
Blocking optimal arborescences

Attila Bernáth∗ Gyula Pap†

October 1, 2018

Abstract

The problem of covering minimum cost common bases of two matroids is NP-complete, even if the two
matroids coincide, and the costs are all equal to 1. In this paper we show that the following special case is
solvable in polynomial time: given a digraph D = (V,A) with a designated root node r ∈ V and arc-costs
c : A → R, find a minimum cardinality subset H of the arc set A such that H intersects every minimum
c-cost r-arborescence. By an r-arborescence we mean a spanning arborescence of root r. The algorithm we
give solves a weighted version as well, in which a nonnegative weight function w : A→ R+ (unrelated to c)
is also given, and we want to find a subset H of the arc set such that H intersects every minimum c-cost
r-arborescence, and w(H) =

∑
a∈H w(a) is minimum. The running time of the algorithm is O(n3T (n,m)),

where n and m denote the number of nodes and arcs of the input digraph, and T (n,m) is the time needed
for a minimum s − t cut computation in this digraph. A polyhedral description is not given, and seems
rather challenging.

Keywords: arborescences, polynomial algorithm, covering

1 Introduction
Let D = (V,A) be a digraph with vertex set V and arc set A. A spanning arborescence is a subset B ⊆ A
that is a spanning tree in the undirected sense, and every node has in-degree at most one. Thus there is exactly
one node with in-degree zero, we call it the root node. Equivalently, a spanning arborescence is a subset B ⊆ A
with the property that there is a root node r ∈ V such that %B(r) = 0, and %B(v) = 1 for v ∈ V − r, and B
contains no cycle. An arborescence will mean a spanning arborescence, unless stated otherwise. If r ∈ V is
the root of the spanning arborescence B then we will say that B is an r-arborescence. Arborescences form a
natural directed variant of spanning trees and they arise in applications where we want to broadcast information
in a network that contains directed connections, for example wireless devices, too.

The Minimum Cost Arborescence Problem is the following: given a digraph D = (V,A), a designated root
node r ∈ V and a cost function c : A→ R, find an r-arborescence B ⊆ A such that the cost c(B) =

∑
b∈B c(b)

of B is smallest possible. Fulkerson [8] has given a two-phase algorithm solving this problem, and he also
characterized minimum cost arborescences. A natural variant of the Minimum Cost Arborescence Problem is
where the root is not fixed, i.e. find an arborescence in a digraph that has minimum total cost. A simple
reduction shows that this global minimum cost arborescence problem is equivalent with the Minimum Cost
Arborescence Problem stated above. Kamiyama in [12] raised the following question.

Problem 1 (Blocking Optimal r-arborescences). Given a digraph D = (V,A), a designated root node r ∈ V
and a cost function c : A → R, find a subset H of the arc set such that H intersects every minimum cost
r-arborescence, and |H| is minimum.

The minimum in Problem 1 measures the robustness of the minimum cost arborescences, since it asks to
delete a minimum cardinality set of arcs in order to destroy all minimum cost r-arborescences. One might ask
why we fix the root of the arborescences that we want to cover. The problem of finding the minimum number
of arcs that intersect every (globally) minimum cost arborescence can be reduced to Problem 1as follows. Add
a new node r′ to the digraph and connect r′ with every old node by high cost and high multiplicity arcs. Then
∗MTA-ELTE Egerváry Research Group, Department of Operations Research, Eötvös University, Pázmány Péter sétány 1/C,

Budapest, Hungary, H-1117. Research supported by the Hungarian Scientific Research Fund (OTKA, grant number K109240), and
by the ERC StG project PAAl no. 259515. Part of the research was done while the author was at Warsaw University, Institute of
Informatics, ul. Banacha 2, 02-097 Warsaw, Poland. E-mail: bernath@cs.elte.hu.
†MTA-ELTE Egerváry Research Group, Department of Operations Research, Eötvös University, Pázmány Péter sétány 1/C,

Budapest, Hungary, H-1117. Supported by the Hungarian Scientific Research Fund (OTKA, grant number K109240). E-mail:
gyuszko@cs.elte.hu.

1

ar
X

iv
:1

50
6.

05
67

7v
1

 [
m

at
h.

C
O

]
 1

8
Ju

n
20

15

minimum cost arborescences in this new instance will be necessarily rooted at r′, they will only contain one arc
leaving r′ by the high cost of these arcs, and an optimal arc set intersecting these will not use the new arcs
because of their high multiplicity.

One interpretation of Problem 1 is that we want to cover the minimum cost common bases of two matroids:
one matroid being the graphic matroid of D (in the undirected sense), the other being a partition matroid with
partition classes δin(v) for every v ∈ V − r. The problem of covering minimum cost common bases of two
matroids is in general NP-complete, even if the two matroids coincide, and the costs are all equal to 1. That
is, given a matroid with an independence oracle, it is NP-complete to find a minimum cut (where a cut in a
matroid is an inclusionwise minimal subset that intersects every base). For a proof, see for example Theorem
2.1 in [2] and apply it to the dual matroid. In [10] we investigated the problem of covering all minimum cost
bases of a matroid. We have given an algorithm that solves the problem in polynomial time, provided that we
can find a minimum cut in certain minors of the matroid at hand. This includes the class of graphic matroids,
that is the following problem is polynomial time solvable: given an undirected graph and a cost function on its
edges, find a minimum size set of edges which intersects every minimum cost spanning tree. In fact this is a not
too hard exercise for the interested reader, however the details can be found in [10].

Kamiyama [12] solved special cases of Problem 1 and he investigated some necessary and sufficient conditions
for the minimum in this problem. In this paper we give a polynomial time algorithm solving Problem 1. In
fact, our algorithm will solve the following, more general problem, too.

Problem 2. Given a digraph D = (V,A), a designated root node r ∈ V , a cost function c : A → R and a
nonnegative weight function w : A→ R+, find a subset H of the arc set such that H intersects every minimum
c-cost r-arborescence, and w(H) is minimum.

The rest of this paper is organized as follows. In Section 2 we describe related work. In Section 3 we give
variants of the problem based on Fulkerson’s characterization of minimum cost arborescences. These variants
are all equivalent with Problem 1 as simple reductions show, so we deal with the variant that can be handled
most conveniently. In Section 4 we solve the special case of covering all arborescences. This is indeed a very
special case, but the answer is very useful in the solution of the general case. Section 5 contains our main result
broken down into two steps: in Section 5.1 we introduce a min-min formula that gives a useful reformulation of
our problem, and we give two proofs of this min-min formula (in Section 5.1 and in Section 5.2). Finally –after
introducing some essential results and techniques in Section 5.3– we give a polynomial time algorithm solving
Problems 1 and 2 in Section 5.4. We analyze the running time of this algorithm in Section 5.5. In Section 6 we
give further remarks: we reduce Problems 1 and 2 to the problem of covering the common bases of a graphic
matroid and a partition matroid, which might be a direction for further research.

2 Related work
The problem that we consider (Problem 1 and its weighted version, Problem 2) is a typical covering problem:
given a hypergraph on ground set S with hyperedge set E ⊆ 2S , find a minimum size subset F of S that intersects
every hyperedge in E . In Problem 1 the ground set S is the set of the arcs of a digraph, and E is the set of optimal
r-arborescences. Every hypergraph covering problem defines a packing problem in a natural way: given a
hypergraph with hyperedge set E ⊆ 2S , find a maximum size subset E ′ of pairwise disjoint hyperedges. For our
special case of Problem 1, this packing problem can be solved as follows: (a) for any natural number k we can find
a minimum cost subset Bk of the arc set such that Bk is the union of k arc-disjoint r-arborescences, and (b) we
can thus find (with a logarithmic search) the largest k such that the cost of Bk is k times the cost of an optimal
r-arborescence. Hypergraph packing and covering problems have an extensive literature, see for example the
surveys [3] or [17, Part VIII.]. Most of these results deal with certain properties of hypergraphs (e.g. packing
property, MFMC property, ideal hypergraphs, hypergraphs that pack, etc.) that help solving the packing and
the covering problem. These results are LP based, as they use an LP relaxation of the packing/covering problem
pair.

We looked at each of these general hypergraph covering frameworks in order to find a candidate to help
solve Problems 1 and 2, to no avail. It seems that these problems are outside of the reach of the models known
in the literature.

If the cost function c is uniform then even the weighted Problem 2 is easy to solve (as the task is to find a
minimum weight r-cut, where an r-cut is the set of arcs entering a non-empty subset X ⊆ V − r). By a result
of Edmonds [5] (see also [3, Theorem 1.24]) a polyhedral description can also be given. Namely the dominant
of incidence vectors of r-cuts in a digraph D = (V,A) can be described as {x ∈ RA : x ≥ 0, x(B) ≥ 1 for every
r-arborescence B}.

As we already mentioned in the introduction, Problems 1 and 2 are special cases of covering the minimum
cost common bases of two matroids. It is not too hard to show, that given 2 matroids Mi = (S, Ii) (i = 1, 2)
over the same ground set S and a cost function c : S → R, the minimum cost common bases of M1 and M2 are

2

the common bases of two other matroids M ′1 and M ′2 over the same ground set (see details in Section 6). That
is, Problems 1 and 2 fall in the framework of covering the common bases of two matroids. Another natural
special case of covering common bases is the following. Given a bipartite graph G = (S, T,E), find a minimum
size subset H ⊆ E such that G−H does not contain a perfect matching. However, this problem was shown to
be NP-complete by Joret and Vetta [11].

Another related problem is the minimum cut problem in matroids. A cut of matroid is an inclusionwise
minimal subset that intersects every base. The minimum cut problem in a matroid is the problem of finding
a minimum size cut. This problem is also known as the cogirth problem (the cogirth of a matroid is the
size of the smallest cut, while the girth of a matroid is the size of the smallest circuit). Since the cuts of
a matroid are the circuits of the dual matroid, the minimum cut problem is equivalent with the minimum
curcuit problem (a.k.a. girth problem). The (co)girth problem in matroids is NP-hard in general (e.g. girth
is NP-hard in a transversal matroid [16], and both girth and cogirth are NP-hard in a binary matroid [18]).
Polynomially solvable cases of the (co)girth problem has received considerable attention. For example, Geelen
et al [9], motivated by applications in coding theory, devised a polynomial time randomized algorithm solving
the (co)girth problem in binary matroids that arise from a graphic matroid by adding a small perturbation.
The minimum cut problem is polynomially solvable in k-graphic-matroids (that is, matroids of the form kM
where M is graphic); this was generalized by Király [13] for k-hypergraphic matroids (i.e. matroids of the form
kM where M is hypergraphic; hypergraphic matroids were first defined by Lorea [15]).

Interdiction problems are also related to our research. In interdiction problems there are two (unrelated)
objective functions like in Problem 2 (lets call them cost and weight), and we are interested in minimum cost
objects satisfying some requirement (for example spanning trees, matchings, or shortest paths). The problem
is then to increase the cost of these optimal objects to the greatest extent by removing elements with some
budget for the total weight of the removed elements. We mention that there are other types of interdiction
problems, too, but these are closest to our research. An example is the k most vital edges problem: given
an undirected graph with costs on the edges, and the task is to delete k edges so that the minimum cost of
a spanning tree in the remaining graph is as large as possible (in this case the weights are all 1, and k plays
the role of the budget). In [7] it is shown that this problem is NP-complete, and in [14] it is shown that it can
be solved in time O(nk+1). The matching interdiction problem is the following. Given a graph G with
non-negative costs and weights on its edges and a budget, find a subset of edges R such that the total cost of
R does not exceed the budget and the maximum weight of a matching in G−R is smallest possible (note that
for this sole problem we switched the role of the cost and the weight functions for conventional reasons). In [20,
Theorem 3.3] it is shown that this problem is NP-complete on simple bipartite graphs with unit edge weights
and unit interdiction costs, that is, it is NP hard to find a minimum size set of edges F of a bipartite graph G
such that F intersects every maximum matching of G (as mentioned above, in [11] it is shown that this problem
is NP-hard even for bipartite graphs that admit a perfect matching). In [19] a 4-approximation algorithm is
given for the special case when all edge weights are 1. This is improved in [4] where it is shown that there exists
a constant factor approximation algorithm for the matching interdiction problem even without this restriction
on the edge weights.

3 The problem and its variants
In this paper we investigate Problem 1 and the more general Problem 2. For sake of simplicity we will mostly
speak about Problem 1, and in Section 5.4 we sketch the necessary modifications of our algorithm needed to
solve Problem 2. Note that Problem 2 with an integer weight function w can be reduced to Problem 1 by
replacing an arc a ∈ A (of weight w(a)) with w(a) parallel copies (each of weight 1). This reduction is however
not polynomial. On the other hand, the algorithm we give for Problem 1 can be simply modified to solve
Problem 2 in strongly polynomial time.

Let us give some more definitions. The arc set of the digraph D will also be denoted by A(D). Given a
digraph D = (V,A) and a node set Z ⊆ V , let D[Z] be the digraph obtained from D by deleting the nodes of
V − Z (and all the arcs incident with them). If B ⊆ A is a subset of the arc set, then we will sometimes abuse
the notation by identifying B and the graph (V,B): thus B[Z] is obtained from (V,B) by deleting the nodes
of V − Z (and the arcs of B incident with them). The set of arcs of D entering (leaving) Z is denoted δinD (Z)
(δoutD (Z)), the number of these arcs is %D(Z) = |δinD (Z)| (δD(Z) = |δoutD (Z)|, respectively). We will omit D from
the subscript in these notations, if no confusion can arise.

The following theorem of Fulkerson characterizes the minimum cost arborescences and leads us to a more
convenient, but equivalent problem.

Theorem 1 (Fulkerson, [8]). There exists a subset A′ ⊆ A of arcs (called tight arcs) and a laminar family
L ⊆ 2V−r such that an r-arborescence is of minimum cost if and only if it uses only tight arcs and it enters
every member of L exactly once. The set A′ and the family L can be found in polynomial time.

3

Since non-tight arcs do not play a role in our problems, we can forget about them, so we assume that A′ = A
from now on.

Let L be a laminar family of subsets of V . A spanning arborescence B ⊆ A in D is called a L-tight
arborescence if both of the following hold.

1. |δinB (F)| ≤ 1 for all F ∈ L, and

2. |δinB (F)| = 0 for all F ∈ L containing the root r of B.

We point out that the second condition in the above definition is needed because we don’t want to fix the
root of the arborescences: this will be natural in the solution we give for Problem 1. The following statement
gives an equivalent definition of L-tight arborescences; the proof is left to the reader.

Claim 1. A spanning arborescence B ⊆ A in D is L-tight if and only if B[F] is an arborescence for every
F ∈ L.

The result of Fulkerson leads us to the following problem.

Problem 3. Given a digraph D = (V,A), a designated root node r ∈ V and a laminar family L ⊆ 2V , find a
subset H of the arc set such that H intersects every r-rooted L-tight arborescence and |H| is minimum.

Note that in this problem we allow that r ∈ F for some members F ∈ L. By Fulkerson’s Theorem above, if
we have a polynomial algorithm for Problem 3 then we can also solve Problem 1 in polynomial time with this
algorithm. However, this can be reversed by the next claim.

Claim 2. If we have a polynomial algorithm solving Problem 1 then we can also solve Problem 3 in polynomial
time.

Proof. Let the cost of an arc a ∈ A be equal to the number of sets F ∈ L such that a enters F . Then an
r-arborescence is of minimum cost if and only if it is L-tight, if there exists an L-tight arborescence at all.

We point out that the construction in the above proof also shows how to find an L-tight arborescence, if it
exists at all. So we can turn our attention to Problem 3. However, in order to have a more compact answer, it
is more convenient to consider the following, equivalent problem instead, in which the root is not designated.

Problem 4. Given a digraph D = (V,A) and a laminar family L ⊆ 2V , find a subset H of the arc set such
that H intersects every L-tight arborescence and |H| is minimum.

Claim 3. There exists a polynomial algorithm solving Problem 3 if and only if there exists a polynomial algorithm
solving Problem 4.

Proof. Assume that there exists a polynomial time algorithm for Problem 4 and consider an instance of Problem
3. Since arcs entering r will not be used in an optimal solution of Problem 3, we can assume that there are
no such arcs. But then the L-tight arborescences are all rooted in r, so our algorithm covering all L-tight
arborescences can be used for solving Problem 3, too.

For the other direction assume that we have a polynomial time algorithm solving Problem 3 and consider
an instance of Problem 4 given with D = (V,A) and L ⊆ 2V . Let V ′ = V + r′ with a new node r′ and let
D′ = (V ′, A′) where A′ consists of the arcs in A and an arc of multiplicity |A|+1 from r′ to every v ∈ V . Finally
let L′ = L+ {V }. Now consider Problem 3 with input D′, r′ and L′. Observe that L-tight arborescences in D
and (r′-rooted) L′-tight arborescences in D′ correspond to each-other in a natural way, and an optimal solution
to this instance of Problem 3 will not contain any arc of form r′v (if it contains one then it has to contain all
parallel copies, but we included those with a large multiplicity).

The main result of this paper is a polynomial algorithm solving Problem 4, and thus, by Claims 2 and 3, for
Problems 1 and 3. For a digraph D = (V,A), and a laminar family L of subsets of V , let γ(D,L) denote the
minimum number of arcs deleted from D to obtain a digraph that does not contain an L-tight arborescence,
that is,

γ(D,L) := min{|H| : H ⊆ A such that D −Hcontains no L-tight arborescence }. (1)

Notice that an arborescence is L-tight if and only if it is (L ∪ {V })-tight, and γ(D,L) = γ(D,L ∪ {V }).
Therefore we will assume that V ∈ L from now on.

4

4 Covering all arborescences – a special case
In the proof of our main result below, we will use its special case when the laminar family L = {V }. This
special case amounts to the following well-known characterization of the existence of a spanning arborescence.

Lemma 1. For any digraph D = (V,A) exactly one of the following two alternatives holds:

1. there exists a spanning arborescence,

2. there exist two disjoint non-empty subsets Z1, Z2 ⊂ V such that %D(Z1) = %D(Z2) = 0.

This characterization also implies a formula to determine the minimum number of edges to be deleted to
destroy all arborescences. The characterization is based on double cuts.

Definition 1. For a digraph D = (V,A), a double cut δin(Z1) ∪ δin(Z2) is determined by a pair of non-empty
disjoint node subsets Z1, Z2 ⊆ V . The minimum cardinality of a double cut is denoted by µ(D), that is

µ(D) := min{|δin(Z1)|+ |δin(Z2)| : Z1 ∩ Z2 = ∅ 6= Z1, Z2 (V }. (2)

Corollary 1. For any digraph D = (V,A) the following equation holds: γ(D, ∅) = µ(D).

We point out that a minimum double cut can be found in polynomial time by a simple reduction to minimum
cut: this is described in Section 5.5. Furthermore we will need the following observation (the proof is left to the
reader).

Lemma 2. Given a digraph D = (V,A), let R = {r ∈ V : there exists an r-rooted spanning arborescence in
D}. Then D[R] is a strongly connected digraph, and %D(R) = 0.

5 Covering tight arborescences
Given a laminar family L ⊆ 2V with V ∈ L, for F ∈ L, let L[F] := {F ′ ∈ L, F ′ ⊆ F}. A simple corollary of
Claim 1 is the following.

Claim 4. For any L-tight arborescence B, and any F ∈ L, B[F] is an L[F]-tight arborescence in D[F].

The following observation is crucial in our proofs. Given a digraph D = (V,A) and a laminar family L ⊆ 2V ,
for an arbitrary member F ∈ L and arc a = xy ∈ A leaving F , let D̃ be the graph obtained from D by changing
the tail of a for an arbitrary other node x′ ∈ F , that is D̃ = D − xy + x′y (where x, x′ ∈ F and y /∈ F). This
operation will be called a tail-relocation. Clearly, there is a natural bijection between the arcs of D and those
of D̃, but even more importantly, this bijection also induces a bijection between the L-tight arborescences in D
and those in D̃. This is formulated in the following claim.

Claim 5. Let B ⊆ A and xy ∈ B. Then B − xy + x′y is an L-tight arborescence in D̃ if and only if B is an
L-tight arborescence in D.

The claim also implies that γ(D,L) = γ(D̃,L).

5.1 A "min-min" formula
Our approach to determine γ(D,L) is broken down into two steps. First, we prove a "min-min" formula, that
is, we show that a set H that attains the minimum in (1) is equal to a special arc subset called an L-double-cut.
The second step will be the construction of an algorithm to find a minimum cardinality L-double-cut.

So what is this first step – the min-min formula all about? It expresses that in order to cover optimally the
L-tight arborescences we need to consider the problem of covering the L[F]-tight arborescences for every F ∈ L.

Definition 2. For a set Z ⊆ V , let LZ denote the family of sets in L not disjoint from Z, that is, let

LZ := {F ∈ L : F ∩ Z 6= ∅}. (3)

Then an L-cut M(Z) is defined as the set of arcs entering Z, but not leaving any set in LZ , that is, let

M(Z) := MD,L(Z) := δinD (Z)−
⋃

F∈LZ

(
δoutD (F)

)
. (4)

5

Z

Figure 1: Illustration of an L-cut. The arcs drawn with a solid line count in M(Z), those with dashed line do
not.

Thus M(Z) consists of those arcs entering Z, but not leaving any of those sets in L that have non-empty
intersection with Z. An illustration can be found in Figure 1. A set function f is given by the cardinality of an
L-cut, that is, we define

f(Z) := fD(Z) := fD,L(Z) := |MD,L(Z)|. (5)

It is useful to observe that
fD,L(Z) ≥ fD[F],L[F](Z ∩ F) for any F ∈ L. (6)

The motivation for f and M(Z) is that H = M(Z) is a set of arcs the deletion of which destroys all tight
arborescences rooted outside of Z, as claimed by the following lemma.

Lemma 3. Given D = (V,A) and laminar family L ⊆ 2V . If fD(Z) = 0 for some non-empty Z ⊆ V then there
is no L-tight arborescence in D with root outside Z.

Proof. Take an arbitrary arc uv entering Z. Since uv /∈M(Z), there exists an uv set F ∈ L so that F ∩Z 6= ∅.
Relocate the tail of this arc into a node in F ∩ Z. Let D′ be the digraph obtained from D after doing this
tail-relocation for every arc entering Z. By Claim 5, there exists an L-tight arborescence in D with root outside
Z if and only if there exists an L-tight arborescence in D′ with root outside Z. But %D′(Z) = 0.

For any F ∈ L and nonempty disjoint subsets Z1, Z2 ⊆ F the set of arcs in MD[F],L[F](Z1)∪MD[F],L[F](Z2)
will be called an L-double cut, and we introduce the following notation for the minimum cardinality of an
L-double cut:

ΘF := ΘF,D := ΘF,D,L := min{fD[F],L[F](Z1) + fD[F],L[F](Z2) : ∅ 6= Z1, Z2 ⊆ F,Z1 ∩ Z2 = ∅}.

The following simple observation is worth mentioning.

Claim 6. Given a digraph D = (V,A) and a laminar family L ⊆ 2V , then fD,L(Z) ≤ %D(Z) holds for every
Z ⊆ V . Consequently, ΘF,D,L ≤ µ(D[F]) holds for any F ∈ L.

Note that the tail-relocation operation introduced above does not change the f -value of any set Z ⊆ V , that
is fD,L(Z) = fD′,L(Z), if D′ is obtained from D by (one or several) tail-relocation. Consequently, this operation
does not modify the Θ value, either, that is ΘF,D,L = ΘF,D′,L for any F ∈ L. The following "min-min" theorem
motivates the definition of Θ.

Theorem 2. For a digraph D = (V,A), and a laminar family L of subsets of V , the minimum number of
arcs to be deleted from D to obtain a digraph that does not contain an L-tight arborescence is attained on an
L-double cut, that is

γ(D,L) = min
F∈L

ΘF,D,L.

Proof. By Lemma 3, γ(D,L) ≤ minF∈LΘF , since if we delete an arc set MD[F](Z1) ∪MD[F](Z2) for some
F ∈ L and non-empty disjoint Z1, Z2 ⊆ F , then no L[F]-tight arborescence survives in D[F] (since its root can
neither be in F − Z1, nor in F − Z2, by Lemma 3, and F = (F − Z1) ∪ (F − Z2)).

The other inequality follows from Lemma 4 below.

Lemma 4. Given a digraph D = (V,A) and a laminar family L ⊆ 2V with V ∈ L, if

fD[F](Z1) + fD[F](Z2) ≥ 1 for any F ∈ L and non-empty disjoint sets Z1, Z2 ⊆ F (7)

then there exists a L-tight arborescence in D.

6

Proof. Let D̄ = (V + r̄, A∪ {r̄v : v ∈ V }). Notice that L-tight arborescences in D and L-tight arborescences in
D̄ naturally correspond to each other, since V ∈ L. Thus we will show that there exists an L-tight arborescence
in D̄ (notice that the condition holds for D̄, since D̄[F] = D[F] for every F ∈ L). We will use induction on
|L|+ |V |+ |A(D̄)|. If L = {V } then the lemma is true by Lemma 1. Otherwise let F ∈ L be an inclusionwise
minimal member of L: again by Lemma 1, there exists a spanning arborescence in D̄[F]. Let R be the subset of
nodes of F that can be the root of a spanning arborescence in D̄[F], i.e. R = {r ∈ F : there exists an r-rooted
arborescence (spanning F) in D̄[F]}.

1. Assume first that |R| ≥ 2 and let D̄1 = D̄/R obtained by contracting R. For any set Z ⊆ V which is
either disjoint form R, or contains R, let Z/R be its (well-defined) image after the contraction and let
L1 = {X/R : X ∈ L}. By induction, there exists an L1-tight arborescence P in D̄1, since fD̄[X/R](Z/R) =

fD̄[X](Z) for any X/R ∈ L1 and Z/R ⊆ X/R. It is clear that we can create an L-tight arborescence in D̄
from P : we describe one possible way. Consider the unique arc in P that enters F and assume that the
pre-image of this arc has head r ∈ R. Delete every arc from P induced by F/R and substitute them with
an arbitrary r-rooted arborescence (spanning F) of D̄[F]. This clearly gives an L-tight arborescence.

2. So we can assume that R = {r}. Next assume that there exists an arc uv ∈ A(D̄) entering F with r 6= v.
Let D̄2 = D̄ − uv: we claim that there exists an L-tight arborescence in D̄2 (which is clearly an L-tight
arborescence in D̄, too). If this does not hold then by the induction there must exist a set F ′ ∈ L and
non-empty disjoint subsets Z1, Z2 ⊆ F ′ with

∑
i=1,2 fD̄2[F ′](Zi) = 0. Since

∑
i=1,2 fD̄[F ′](Zi) > 0, the arc

uv must be equal to (say) MD̄[F ′],L(Z1) (while MD̄[F ′],L(Z2) = ∅). This implies that uv enters Z1, while
r ∈ Z1 must also hold, otherwise fD̄[F ′](Z1) ≥ 2 would hold, since v is reachable from r in D̄[F ′]. Let
Z ′1 = Z1 − (F − r) and observe that fD̄[F ′](Z

′
1) = 0: this is because the arcs in δin

D̄[F ′]
(Z ′1)− δin

D̄[F ′]
(Z1) all

leave F , since %D̄[F](r) = 0 by Lemma 2. Thus fD̄[F ′](Z
′
1) + fD̄[F ′](Z2) = 0, a contradiction.

3. Thus we can also assume that the arcs of D̄ entering F all enter r. Let L2 = L − {F}: then clearly
fD̄[F ′],L2

(Z) ≥ fD̄[F ′],L(Z) for any F ′ ∈ L2 and Z ⊆ F ′, so by induction there exists an L2-tight arbores-
cence P2 in D̄. Since the root of P2 is r̄ and P2 enters F only once (since all arcs entering F have head
r), P2 is also L-tight, so the theorem is proved.

5.2 A second proof of the “min-min” theorem
In this subsection we reprove Lemma 4 which is the hard direction of Theorem 2. Our motivation is that we
think we can give better insights into the details of our techniques.

Let L0 = {{v} : v ∈ V } ∪ {V }. Notice that an arborescence is L-tight if and only if it is (L∪L0)-tight (and
L ∪ L0 is also laminar, if L is laminar). Therefore, in Section 5.2 we will assume that L0 ⊆ L. In what follows
we abbreviate fD by f (and fD[F],L[F] is abbreviated by fD[F] for an F ∈ L). For nodes s, t ∈ V , a subset S
with s ∈ S ⊆ V − t is called an st-set.

Claim 7. Given a set Z ⊆ V , an arc st is in M(Z) if and only if it enters Z and the largest st set in L is
disjoint from Z.

Notice that the largest st set in L is well defined for every pair s, t ∈ V , since L0 ⊆ L; in fact this motivates
the introduction of L0.

Claim 8. For sets X,Y ⊆ V we have M(X ∪ Y) ⊆ M(X) ∪M(Y). Consequently, f(X) = f(Y) = 0 implies
f(X ∪ Y) = 0.

Proof. Consider an arc a ∈M(X ∪Y): this must enter at least one of X and Y , say it enters X. We claim that
a ∈M(X), too: it cannot leave some F ∈ LX , since LX ⊆ LX∪Y .

Claim 9. If (7) holds and f(X) = f(Y) = 0 for some X,Y ⊆ V then f(X ∩ Y) = 0, too. (Note that this does
not necessarily hold without (7).)

Proof. Assume f(X ∩ Y) > 0 and consider an arc uv ∈ M(X ∩ Y). Let F ∈ L be the largest uv set in L.
Since uv ∈ M(X ∩ Y), F ∩ (X ∩ Y) = ∅, but since f(X) = f(Y) = 0, F ∩X 6= ∅ 6= F ∩ Y , that together with
fD[F](X ∩ F) = fD[F](Y ∩ F) = 0 contradicts (7).

The following statement extends parts of Lemma 2.

Claim 10. Given a digraph D = (V,A) and laminar family L ⊆ 2V , let R = {r ∈ V : there exists a L-tight
arborescence in D with root r}. Then f(R) = 0.

7

Proof. Assume f(R) > 0 and let uv ∈M(R). Let F be the largest uv set in L. We have F ∩R = ∅. Let B ⊆ A
be an L-tight arborescence of root v, and let xy ∈ B be the (unique) arc entering F . Consider B′ = B+uv−xy:
this is an arborescence of root y, since every node has in-degree 1, and B′ is a spanning tree in the undirected
sense. We claim that B′ is also L-tight which contradicts the definition of R.

Proof of Lemma 4. The proof is by induction on |L| + |A|. The base case L = L0 is clear. Assume L) L0

and let F0 ∈ L be an inclusionwise maximal member of L − L0. An arc in uv ∈ δin(F0) is called erasable
if (7) holds for L and D − uv, otherwise uv is called essential. If there exists an erasable arc then we are
done by induction. So we can assume that every arc entering F0 is essential. We will prove that the number
of arcs entering F0 is at most one. In order to prove this, let us first investigate when an arc is essential. Let
R = {r ∈ F0 : r can be the root of an L[F0]-tight arborescence in D[F0]}. By the induction hypothesis, R 6= ∅.
An arc uv entering F0 is essential if and only if there exist non-empty disjoint Z1, Z2 ⊆ V with M(Z1) = {uv}
and M(Z2) = ∅ (here we used that F0 is a maximal member of L): assume that this is the case. Observe that
fD[F0](Z1 ∩ F0) = 0, implying that

1. F0 ∩ Z2 = ∅, otherwise fD[F0](Z1 ∩ F0) = fD[F0](Z2 ∩ F0) = 0 would contradict (7), and

2. R ⊆ Z1, by the definition of R and Lemma 3.

Next we prove that f(Z1−(F0−R)) ≤ f(Z1). Let Ẑ1 = Z1−(F0−R): in fact we showM(Ẑ1) ⊆M(Z1). Consider
an arc st ∈ M(Ẑ1). If s /∈ F0 then the largest st set in L must be disjoint from F0, therefore st ∈ M(Z1), too.
So assume s ∈ F0. Then t cannot be in F0 (that is, in R), since that would imply fD[F0](R) > 0, contradicting
Claim 10. Therefore t /∈ F0, that is, F0 is an st member of L, contradicting st ∈M(Ẑ1) by Claim 7 (note that
F0 ∩ Ẑ1 equals the nonempty set R).

The previous observation implies that v ∈ R must hold (otherwise f(Ẑ1) + f(Z2) = 0). So we can assume
that Z1 ∩ F0 = R (we can substitute Z1 by Ẑ1).

Assume that there is another arc u′v′ entering F0. By our assumption, this arc is essential, proven by the
existence of non-empty disjoint Z ′1, Z ′2 ⊆ V with M(Z ′1) = {u′v′} and M(Z ′2) = ∅. Notice that Z2 ∩ Z ′2 6= ∅
by (7). We can again assume that Z ′1 ∩ F0 = R and v′ ∈ R. By Claim 8, M(Z1 ∪ Z ′1) ⊆ {uv, u′v′}. However,
M(Z1 ∪ Z ′1) = ∅, for example uv /∈ M(Z1 ∪ Z ′1), since uv enters Z1 ∩ Z ′1 and uv /∈ M(Z ′1), either uv does not
enter Z ′1, or if it enters, then the largest uv set in L intersects Z ′1. We have a contradiction with (7) having
f(Z1 ∪ Z ′1) = f(Z2 ∩ Z ′2) = 0.

We have proved that %D(F0) ≤ 1. Let L′ = L − {F0}. The conditions in (7) clearly hold for L′ (since
fD[F],L′(Z) ≥ fD[F],L(Z) for every F ∈ L′ and Z ⊆ F), so by induction there exists an L′-tight arborescence
B ⊆ A. If %D(F0) = 0 then B is also L-tight. On the other hand, if uv ∈ A enters F0, then uv was essential
(proven by non-empty disjoint Z1, Z2 ⊆ V with M(Z1) = {uv} and M(Z2) = ∅), but then Z2 ∩ F0 = ∅, as we
observed earlier, implying (by Lemma 3) that the root of B can not be in F0, so B is also L-tight, what was to
be proven.

5.3 In-solid sets and anchor nodes
Theorem 2 suggests a strategy for solving Problem 1: for every F ∈ L we find a minimum L[F]-double-cut
in D[F] and output the best of these. For finding the minimum L[F]-double-cut, tail relocation can help: if
ΘF = fD[F],L[F](Z1) + fD[F],L[F](Z2) for some nonempty, disjoint pair Z1, Z2 ⊆ F , then suitably relocating the
tails of all arcs that leave some F ′ ∈ L[F]Zi

to a node in F ′ ∩ Zi we do not change ΘF and fD[F](Zi) becomes
%D′[F](Zi), thus the problem boils down to finding a minimum double cut in D′[F] (where D′ is obtained from
D after some suitable tail-relocations). But we can not try every possible tail-relocations, there are too many
of those, we need something more here. These extra ideas are introduced in this section.

Definition 3. A family of sets F ⊆ 2V of a finite ground set V is said to satisfy the Helly-property, if any
sub-family X of pairwise intersecting members of F has a non-empty intersection, i.e. X ⊆ F and X ∩X ′ 6= ∅
for every X,X ′ ∈ X implies that ∩X 6= ∅.

The following definition is taken from [1].

Definition 4. Given a digraph G = (V,A), a non-empty subset of nodes X ⊆ V is called in-solid, if %(Y) > %(X)
holds for every nonempty Y (X.

Theorem 3 (Bárász, Becker, Frank [1]). The family of in-solid sets of a digraph satisfies the Helly-property.

The authors of [1] prove in fact more: they show that the family of in-solid sets is a subtree-hypergraph, but
we will only use the Helly property here. The following theorem formulates the key observation for the main
result.

8

Theorem 4. In a digraph G = (V,A) there exists a node t ∈ V such that %(Z) ≥ µ(G)
2 for every non-empty

Z ⊆ V − t.

Proof. Consider the family X = {X ⊆ V : X is in-solid and %(X) < µ(G)
2 }. If there were two disjoint members

X,X ′ ∈ X then %(X) + %(X ′) < µ(G) would a contradict the definition of µ(G). Therefore, by the Helly-
property of the in-solid sets, there exists a node t ∈ ∩X . This node satisfies the requirements of the theorem,
since if there was a non-empty Z ⊆ V − t with %(Z) < µ(G)

2 , then Z would necessarily contain an in-solid set
Z ′ ⊆ Z with %(Z ′) ≤ %(Z) (this follows from the definition of in-solid sets), contradicting the choice of t.

In a digraph G = (V,A), a node a ∈ V with the property %(Z) ≥ µ(G)
2 for every non-empty Z ⊆ V − a will

be called an anchor node of G.

5.4 A polynomial-time algorithm
In this section we present a polynomial time algorithm to determine the robustness of tight arborescences, which
also implies a polynomial time algorithm to determine the robustness of minimum cost arborescences. A sketch
of the algorithm goes as follows. We maintain a subset L′ of L, which is initiated with L′ := L. For a minimal
member F of L′, we apply Theorem 4, and find an anchor node aF of D[F]. We replace the tail of every arc
leaving F by aF , remove F from L′, and repeat until L′ goes empty. This way we construct a sequence of
digraphs on the same node set: let D′ be the last member of this sequence. Then for any a ∈ V we construct
another digraph Da from D′: for every F ∈ L with a ∈ F and every arc of D′ leaving F we replace the tail of
this arc with a. Finally, we determine minimum double cuts in D′[F] for every F ∈ L, and we also determine
minimum double cuts in Da[F] for every F ∈ L with a ∈ F : this way we have determined O(n2) double cuts
altogether. Each of these double cuts also determines an L-double cut in D, and we pick the one with the
smallest cardinality, to claim that it actually is optimal. The algorithm is given as a pseudocode below.

Algorithm COVERING_TIGHT_ARBORESCENCES
begin

INPUT A digraph D = (V,A) and a laminar family L ⊆ 2V with V ∈ L
OUTPUT γ(D,L)
/* First Phase: creating graphs D′ and Da */

1.1. Let D′ = D and L′ = L.
1.2. While L′ 6= ∅ do
1.3. Choose an inclusionwise minimal set F ∈ L′
1.4. Let aF ∈ F be an anchor node of D′[F] (apply Theorem 4 to G = D′[F])
1.5. Modify D′: relocate the tail of all arcs leaving F to aF
1.6. Let L′ = L′ − F
1.7. For every a ∈ V
1.8. Let Da be obtained from D′ by relocating the tail of every arc leaving a set F ∈ L with a ∈ F to a

/*Second Phase: finding the optimum*/
1.9. Let best = +∞ and L′ = L.
1.10. While L′ 6= ∅ do
1.11. Choose an inclusionwise minimal set F ∈ L′
1.12. If best > µ(D′[F]) then best := µ(D′[F])
1.13. For each a ∈ F do
1.14. If best > µ(Da[F]) then best := µ(Da[F])
1.15. Let L′ = L′ − F
1.16. Return best.
end

The algorithm above is formulated in a way that it returns the optimum γ(D,L) in question, but by the
correspondance between the arc set of D and that of D′ and Da in the algorithm, clearly we can also return the
optimal arc set, too. It is also clear that the algorithm can be formulated to run in strongly polynomial time
for Problem 2, too: we only need to modify the definition of the in-degree function %D, so that the weights are
taken into account.

Theorem 5. The Algorithm COVERING_TIGHT_ARBORESCENCES returns a correct answer.

Proof. First of all, since ΘF,D = ΘF,D′ = ΘF,Da
for any F ∈ L and a ∈ F , and ΘF,D′ ≤ µ(D′[F]) and

ΘF,Da
≤ µ(Da[F]), the algorithm returns an upper bound for the optimum γ(D,L) in question by Theorem 2.

On the other hand, assume that F is an inclusionwise minimal member of L such that the optimum γ(D,L) =
ΘF,D (such a set exists again by Theorem 2). Assume furthermore that the non-empty disjoint sets Z1, Z2 ⊆ F
are such that ΘF,D = fD[F](Z1) + fD[F](Z2). The following sequence of observations proves the theorem.

9

1. First observe, that any member F ′ ∈ L which is a proper subset of F can intersect at most one of Z1 and
Z2. Assume the contrary, and note that fD[F](Zi) ≥ fD[F ′](Zi ∩ F ′) holds for i = 1, 2, contradicting the
minimal choice of F .

2. Next observe that there do not exist two disjoint members F ′, F ′′ ∈ LZ1∪Z2
that are proper subsets of F

such that aF ′ and aF ′′ are both outside Z1 ∪Z2. To see this assume again the contrary and let F ′, F ′′ be
two inclusionwise minimal such sets. By exchanging the roles of Z1 and Z2 or the roles of F ′ and F ′′ we
arrive at the following two cases: either both F ′ and F ′′ intersect Z1, or F ′ intersects Z1 and F ′′ intersects
Z2. The proof is analogous for both cases. Assume first that both F ′ and F ′′ intersect Z1. Then we have

γ(D,L) = ΘF,D = ΘF,D′ = fD′[F](Z1) + fD′[F](Z2) ≥
≥ fD′[F](Z1) ≥ fD′[F ′](Z1 ∩ F ′) + fD′[F ′′](Z1 ∩ F ′′) =

= %D′[F ′](Z1 ∩ F ′) + %D′[F ′′](Z1 ∩ F ′′) ≥

≥ µ(D′[F ′])

2
+
µ(D′[F ′′])

2
> γ(D,L), (8)

a contradiction. Here the second inequality follows from the definition of the function f , the equality
following it is because aF ′′′ ∈ Z1 if F ′′′ ∈ LZ1

is a proper subset of F ′ or F ′′. The next inequality follows
from the definition of aF ′ and aF ′′ , and the last (strict) inequality is by the minimal choice of F .

In the other case, when F ′ intersects Z1 and F ′′ intersects Z2, we get the contradiction in a similar way:

γ(D,L) = ΘF,D = ΘF,D′ = fD′[F](Z1) + fD′[F](Z2) ≥
≥ fD′[F ′](Z1 ∩ F ′) + fD′[F ′′](Z2 ∩ F ′′) = %D′[F ′](Z1 ∩ F ′) + %D′[F ′′](Z2 ∩ F ′′) ≥

≥ µ(D′[F ′])

2
+
µ(D′[F ′′])

2
> γ(D,L). (9)

3. Therefore we are left with two cases. In the first case assume that aF ′ ∈ Z1 ∪ Z2 holds for every
F ′ ∈ LZ1∪Z2

with F ′ (F . In that case we have that fD′[F](Zi) = %D′[F](Zi) for both i = 1, 2, and thus
γ(D,L) = ΘF,D′ =

∑
i=1,2 %D′[F](Zi) ≥ µ(D′[F]) ≥ ΘF,D′ .

4. In our last case there exists a unique inclusionwise minimal F ′ ∈ LZ1∪Z2
such that F ′ is a proper subset of

F with aF ′ /∈ Z1∪Z2. Assume without loss of generality that F ′ intersects Z1 and choose an arbitrary a ∈
F ′∩Z1. Then fDa[F](Zi) = %Da[F](Zi) for both i = 1, 2, and thus γ(D,L) = ΘF,Da =

∑
i=1,2 %Da[F](Zi) ≥

µ(Da[F]) ≥ ΘF,Da .

5.5 Running time
Let T (N,M) be the time needed to find a minimum s− t cut in an edge-weighted digraph having N nodes and
M arcs (that is, M ≤ N2 here).

The natural weighted version of Problem 4 is the following.

Problem 5. Given a digraph D = (V,A), and a nonnegative weight function w : A → R+, and a laminar
family L ⊆ 2V , find a subset H of the arc set such that H intersects every L-tight arborescence and w(H) is
minimum.

As mentioned above, if we want to solve the weighted Problem 5, the only thing to be changed is that the
in-degree %(X) of a set should mean the weighted in-degree. We will analyze the algorithm in this sense, so we
assume that the input digraph does not contain parallel arcs, but weighted ones.

In order to analyze the performance of Algorithm COVERING_TIGHT_ARBORESCENCES, let n and m
denote the number of nodes and arcs in its input (so m ≤ n2).

To implement the algorithm above we need 2 subroutines. The first subroutine finds an anchor node in an
edge-weighted digraph. This subroutine will be used |L| ≤ n times in Step 1.4 for digraphs having at most n
nodes and at most m arcs. By the definition of anchor nodes, any node r maximizing min{%G(X) : ∅ 6= X ⊆
V − r} can serve as an anchor node. Therefore, finding an anchor can be done in n2T (n,m) time .

The second subroutine determines µ(G) for a given edge-weighted digraph G. This subroutine is used at
most n times in Step 1.12 and n2 times in Step 1.14 for digraphs having at most n nodes and at most m arcs.
Note however that these suboutine calls are not independent from each other, and we will make use of this fact
later.

We can determine µ(G) for a given edge-weighted digraph G the following way. Take two disjoint copies
of G, and reverse all arcs in the first copy (and denote this modified first copy by G1). Let the second copy

10

be denoted by G2, and for each v ∈ V (G) let the corresponding node in V (Gi) be vi for i = 1, 2. For each
v ∈ V (G) add an arc v1v2 of infinite capacity from v1 to its corresponding copy v2 ∈ V (G2). This way we
define an auxiliary weighted digraph Ĝ = (V (G1) ∪ V (G2), A(G1) ∪ A(G2) ∪ {v1v2 : v ∈ V (G)}). It is easy to
see that for some s 6= t nodes in V (G) we have min{δĜ(Z) : s1 ∈ Z ⊆ V (Ĝ)− t2} = min{%G(X) + %G(Y) : s ∈
X (V (G), t ∈ Y (V (G), X ∩ Y = ∅}. Thus, by trying every possible pair s, t, we can calculate µ(G) with n2

minimum s1 − t2-cut computations in Ĝ in time n2T (n,m).
We will calculate µ(G) for O(n2) graphs G (each having at most n nodes andm arcs): n times in Step 1.12 for

the graphs D′[F], and n2 times in Step 1.14 for the graphs Da[F]. On the other hand, as mentioned earlier, these
calls are not independent from each other, since if µ(Da[F]) < µ(D′[F]) for some F ∈ L and a ∈ F then a ∈ X∪Y
has to hold for the (optimal disjoint non-empty) sets X,Y ⊆ F giving µ(Da[F]) = %Da[F](X) + %Da[F](Y).
Therefore checking whether µ(Da[F]) < best or not in Step 1.14, we only need to calculate minimum a1 − t2-
cuts in D̂a[F] (for the node a1 ∈ V ((Da[F])1) corresponding to a and every t2 ∈ V ((Da[F])2) corresponding to
nodes t ∈ F − a), needing only n minimum cut computations.

Putting everything together we get that the Algorithm COVERING_TIGHT_ARBORESCENCES can be
implemented to run in n3T (n,m) time. It seems possible to further reduce the complexity of Steps 1.4 and 1.12,
however we don’t know how to do this for Step 1.14.

5.6 Remarks on the polyhedral approach
The tractability of the weighted Problem 5 is equivalent with optimization over the following polyhedron:

P := conv({χH : H a L-double cut}) + RA+.

A completely different approach to the problem would be to directly show that this polyhedron P is tractable,
which hinges upon finding a nice polyhedral description of the given polyhedron. Firstly, the polyhedron has
facets with large coefficients, which rules out a rank-inequality type description. Secondly, the polyhedron seems
to be of a composite nature in the following sense. For L = ∅,

P = conv
(⋃

s6=t,s,t∈V conv({χH : H a double cut separating s, t}) + RA+
)
,

where a double cut is said to separate s, t if s ∈ Z1, t ∈ Z2. Thus optimization over P reduces to optimization
over

(
n
2

)
polyhedra of double cuts separating a given pair s, t. For any given pair s, t, this polyhedron has a nice

description, and also nice combinatorial algorithm for optimization. When we apply this approach to a general
L, then we need to consider the union of an exponential number of polyhedra: one for every possible choice
of an anchor node in every set of L. Thus the proposed approach only results in an efficient algorithm for the
special case L = ∅, and leaves the general case without a polyhedral description.

6 Further notes
As we have already pointed out, Problems 1 and 2 can be interpreted as covering minimum cost common bases
of two matroids. In fact they can be interpreted as covering common bases of a graphic matroid and a partition
matroid, too, as we show below. Let us start with a general observation which states that the problem of
covering minimum cost common bases of two matroids can be reduced to the problem of covering common
bases of two matroids.

Theorem 6. Given two matroids M1 and M2 over the same ground set S, a cost function c : S → R, assume
that M1 and M2 have a common base, then there exist matroids M ′1 and M ′2 over S so that the minimum c-cost
common bases of M1 and M2 are the common bases of M ′1 and M ′2.

Proof. The simplest way to see this is through Frank’s Weight Splitting Theorem [6]. It states, that the
assumptions of our theorem imply the existence of cost functions c1, c2 : S → R so that c = c1 + c2 and a
common base of M1 and M2 has minimal c-cost if and only if it is a ci-minimum cost base of Mi for both
i = 1, 2. As the family Bi = {B ⊆ S : B is a ci-minimum cost base of Mi} is the family of bases of a matroid
M ′i , the theorem follows.

Let us specialize Theorem 6 for our problems. Given a digraph D = (V,A) with a designated node r ∈ V ,
and a cost function c : A → R, as in Problem 1, Fukerson’s Theorem (Theorem 1) tells us that we can find in
polynomial time a subset A′ ⊆ A of arcs (tight arcs) and a laminar family L ⊆ 2V−r such that an r-arborescence
is of minimum cost if and only if it uses only tight arcs and it is L-tight. Using Claim 1 we get the following:
{B ⊆ A : B is an optimal r-arborescence} = {B ⊆ A′ : B[F] is a tree spanning F for every F ∈ L ∪ {V } and
%B(v) = 1 if v ∈ V − r and %B(r) = 0}. Let us introduce the definition of L-tight spanning trees.

11

Definition 5. Given a connected graph G = (V,E) and a family F ⊆ 2V , a spanning tree B ⊆ E is said to be
F-tight if B[F] is a tree spanning F for every F ∈ F .

The following claim is easy to prove.

Claim 11. Given a graph G = (V,E) and a family F ⊆ 2V , define a cost function c1 : E → Z+ as c1(e) =
|{F ∈ F : e ⊆ F}|. If there exists a F-tight spanning tree then the F-tight spanning trees are the maximum
c1-cost spanning trees.

We will need one more observation stating that the matroid of maximum cost spanning trees of a graph is
a graphic matroid.

Claim 12. Given a connected graph G = (V,E) and a cost function c1 : E → R, there exists another graph
G′ = (V ′, E′) and a bijection φ : E → E′ so that T ⊆ E is a maximum c1-cost spanning tree in G if and only
if φ(T) is an inclusionwise maximal forest in G′ (that is, a base of the circuit matroid of G′).

Applying Claims 11 and 12 to Problem 1 we get the following theorem.

Theorem 7. Given a digraph D = (V,A) with a designated node r ∈ V , and a cost function c : A→ R, we can
find in polynomial time a subset A′ ⊆ A, a graphic matroid M1 and a partition matroid M2 (both on ground set
A′) so that B ⊆ A is a minimum c-cost r-arborescence of D if and only if B ⊆ A′ and it is a common base of
M1 and M2.

Thus, the problem of covering optimal r-arborescences (Problem 1) can be reduced to the problem of covering
common bases of a graphic matroid and a partition matroid (with some correlation between these two matroids).
Following the reformulations above one can probably work out a polynomial time algorithm (different from ours)
for Problem 1, too. This can be a direction for further research.

Acknowledgements

We thank Naoyuki Kamiyama for calling our attention to this problem at the 7th Hungarian-Japanese Sympo-
sium on Discrete Mathematics and Its Applications in Kyoto. We would like to thank Kristóf Bérczi, András
Frank, Erika Kovács, Tamás Király and Zoltán Király of the Egerváry Research Group for useful discussions
and remarks. A version of this paper was presented at the 21st International Symposium on Mathematical Pro-
gramming (ISMP 2012) and at the 16th Conference on Integer Programming and Combinatorial Optimization
(IPCO 2013).

References
[1] Mihály Bárász, Johanna Becker, and András Frank, An algorithm for source location in directed graphs,

Oper. Res. Lett. 33 (2005), no. 3, 221–230.

[2] Charles J. Colbourn and Ehab S. Elmallah, Reliable assignments of processors to tasks and factoring on
matroids, Discrete Mathematics 114 (1993), no. 1-3, 115 – 129.

[3] Gérard Cornuéjols, Combinatorial optimization: Packing and covering, vol. 74, SIAM, 2001.

[4] Michael Dinitz and Anupam Gupta, Packing interdiction and partial covering problems, Integer Program-
ming and Combinatorial Optimization, Springer, 2013, pp. 157–168.

[5] Jack Edmonds, Edge-disjoint branchings, Combinatorial algorithms 9 (1973), 91–96.

[6] András Frank, A weighted matroid intersection algorithm, Journal of Algorithms 2 (1981), no. 4, 328–336.

[7] Greg N Frederickson and Roberto Solis-Oba, Increasing the weight of minimum spanning trees, Journal of
Algorithms 33 (1999), no. 2, 244–266.

[8] D. R. Fulkerson, Packing rooted directed cuts in a weighted directed graph, Mathematical Programming 6
(1974), 1–13, 10.1007/BF01580218.

[9] Jim Geelen and Rohan Kapadia, Computing girth and cogirth in perturbed graphic matroids, arXiv preprint
arXiv:1504.07647 (2015).

[10] The EGRES Group, Covering minimum cost spanning trees, EGRES QP-2011-08, www.cs.elte.hu/egres.

[11] Gwenaël Joret and Adrian Vetta, Reducing the rank of a matroid, arXiv preprint arXiv:1211.4853 (2012).

12

[12] Naoyuki Kamiyama, Robustness of minimum cost arborescences, ISAAC (Takao Asano, Shin-Ichi Nakano,
Yoshio Okamoto, and Osamu Watanabe, eds.), Lecture Notes in Computer Science, vol. 7074, Springer,
2011, pp. 130–139.

[13] Tamás Király, Computing the minimum cut in hypergraphic matroids, Tech. Report QP-2009-05, Egerváry
Research Group, Budapest, 2009, www.cs.elte.hu/egres.

[14] Weifa Liang and Xiaojun Shen, Finding the k most vital edges in the minimum spanning tree problem,
Parallel Computing 23 (1997), no. 13, 1889–1907.

[15] Michel Lorea, Hypergraphes et matroides, Cahiers Centre Etud. Rech. Oper 17 (1975), 289–291.

[16] S Thomas McCormick, A combinatorial approach to some sparse matrix problems., Tech. report, DTIC
Document, 1983.

[17] Alexander Schrijver, Combinatorial optimization: polyhedra and efficiency, vol. 24, Springer Verlag, 2003.

[18] Alexander Vardy, The intractability of computing the minimum distance of a code, IEEE Transactions on
Information Theory 43 (1997), no. 6, 1757–1766.

[19] Rico Zenklusen, Matching interdiction, Discrete Applied Mathematics 158 (2010), no. 15, 1676–1690.

[20] Rico Zenklusen, Bernard Ries, Christophe Picouleau, Dominique De Werra, M-C Costa, and Cédric Bentz,
Blockers and transversals, Discrete Mathematics 309 (2009), no. 13, 4306–4314.

13

	1 Introduction
	2 Related work
	3 The problem and its variants
	4 Covering all arborescences – a special case
	5 Covering tight arborescences
	5.1 A "min-min" formula
	5.2 A second proof of the ``min-min'' theorem
	5.3 In-solid sets and anchor nodes
	5.4 A polynomial-time algorithm
	5.5 Running time
	5.6 Remarks on the polyhedral approach

	6 Further notes

