,w) as J(x,u,v) is not always possible. Then, it holds that J∗(x∗,u∗,w) >
J(x,u,v) and the TMIOCP cannot be used to yield the exact analytical solution of the
MIOCP. The following example confirms that and uses the inverse τw (as given in Re-
mark 17) to yield a trajectory x of the MIOCP from a trajectory x∗ of the TMIOCP by
the back transformation x(t) := x∗(τw(t)). Similarly, the inverse can be used to yield
the corresponding continuous control trajectory u∗(t) := u(τw(t)) and the integer con-
trol trajectory v(t) := v̄N,n(τw(t)). In Example 31, the back transformed trajectories
resulting from a TMIOCP with a CC fixed integer control function have the same
analytic solution as the MIOCP. However, the selected TMIOCP with a fixed integer
control function that is NCC yields a different solution with a higher objective value
in the case that the transformation is not possible.
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Example 31 Similar as in Example 30, let I = [0,1] and consider the following MIOCP:

min
x,u,v

J(x,u,v) =
1∫

0

x(t) dt (45)

s. t. ẋ(t) = 1− v(t)+u(t) for a.e. t ∈ I (46)
−u(t)≤ 0 for a.e. t ∈ I (47)

u(t)−1≤ 0 for a.e. t ∈ I (48)

x(0)− 2
3
= 0 (49)

x(1)−1 = 0 (50)
v(t) ∈ {1,2} for a.e. t ∈ I. (51)

The feasible trajectories are depicted in Figure 8 (a) and the optimal trajectories in
(b) and (c), the optimal objective value is J(x,u,v) = 22

36 . The optimal integer control
is

v(t) =

{
2 for t ∈ [0,T1]

1 for t ∈ ]T1,1]
(52)

with T1 =
1
3 . Figure 9 illustrates the optimal trajectories of the resulting TMIOCP for

(a) feasible set (b) optimal trajectory in x (c) optimal trajectory in u

t

x

0 1

0

1

t

x

0 1

0

1

2 1
t

u

0 1

0

1

22
36 ≤ J(x,u,v)≤ 38

36 J(x,u,v) = 22
36

Fig. 8: The MIOCP from Example 31. (a) Feasible trajectories in the striped area. (b)
Optimal state trajectory with integer control v on the t-axis. (c) Optimal continuous
control trajectory.

different fixed integer control functions and Figure 10 the back transformed optimal
trajectories. The first columns (a)-(b) represent the optimal trajectories using v̄1,2 and
v̄2,2 from Example 14 and the third column (c) represents the optimal trajectories
using the CC v̄1,3 from Example 24. The optimal trajectory x∗ ◦ τw using v̄1,3 equals
the optimal trajectory for v of the MIOCP and can also be achieved with the NCC
v̄3,2 from Example 14 what is not plotted here.
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(a) v̄1,2 (b) v̄2,2 (c) v̄1,3
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Fig. 9: Optimal solutions of the TMIOCP from Example 31 for the NCC v̄1,2 in
column (a), the NCC v̄2,2 in column (b) and the CC v̄1,3 in column (c).

Remark 32 The resulting trajectories in Example 31 are analytically computed and
without loss of generality the trajectories for the continuous controls u∗ are assumed
zero on those minor intervals Ii

j with w(τ) = 0 for τ ∈ Ii
j. Arbitrary other feasible val-

ues for u∗ are possible there and lead to the same solution in x∗. Experimental numer-
ical computations of the problem for the CC v̄1,3 using different initial guesses winit
for the discretized w and zero for the other discretized trajectories of x and u lead to
the same solution trajectories as analytically computed. The used local optimization
method is a MATLAB interior point algorithm where the necessary derivatives are
approximated by finite differences. The computations indicate that the initially given
switching sequence resulting from the discretized initial guess winit changes during
the optimization and therefore such a change is not avoided in general due to the
time transformation method. However, this does not mean that a general discretized
TMIOCP always converges to the global minimum, in particular for objectives with
nonconvex discretized objective functions or feasible sets. The parameters of the dif-
ferent optimizations are represented in Table 1. Here, the first column denotes the
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Fig. 10: Back transformed optimal solutions of the TMIOCP from Example 31 for
the NCC v̄1,2 in column (a), the NCC v̄2,2 in column (b) and the CC v̄1,3 in column
(c).

Table 1: Optimization parameters for Example 31 using the CC v̄1,3 and the NCC v̄3,2

winit v̄N,n #var #eq #iter CPU time J

(1,1,1) v̄1,3 10 6 25 0.10499s 0.61111
(1,1) v̄3,2 19 11 34 0.18598s 0.61111
(3,0,0) v̄1,3 10 6 27 0.11143s 0.61111
(0,0,3) v̄1,3 10 6 20 0.085531s 0.61111
(3,0) v̄3,2 19 11 119 0.5924s 0.61111
(0,3,0) v̄1,3 10 6 23 0.090559s 0.61111
(0,3) v̄3,2 19 11 44 0.23273s 0.61111
(0,0,0) v̄1,3 10 6 27 0.10414s 0.61111
(0,0) v̄3,2 19 11 34 0.18021s 0.61111

selected discretized values for the initial guess winit in each major interval. It turns
out that the number of needed iterations #iter and the CPU time is lower for the CC
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v̄1,3 compared to the NCC v̄3,2, as well as the numbers of discretized variables #var
and equality constraints #eq. A modified example with switching time T1 = 1

N and
N > 3 leads to bigger differences since at least the numbers #var and #eq are higher
for the NCC case and fixed for the CC case (cf. Example 30).

4 Discretization of the TMIOCP

Forced Hamiltonian systems with a Hamiltonian Hl : X̃l → R and a controlled force
fl : D̃l → Rnq for each integer value l ∈ V are investigated. The pure continuous
differential equation for each integer value is defined as follows

q̇ =
∂Hl

∂ p
(q, p), (53)

ṗ = fl(q, p,u)− ∂Hl

∂q
(q, p). (54)

The functions q : I→Rnq and p : I→Rnq represent the position and the momentum of
the dynamical system. A Hamiltonian is typically given by Hl(q, p) = Tl(q, p)+Vl(q)
with the systems kinetic energy Tl(q, p) = 1

2 pT (Ml(q))
−1 p and its potential energy

Vl(q). The matrix Ml(q) is symmetric and positive definite and thus invertible. A sim-
ple example for a force function is the thrust of an engine [35], that is directly given
by u with fl(q(t), p(t),u(t)) = u(t). Denoting the right-hand side of the equations
(53) and (54) by F(x,u, l) and the state x = (q, p) leads after the time transformation
(Section 3) to the differential equation (18).

The resulting infinite dimensional TMIOCP is discretized to yield a finite dimen-
sional optimization problem that can be solved using gradient based optimization
methods as SQP or interior point methods. Confer e.g. [33] or [15] for an intro-
duction in gradient based optimization methods. Gerdts [17] uses an s-staged Runge
Kutta method to discretize a differential equation that describes a double-lane-change
manoeuvre of a car with different gears describing different systems. The continuous
control function u is discretized there with one variable for each major interval I j.
In contrast to that, here the discretization has one variable for each minor interval Ii

j.
The used discretization scheme is the midpoint rule and preserves geometric invari-
ants of Hamiltonian systems [22, p. 190]. The influence of the time transformation
on the preservation is not analyzed here, but planned in future works. Approximating
q and p by linear functions and u and w by constant functions on each minor inter-
val Ii

j, leads to a representation by six discretization points qi−1
j ,qi

j, pi−1
j , pi

j, ui
j, and

wi
j. Here, qi−1

j ,qi
j and pi−1

j , pi
j represent values at the boundaries of Ii

j and ui
j and

wi
j the constants on Ii

j. The midpoint of a linear approximation of q is then given by

qi−1/2
j :=

qi−1
j +qi

j
2 and analogously for p. Thus, the discretized differential equation
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reads

qi
j = qi−1

j +wi
j∆ Ii

j

∂Hli
j

∂ p

(
qi−1/2

j , pi−1/2
j

)
(55)

pi
j = pi−1

j +wi
j∆ Ii

j

[
f li

j
(

qi−1/2
j , pi−1/2

j ,ui
j

)
−

∂Hli
j

∂q

(
qi−1/2

j , pi−1/2
j

)]
(56)

with li
j = v̄N,n

(
τ

i−1
j +τ i

j
2

)
. Assuming (q0

j+1, p0
j+1)= (qn

j , pn
j), because (qn

j , pn
j) approx-

imates position and momentum at the right boundary of I j and (q0
j+1, p0

j+1) on the left
boundary of I j+1, leads to a discrete integration method for the complete interval I.

Similar, the discretization of the objective function J∗ from Equation (17) is given
by

N

∑
j=1

n

∑
i=1

wi
j∆ Ii

jB(x
i−1/2
j ,ui

j, l
i
j), (57)

using the shorter notation xi−1/2
j = (qi−1/2

j , pi−1/2
j ). The integer dependent mixed

state-control constraints (Equation (25)) result to

wi
jg(x

i−1
j ,ui

j, l
i
j)≤ 0 (58)

wi
jg(x

i
j,u

i
j, l

i
j)≤ 0. (59)

The first equation guarantees, that the approximated state xi−1
j at the left boundary of

the minor interval Ii
j is part of the domain (xi−1

j ,ui
j) ∈ Dli

j
and the second equation

guarantees that (xi
j,u

i
j)∈Dli

j
holds for the approximated state xi

j at the right boundary

of the minor interval Ii
j. The Equation (22) that restricts the time control leads to

∆ I j =
n

∑
i=1

wi
j∆ Ii

j (60)

for each major interval I j. The Equations (19), (20) and (21) lead to

g0(xi−1
j ,ui

j)≤ 0 (61)

g0(xi
j,u

i
j)≤ 0 (62)

r(x0
1,x

n
N) = 0 (63)

wi
j ≥ 0. (64)

The Equations (58), (59) and (64) are called blocks of vanishing constraints [36], be-
cause the inequalities (58) and (59) vanish (i.e. are automatically fulfilled) if wi

j = 0.
Blocks of vanishing constraints are a generalization of vanishing constraints, where
for the latter type of constraints the Equations (58) and (59) are replaced by a single
inequality equation wi

jg(x
i−1
j ,ui

j, l
i
j)≤ 0 with g(xi−1

j ,ui
j, l

i
j) ∈ R. In [2], it is revealed

that necessary constraint qualifications such as the Mangasarian-Fromovitz constraint
qualifications or the linear independence constraint qualifications are usually violated
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for optimization problems including vanishing constraints. Recently developed reg-
ularization techniques as, e.g. proposed in [1], [23] or [24] avoid problems caused
by the violation of the constraint qualifications. Similar regularizations are used in
[31] or [3] to solve optimization problems including equilibrium constraints or com-
plementarity constraints that are also a generalization of vanishing constraints. The
vanishing constraints are regularized here by replacing the zeros on the right-hand-
side of the Equations (58) and (59) by a regularization parameter r1 > 0 as in [36].
The solution trajectories for each regularization parameter rk,k ∈ N are used as an
initial guess for the next optimization with a lower parameter value rk+1 < rk, until
the desired problem with a value rnr = 0 is solved. The next section provides compu-
tational results for a first example.

5 Computational results

In the following section, an example is introduced, the hybrid mass oscillator with
three springs. A similar problem with two springs instead of three is computed in [14]
by a decoupling of the discrete and continuous parts. The discretized problem here
is minimized by the gradient based IPOPT interior point method [41]. The needed
derivatives for the minimization are provided by the automatic differentiation pack-
age ADOL-C [42]. All computations are obtained in a virtual machine with 3GB
allocated RAM running on a MacBook with 2.6 GHz Intel Core i7 CPU.

A mass M = 0.6 kg is fixed on a linear spring with the spring constant c = 1 kg
s2 .

The gravitational acceleration is supposed to be g = 10 m
s2 . Let q : [t0, t f ]→ R rep-

resent the time dependent vertical position of the bottom of the mass. The spring is
relaxed at the position qr

1 = 0, two further springs are mounted in parallel with re-
laxed positions qr

2 = −1 and qr
3 = −2. Both have the spring constant c and are not

fixed to the mass, such that these springs are only active if the mass is below their
relaxed position. Figure 11 (a) gives a sketch of the hybrid control system and Fig-
ure 11 (b) represents the possible switches between the systems. The resulting three
Hamiltonians are given as

Hl(q, p) =
p2

2M
+Mgq+

l

∑
i=1

c
2i
(q−qr

i )
2i (65)

for l ∈ V = {1,2,3}. Thus, the differential equations are ṗ = Fp(q, p,u, l) with

Fp(q, p,u, l) = u−Mg− c
l

∑
i=1

(q−qr
i )

2i−1 (66)

and q̇ = Fq(q, p,u, l) with

Fq(q, p,u, l) =
p
M
. (67)

Here, the control force is fl(q, p,u) = u for each l ∈ V and the control function
u(t) ∈R is bounded by the interval [−Mg,Mg]. That leads to the integer independent
mixed state-control constraint

g0(x,u) = (u−Mg,−Mg−u)≤ (0,0). (68)
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(a) sketch (b) possible switches
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Fig. 11: The hybrid mass oscillator.

The Hamiltonian H1 is active for q(t) ∈ [qr
2,∞[, H2 for q(t) ∈ [qr

3,q
r
2], and H3 for

q ∈ ]−∞,qr
3]. Thus, the regularized integer dependent mixed state-control constraints

of the MIOCP for three regularization parameters r1 = 0.2,r2 = 0.1 and r3 = 0 are as
follows

g1(x,u) = qr
2−q≤ rk (69)

g2(x,u) = (q−qr
2,q

r
3−q)≤ (rk,rk) (70)

g3(x,u) = q−qr
3 ≤ rk. (71)

The objective functional represents the control effort

J(x,u,v) =
1
2

t f∫
t0

u2(t) dt (72)

for the time interval [t0, t f ] = [0,12]. The problem is time transformed and the min-
imization using the NCC v̄N,3 from Example 14 is compared with the minimization
using the CC v̄N,5 from Example 24. In both cases, the initial guess for all the dis-
cretized variables q, p,u,w is zero.

Two versions of this problem are considered. First, the initial state is the equilib-
rium of the first spring without a mass (q0

0, p0
0) = (0,0) and the final position is free,

such that the expected solution is a periodic oscillation for the position trajectory and
constant zero for the control trajectory. The resulting state and control trajectories are
plotted in Figure 12 for N = 60 major intervals. The result for the CC v̄N,5 has a con-
trol effort close to zero and the state trajectory oscillates almost as expected. However,
the control effort for NCC v̄N,3 is rather high in the beginning and relatively low sub-
sequently. The resulting position trajectory oscillates with a low amplitude between
the second and the third domain and avoids switches from domain two to domain
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(a) J = 2.69210 (b) J = 0.06424 (c)
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Fig. 12: Locally optimal discretized position q and control u trajectory of the hybrid
mass oscillator with free final state and N = 60 major intervals. The computation of
the TMIOCP is done with (a) the NCC v̄N,3, (b) the CC v̄N,5. The control trajectories
for both are depicted in (c). Colors mark the positions with different numbers of active
springs.

one at all. For increasing N = 70,80, . . . for the NCC v̄N,3, the computed objective
value gets closer to the objective value J = 0.06424 of the CC v̄60,5. For example for
N = 290 the objective value is J = 0.06555. Thus, for a comparable objective value,
this leads to Nn = 870 discretization intervals for the NCC and Nn = 300 intervals
for the CC fixed integer control function.

Secondly, the approximated equilibrium in domain three is used as the final con-
straint (qn

N , pn
N) = (−2.51,0). The resulting optimal trajectories are plotted in Figure

13 for different fixed integer control functions. The accuracy of the computed trajec-

(a) J = 7.78079 (b) J = 3.63221 (c) J = 1.66224
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Fig. 13: Locally optimal discretized position q and control u trajectory of the hy-
brid mass oscillator with final state (qn

N , pn
N) = (−2.51,0). The computation of the

TMIOCP is done with (a) the NCC v̄30,3, (b) the NCC v̄50,3 and (c) the CC v̄30,5.
Colors mark the positions with different numbers of active springs.



On the time transformation of MIOCPs using a CC fixed integer control function 27

Table 2: Optimization parameters for the hybrid mass oscillator with the NCC v̄N,3
and the CC v̄N,5. The numbers #iterk represent the iterations for the regularization
parameter rk and the CPU time is combined for all three optimizations.

v̄N,n #var #eq #ineq #iter1 #iter2 #iter3 J CPU time

v̄10,3 123 74 80 173 18 59 31.77658 0.424s
v̄10,5 203 114 140 207 24 732 5.67604 2.559s
v̄20,3 243 144 160 231 54 106 5.26786 1.113s
v̄20,5 403 224 280 550 95 99 7.77714 3.686s
v̄30,3 363 214 240 191 24 177 7.78079 1.601s
v̄30,5 603 334 420 445 46 523 1.66224 7.828s
v̄40,3 483 284 320 171 34 75 2.49205 1.913s
v̄40,5 803 444 560 704 60 183 1.56475 9.069s
v̄50,3 603 354 400 320 130 251 3.63221 5.425s
v̄50,5 1003 554 700 244 62 169 2.49963 5.234s
v̄60,3 723 424 480 241 35 319 3.03275 4.812s
v̄60,5 1203 664 840 340 65 254 1.28626 9.918s

tories is in general identical if the discrete time nodes are identical and therefore the
same total number of minor intervals possibly leads to the same accuracy. However,
the accuracy is not guaranteed because time transformed minor time nodes may co-
incide. As shown in Table 2, the resulting objectives reveal a better solution for the
CC v̄30,5 than for the NCC v̄50,3. The difference in the objective value is even bigger
if the CC v̄30,5 is compared to the NCC v̄30,3. In this case, the guaranteed accuracy of
the computed trajectories is the same because the major time nodes are identical. Fur-
ther computations for different numbers of major intervals N reveal that the objective
value is better for the CC compared to the NCC function in the most of the computed
examples as can be seen in Table 2. All the computations converged to a local solu-
tion using an optimality tolerance of 10−8 and in all cases the constraint violation of
the solution is below 10−11. However, global optimality can not be guaranteed for the
resulting optimized trajectories because a local optimizer is applied on a very rough
initial guess. A similar objective value as for the CC v̄30,5 is achieved with the NCC
v̄130,3 (J = 1.67923) resulting in a total of Nn = 150 compared to Nn = 390 minor
intervals. The computational effort is not directly comparable for the same numbers
of major intervals N, as the resulting trajectories are different. Comparing the CPU
time for the computations with similar objective values reveals a huge advantage for
the CC v̄30,5 with 7.828s compared to 25.888s for the NCC v̄130,3. The objective val-
ues (a) and the maximal constraint violations (b) are visualized for each iteration and
all regularization steps in Figure 14 for the optimization with the NCC v̄30,3, v̄50,3
and the CC v̄30,5. The beginning of each optimization with an initial guess with a
relatively low objective value that does not fulfill the constraints leads to increasing
objective values while the constraint violation is decreasing. This is also the case after
the optimization is restarted with a new regularization parameter rk.
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Fig. 14: Convergence history for the optimization with the NCC v̄30,3, v̄50,3 and the
CC v̄30,5 of (a) the objective values and (b) the maximal constraint violation. The
beginning of the optimization with a new regularization parameter is marked with a
red cross.

6 Conclusions and outlook

A time transformation is introduced formally for integer independent mixed state-
control constraints and then extended to the more general case of integer dependent
mixed state-control constraints. The major contributions are Theorem 26, where it is
shown that any variable integer control function v with at most one switch per major
interval can be transformed to every consistent fixed integer control function v̄N,n.
It is further shown that the transformation is in general not possible for a fixed in-
teger control function v̄N,n that is not consistent to v if the switching time is in the
interior of a major interval. However, the selection of a higher number N of major
intervals possibly enables the transformation also for a fixed integer control func-
tion v̄N,n that is not consistent to v, but the needed number of major intervals N is
in general unknown a priori and unbounded, leading to a possibly very high num-
ber of discretization variables of the discretized problem. Moreover, if N is selected
too low, the corresponding objective value J∗ of the TMIOCP is higher than the ob-
jective value J of the MIOCP. The discretized TMIOCP is introduced and used to
numerically compute the hybrid mass oscillator example. It can be observed that the
CC fixed integer control function leads to a better accuracy of the resulting trajec-
tories, in particular the computed switching times are more accurate. The numerical
examples reveal that trajectories with comparable objective values possibly can be
computed with a significantly lower total number of discretization intervals if a CC
instead of a NCC fixed integer control function is used.

In future works we want to consider more complex systems where switches are
caused due to mechanical contact. Modeling such systems with integer dependent
mixed state-control constraints may require specific numerical integration methods
to discretize the differential algebraic equations and have to be tested. An adaptive
refinement, starting with a low number of major intervals and keeping already com-
puted integer values l ∈ V fixed whenever acceptable, could lead to reduced comput-
ing times and therefore allow the computation of more challenging systems.
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6. Burgschweiger, J., Gnädig, B., Steinbach, M.C.: Optimization models for operative planning in drink-
ing water networks. Optimization and Engineering 10(1), pp. 43–73 (2009). DOI 10.1007/s11081-
008-9040-8

7. Buss, M., Glocker, M., Hardt, M., von Stryk, O., Bulirsch, R., Schmidt, G.: Nonlinear hybrid dy-
namical systems: Modeling, optimal control, and applications. In: S. Engell, G. Frehse, E. Schnieder
(eds.) Modelling, Analysis, and Design of Hybrid Systems, Lecture Notes in Control and Information
Sciences, vol. 279, pp. 311–335. Springer Berlin Heidelberg (2002). DOI 10.1007/3-540-45426-8 18

8. Buss, M., Hardt, M., von Stryk, O.: Numerical solution of hybrid optimal control problems with
applications in robotics. In: Proc. 15th IFAC World Congress on Automatic Control, Barcelona,
Spain, July, pp. 21–26 (2002)

9. Caldwell, T.M., Murphey, T.D.: Switching mode generation and optimal estima-
tion with application to skid-steering. Automatica 47(1), 50–64 (2011). DOI
http://dx.doi.org/10.1016/j.automatica.2010.10.010
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