
Minimizing Finite Sums with the Stochastic Average Gradient

Mark Schmidt
schmidtm@cs.ubc.ca

Nicolas Le Roux
nicolas@le-roux.name

Francis Bach
francis.bach@ens.fr

INRIA - SIERRA Project - Team

Département d’Informatique de l’École Normale Supérieure
Paris, France

January 19, 2015

Abstract

We analyze the stochastic average gradient (SAG) method for optimizing the sum of a finite
number of smooth convex functions. Like stochastic gradient (SG) methods, the SAG method’s
iteration cost is independent of the number of terms in the sum. However, by incorporating a
memory of previous gradient values the SAG method achieves a faster convergence rate than
black-box SG methods. The convergence rate is improved from O(1/

√
k) to O(1/k) in general,

and when the sum is strongly-convex the convergence rate is improved from the sub-linear
O(1/k) to a linear convergence rate of the form O(ρk) for ρ < 1. Further, in many cases the
convergence rate of the new method is also faster than black-box deterministic gradient methods,
in terms of the number of gradient evaluations. This extends our earlier work [Le Roux et al.,
2012], which only lead to a faster rate for well-conditioned strongly-convex problems. Numerical
experiments indicate that the new algorithm often dramatically outperforms existing SG and
deterministic gradient methods, and that the performance may be further improved through
the use of non-uniform sampling strategies.

1 Introduction

A plethora of the optimization problems arising in practice involve computing a minimizer of a
finite sum of functions measuring misfit over a large number of data points. A classical example is
least-squares regression,

minimize
x∈Rp

1

n

n∑
i=1

(aTi x− bi)2,

where the ai ∈ Rp and bi ∈ R are the data samples associated with a regression problem. Another
important example is logistic regression,

minimize
x∈Rp

1

n

n∑
i=1

log(1 + exp(−bia>i x)),

where the ai ∈ Rp and bi ∈ {−1, 1} are the data samples associated with a binary classification
problem. A key challenge arising in modern applications is that the number of data points n
(also known as training examples) can be extremely large, while there is often a large amount of
redundancy between examples. The most wildly successful class of algorithms for taking advantage of

1

ar
X

iv
:1

30
9.

23
88

v2
 [

m
at

h.
O

C
]

 1
1

M
ay

 2
01

6

the sum structure for problems where n is very large are stochastic gradient (SG) methods [Robbins
and Monro, 1951, Bottou and LeCun, 2003]. Although the theory behind SG methods allows them
to be applied more generally, SG methods are often used to solve the problem of optimizing a finite
sample average,

minimize
x∈Rp

g(x) :=
1

n

n∑
i=1

fi(x). (1)

In this work, we focus on such finite data problems where each fi is smooth and convex.

In addition to this basic setting, we will also be interested in cases where the sum g has the additional
property that it is strongly-convex. This often arises due to the use of a strongly-convex regularizer
such as the squared `2-norm, resulting in problems of the form

minimize
x∈Rp

λ

2
‖x‖2 +

1

n

n∑
i=1

li(x), (2)

where each li is a data-misfit function (as in least-squares and logistic regression) and the positive
scalar λ controls the strength of the regularization. These problems can be put in the framework
of (1) by using the choice

fi(x) :=
λ

2
‖x‖2 + li(x).

The resulting function g will be strongly-convex provided that the individual loss functions li are
convex. An extensive list of convex loss functions used in a statistical data-fitting context is given
by Teo et al. [2007], and non-smooth loss functions (or regularizers) can also be put in this framework
by using smooth approximations (for example, see Nesterov [2005]).

For optimizing problem (1), the standard deterministic or full gradient (FG) method, which dates
back to Cauchy [1847], uses iterations of the form

xk+1 = xk − αkg′(xk) = xk − αk
n

n∑
i=1

f ′i(x
k), (3)

where αk is the step size on iteration k. Assuming that a minimizer x∗ exists, then under standard
assumptions the sub-optimality achieved on iteration k of the FG method with a constant step size
is given by

g(xk)− g(x∗) = O(1/k),

when g is convex [see Nesterov, 2004, Corollary 2.1.2]. This results in a sublinear convergence rate.
When g is strongly-convex, the error also satisfies

g(xk)− g(x∗) = O(ρk),

for some ρ < 1 which depends on the condition number of g [see Nesterov, 2004, Theorem 2.1.5].
This results in a linear convergence rate, which is also known as a geometric or exponential rate
because the error is cut by a fixed fraction on each iteration. Unfortunately, the FG method can be
unappealing when n is large because its iteration cost scales linearly in n.

The main appeal of SG methods is that they have an iteration cost which is independent of n,
making them suited for modern problems where n may be very large. The basic SG method for
optimizing (1) uses iterations of the form

xk+1 = xk − αkf ′ik(xk), (4)

where at each iteration an index ik is sampled uniformly from the set {1, . . . , n}. The randomly
chosen gradient f ′ik(xk) yields an unbiased estimate of the true gradient g′(xk) and one can show

2

under standard assumptions (see [Nemirovski et al., 2009]) that, for a suitably chosen decreasing
step-size sequence {αk}, the SG iterations have an expected sub-optimality for convex objectives of

E[g(xk)]− g(x∗) = O(1/
√
k),

and an expected sub-optimality for strongly-convex objectives of

E[g(xk)]− g(x∗) = O(1/k).

In these rates, the expectations are taken with respect to the selection of the ik variables. These
sublinear rates are slower than the corresponding rates for the FG method, and under certain
assumptions these convergence rates are optimal in a model of computation where the algorithm only
accesses the function through unbiased measurements of its objective and gradient (see Nemirovski
and Yudin [1983], Nemirovski et al. [2009], Agarwal et al. [2012]). Thus, we should not expect to
be able to obtain the convergence rates of the FG method if the algorithm only relies on unbiased
gradient measurements. Nevertheless, by using the stronger assumption that the functions are
sampled from a finite dataset, in this paper we show that we can achieve the convergence rates of
FG methods while preserving the iteration complexity of SG methods.

The primary contribution of this work is the analysis of a new algorithm that we call the stochastic
average gradient (SAG) method, a randomized variant of the incremental aggregated gradient (IAG)
method of Blatt et al. [2007]. The SAG method has the low iteration cost of SG methods, but achieves
the convergence rates stated above for the FG method. The SAG iterations take the form

xk+1 = xk − αk
n

n∑
i=1

yki , (5)

where at each iteration a random index ik is selected and we set

yki =

{
f ′i(x

k) if i = ik,

yk−1i otherwise.
(6)

That is, like the FG method, the step incorporates a gradient with respect to each function. But,
like the SG method, each iteration only computes the gradient with respect to a single example and
the cost of the iterations is independent of n. Despite the low cost of the SAG iterations, we show
in this paper that with a constant step-size the SAG iterations have an O(1/k) convergence rate for
convex objectives and a linear convergence rate for strongly-convex objectives, like the FG method.
That is, by having access to ik and by keeping a memory of the most recent gradient value computed
for each index i, this iteration achieves a faster convergence rate than is possible for standard SG
methods. Further, in terms of effective passes through the data, we will also see that for many
problems the convergence rate of the SAG method is also faster than is possible for standard FG
methods.

One of the main contexts where minimizing the sum of smooth convex functions arises is machine
learning. In this context, g is often an empirical risk (or a regularized empirical risk), which is a
sample average approximation to the true risk that we are interested in. It is known that with n
training examples the empirical risk minimizer (ERM) has an error for the true risk of O(1/

√
n) in

the convex case and O(1/n) in the strongly-convex case. Since these rates are achieved by doing
one pass through the data with an SG method, in the worst case the SAG algorithm applied to the
empirical risk cannot improve the convergence rate in terms of the true risk over this simple method.
Nevertheless, Srebro and Sridharan [2011] note that “overwhelming empirical evidence shows that
for almost all actual data, the ERM is better. However, we have no understanding of why this
happens”. Although our analysis does not give insight into the better performance of ERM, our

3

analysis shows that the SAG algorithm will be preferable to SG methods for finding the ERM and
hence for many machine learning applications.

The next section reviews several closely-related algorithms from the literature, including previous
attempts to combine the appealing aspects of FG and SG methods. However, despite 60 years
of extensive research on SG methods, with a significant portion of the applications focusing on
finite datasets, we believe that this is the first general method that achieves the convergence rates
of FG methods while preserving the iteration cost of standard SG methods. Section 3 states the
(standard) assumptions underlying our analysis and gives our convergence rate results. Section 4
discusses practical implementation issues including how we adaptively set the step size and how
we can reduce the storage cost needed by the algorithm. For example, we can reduce the memory
requirements from O(np) to O(n) in the common scenario where each fi only depends on a linear
function of x, as in least-squares and logistic regression. Section 5 presents a numerical comparison
of an implementation based on SAG to competitive SG and FG methods, indicating that the method
may be very useful for problems where we can only afford to do a few passes through a data set.

A preliminary conference version of this work appears in Le Roux et al. [2012], and we extend this
work in various ways. Most notably, the analysis in the prior work focuses only on showing linear
convergence rates in the strongly-convex case while the present work also gives anO(1/k) convergence
rate for the general convex case. In the prior work we show (Proposition 1) that a small step-size gives
a slow linear convergence rate (comparable to the rate of FG methods in terms of effective passes
through the data), while we also show (Proposition 2) that a much larger step-size yields a much
faster convergence rate, but this requires that n is sufficiently large compared to the condition number
of the problem. In the present work (Section 3) our analysis yields a very fast convergence rate using
a large step-size (Theorem 1), even when this condition required by the prior work is not satisfied.
Surprisingly, for ill-conditioned problems our new analysis shows that using SAG iterations can be
nearly n times as fast as the standard gradient method. To prove this stronger result, Theorem 1
employs a Lyapunov function that generalizes the Lyapunov functions used in Propositions 1 and 2
of the previous work. This new Lyapunov function leads to a unified proof for both the convex and
the strongly-convex cases, and for both well-conditioned and ill-conditioned problems. However, this
more general Lyapunov function leads to a more complicated analysis. To significantly simplify the
formal proof, we use a computed-aided strategy to verify the non-negativity of certain polynomials
that arise in the proof. Beyond this significantly strengthened result, in this work we also argue that
yet-faster convergence rates may be achieved by non-uniform sampling (Section 4.8) and present
numerical results showing that this can lead to drastically improved performance (Section 5.5).

2 Related Work

There are a large variety of approaches available to accelerate the convergence of SG methods, and
a full review of this immense literature would be outside the scope of this work. Below, we comment
on the relationships between the new method and several of the most closely-related ideas.

Momentum: SG methods that incorporate a momentum term use iterations of the form

xk+1 = xk − αkf ′ik(xk) + βk(xk − xk−1),

see Tseng [1998]. It is common to set all βk = β for some constant β, and in this case we can rewrite
the SG with momentum method as

xk+1 = xk −
∑k
j=1 αjβ

k−jf ′ij (xj).

We can re-write the SAG updates (5) in a similar form as

xk+1 = xk −
∑k
j=1 αkS(j, i1:k)f ′ij (xj), (7)

4

where the selection function S(j, i1:k) is equal to 1/n if j is the maximum iteration number where
example ij was selected and is set to 0 otherwise. Thus, momentum uses a geometric weighting of
previous gradients while the SAG iterations select and average the most recent evaluation of each
previous gradient. While momentum can lead to improved practical performance, it still requires
the use of a decreasing sequence of step sizes and is not known to lead to a faster convergence rate.

Gradient Averaging: Closely related to momentum is using the sample average of all previous
gradients,

xk+1 = xk − αk

k

∑k
j=1 f

′
ij

(xj),

which is similar to the SAG iteration in the form (5) but where all previous gradients are used.
This approach is used in the dual averaging method of Nesterov [2009] and, while this averaging
procedure and its variants lead to convergence for a constant step size and can improve the constants
in the convergence rate [Xiao, 2010], it does not improve on the sublinear convergence rates for SG
methods.

Iterate Averaging: Rather than averaging the gradients, some authors propose to perform the
basic SG iteration but use an average over certain xk values as the final estimator. With a suit-
able choice of step-sizes, this gives the same asymptotic efficiency as Newton-like second-order SG
methods and also leads to increased robustness of the convergence rate to the exact sequence of step
sizes [Polyak and Juditsky, 1992, Bach and Moulines, 2011]. Bather’s method [Kushner and Yin,
2003, §1.3.4] combines gradient averaging with online iterate averaging and also displays appealing
asymptotic properties. Several authors have recently shown that suitable iterate averaging schemes
obtain an O(1/k) rate for strongly-convex optimization even for non-smooth objectives [Hazan and
Kale, 2011, Rakhlin et al., 2012]. However, none of these methods improve on the O(1/

√
k) and

O(1/k) rates for SG methods.

Stochastic versions of FG methods: Various options are available to accelerate the convergence
of the FG method for smooth functions, such as the accelerated full gradient (AFG) method of
Nesterov [1983], as well as classical techniques based on quadratic approximations such as diagonally-
scaled FG methods, non-linear conjugate gradient, quasi-Newton, and Hessian-free Newton methods
(see [Nocedal and Wright, 2006]). There has been a substantial amount of work on developing
stochastic variants of these algorithms, with several of the notable recent examples including Bordes
et al. [2009], Hu et al. [2009], Sunehag et al. [2009], Ghadimi and Lan [2010], Martens [2010], Xiao
[2010]. Duchi et al. [2011] have recently shown an improved regret bound using a diagonal scaling
that takes into account previous gradient magnitudes. Alternately, if we split the convergence
rate into a deterministic and stochastic part, these methods can improve the dependency of the
convergence rate of the deterministic part [Hu et al., 2009, Ghadimi and Lan, 2010, Xiao, 2010].
However, we are not aware of any existing method of this flavor that improves on the O(1/

√
k)

and O(1/k) dependencies on the stochastic part. Further, many of these methods typically require
carefully setting parameters (beyond the step size) and often aren’t able to take advantage of sparsity
in the gradients f ′i .

Constant step size: If the SG iterations are used for strongly-convex optimization with a constant
step size (rather than a decreasing sequence), then Nedic and Bertsekas [2000, Proposition 3.4]
showed that the convergence rate of the method can be split into two parts. The first part depends
on k and converges linearly to 0. The second part is independent of k and does not converge
to 0. Thus, with a constant step size, the SG iterations have a linear convergence rate up to
some tolerance, and in general after this point the iterations do not make further progress. Indeed,
up until the recent work of Bach and Moulines [2013], convergence of the basic SG method with a
constant step size had only been shown for the strongly-convex quadratic case (with averaging of the
iterates) [Polyak and Juditsky, 1992], or under extremely strong assumptions about the relationship
between the functions fi [Solodov, 1998]. This contrasts with the method we present in this work

5

which converges to the optimal solution using a constant step size and does so with a linear rate
(without additional assumptions).

Accelerated methods: Accelerated SG methods, which despite their name are not related to
the aforementioned AFG method, take advantage of the fast convergence rate of SG methods with
a constant step size. In particular, accelerated SG methods use a constant step size by default,
and only decrease the step size on iterations where the inner-product between successive gradient
estimates is negative [Kesten, 1958, Delyon and Juditsky, 1993]. This leads to convergence of the
method and allows it to potentially achieve periods of faster convergence where the step size stays
constant. However, the overall convergence rate of the method is not improved.

Hybrid Methods: Some authors have proposed variants of the SG method for problems of the
form (1) that seek to gradually transform the iterates into the FG method in order to achieve a faster
convergence rate. Bertsekas [1997] proposes to go through the data cyclically with a specialized
weighting that allows the method to achieve a linear convergence rate for strongly-convex quadratic
functions. However, the weighting is numerically unstable and the linear convergence rate presented
treats full passes through the data as iterations. A related strategy is to group the functions fi
into ‘batches’ of increasing size and perform SG iterations on the batches. Friedlander and Schmidt
[2012] give conditions under which this strategy achieves the O(1/k) and O(ρk) convergence rates
of FG methods. However, in both cases the iterations that achieve the faster rates have a cost that
is not independent of n, as opposed to SAG iterations.

Incremental Aggregated Gradient: Blatt et al. [2007] present the most closely-related algorithm
to the SAG algorithm, the IAG method. This method is identical to the SAG iteration (5), but
uses a cyclic choice of ik rather than sampling the ik values. This distinction has several important
consequences. In particular, Blatt et al. are only able to show that the convergence rate is linear
for strongly-convex quadratic functions (without deriving an explicit rate), and their analysis treats
full passes through the data as iterations. Using a non-trivial extension of their analysis and a novel
proof technique involving bounding the gradient and iterates simultaneously by a Lyapunov potential
function, in this work we give an O(1/k) rate for general convex functions and an explicit linear
convergence rate for general strongly-convex functions using the SAG iterations that only examine
a single function. Further, as our analysis and experiments show, the SAG iterations allow a much
larger step size than is required for convergence of the IAG method. This leads to more robustness
to the selection of the step size and also, if suitably chosen, leads to a faster convergence rate and
substantially improved practical performance. This shows that the simple change (random selection
vs. cycling) can dramatically improve optimization performance.

Special Problem Classes: For certain highly-restricted classes of problems, it is possible to
show faster convergence rates for methods that only operate on a single function fi. For exam-
ple, Strohmer and Vershynin [2009] show that the randomized Kaczmarz method with a particular
sampling scheme achieves a linear convergence rate for the problem of solving consistent linear sys-
tems. It is also known that the SG method with a constant step-size has the O(1/k) and O(ρk)
convergence rates of FG methods if ‖f ′i(x)‖ is bounded by a linear function of ‖g′(x)‖ for all i and
x Schmidt and Le Roux [2013]. This is the strong condition required by Solodov [1998] to show
convergence of the SG method with a constant step size. Unlike these previous works, our analysis in
the next section applies to general fi that satisfy standard assumptions, and only requires gradient
evaluations of the functions fi rather than dual block-coordinate steps.

Subsequent work: Since the first version of this work was released, there has been an explosion
of research into stochastic gradient methods with faster convergence rates. It has been shown that
similar rates can be achieved for certain constrained and non-smooth problems, that similar rates
can be achieved without the memory requirements, that Newton-like variants of the method may

6

be possible, and that similar rates can be achieved with other algorithms. In Section 6, we survey
these recent developments.

3 Convergence Analysis

In our analysis we assume that each function fi in (1) is convex and differentiable, and that each
gradient f ′i is Lipschitz-continuous with constant L, meaning that for all x and y in Rp and each i
we have

‖f ′i(x)− f ′i(y)‖ 6 L‖x− y‖. (8)

This is a fairly weak assumption on the fi functions, and in cases where the fi are twice-differentiable
it is equivalent to saying that the eigenvalues of the Hessians of each fi are bounded above by L. We
will also assume the existence of at least one minimizer x∗ that achieves the optimal function value.
We denote the average iterate by x̄k = 1

k

∑k−1
i=0 x

i, and the variance of the gradient norms at the
optimum x∗ by σ2 = 1

n

∑
i ‖f ′i(x∗)‖2. Our convergence results consider two different initializations

for the y0i variables: setting y0i = 0 for all i, or setting them to the centered gradient at the initial
point x0 given by y0i = f ′i(x

0) − g′(x0). We note that all our convergence results are expressed in
terms of expectations with respect to the internal randomization of the algorithm (the selection of
the random variables ik), and not with respect to the data which is assumed to be deterministic and
fixed.

In addition to this basic convex case discussed above, we will also consider the case where the
average function g = 1

n

∑n
i=1 fi is strongly-convex with constant µ > 0, meaning that the function

x 7→ g(x) − µ
2 ‖x‖

2 is convex. For twice-differentiable g, this is equivalent to requiring that the
eigenvalues of the Hessian of g are bounded below by µ. This is a stronger assumption that is often
not satisfied in practical applications. Nevertheless, in many applications we are free to choose a
regularizer of the parameters, and thus we can add an `2-regularization term as in (2) to transform
any convex problem into a strongly-convex problem (in this case we have µ ≥ λ). Note that strong-
convexity implies the existence of a unique x∗ that achieves the optimal function value.

Under these standard assumptions, we now state our convergence result.

Theorem 1. With a constant step size of αk = 1
16L , the SAG iterations satisfy for k ≥ 1:

E[g(x̄k)]− g(x∗) 6
32n

k
C0,

where if we initialize with y0i = 0 we have

C0 = g(x0)− g(x∗) +
4L

n
‖x0 − x∗‖2 +

σ2

16L
,

and if we initialize with y0i = f ′i(x
0)− g′(x0) we have

C0 =
3

2

[
g(x0)− g(x∗)

]
+

4L

n
‖x0 − x∗‖2.

Further, if g is µ-strongly convex we have

E[g(xk)]− g(x∗) 6
(

1−min
{ µ

16L
,

1

8n

})k
C0.

The proof is given in Appendix B of the extended version of this paper, and involves finding a
Lyapunov function for a non-linear stochastic dynamical system defined on the yki and xk variables

7

that converges to zero at the above rates, and showing that this function dominates the expected
sub-optimality [E[g(xk)] − g(x∗)]. This is the same approach used to show Proposition 1 and 2 in
the conference version of the paper [Le Roux et al., 2012], but in this work we use a more general
Lyapunov function that gives a much faster rate for ill-conditioned problems and also allows us to
analyze problems that are not strongly-convex. To simplify the analysis of this more complicated
Lyapunov function, our new proof verifies positivity of certain polynomials that arise in the bound
using a computer-aided approach.

Note that while the first part of Theorem (1) is stated for the average x̄k, with a trivial change to the
proof technique it can be shown to also hold for any iterate xk where g(xk) is lower than the average

function value up to iteration k, 1
k

∑k−1
i=0 g(xi). Thus, in addition to x̄k the result also holds for the

best iterate. We also note that our bounds are valid for any L greater than or equal to the minimum
L satisfying (8), implying an O(1/k) and linear convergence rate for any αk 6 1/16L (but the bound
becomes worse as L grows). Although initializing each y0i with the centered gradient may have an
additional cost and slightly worsens the dependency on the initial sub-optimality (g(x0)− g(x∗)), it
removes the dependency on the variance σ2 of the gradients at the optimum. While we have stated
Theorem 1 in terms of the function values, in the strongly-convex case we also obtain a convergence
rate on the iterates because we have

µ

2
‖xk − x∗‖2 6 g(xk)− g(x∗).

Theorem 1 shows that the SAG iterations are advantageous over SG methods in later iterations
because they obtain a faster convergence rate. However, the SAG iterations have a worse constant
factor because of the dependence on n. We can improve the dependence on n using an appropriate
choice of x0. In particular, following Le Roux et al. [2012] we can set x0 to the result of n iterations
of an appropriate SG method. In this setting, the expectation of g(x0) − g(x∗) is O(1/

√
n) in the

convex setting, while both g(x0)− g(x∗) and ‖x0 − x∗‖2 would be in O(1/n) in the strongly-convex
setting. If we use this initialization of x0 and set y0i = f ′i(x

0) − g′(x0), then in terms of n and
k the SAG convergence rates take the form O(

√
n/k) and O(ρk/n) in the convex and strongly-

convex settings, instead of the O(n/k) and O(ρk) rates implied by Theorem 1. However, in our
experiments we do not use an SG initialization but rather use a minor variant of SAG in the early
iterations (discussed in the next section), which appears more difficult to analyze but which gives
better empirical performance.

An interesting consequence of using a step-size of αk = 1/16L is that it makes the method adaptive to
the strong-convexity constant µ. That is, for problems with a higher degree of local strong-convexity
around the solution x∗, the algorithm will automatically take advantage of this and yield a faster
local rate. This can even lead to a local linear convergence rate if the problem is strongly-convex
near the optimum but not globally strongly-convex. This adaptivity to the problem difficulty is in
contrast to SG methods whose sequence of step sizes typically depend on global constants and thus
do not adapt to local strong-convexity.

We have observed in practice that the IAG method with a step size of αk = 1
16L may diverge. While

the step-size needed for convergence of the IAG iterations is not precisely characterized, we have
observed that it requires a step-size of approximately 1/nL in order to converge. Thus, the SAG
iterations can tolerate a step size that is roughly n times larger, which leads to increased robustness
to the selection of the step size. Further, as our analysis and experiments indicate, the ability to use
a large step size leads to improved performance of the SAG iterations. Note that using randomized
selection with a larger step-size leading to vastly improved performance is not an unprecedented
phenomenon; the analysis of Nedic and Bertsekas [2000] shows that the iterations of the basic
stochastic gradient method with a constant step-size can achieve the same error bound as full cycles
through the data of the cyclic variant of the method by using steps that are n times larger (see

8

Algorithm Step Size Theoretical Rate Rate in Case 1 Rate Case 2

FG 1
L

(
1− µ

L

)2
0.9998 1.000

FG 2
µ+L

(
1− 2µ

L+µ

)2
0.9996 1.000

AFG 1
L

(
1−

√
µ
L

)
0.9900 0.9990

Lower-Bound —
(

1− 2
√
µ√

L+
√
µ

)2
0.9608 0.9960

SAG (n iters) 1
16L

(
1−min{ µ

16L ,
1
8n}
)n

0.8825 0.9938

Table 1: Comparison of convergence rates of first-order methods to the convergence rates of n
iterations of SAG. In the examples we take n = 100000, L = 100, µ = 0.01 (Case 1), and µ = 0.0001
(Case 2).

the discussion after Proposition 3.4). Related results also appear in Collins et al. [2008], Lacoste-
Julien et al. [2013] showing the advantage of stochastic optimization strategies over deterministic
optimization strategies in the context of certain dual optimization problems.

The convergence rate of the SAG iterations in the strongly-convex case takes a somewhat surprising
form. For ill-conditioned problems where n 6 2L

µ , n does not appear in the convergence rate and the

SAG algorithm has nearly the same convergence rate as the FG method with a step size of 1/16L,
even though it uses iterations which are n times cheaper. This indicates that the basic gradient
method (under a slightly sub-optimal step-size) is not slowed down by using out-of-date gradient
measurements for ill-conditioned problems. Although n appears in the convergence rate in the well-
conditioned setting where n > 2L

µ , if we perform n iterations of SAG (i.e., one effective pass through

the data), the error is multiplied by (1 − 1/8n)n 6 exp(−1/8), which is independent of n. Thus,
in this setting each pass through the data reduces the excess objective by a constant multiplicative
factor that is independent of the problem.

It is interesting to compare the convergence rate of SAG in the strongly-convex case with the known
convergence rates for first-order methods [see Nesterov, 2004, §2]. In Table 1, we use two examples
to compare the convergence rate of SAG to the convergence rates of the standard FG method, the
faster AFG method, and the lower-bound for any first-order strategy (under certain dimensionality
assumptions) for optimizing a function g satisfying our assumptions. In this table, we compare the
rate obtained for these FG methods to the rate obtained by running n iterations of SAG, since this
requires the same number of evaluations of f ′i . Case 1 in this table focuses on a well-conditioned
case where the rate of SAG is (1− 1/8n), while Case 2 focuses on an ill-conditioned example where
the rate is (1− µ/16L). Note that in the latter case the O(1/k) rate for the method may be faster.

In Table 1 we see that performing n iterations of SAG can actually lead to a rate that is faster than
the lower bound for FG methods. Thus, for certain problems SAG can be substantially faster than
any FG method that does not use the structure of the problem. However, we note that the comparison
is somewhat problematic because L in the SAG rates is the Lipschitz constant of the f ′i functions,
while in the FG method we only require that L is an upper bound on the Lipschitz continuity of g′ so
it may be much smaller. To give a concrete example that takes this into account and also considers
the rates of dual methods and coordinate-wise methods, in Appendix A of the extended version
of this paper we attempt to more carefully compare the rates obtained for SAG with the rates of
primal and dual FG and coordinate-wise methods for the special case of `2-regularized least-squares
regression.

9

4 Implementation Details

In Algorithm 1 we give pseudo-code for an implementation of the basic method, where we use a
variable d to track the quantity (

∑n
i=1 yi). This section focuses on further implementation details

that are useful in practice. In particular, we discuss modifications that lead to better practical
performance than the basic Algorithm 1, including ways to reduce the storage cost, how to handle
regularization, how to set the step size, using mini-batches, and using non-uniform sampling. Note
that an implementation of the algorithm that incorporates many of these aspects is available from
the first author’s webpage.

Algorithm 1 Basic SAG method for minimizing 1
n

∑n
i=1 fi(x) with step size α.

d = 0, yi = 0 for i = 1, 2, . . . , n
for k = 0, 1, . . . do

Sample i from {1, 2, . . . , n}
d = d− yi + f ′i(x)
yi = f ′i(x)
x = x− α

nd
end for

4.1 Structured gradients and just-in-time parameter updates

For many problems the storage cost of O(np) for the yki vectors is prohibitive, but we can often use
the structure of the gradients f ′i to reduce this cost. For example, a commonly-used specialization
of (1) is linearly-parameterized models which take form

minimize
x∈Rp

g(x) :=
1

n

n∑
i=1

fi(a
>
i x). (9)

Since each ai is constant, for these problems we only need to store the scalar f ′ik(uki) for uki = a>ikx
k

rather than the full gradient aif
′
i(u

k
i). This reduces the storage cost from O(np) down to O(n).

For problems where the vectors ai are sparse, an individual gradient f ′i will inherit the sparsity
pattern of the corresponding ai. However, the update of x in Algorithm 1 appears unappealing since
in general d will be dense, resulting in an iteration cost of O(p). Nevertheless, we can take advantage
of the simple form of the SAG updates to implement a ‘just-in-time’ variant of the SAG algorithm
where the iteration cost is proportional to the number of non-zeroes in aik . In particular, we do
this by not explicitly storing the full vector xk after each iteration. Instead, on each iteration we
only compute the elements xkj corresponding to non-zero elements of aik , by applying the sequence

of updates to each variable xkj since the last iteration where it was non-zero in aik . This sequence
of updates can be applied efficiently since it simply involves changing the step size. For example, if
variable j has been zero in aik for 5 iterations, then we can compute the needed value xkj using

xkj = xk−5j − 5α

n

n∑
i=1

(yki)j .

This update allows SAG to be efficiently applied to sparse data sets where n and p are both in the
millions or higher but the number of non-zeros is much less than np.

10

4.2 Re-weighting on early iterations

In the update of x in Algorithm 1, we normalize the direction d by the total number of data points n.
When initializing with y0i = 0 we believe this leads to steps that are too small on early iterations
of the algorithm where we have only seen a fraction of the data points, because many yi variables
contributing to d are set to the uninformative zero-vector. Following Blatt et al. [2007], the more
logical normalization is to divide d by m, the number of data points that we have seen at least once
(which converges to n once we have seen the entire data set), leading to the update x = x − α

md.
Although this modified SAG method appears more difficult to analyze, in our experiments we found
that running the basic SAG algorithm from the very beginning with this modification outperformed
the basic SAG algorithm as well as the SG/SAG hybrid algorithm mentioned in the Section 3. In
addition to using the gradient information collected during the first k iterations, this modified SAG
algorithm is also advantageous over hybrid SG/SAG algorithms because it only requires estimating
a single constant step size.

4.3 Exact and efficient regularization

In the case of regularized objectives like (2), the cost of computing the gradient of the regularizer is
independent of n. Thus, we can use the exact gradient of the regularizer in the update of x, and only
use d to approximate the sum of the l′i functions. By incorporating the gradient of the regularizer
explicitly, the update for yi in Algorithm 1 becomes yi = l′i(x), and in the case of `2-regularization
the update for x becomes

x = x− α
(

1

m
d+ λx

)
= (1− αλ)x− α

m
d.

If the loss function gradients l′i are sparse as in Section 4.1, then these modifications lead to a
reduced storage requirement even though the gradient of the regularizer is dense. Further, although
the update of x again appears to require dense vector operations, we can implement the algorithm
efficiently if the ai are sparse. In particular, to allow efficient multiplication of x by the scalar (1−αλ),
it is useful to represent x in the form x = κz, where κ is a scalar and z is a vector (as done by Shalev-
Shwartz et al. [2011]). Under this representation, we can multiply x by a scalar in O(1) by simply
updating κ (though to prevent κ becoming too large or too small we may need to occasionally re-
normalize by setting z = κz and κ = 1). To efficiently implement the vector subtraction operation,
we can use a variant of the just-in-time updates from Section 4.1. In Algorithm 2, we give pseudo-
code for a variant of SAG that includes all of these modifications, and thus uses no full-vector
operations. This code uses a vector y to keep track of the scalars l′i(u

k
i), a vector C to determine

whether a data point has previously been visited, a vector V to track the last time a variable was
updated, and a vector S to keep track of the cumulative sums needed to implement the just-in-time
updates.

4.4 Warm starting

In many scenarios we may need to solve a set of closely-related optimization problems. For example,
we may want to apply Algorithm 2 to a regularized objective of the form (2) for several values of
the regularization parameter λ. Rather than solving these problems independently, we might expect
to obtain better performance by warm-starting the algorithm. Although initializing x with the
solution of a related problem can improve performance, we can expect an even larger performance
improvement if we also use the gradient information collected from a run of SAG for a close value
of λ. For example, in Algorithm 2 we could initialize x, yi, d, m, and Ci based on a previous run of

11

Algorithm 2 SAG variant for minimizing λ
2 ‖x‖

2 + 1
n

∑n
i=1 li(a

>
i x), with step size α and ai sparse.

{Initialization, note that x = κz.}
d = 0, yi = 0 for i = 1, 2, . . . , n
z = x, κ = 1
m = 0, Ci = 0 for i = 1, 2, . . . , n
S−1 = 0, Vj = 0 for j = 1, 2, . . . , p
for k = 0, 1, . . . do

Sample i from {1, 2, . . . , n}
if Ci = 0 then
{This is the first time we have sampled this data point.}
m = m+ 1
Ci = 1

end if
for j non-zero in ai do
{Just-in-time calculation of needed values of z.}
zj = zj − (Sk−1 − SVj−1)dj
Vj = k

end for
{Update the memory y and the direction d.}
Let J be the support of ai
dJ = dJ − aiJ(yi − l′i(κaTiJzJ))
yi = l′i(κa

T
iJzJ)

{Update κ and the sum needed for z updates.}
κ = κ(1− αλ)
Sk = Sk−1 + α/(κm)

end for
{Final x is κ times the just-in-time update of all z.}
for j = 1, 2, . . . , p do
xj = κ(zj − (Sk−1 − SVj−1)dj)

end for

12

the SAG algorithm. In this scenario, Theorem 1 suggests that it may be beneficial in this setting to
center the yi variables around d.

4.5 Larger step sizes

In our experiments we have observed that utilizing a step size of 1/L, as in standard FG methods,
always converged and often performed better than the step size of 1/16L suggested by our analysis.
Thus, in our experiments we used αk = 1/L even though we do not have a formal analysis of the
method under this step size. We also found that a step size of 2/(L + nµ), which in the strongly-
convex case corresponds to the best fixed step size for the FG method in the special case of n = 1 [see
Nesterov, 2004, Theorem 2.1.15], sometimes yields even better performance (though in other cases
it performs poorly).

4.6 Line-search when L is not known

In general the Lipschitz constant L will not be known, but we may obtain a reasonable approximation
of a valid L by evaluating fi values while running the algorithm. In our experiments, we used a
basic line-search where we start with an initial estimate L0, and double this estimate whenever we
do not satisfy the inequality

fik(xk − 1

Lk
f ′ik(xk)) 6 fik(xk)− 1

2Lk
‖f ′ik(xk)‖2,

which must be true if Lk is valid. An important property of this test is that it depends on fik but
not on g, and thus the cost of performing this test is independent of n. To avoid instability caused
by comparing very small numbers, we only do this test when ‖f ′ik(xk)‖2 > 10−8. Since L is a global
quantity but the algorithm will eventually remain within a neighbourhood of the optimal solution, it
is possible that a smaller estimate of L (and thus a larger step size) can be used as we approach x∗.
To potentially take advantage of this, we initialize with the slightly smaller Lk = (Lk−12−1/n) at
each iteration, so that the estimate of L is halved if we do n iterations (an effective pass through
the data) and never violate the inequality. Note that in the case of `2-regularized objectives, we can
perform the line-search to find an estimate of the Lipschitz constant of l′i rather than f ′i , and then
simply add λ to this value to take into account the effect of the regularizer.

Note that the cost of this line-search is independent of n, making it suitable for large problems.
Further, for linearly-parameterized models of the form fi(a

T
i x), it is also possible to implement the

line-search so that its cost is also independent of the number of variables p. To see why, if we use
δk = aTikx

k and the structure in the gradient then the left side is given by

fik

(
aTik

(
xk − 1

Lk
f ′ik(xk)

))
= fik

(
δk −

f ′ik(δk)

Lk
‖aik‖2

)
.

Thus, if we pre-compute the squared norms ‖ai‖2 and note that δk and f ′ik(δk) are already needed by
the SAG update, then each iteration only involves operations on scalar values and the single-variable
function fik .

4.7 Mini-batches for vectorized computation and reduced storage

Because of the use of vectorization and parallelism in modern architectures, practical SG implemen-
tations often group functions into ‘mini-batches’ and perform SG iterations on the mini-batches. We

13

can also use mini-batches within the SAG iterations to take advantage of the same vectorization and
parallelism. Additionally, for problems with dense gradients mini-batches can dramatically decrease
the storage requirements of the algorithm, since we only need to store a vector yi for each mini-batch
rather than for each example. Thus, for example, using a mini-batch of size 100 leads to a 100-fold
reduction in the storage cost.

A subtle issue that arises when using mini-batches is that the value of L in the Lipschitz condition (8)
is based on the mini-batches instead of the original functions fi. For example, consider the case
where we have a batch B and the minimum value of L in (8) for each i is given by Li. In this case,
a valid value of L for the function x 7→ 1

|B|
∑
i∈B fi(x) would be maxi∈B{Li}. We refer to this as

Lmax. But we could also consider using Lmean = 1
|B|
∑
i∈B Li. The value Lmean is still valid and

will be smaller than Lmax unless all Li are equal. We could even consider the minimum possible
value of L, which we refer to as LHessian because (if each fi is twice-differentiable) it is equal to the
maximum eigenvalue of 1

|B|
∑
i∈B f

′′
i (x) across all x. Note that LHessian ≤ Lmean ≤ Lmax, although

LHessian will typically be more difficult to compute than Lmean or Lmax (although a line-search as
discussed in the previous section can reduce this cost). Due to the potential of using a smaller L,
we may obtain a faster convergence rate by using larger mini-batches. However, in terms of passes
through the data this faster convergence may be offset by the higher iteration cost associated with
using mini-batches.

4.8 Non-uniform example selection

In standard SG methods, it is crucial to sample the functions fi uniformly, at least asymptotically,
in order to yield an unbiased gradient estimate and subsequently achieve convergence to the opti-
mal value (alternately, the bias induced by non-uniform sampling would need to be asymptotically
corrected). In SAG iterations, however, the weight of each gradient is constant and equal to 1/n,
regardless of the frequency at which the corresponding function is sampled. We might thus consider
sampling the functions fi non-uniformly, without needing to correct for this bias. Though we do not
yet have any theoretical proof as to why a non-uniform sampling might be beneficial, intuitively we
would expect that we do not need to sample functions fi whose gradient changes slowly as often as
functions fi whose gradient changes more quickly. Indeed, we provide here an argument to justify a
non-uniform sampling strategy based on the Lipschitz constants of the individual gradients f ′i and
we note that in subsequent works this intuition has proved correct for related algorithms [Xiao and
Zhang, 2014, Schmidt et al., 2015].

Let Li again be the Lipschitz constant of f ′i , and assume that the functions are placed in increasing
order of Lipschitz constants, so that L1 6 L2 6 . . . 6 Ln. In the ill-conditioned setting where the
convergence rate depends on µ

L , a simple way to improve the rate by decreasing L is to replace fn
by two functions fn1 and fn2 such that

fn1(x) = fn2(x) =
fn(x)

2

g(x) =
1

n

(
n−1∑
i=1

fi(x) + fn1(x) + fn2(x)

)

=
1

n+ 1

(
n−1∑
i=1

n+ 1

n
fi(x) +

n+ 1

n
fn1(x) +

n+ 1

n
fn2(x)

)
.

We have thus replaced the original problem by a new, equivalent problem where:

• n has been replaced by (n+ 1),

14

• Li for i 6 (n− 1) is Li(n+1)
n ,

• Ln and Ln+1 are equal to Ln(n+1)
2n .

Hence, if Ln−1 <
nLn

n+1 , this problem has the same µ but a smaller L than the original one, improving
the bound on the convergence rate. By duplicating fn, we increase its probability of being sampled
from 1

n to 2
n+1 , but we also replace ykn by a noisier version, i.e. ykn1 + ykn2. Using a noisier version

of the gradient appears detrimental, so we assume that the improvement comes from increasing
the frequency at which fn is sampled, and that logically we might obtain a better rate by simply
sampling fn more often in the original problem and not explicitly duplicating the data.

We now consider the extreme case of duplicating each function fi a number of times equal to the
Lipschitz constant of their gradient, assuming that these constants are integers. The new problem
becomes

g(x) =
1

n

n∑
i=1

fi(x)

=
1

n

n∑
i=1

Li∑
j=1

fi(x)

Li

=
1∑
k Lk

n∑
i=1

Li∑
j=1

(∑
k Lk
n

fi(x)

Li

)
.

The function g is now written as the sum of
∑
k Lk functions, each with a gradient with Lipschitz

constant
∑

k Lk

n . The new problem has the same µ as before, but now has an L equal to the average
of the Lipschitz constants across the f ′i , rather than their maximum, thus improving the bound on
the convergence rate. Sampling these functions uniformly is now equivalent to sampling the original
fi’s according to their Lipschitz constant. Thus, we might expect to obtain better performance by,
instead of creating a larger problem by duplicating the functions in proportion to their Lipschitz
constant, simply sampling the functions from the original problem in proportion to their Lipschitz
constants.

Sampling in proportion to the Lipschitz constants of the gradients was explored by Nesterov [2010] in
the context of coordinate descent methods, and is also somewhat related to the sampling scheme used
by Strohmer and Vershynin [2009] in the context of their randomized Kaczmarz algorithm. Since
the first version of this work was released, Needell et al. [2014] have analyzed sampling according to
the Lipschitz constant in the context of SG iterations. Such a sampling scheme makes the iteration
cost depend on n, due to the need to generate samples from a general discrete distribution over n
variables. However, after an initial preprocessing cost of O(n) we can sample from such distributions
in O(log n) using a simple binary search [see Robert and Casella, 2004, Example 2.10].

Unfortunately, sampling the functions according to the Lipschitz constants and using a step size of
αk = n∑

i Li
does not seem to converge in general. However, by changing the number of times we

duplicate each fi, we can interpolate between the Lipschitz sampling and the uniform sampling. In
particular, if each function fi is duplicated Li+ c times, where Li is the Lipschitz constant of f ′i and

15

c a positive number, then the new problem becomes

g(x) =
1

n

n∑
i=1

fi(x)

=
1

n

n∑
i=1

Li+c∑
j=1

fi(x)

Li + c

=
1∑

k(Lk + c)

n∑
i=1

Li+c∑
j=1

(∑
k(Lk + c)

n

fi(x)

Li + c

)
.

Unlike in the previous case, these
∑
k(Lk + c) functions have gradients with different Lipschitz

constants. Denoting L = maxi Li, the maximum Lipschitz constant is equal to
∑

k(Lk+c)

n
L
L+c and

we must thus use the step size α = L+c

L
(∑

k Lk
n +c

) .

5 Experimental Results

In this section we perform empirical evaluations of the SAG iterations. We first compare the conver-
gence of an implementation of the SAG iterations to a variety of competing methods available. We
then seek to evaluate the effect of different algorithmic choices such as the step size, mini-batches,
and non-uniform sampling.

5.1 Comparison to FG and SG Methods

The theoretical convergence rates suggest the following strategies for deciding on whether to use an
FG or an SG method:

• If we can only afford one pass through the data, then an SG method should be used.

• If we can afford to do many passes through the data (say, several hundred), then an FG method
should be used.

We expect that the SAG iterations will be most useful between these two extremes, where we can
afford to do more than one pass through the data but cannot afford to do enough passes to warrant
using FG algorithms like the AFG or L-BFGS methods. To test whether this is indeed the case in
practice, we perform a variety of experiments evaluating the performance of the SAG algorithm in
this scenario.

Although the SAG algorithm can be applied more generally, in our experiments we focus on the
important and widely-used `2-regularized logistic regression problem

minimize
x∈Rp

λ

2
‖x‖2 +

1

n

n∑
i=1

log(1 + exp(−bia>i x)), (10)

as a canonical problem satisfying our assumptions. In our experiments we set the regularization
parameter λ to 1/n, which is in the range of the smallest values that would typically be used
in practice, and thus which results in the most ill-conditioned problems of this form that would be
encountered. Our experiments focus on the freely-available benchmark binary classification data sets

16

Data set Data Points Variables Reference
quantum 50 000 78 [Caruana et al., 2004]
protein 145 751 74 [Caruana et al., 2004]
covertype 581 012 54 [Frank and Asuncion, 2010]
rcv1 20 242 47 236 [Lewis et al., 2004]
news 19 996 1 355 191 [Keerthi and DeCoste, 2005]
spam 92 189 823 470 [Cormack and Lynam, 2005, Carbonetto, 2009]
rcv1Full 697 641 47 236 [Lewis et al., 2004]
sido 12 678 4 932 [Guyon, 2008]
alpha 500 000 500 Synthetic

Table 2: Binary data sets used in the experiments.

listed in Table 2. The quantum and protein data set was obtained from the KDD Cup 2004 website;1

the covertype (based on the datset of Blackard, Jock, and Dean), rcv1, news, and rcv1Full data sets
were obtained from the LIBSVM Data website; 2; the sido data set was obtained from the Causality
Workbench website,3 the spam data set was prepared by [see Carbonetto, 2009, §2.6.5] using the
TREC 2005 corpus4; and the alpha data set was obtained from the Pascal Large Scale Learning
Challenge website5. We added a (regularized) bias term to all data sets, and for dense features we
standardized so that they would have a mean of zero and a variance of one. To obtain results that
are independent of the practical implementation of the algorithm, we measure the objective as a
function of the number of effective passes through the data, measured as the number of times we
evaluate l′i divided by the number of examples n. If they are implemented to take advantage of the
sparsity present in the data sets, the runtimes of all algorithms examined in this section differ by at
most a constant times this measure.

In our first experiment we compared the following variety of competitive FG and SG methods:

• AFG: A variant of the accelerated full gradient method of Nesterov [1983], where iterations of (3)
with a step size of 1/Lk are interleaved with an extrapolation step. We used an adaptive line-
search to estimate a local L based on the variant proposed for `2-regularized logistic regression
by Liu et al. [2009].

• L-BFGS: A publicly-available limited-memory quasi-Newton method that has been tuned for
log-linear models such as logistic regression [Schmidt, 2005]. This method is the most compli-
cated method we considered.

• SG: The stochastic gradient method described by iteration (4). Since setting the step-size in this
method is a tenuous issue, we chose the constant step size that gave the best performance (in
hindsight) among all powers of 10 (we found that this constant step-size strategies gave better
performance than the variety of decreasing step-size strategies that we experimented with).

• ASG: The average of the iterations generated by the SG method above, where again we choose
the best step size among all powers of 10.6

1http://osmot.cs.cornell.edu/kddcup
2http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
3 http://www.causality.inf.ethz.ch/home.php
4http://plg.uwaterloo.ca/~gvcormac/treccorpus
5http://largescale.ml.tu-berlin.de
6Note that we also compared to a variety of other SG methods including the popular Pegasos SG method of Shalev-

Shwartz et al. [2011], SG with momentum, SG with gradient averaging, the regularized dual averaging method of Xiao
[2010] (a stochastic variant of the primal-dual subgradient method of Nesterov [2009] for regularized objectives), the

17

http://osmot.cs.cornell.edu/kddcup
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
http://www.causality.inf.ethz.ch/home.php
http://plg.uwaterloo.ca/~gvcormac/treccorpus
http://largescale.ml.tu-berlin.de

• IAG: The incremental aggregated gradient method of Blatt et al. [2007] described by iteration (5)
with a cyclic choice of ik. We used the re-weighting described in Section 4.2, we used the
exact regularization as described in Section 4.3, and we chose the step-size that gave the best
performance among all powers of 10.

• SAG-LS: The proposed stochastic average gradient method described by iteration (5). We used
the re-weighting described in Section 4.2, the exact regularization as described in Section 4.3,
and we used a step size of αk = 1/Lk where Lk is an approximation of the Lipschitz constant
for the negative log-likelihoods li(x) = log(1 + exp(−bia>i x)). Although this Lipschitz constant
is given by 0.25 maxi{‖ai‖2}, we used the line-search described in Section 4.6 to estimate it, to
test the ability to use SAG as a black-box algorithm (in addition to avoiding this calculation and
potentially obtaining a faster convergence rate by obtaining an estimate that could be smaller
than the global value). To initialize the line-search we set L0 = 1.

We plot the results of the different methods for the first 50 effective passes through the data in
Figure 1. For the stochastic methods, we plot the mean performance as well as the minimum and
maximum function values across 10 choices for the initial random seed. We can observe several
trends across the experiments:

• FG vs. SG: Although the performance of SG methods is known to be catastrophic if the step
size is not chosen carefully, after giving the SG methods (SG and ASG) an unfair advantage (by
allowing them to choose the best step-size in hindsight), the SG methods always do substantially
better than the FG methods (AFG and L-BFGS) on the first few passes through the data.
However, the SG methods typically make little progress after the first few passes. In contrast,
the FG methods make steady progress and eventually the faster FG method (L-BFGS) typically
passes the SG methods.

• (FG and SG) vs. SAG: The SAG iterations seem to achieve the best of both worlds. They
start out substantially better than FG methods, often obtaining similar performance to an SG
method with the best step-size chosen in hindsight. But the SAG iterations continue to make
steady progress even after the first few passes through the data. This leads to better performance
than SG methods on later iterations, and on most data sets the sophisticated FG methods do
not catch up to the SAG method even after 50 passes through the data.

• IAG vs. SAG: Even though these two algorithms differ in only the seemingly-minor detail
of selecting data points at random (SAG) compared to cycling through the data (IAG), the
performance improvement of SAG over its deterministic counterpart IAG is striking (even though
the IAG method was allowed to choose the best step-size in hindsight). We believe this is due
to the larger step sizes allowed by the SAG iterations, which would cause the IAG iterations to
diverge.

5.2 Comparison to Coordinate Optimization Methods

For the `2-regularized logistic regression problem, an alternative means to take advantage of the
structure of the problem and achieve a linear convergence rate with a cheaper iteration cost than
FG methods is to use randomized coordinate optimization methods. In particular, we can achieve a

accelerated SG method of Delyon and Juditsky [1993], SG methods that only average the later iterations as in the
‘optimal’ SG method for non-smooth optimization of Rakhlin et al. [2012], the epoch SG method of Hazan and Kale
[2011], the ‘nearly-optimal’ SG method of Ghadimi and Lan [2010], a diagonally-scaled SG method using the inverse of
the coordinate-wise Lipshitz constants as the diagonal terms, and the adaptive diagonally-scaled AdaGrad method of
Duchi et al. [2011]. However, we omit results obtained using these algorithms since they never performed substantially
better than the minimum between the SG and ASG methods when their step-size was chosen in hindsight.

18

0 10 20 30 40 50

10
−10

10
−5

10
0

Effective Passes

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

u
m

AFG

L−BFGS

SGASG

IAG

SAG−LS

0 10 20 30 40 50

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Effective Passes

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

u
m

AFG

L−B
FG

S

SG

ASG

IAG

SAG−LS

0 10 20 30 40 50

10
−8

10
−6

10
−4

10
−2

10
0

Effective Passes

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

u
m

AFG

L−BFG
S

SGASG

IAG

SAG−LS

0 10 20 30 40 50

10
−15

10
−10

10
−5

10
0

Effective Passes

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

u
m

AFG

L−BFG
S

SG
ASG

IAG

SAG−LS

0 10 20 30 40 50

10
−15

10
−10

10
−5

10
0

Effective Passes

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

u
m

AFG

L−BFG
S

SG
ASG

IAG

SAG
−LS

0 10 20 30 40 50

10
−15

10
−10

10
−5

10
0

Effective Passes

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

u
m

AFG
L−BFGS

SG
ASG

IAG

SAG−LS

0 10 20 30 40 50

10
−15

10
−10

10
−5

10
0

Effective Passes

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

u
m

AFG
L−BFGS

SG
ASG

IAG

SAG
−LS

0 10 20 30 40 50

10
−4

10
−3

10
−2

10
−1

10
0

Effective Passes

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

u
m

AFG

L−BFGS

SG ASG

IAG

SAG−LS

0 10 20 30 40 50

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Effective Passes

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

u
m

AFG
L−BFGS

SG

ASG

IAG

SAG−LS

Figure 1: Comparison of different FG and SG optimization strategies. The top row gives results on
the quantum (left), protein (center) and covertype (right) datasets. The middle row gives results
on the rcv1 (left), news (center) and spam (right) datasets. The bottom row gives results on the
rcv1Full (left), sido (center), and alpha (right) datasets. This figure is best viewed in colour.

19

linear convergence rate by applying coordinate descent to the primal [Nesterov, 2010] or coordinate-
ascent to the dual [Shalev-Schwartz and Zhang, 2013b]. In our second experiment, we included the
following additional methods in this comparison:

• PCD: The randomized primal coordinate-descent method of Nesterov [2010], using a step-size
of 1/Lj , where Lj is the Lipschitz-constant with respect to coordinate j of g′. Here, we sampled
the coordinates uniformly.

• PCD-L: The same as above, but sampling coordinates according to their Lipschitz constant,
which can lead to an improved convergence rate [Nesterov, 2010].

• DCA: Applying randomized coordinate ascent to the dual, with uniform example selection and
an exact line-search [Shalev-Schwartz and Zhang, 2013b].

As with comparing FG and SG methods, it is difficult to compare coordinate-wise methods to FG
and SG methods in an implementation-independent way. To do this in a way that we believe is fair
(when discussing convergence rates), we measure the number of effective passes of the DCA method
as the number of iterations of the method divided by n (since each iteration accesses a single example
as in SG and SAG iterations). We measure the number of effective passes for the PCD and PCD-L
methods as the number of iterations multiplied by n/p so that 1 effective pass for this method has a
cost of O(np) as in FG and SG methods. We ignore the additional cost associated with the Lipschitz
sampling for the PCD-L method (as well as the expense incurred because the PCD-L method tended
to favour updating the bias variable for sparse data sets) and we also ignore the cost of numerically
computing the optimal step-size for the DCA method.

We compare the performance of the randomized coordinate optimization methods to several of
the best methods from the previous experiment in Figure 2. In these experiments we observe the
following trends:

• PCD vs. PCD-L: For the problems with n > p (top and bottom rows of Figure 2), there is
little difference between uniform and Lipschitz sampling of the coordinates. For the problems
with p > n (middle row of Figure 2), sampling according to the Lipschitz constant leads to a
large performance improvement over uniform sampling.

• PCD vs. DCA: For the problems with p > n, DCA and PCD-L have similar performance. For
the problems with n > p, the performance of the methods typically differed but neither strategy
tended to dominate the other.

• (PCD and DCA) vs. (SAG): For some problems, the PCD and DCA methods have per-
formance that is similar to SAG-LS and the DCA method even gives better performance than
SAG-LS on one data set. However, for many data sets either the PCD-L or the DCA method (or
both) perform poorly while the SAG-LS iterations are among the best or substantially better
than all other methods on every data set. This suggests that, while coordinate optimization
methods are clearly extremely effective for some problems, the SAG method tends to be a more
robust choice across problems.

5.3 Comparison of Step-Size Strategies

In our prior work we analyzed the step-sizes αk = 1/2nL and αk = 1/2nµ [Le Roux et al., 2012],
while Section 3 considers the choice αk = 1/16L and Section 4.5 discusses the choices αk = 1/L
and αk = 2/(L+ nµ) as in FG methods. In Figure 3 we compare the performance of these various

20

0 10 20 30 40 50

10
−10

10
−5

10
0

Effective Passes

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

u
m

L−BFGS

ASG

SAG−LS

PCD PCD−L

DCA

0 10 20 30 40 50

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Effective Passes

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

u
m

L−B
FG

S

ASGSAG−LS

PCD
PCD−L

DCA

0 10 20 30 40 50

10
−8

10
−6

10
−4

10
−2

10
0

Effective Passes

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

u
m

L−BFG
S

ASG

SAG−LS

PCD

PCD−L

DCA

0 10 20 30 40 50

10
−15

10
−10

10
−5

10
0

Effective Passes

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

u
m

L−BFG
S

ASG

SAG−LS

PCD

PCD−L
DCA

0 10 20 30 40 50

10
−15

10
−10

10
−5

10
0

Effective Passes

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

u
m

L−BFG
S

ASG

SAG−LS

PCD

PCD−L

D
C

A

0 10 20 30 40 50

10
−15

10
−10

10
−5

10
0

Effective Passes

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

u
m

L−BFGS

ASG

SAG
−LS

PCD

PCD−L
DCA

0 10 20 30 40 50

10
−15

10
−10

10
−5

10
0

Effective Passes

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

u
m

L−BFGS

ASG

SAG−LS

PCD

PCD−L

DCA

0 10 20 30 40 50

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Effective Passes

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

u
m

L−BFGS

ASG
SAG−LS

PCDPCD−L

DCA

0 10 20 30 40 50

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Effective Passes

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

u
m

L−BFGS

ASG

SAG−LS

PCD
PCD−L

DCA

Figure 2: Comparison of optimization different FG and SG methods to coordinate optimization
methods.The top row gives results on the quantum (left), protein (center) and covertype (right)
datasets. The middle row gives results on the rcv1 (left), news (center) and spam (right) datasets.
The bottom row gives results on the rcv1Full (left), sido (center), and alpha (right) datasets. This
figure is best viewed in colour.

21

strategies to the performance of the SAG algorithm with our proposed line-search as well as the IAG
and SAG algorithms when the best step-size is chosen in hindsight. In this plot we see the following
trends:

• Proposition 1 of Le Roux et al. [2012]: Using a step-size of αk = 1/2nL performs poorly, and
makes little progress compared to the other methods. This makes sense because Proposition 1
in Le Roux et al. [2012] implies that the convergence rate (in terms of effective passes through
the data) under this step size will be similar to the basic gradient method, which is known to
perform poorly unless the problem is very well-conditioned.

• Proposition 2 of Le Roux et al. [2012]: Using a step-size of αk = 1/2nµ performs extremely
well on the data sets with p > n (middle row). In contrast, for the data sets with n > p it often
performs very poorly, and in some cases appears to diverge. This is consistent with Proposition 2
in Le Roux et al. [2012], which shows a fast convergence rate under this step size only if certain
conditions on {n, µ, L} hold.

• Theorem 1: Using a step-size of αk = 1/16L performs consistently better than the smaller step
size αk = 1/2nL, but in some cases it performs worse than αk = 1/2nµ. However, in contrast
to αk = 1/2nµ, the step size αk = 1/16L always has reasonable performance.

• Section 4.5: The step size of αk = 1/L performs performs extremely well on the data sets with
p > n, and performs better than the step sizes discussed above on all but one of the remaining
data sets. The step size of αk = 2/(L + nµ) seems to perform the same or slightly better than
using αk = 1/L except on one data set where it performs poorly.

• Line-Search: Using the line-search from Section 4.6 tends to perform as well or better than
the various constant step size strategies, and tends to have similar performance to choosing the
best step size in hindsight.

• IAG vs. SAG: When choosing the best step size in hindsight, the SAG iterations tend to
choose a much larger step size than the IAG iterations. The step sizes chosen for SAG were 100
to 10000 times larger than the step sizes chosen by IAG, and always lead to better performance
by several orders of magnitude.

5.4 Effect of mini-batches

As we discuss in Section 4.7, when using mini-batches within the SAG iterations there is a trade-off
between the higher iteration cost of using mini-batches and the faster convergence rate obtained
using mini-batches due to the possibility of using a smaller value of L. In Figure 4, we compare
(on the dense data sets) the excess sub-optimality as a function of the number of examples seen for
various mini-batch sizes and the three step-size strategies 1/Lmax, 1/Lmean, and 1/LHessian discussed
in Section 4.7.

Several conclusions may be drawn from these experiments:

• Even though Theorem 1 hints at a maximum mini-batch size of nµ
2L without loss of convergence

speed, this is a very conservative estimate. In our experiments, the original value of nµL was on the
order of 10−5 and mini-batch sizes of up to 500 could be used without a loss in performance. Not
only does this yield large memory storage gains, it would increase the computational efficiency
of the algorithm when taking into account vectorization.

22

0 10 20 30 40 50

10
−10

10
−5

10
0

Effective Passes

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

u
m

IAG (1.0e−05)

SAG (1.0e−03)

SAG (1/2nL)

SAG (1/2nµ)

SAG (1/16L)

SAG (1/L)

SAG (2/(L+nµ))

SAG−LS

SAG−LS (2/(L+nµ))

0 10 20 30 40 50

10
−4

10
−3

10
−2

10
−1

10
0

Effective Passes

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

u
m

IAG (1.0e−04)

SAG (1.0e−02)

SAG (1/2nL)

SAG (1/2nµ)

SAG (1/16L)

SAG (1/L)

SAG (2/(L+nµ))

SAG−LS

SAG−LS (2/(L+nµ))

0 10 20 30 40 50

10
−6

10
−4

10
−2

10
0

Effective Passes

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

u
m

IAG (1.0e−05)

SAG (1.0e−03)

SAG (1/2nL)

SAG (1/2nµ)

SAG (1/16L)

SAG (1/L)

SAG (2/(L+nµ))

SAG−LS

SAG−LS (2/(L+nµ))

0 10 20 30 40 50

10
−15

10
−10

10
−5

10
0

Effective Passes

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

u
m

IAG (1.0e−03)

SAG (1.0e+02)

SAG (1/2nL)

SAG (1/2nµ)

SAG (1/16L)

SAG (1/L)

SAG (2/(L+nµ))

SAG−LS

SAG−LS (2/(L+nµ))

0 10 20 30 40 50

10
−10

10
−5

10
0

Effective Passes

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

u
m

IAG (1.0e−03)

SAG (1.0e+00)

SAG (1/2nL)

SAG (1/2nµ)

SAG (1/16L)

SAG (1/L)

SAG (2/(L+nµ))

SAG−LS

SAG−LS (2/(L+nµ))

0 10 20 30 40 50

10
−15

10
−10

10
−5

10
0

Effective Passes

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

u
m

IAG (1.0e−03)

SAG (1.0e+00)

SAG (1/2nL)

SAG (1/2nµ)

SAG (1/16L)

SAG (1/L)

SAG (2/(L+nµ))

SAG−LS

SAG−LS (2/(L+nµ))

0 10 20 30 40 50

10
−15

10
−10

10
−5

10
0

Effective Passes

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

u
m

IAG (1.0e−05)

SAG (1.0e+00)

SAG (1/2nL)

SAG (1/2nµ)

SAG (1/16L)

SAG (1/L)

SAG (2/(L+nµ))

SAG−LS

SAG−LS (2/(L+nµ))

0 10 20 30 40 50

10
−4

10
−3

10
−2

10
−1

10
0

Effective Passes

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

u
m

IAG (1.0e−05)

SAG (1.0e−02)

SAG (1/2nL)

SAG (1/2nµ)

SAG (1/16L)

SAG (1/L)

SAG (2/(L+nµ))

SAG−LS

SAG−LS (2/(L+nµ))

0 10 20 30 40 50

10
−15

10
−10

10
−5

10
0

Effective Passes

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

u
m

IAG (1.0e−07)

SAG (1.0e−03)

SAG (1/2nL)

SAG (1/2nµ)

SAG (1/16L)

SAG (1/L)

SAG (2/(L+nµ))

SAG−LS

SAG−LS (2/(L+nµ))

Figure 3: Comparison of step size strategies for the SAG method. The top row gives results on the
quantum (left), protein (center) and covertype (right) datasets. The middle row gives results on the
rcv1 (left), news (center) and spam (right) datasets. The bottom row gives results on the rcv1Full
(left), sido (center), and alpha (right) datasets. This figure is best viewed in colour.

23

• To achieve fast convergence, it is essential to use a larger step-size when larger mini-batches are
used. For instance, in the case of the quantum dataset with a mini-batch size of 20000, we have

1
Lmax

= 4.4 · 10−4, 1
Lmean

= 5.5 · 10−2 and 1
LHessian

= 3.7 · 10−1. In the case of the covertype

dataset and for a mini-batch size of 20000, we have 1
Lmax

= 2.1 · 10−5, 1
Lmean

= 6.2 · 10−2 and
1

LHessian
= 4.1 · 10−1.

5.5 Effect of non-uniform sampling

In our final experiment, we explored the effect of using the non-uniform sampling strategy discussed
in Section 4.8. In Figure 5, we compare several of the SAG variants with uniform sampling to the
following two methods based on non-uniform sampling:

• SAG (Lipschitz): In this method we sample the functions in proporition to Li + c, where
Li is the global Lipschitz constant of the corresponding f ′i and we set c to the average of
these constants, c = Lmean = (1/n)

∑
i Li. Plugging in these values into the formula at the

end of Section 4.8 and using Lmax to denote the maximum Li value, we set the step-size to
αk = 1/2Lmax + 1/2Lmean.

• SAG-LS (Lipschitz): In this method we formed estimates of the quantities Li, Lmax, and
Lmean. The estimator Lkmax is computed in the same way as the SAG-LS method. To estimate
each Li, we keep track of an estimate Lki for each i and we set Lkmean to the average of the Lki
values among the fi that we have sampled at least once. We set Lki = Lk−1i if example i was not
selected and otherwise we initialize to Lki = Lk−1i /2 and perform the line-search until we have a
valid Lki (this means that Lkmean will be approximately halved if we perform a full pass through
the data set and never violate the inequality). To ensure that we do not ignore important
unseen data points for too long, in this method we sample a previously unseen function with
probability (n − m)/n, and otherwise we sample from the previously seen fi in proportion to
Lki +Lkmean. To prevent relying too much on our initially-poor estimate of Lmean, we use a step
size of αk = n−m

n αmax + m
n αmean, where αmax = 1/Lkmax is the step-size we normally use with

uniform sampling and αmean = 1/2Lkmax +1/2Lkmean is the step-size we use with the non-uniform
sampling method, so that the method interpolates between these extremes until the entire data
set has been sampled.

We make the following observations from these experiments:

• SAG (1/L) vs. SAG (Lipschitz): With access to global quantities and a constant step size,
the difference between uniform and non-uniform sampling was typically quite small. However,
in some cases the non-uniform sampling method behaved much better (top row of Figure 5).

• SAG-LS vs. SAG-LS (Lipschitz): When estimating the Lipschitz constants of the individual
functions, the non-uniform sampling strategy often gave better performance. Indeed, the adap-
tive non-uniform sampling strategy gave solutions that are orders of magnitude more accurate
than any method we examined for several of the data sets (e.g., the protein, covertype, and sido
data sets) In the context of logistic regression, it makes sense that an adaptive sampling scheme
could lead to better performance, as many correctly-classified data samples might have a very
slowly-changing gradient near the solution, and thus they do not need to be sampled often.

24

0 100 200
10

−20

10
−10

10
0

quantum − L
max

0 100 200
10

−20

10
−10

10
0

quantum − L
mean

0 100 200
10

−20

10
−10

10
0

quantum − L
hessian

0 100 200
10

−10

10
−5

10
0

covertype − L
max

0 100 200
10

−10

10
−5

10
0

covertype − L
mean

0 100 200
10

−10

10
−5

10
0

covertype − L
hessian

0 100 200
10

−4

10
−2

10
0

protein − L
max

0 100 200
10

−4

10
−2

10
0

protein − L
mean

0 100 200
10

−4

10
−2

10
0

protein − L
hessian

Figure 4: Sub-optimality as a function of the number of effective passes through the data for various
datasets, step-size selection schemes and mini-batch sizes. The datasets are quantum (top), covertype
(middle) and protein (bottom). Left: the step-size is 1/L with L the maximum Lipschitz constant
of the individual gradients. It is thus the same for all mini-batch sizes. Center: the step-size is
1/L where L is obtained by taking the maximum among the averages of the Lipschitz constants
within mini-batches. Right: the step-size is 1/L where L is obtained by computing the maximum
eigenvalue of the Hessian for each mini-batch, then taking the maximum of these quantities across
mini-batches.

25

0 10 20 30 40 50

10
−15

10
−10

10
−5

10
0

Effective Passes

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

u
m

SAG (1/L)SAG (Lipschitz)
SAG−LS

SAG−LS (Lipschitz)

0 10 20 30 40 50

10
−15

10
−10

10
−5

10
0

Effective Passes

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

u
m

SAG (1/L)

SAG (Lipschitz)

SAG−LS

SAG
−LS (Lipschitz)

0 10 20 30 40 50

10
−15

10
−10

10
−5

10
0

Effective Passes

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

u
m

SAG (1/L)
SAG (Lipschitz)

SAG−LSSAG
−LS (Lipschitz)

0 10 20 30 40 50

10
−15

10
−10

10
−5

10
0

Effective Passes

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

u
m

SAG (1/L)SAG (Lipschitz)

SAG−LS

SAG
−LS (Lipschitz)

0 10 20 30 40 50

10
−15

10
−10

10
−5

10
0

Effective Passes

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

u
m

SAG (1/L)

SAG
 (Lipschitz)

SAG−LS

SAG
−LS (Lipschitz)

0 10 20 30 40 50

10
−15

10
−10

10
−5

10
0

Effective Passes

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

u
m

SAG (1/L)SAG (Lipschitz)

SAG
−LS

SAG−LS (Lipschitz)

0 10 20 30 40 50

10
−15

10
−10

10
−5

10
0

Effective Passes

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

u
m

SAG (1/L)
SAG (Lipschitz)

SAG
−LS

SAG−LS (Lipschitz)

0 10 20 30 40 50

10
−15

10
−10

10
−5

10
0

Effective Passes

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

u
m

SAG (1/L)SAG (Lipschitz)SAG−LS

SAG
−LS (Lipschitz)

0 10 20 30 40 50

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Effective Passes

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

u
m

SAG
 (1/L)

SAG (Lipschitz)

SAG−LS

SAG−LS (Lipschitz)

Figure 5: Comparison of uniform and non-uniform sampling strategies for the SAG algorithm. The
top row gives results on the quantum (left), protein (center) and covertype (right) datasets. The
middle row gives results on the rcv1 (left), news (center) and spam (right) datasets. The bottom
row gives results on the rcv1Full— (left), sido (center), and alpha (right) datasets. This figure is
best viewed in colour.

26

6 Discussion

Since the first version of this work was published [Le Roux et al., 2012], there has been an explosion of
interest in stochastic methods with improved convergence rates. In this section we first review other
algorithms that have been discovered to have this property, and then we discuss the many possible
variants on these basic algorithms that have been explored. As this is a very quickly-evolving area
there are likely to be many new developments in the near future, but we note that this literature
review is up to date as of January, 2015.

6.1 Alternative Algorithms

SDCA: The first algorithm that was shown to have a similar convergence rate and iteration cost
to SAG was in fact a much older algorithm: coordinate optimization applied to a dual problem
with randomized coordinate selection, referred to as stochastic dual coordinate ascent (SDCA).
Shalev-Schwartz and Zhang [2013b] consider the problem of minimizing an `2-regularized finite sum,

minimize
x∈Rp

λ

2
‖x‖2 +

1

n

n∑
i=1

fi(a
T
i x),

where each fi is convex and each f ′i is Lipschitz-continuous, by optimizing its Fenchel dual,

maximize
y∈Rn

− 1

2λ
‖ 1

n

n∑
i=1

yiai‖2 −
1

n

n∑
i=1

f∗i (−yi).

They consider applying exact coordinate optimization to a randomly selected coordinate. Using
the primal-dual relationship x = 1

nλ

∑N
i=1 xiai, they show a linear convergence rate in terms of the

duality gap. Since there is one dual variable associated with each example i, the iteration cost is
independent of n and thus the strategy has similar convergence properties to SAG (the memory
requirements are identical in this context, see Section 4.1).

This result is related to the earlier result of [Nesterov, 2010], who shows a similar convergence rate
for randomized coordinate descent.7 However, the result of Nesterov cannot be directly applied to
the dual problem in general since the dual does not necessarily have a Lipschitz-continuous gradient.
A similar result was also reported even earlier by Collins et al. [2008] without requiring that the
gradient of the dual is Lipschitz-continuous, but this result again only applied to the dual objective.
More recently, Shalev-Schwartz and Zhang [2013a] show linear convergence of SDCA in the more
general setting

minimize
x∈Rp

λr(x) +
1

n

n∑
i=1

fi(A
T
i x),

where Ai are matrices and r is 1−strongly convex. They also relax the requirement of exact coor-
dinate optimization, providing a variety of more practical alternatives. Further, in subsequent work
they obtain a convergence rate in the convex case by adding an explicit strongly-convex regularizer
to the problem [Shalev-Schwartz and Zhang, 2014].

A disadvantage of SDCA compared to the SAG algorithm is that the SDCA convergence rates
depend on λ rather than the strong-convexity constant µ. In the worst case we have µ = λ, but if µ
is much larger then the convergence rate of SAG is much faster. Further, even in cases where µ = λ,
the convergence rate of SAG might be much faster if the iterates stay in local region with a higher

7Local linear convergence rates of deterministic coordinate descent methods had been established much earlier [Luo
and Tseng, 1992].

27

strong-convexity constant. As an extreme example, due to local strong-convexity SAG might have
a linear convergence rate in scenarios where SDCA has a sub-linear convergence. This subtle but
practically important issue was a key focus in the recent work of [Agarwal and Bottou, 2014], and
indeed the performance of SDCA was very poor on three of the test problems in our experiments.
See Figure 2 (top left, top right, bottom right).

MISO: Mairal [2013] analyzes a very general surrogate optimization framework, that includes a
wide vareity of existing algorithms. He also considers incremental algorithms in this framework,
and specialized to the smooth and unconstraeind setting (with a ‘Lipschitz surrogate’) obtains an
algorithm (MISO) that is very similar to the SAG algorithm,

xk+1 =
1

n

n∑
i=1

xki −
αk
n

n∑
i=1

yki ,

where yki is defined as in the SAG algorithm 6, and xki is the parameter vector used to compute
the corresponding yki . Thus, instead of applying the SAG step to xk, MISO applies the step to the
average of the previous xki values used to form the current yki variables. Mairal [2013] shows that
this algorithm also achieves an O(1/k) rate for convex objectives and a linear convergence rate for
strongly-convex objectives.

However, MISO has the disadvantage that it not only requires storing the n gradient values but
also storing n previous iterations (which are less likely to have a nice structure). Further, the
linear convergence rate shown for MISO is substantially slower than the convergence rate shown in
Theorem 1. In particular, the rate is more similar to the substantially slower Proposition 1 in our
prior work [Le Roux et al., 2012]. Subsequent work on the MISO algorithm has shown an analogous
result to Proposition 2 in our prior work; if the n is sufficiently larger than Lµ, then using a step-size
proportional to 1/µ yields a faster convergence rate [Mairal, 2014, Defazio et al., 2014b]. However,
using this step-size causes divergence if µ is not sufficiently large.

SVRG: Another interesting framework that has been considered is known as ‘mixed optimization’,
‘stochastic variance-reduced gradient’ (SVRG), or ‘semi-stochastic gradient descent’ (S2GD) [Mah-
davi and Jin, 2013, Johnson and Zhang, 2013, Zhang et al., 2013, Konečnỳ and Richtárik, 2013].8

Unlike FG methods that utilize the full gradient g′ and SG methods that consider individual gra-
dients f ′i , these mixed optimization methods combine the two. In particular, they use a (possibly
regularized) iteration of the form

xk+1 = xk − αk(f ′i(x
k)− f ′i(x̃k) +

1

n

n∑
j=1

f ′j(x̃
k)),

where x̃k is the last iterate where the full gradient g′ was evaluated. The algorithm alternates
between computing the full gradient at x̃k, and performing some number m of stochastic gradient
iterations. Note this is very similar to the SAG algorithm written in the form

xk+1 = xk − αk(
1

n
f ′i(x

k)− 1

n
f ′i(x

k
i) +

1

n

n∑
j=1

f ′j(x
k
i)),

where xki is defined as in the MISO algorithm. These methods are thus similar to SAG in the
use of potentially-outdated gradient information, but differ in that the outdated gradients are all
computed at the same previous iteration x̃k and the weighting of terms is changed. If the step-size

8Wang et al. [2013] consider a related algorithm that maintains an easily-computable approximation to the current
gradient g′(xk). Although this can improve the constants in the sublinear SG convergence rates, it does not improve
the rates.

28

and parameter m are set appropriately, this algorithm has a linear convergence rate in the strongly-
convex case. It can also achieve an O(1/k) convergence rate in the general convex case, by applying
it to a purturbed problem where a strongly-convex regularizer has been added.

A key advantage of this strategy is it only requires storing x̃k, rather than the n gradient values.
However, to obtain this improved memory requirement we must evaluate f ′i twice on each iteration.
Further, the algorithm innefficiently requires full passes through the data to evaluate f ′j(x̃

k) for all
j.

A disadvantage of the SVRG method is that it requires setting two parameters (rather than one)
and the convergence rate depends in a non-trivial way on their interaction both with each other
and with both the Lipschitz constant and the strong-convexity. As with SDCA, the dependence
on the strong-convexity constant is notable. In particular, the algorithm can’t be applied without
modification to general convex problems, and (although the effect is not as severe as it is with SDCA)
the convergence rate may be substantially slower than SAG if there exists hidden strong convexity.

Self-Concordant Objectives: A surprising recent development is that Bach and Moulines [2013]
have shown that the finite sum assumption is not required to obtain the O(1/k) convergence rate
in the special case of least squares. They show that an averaged SG method achieves this rate,
and give a 2-phase Newton-like SG method that achieves this rate under an assumption similar
to self-concordance. However, this assumption does not hold in general for the class of problems
considered here.

SAGA: One of the most recent developments in this area is the SAGA algorithm Defazio et al.
[2014a]. This algorithm intelligently combines the updates used in the SAG and SVRG algorithms.
This method maintains the appealing properties of SAG, but yields a simpler proof. However, the
proof technique used in that work does not yield a simpler analysis of the original SAG algorithm.

Lower Bounds: There has been recent work on determining a lower bound on the convergence rate
that can be expected for minimizing finite sums. Defazio et al. [2014b] show that the rate must be
at least (1 − 1/n) in the strongly-convex case, while Agarwal and Bottou [2014] establish a bound
that also depends on the condition number L/µ.

6.2 Generalizations and Other Issues

Accelerated gradient: AFG methods are variants of the basic FG method that can obtain an
O(1/k2) convergence rate for the general convex case, and faster linear convergence rates that depend
on the square root of the condition number (

√
L/µ) rather than the condition number (L/µ) in the

strongly-convex case [see Nesterov, 2004, §2.2.1]. For strongly-convex objectives, it has been shown
that a mini-batch strategy can obtain a better dependence on the condition number in certain
regimes for SDCA [Shalev-Shwartz and Zhang, 2013] and more recently for SVRG [Nitanda, 2014].
It is possible that similar arguments could hold for SAG algorithms, which could be advantageous
over these methods for reasons discussed in the previous section.

Shalev-Schwartz and Zhang [2014] have also given an accelerated version of the SDCA method
for ill-conditioned problems, that uses SDCA to solve a sequence of regularized problems up to a
prescribed optimality. Since this procedure ultimately relies on the sequence of primal solutions,
we can also accelerate SAG using a procedure like this. However, a difficulty with this procedure
(whether SAG or SDCA are used) is the cost of measuring the optimality of the sub-problems.

Rather than using this inner-outer procedure, Lin et al. [2014] show that using a deterministic
primal iteration (based on the full data set) allows one to construct a primal solution that has the
accelerated rate from the result of an accelerated dual coordinate ascent method. Zhang and Xiao
[2014] give a coordinate-wise variant of the accelerated primal-dual method of Chambolle and Pock

29

[2011] that also achieves this rate. Based on these results, it is possible that accelerated versions of
SAG could be developed that do not rely on an inner-outer procedure.

The convergence rates of these accelerated methods have the same form as the lower bound estab-
lished by Agarwal and Bottou [2014]. However, Agarwal and Bottou point out that these accelerated
convergence rates depend on λ rather than µ. Thus, they conclude that the basic SAG algorithm
may still be much faster on some problems than accelerated SDCA methods, and indeed show how
to construct a problem where SAG is arbitrarily faster than accelerated SDCA. The possibility of
developing an accelerated SAG algorithm that is adaptive to µ remains open.

Proximal gradient and ADMM: It is becoming increasingly common to address problems of the
form

minimize
x∈Rp

r(x) + g(x) := r(x) +
1

n

n∑
i=1

fi(x),

where fi and g satisfy our assumptions and r is a general convex function that could be non-smooth
or enforce that constraints are satisfied. Proximal-gradient methods for problems with this structure
use iterations of the form

xk+1 = proxαk

[
xk − αk

n

n∑
i=1

f ′i(x
k)

]
,

where the proxαk
[y] operator is the solution to the proximity problem

minimize
x∈Rp

1

2
‖x− y‖2 + αkr(x).

Proximal-gradient and accelerated proximal-gradient methods are appealing for solving non-smooth
optimization problems because they achieve the same convergence rates as FG methods for smooth
optimization problems [Nesterov, 2007, Schmidt et al., 2011]. We have explored a variant of the
proximal-gradient method where the average over the f ′i(x

k) values is replaced by the SAG ap-
proximation (6). Although our analysis does not directly apply to this scenario, we believe that
this proximal-SAG algorithm for composite non-smooth optimization achieves the same convergence
rates as the SAG algorithm for smooth optimization; this is supported by the experiments of Xiao
and Zhang [2014]. Indeed, there now exist proximal-gradient variants of SDCA [Shalev-Schwartz
and Zhang, 2013a], MISO [Mairal, 2013], SVRG [Xiao and Zhang, 2014], and SAGA [Defazio et al.,
2014a].

In cases where r is composed with a linear function, we can consider approaches based on the
alternating direction method of multipliers (ADMM). This has been explored for SDCA [Suzuki,
2014] and MISO [Zhong and Kwok, 2014], and a variant based on SAG is also likely to be possible.

Coordinate-wise: The key advantage of SG and SAG methods is that the iteration cost is inde-
pendent of the number of functions n. However, in many applications we may also be concerned
with the dependence of the iteration cost on the number of variables p. Randomized coordinate-wise
methods offer linear convergence rates with an iteration cost that is linear in n but independent
of p [Nesterov, 2010]. We can consider a variant of SAG whose iteration cost is independent of both
n and p by using the update

[yki]j =

{
[f ′i(x

k)]j if i = ik and j = jk

[yk−1i]j otherwise,

to each coordinate j of each vector yi in the SAG algorithm, and where jk is a sample from the set
{1, 2, . . . , p}. Konečnỳ et al. [2014] recently proposed an SVRG algorithm of this flavour.

30

Newton-like: In cases where g is twice-differentiable, we can also consider Newton-like variants of
the SAG algorithm,

xk+1 = xk − αk
n
Bk[

n∑
i=1

yki],

where Bk is a positive-definite approximation to the inverse Hessian g′′(xk). We would expect to
obtain a faster convergence rate by using an appropriate choice of the sequence {Bk}. However, in
order to not increase the iteration cost these matrices should be designed to allow fast multiplication.
For example, we could choose Bk to be diagonal, which would also preserve any sparsity present in
the updates. Sohl-Dickstein et al. [2014] propose a quasi-Newton method in this class that shows
impressive empirical results, although the iteration cost is much higher.

Relaxing Convexity Assumptions: It is likely that the convexity assumptions made in this work
could be relaxed. For example, Gong and Ye [2014] show SVRG can obtain a linear convergence
under weaker assumptions. Since SAG is adaptive to hidden strong-convexity, the assumptions
needed for its linear convergence are likely even weaker. Further, the SAG algorithm may also be
useful even if g is non-convex (which is different than SDCA). In this case we expect that, similar
to the IAG method [Blatt et al., 2007], the algorithm converges to a stationary point under very
general conditions.

Non-Uniform Sampling: We have given an argument that non-uniform sampling should benefit
the SAG algorithm, and shown empirically that it can lead to a substantial improvement. However,
we have not yet given a full analysis of this scheme. Subsequent works have shown that the type
of dependency we conjecture here (e.g., dependence on the average Lispschitz constant) can be
achieved with non-uniform sampling in the context of SDCA [Qu et al., 2014, Zhao and Zhang,
2014], SVRG [Xiao and Zhang, 2014], and SAGA [Schmidt et al., 2015]

Step-size selection and termination criteria: The three major disadvantages of SG methods
are: (i) the slow convergence rate, (ii) deciding when to terminate the algorithms, and (iii) choosing
the step size while running the algorithm. This work shows that the SAG iterations achieve a much
faster convergence rate, but the SAG iterations may also be advantageous in terms of termination
criteria and choosing step sizes. In particular, the SAG iterations suggest a natural termination
criterion; since the quantity d in Algorithm 1 converges to f ′(xk) as ‖xk − xk−1‖ converges to zero,
we can use ‖d‖ as an approximation of the optimality of xk as the iterates converge. Regarding
choosing the step-size, a disadvantage of a constant step-size strategy is that a step-size that is too
large may cause divergence. But, we expect that it is possible to design line-search or trust-region
strategies that avoid this issue. Such strategies might even lead to faster convergence for functions
that are locally well-behaved around their optimum, as indicated in our experiments. Further, while
SG methods require specifying a sequence of step sizes and mis-specifying this sequence can have a
disastrous effect on the convergence rate [see Nemirovski et al., 2009, §2.1], our theory shows that
the SAG iterations achieve a fast convergence rate for any sufficiently small constant step size, and
our experiments indicate that a simple line-search gives strong performance.

Acknowledgements

We would like to thank the anonymous reviewers for their many useful comments. This work
was partially supported by the European Research Council (SIERRA-ERC-239993) and a Google
Research Award. Mark Schmidt is also supported by a postdoctoral fellowship from the Natural
Sciences and Engineering Research Council of Canada.

31

Appendix A: Comparison of convergence rates

We now present a comparison of the convergence rates of primal and dual FG and coordinate-wise
methods to the rate of the SAG method in terms of effective passes through the data for `2-regularized
least-squares regression. In particular, in this appendix we will consider the problem

minimize
x∈Rp

g(x) :=
λ

2
‖x‖2 +

1

2n

n∑
i=1

(aTi x− bi)2,

where to apply the SG or SAG method we can use

fi(x) :=
λ

2
‖x‖2 +

1

2
(aTi x− bi)2.

If we use b to denote a vector containing the values bi and A to denote a matrix withs rows ai, we
can re-write this problem as

minimize
x∈Rp

λ

2
‖x‖2 +

1

2n
‖Ax− b‖2.

The Fenchel dual of this problem is

minimize
y∈Rn

d(y) :=
n

2
‖y‖2 +

1

2λ
y>AA>y + y>b.

We can obtain the primal variables from the dual variables by the formula x = (−1/λ)A>y. Con-
vergence rates of different primal and dual algorithms are often expressed in terms of the following
Lipschitz constants:

Lg = λ+Mσ/n (Lipschitz constant of g′)

Lig = λ+Mi (Lipschitz constant for all f ′i)

Ljg = λ+Mj/n (Lipschitz constant of all g′j)

Ld = n+Mσ/λ (Lipschitz constant of d′)

Lid = n+Mi/λ (Lipschitz constant of all d′i)

Here, we use Mσ to denote the maximum eigenvalue of A>A, Mi to denote the maximum squared
row-norm maxi{‖ai‖2}, and Mj to denote the maximum squared column-norm maxj{

∑n
i=1(ai)

2
j}.

We use g′j to refer to element of j of g′, and similarly for d′i. The convergence rates will also depend
on the primal and dual strong-convexity constants:

µg = λ+mσ/n (Strong-convexity constant of g)

µd = n+m′σ/λ (Strong-convexity constant of d)

Here, mσ is the minimum eigenvalue of A>A, and m′σ is the minimum eigenvalue of AA>.

A.1 Full Gradient Methods

Using a similar argument to [Nesterov, 2004, Theorem 2.1.15], if we use the basic FG method with
a step size of 1/Lg, then (f(xk)− f(x∗)) converges to zero with rate(

1− µg
Lg

)2

=

(
1− λ+mσ/n

λ+Mσ/n

)2

=

(
1− nλ+mσ

nλ+Mσ

)2

6 exp

(
−2

nλ+mσ

nλ+Mσ

)
,

32

while a larger step-size of 2/(Lg + µg) gives a faster rate of(
1− µg + µg

Lg + µg

)2

=

(
1− nλ+mσ

nλ+ (Mσ +mσ)/2

)2

6 exp

(
−2

nλ+mσ

nλ+ (Mσ +mσ)/2

)
,

and we see that the speed improvement is determined by how much smaller mσ is than Mσ.

If we use the basic FG method on the dual problem with a step size of 1/Ld, then (d(xk) − d(x∗))
converges to zero with rate(

1− µd
Ld

)2

=

(
1− n+m′σ/λ

n+Mσ/λ

)2

=

(
1− nλ+m′σ

nλ+Mσ

)2

6 exp

(
−2

nλ+m′σ
nλ+Mσ

)
,

and with a step-size of 2/(Ld + µd) the rate is(
1− µd + µd

Ld + µd

)2

=

(
1− nλ+m′σ

nλ+ (Mσ +m′σ)/2

)2

6 exp

(
−2

nλ+m′σ
nλ+ (Mσ +m′σ)/2

)
.

Thus, whether we can solve the primal or dual method faster depends on mσ and m′σ. In the
over-determined case where A has independent columns, a primal method should be preferred. In
the under-determined case where A has independent rows, we can solve the dual more efficiently.
However, we note that a convergence rate on the dual objective does not necessarily yield the same
rate in the primal objective. If A is invertible (so that mσ = m′σ) or it has neither independent
columns nor independent rows (so that mσ = m′σ = 0), then there is no difference between the
primal and dual rates.

The AFG method achieves a faster rate. Applied to the primal with a step-size of 1/Lg it has a rate
of [Nesterov, 2004, Theorem 2.2.2](

1−
√
µg
Lg

)
=

(
1−

√
λ+mσ/n

λ+Mσ/n

)
=

(
1−

√
nλ+mσ

nλ+Mσ

)
6 exp

(
−
√
nλ+mσ

nλ+Mσ

)
,

and applied to the dual with a step-size of 1/Ld it has a rate of(
1−

√
µd
Ld

)
=

(
1−

√
n+m′σλ

n+Mσ/λ

)
=

(
1−

√
nλ+m′σ
nλ+Mσ

)
6 exp

(
−
√
nλ+m′σ
nλ+Mσ

)
.

A.2 Coordinate-Descent Methods

The cost of applying one iteration of an FG method is O(np). For this same cost we could apply p
iterations of a coordinate descent method to the primal, assuming that selecting the coordinate to
update has a cost of O(1). If we select coordinates uniformly at random, then the convergence rate
for p iterations of coordinate descent with a step-size of 1/Ljg is [Nesterov, 2010, Theorem 2](

1− µg

pLjg

)p
=

(
1− λ+mσ/n

p(λ+Mj/n)

)p
=

(
1− nλ+mσ

p(nλ+Mj)

)p
6 exp

(
−nλ+mσ

nλ+Mj

)
.

Here, we see that applying a coordinate-descent method can be much more efficient than an FG
method if Mj << Mσ. This can happen, for example, when the number of variables p is much larger
than the number of examples n. Further, it is possible for coordinate descent to be faster than the
AFG method if the difference between Mσ and Mj is sufficiently large.

33

For the O(np) cost of one iteration of the FG method, we could alternately perform n iterations of
coordinate descent on the dual problem. With a step size of 1/Lid this would obtain a rate on the
dual objective of(

1− µd
nLid

)n
=

(
1− n+m′σ/λ

n(n+Mi/λ)

)n
=

(
1− nλ+m′σ

n(nλ+Mi)

)n
6 exp

(
−nλ+m′σ
nλ+Mi

)
,

which will be faster than the dual FG method if Mi << Mσ. This can happen, for example, when
the number of examples n is much larger than the number of variables p. The difference between
the primal and dual coordinate methods depends on Mi compared to Mj and mσ compared to m′σ.

The analysis of SDCA gives a convergence rate in terms of the duality gap (and hence the primal)
rather than simply in terms of the dual Shalev-Schwartz and Zhang [2013b]. Using the SDCA
analysis, we obtain a rate in the duality gap of(

1− 1

n+Mi/λ

)n
=

(
1− λ

nλ+Mi

)n
6 exp

(
− nλ

nλ+Mi

)
,

which is the same as the dual rate given above when m′σ = 0, and is slower otherwise.

A.3 Stochastic Average Gradient

For the O(np) cost of one iteration of the FG method, we can perform n iterations of SAG. With a
step size of 1/16L, performing n iterations of the SAG algorithm has a rate of(

1−min

{
µg

16Lig
,

1

8n

})n
=

(
1−min

{
λ+mσ/n

16(λ+Mi)
,

1

8n

})n
6 exp

(
− 1

16
min

{
nλ+mσ

λ+Mi
, 2

})
In the case where n 6 2Lig/µg, this is most similar to the rate obtained with the dual coordinate
descent method, though there is a constant factor of 16 and the rate depends on the primal strong
convexity constant mσ rather than the dual m′σ. However, in this case the SAG rate will often be
faster because the term nλ in the denominator is replaced by λ. An interesting aspect of the SAG
rate is that unlike other methods the convergence rate of SAG reaches a limit: the convergence rate
improves as n grows and as the condition number Lig/µg decreases but no further improvement in

the convergence rate is obtained beyond the point where n = 2Lig/µg. Thus, while SAG may not be
the method of choice for very well-conditioned problems, it is a robust choice as it will always tend
to be among the best methods in most situations.

Appendix B: Proof of the theorem

In this Appendix, we give the proof of Theorem 1.

B.1 Problem set-up and notation

Recall that we use g = 1
n

∑n
i=1 fi to denote a µ-strongly convex function, where the functions fi

for i = 1, . . . , n are convex functions from Rp to R with L-Lipschitz continuous gradients. In this
appendix we will use the convention that µ > 0 so that the regular convex case (where µ = 0) is
allowed. We assume that a minimizer of g is attained by some parameter x∗ (such a value always
exists and is unique when µ > 0).

34

Recall that the SAG algorithm performs the recursion (for k > 1):

xk = xk−1 − α

n

n∑
i=1

yki ,

where an integer ik is selected uniformly at random from {1, . . . , n} and we set

yki =

{
f ′i(x

k−1) if i = ik,

yk−1i otherwise.

We will use the notation

yk =

 yk1
...
ykn

 ∈ Rnp, θk =


yk1
...
ykn
xk

 ∈ R(n+1)p, θ∗ =


f ′1(x∗)

...
f ′n(x∗)
x∗

 ∈ R(n+1)p ,

and we will also find it convenient to use

e =

 I
...
I

 ∈ Rnp×p, f ′(x) =

 f ′1(x)
...

f ′n(x)

 ∈ Rnp. (11)

With this notation, note that g′(x) = 1
ne
>f ′(x) and xk = xk−1 − α

ne
>yk.

For a square n×n matrix M , we use diag(M) to denote a vector of size n composed of the diagonal
of M , while for a vector m of dimension n, Diag(m) is the n × n diagonal matrix with m on its
diagonal. Thus Diag(diag(M)) is a diagonal matrix with the diagonal elements of M on its diagonal,
and diag(Diag(m)) = m.

In addition, if M is a tp× tp matrix and m is a tp× p matrix, then we will use the convention that:

• diag(M) is the tp × p matrix being the concatenation of the t (p × p)-blocks on the diagonal
of M ;

• Diag(m) is the tp × tp block-diagonal matrix whose (p × p)-blocks on the diagonal are equal
to the (p× p)-blocks of m.

Finally, Fk will denote the σ-field of information up to (and including) time k. In other words, Fk
is the σ-field generated by i1, . . . , ik. Given Fk−1, we can write the expected values of the yk and
xk variables in the SAG algorithm as

E(yk|Fk−1) =
(
1− 1

n

)
yk−1 +

1

n
f ′(xk−1),

E(xk|Fk−1) = xk−1 − α

n

(
1− 1

n

)
e>yk−1 − α

n2
e>f ′(xk−1).

The proof is based on finding a Lyapunov function L from R(n+1)p to R such that the sequence EL(θk)
decreases at an appropriate rate, and EL(θk) dominates [g(xk) − g(x∗)]. We derive these results
in a parameterized way, leaving a variety of coefficients undetermined but tracking the constraints
required of the coefficients as we go. Subsequently, we guide the setting of these coefficients by using
a second-order cone solver, and verify the validity of the resulting coefficients using a symbolic solver

35

to check positivity of certain polynomials. Finally, the constants in the convergence rate are given
by the initial values of the Lyapunov function, based on the choice of y0.

The Lyapunov function contains a term of the form (θk − θ∗)>
(

A B
B> C

)
(θk − θ∗) for some

values of A, B and C. Our analysis makes use of the following lemma, derived in [Le Roux et al.,
2012, Appendix A.4], showing how this quadratic form evolves through the SAG recursion in terms
of the elements of θk−1.

Lemma 1. If P =

(
A B
B> C

)
, for A ∈ Rnp×np, B ∈ Rnp×p and C ∈ Rp×p, then

E
[

(θk − θ∗)>
(

A B
B> C

)
(θk − θ∗)

∣∣∣∣Fk−1]
= (yk−1 − f ′(x∗))>

[(
1− 2

n

)
S +

1

n
Diag(diag(S))

]
(yk−1 − f ′(x∗))

+
1

n
(f ′(xk−1)− f ′(x∗))>Diag(diag(S))(f ′(xk−1)− f ′(x∗))

+
2

n
(yk−1 − f ′(x∗))> [S −Diag(diag(S))] (f ′(xk−1)− f ′(x∗))

+ 2

(
1− 1

n

)
(yk−1 − f ′(x∗))>

[
B − α

n
eC
]

(xk−1 − x∗)

+
2

n
(f ′(xk−1)− f ′(x∗))>

[
B − α

n
eC
]

(xk−1 − x∗)

+ (xk−1 − x∗)>C(xk−1 − x∗) ,

with

S = A− α

n
Be> − α

n
eB> +

α2

n2
eCe> ∈ Rnp×np .

Our proof also uses the following lemma, giving the inverse of a highly-structured matrix that arises
in the analysis.

Lemma 2. Let I be the identity in Rnp×np and e ∈ Rnp×p be defined by stacking identity matrices
in Rn×n as in (11). If α and β are non-zero real-valued scalars, then it holds that(

α

(
I − 1

n
eeT
)

+ β

(
1

n
eeT
))−1

=
1

α

(
I − 1

n
eeT
)

+
1

β

(
1

n
eeT
)
.

Proof. It is sufficient to verify that the inverse of the left side times the right side is equal to the
identity matrix,(

α

(
I − 1

n
eeT
)

+ β

(
1

n
eeT
))(

1

α

(
I − 1

n
eeT
)

+
1

β

(
1

n
eeT
))

=

(
I − 1

n
eeT
)(

I − 1

n
eeT
)

+
α

β

(
I − 1

n
eeT
)(

1

n
eeT
)

+
β

α

(
1

n
eeT
)(

I − 1

n
eeT
)

+

(
1

n
eeT
)(

1

n
eeT
)

=

(
I − 2

n
eeT +

1

n
eeT
)

+
α

β

(
1

n
eeT − 1

n
eeT
)

+
β

α

(
1

n
eeT − 1

n
eeT
)

+
1

n
eeT

= I.

where we use that eT e = nI, giving
(
1
nee

T
) (

1
nee

T
)

= 1
nee

T .

36

B.2 General Lyapunov function

For some h > 0, we consider a Lyapunov function of the form

L(θk) = 2hg(xk + de>yk)− 2hg(x∗) + (θk − θ∗)>
(

A B
B> C

)
(θk − θ∗)

with
A = a1ee

> + a2I, B = be, C = cI.

To achieve the desired convergence rate, our goal is to show for appropriate values of δ > 0 and
γ > 0 that

(a) E
(
L(θk)|Fk−1

)
6 (1− δ)L(θk−1),

(b) L(θk) > γ
[
g(xk)− g(x∗)

]
,

almost surely. Thus, in addition to the algorithm parameter α, there are 2 parameters of the result
{γ, δ} and 6 parameters of the Lyapunov function {a1, a2, b, c, d, h}.

B.3 Lyapunov upper bound

To show (a), we derive an upper bound on the quantity

E
(
L(θk)|Fk−1

)
− (1− δ)L(θk−1)

= 2hE
[
g(xk + de>yk)

]
− 2hg(x∗)− (1− δ)(2hg(xk−1 + de>yk−1)− 2hg(x∗))

+E
[
(θk − θ∗)>

(
A B
B> C

)
(θk − θ∗)

]
− (1− δ)(θk−1 − θ∗)>

(
A B
B> C

)
(θk−1 − θ∗).

Lemma 1 gives an expression for the expectation over the quadratic term in the last line, and we
will have

S = a2I +

(
a1 − 2

α

n
b+

α2

n2
c

)
ee>

Diag(diag(S)) =

(
a2 + a1 − 2

α

n
b+

α2

n2
c

)
I

S −Diag(diag(S)) =

(
a1 − 2

α

n
b+

α2

n2
c

)
(ee> − I).

We also use that strong convexity of g implies

2g(xk−1 + de>yk−1) > 2g(xk−1) + 2dg′(xk−1)>e>yk−1 + µd2‖e>yk−1‖2. (12)

37

Further, using the Lipschitz-continuity of g′ and the identity xk + de>yk = xk−1 + (d − α
n)e>yk,

followed by applying Lemma 1 using A = ee> to expand the last term, gives us the bound

E
[
2g(xk + de>yk)|Fk−1

]
6 2g(xk−1) + 2

(
d− α

n

)
g′(xk−1)>E

[
e>yk|Fk−1

]
+ L

(
d− α

n

)2E[‖e>yk‖2|Fk−1]
= 2g(xk−1) + 2

(
d− α

n

)
g′(xk−1)>

[
(1− 1

n
)e>yk−1 +

1

n
e>f ′(xk−1)

]
+ L

(
d− α

n

)2[
(yk−1 − f ′(x∗))>

[(
1− 2

n

)
ee> +

1

n
I

]
(yk−1 − f ′(x∗))

]
+ L

(
d− α

n

)2[1

n
‖f ′(xk−1)− f ′(x∗)‖2

+
2

n
(yk−1 − f ′(x∗))>

[
ee> − I

]
(f ′(xk−1)− f ′(x∗))

]
.

(13)

Combining Lemma 1 with Inequalities (12) and (13) yields an upper bound on E
(
L(θk)|Fk−1

)
−

(1 − δ)L(θk−1) with a large number of terms. To help in the process of simplifying these terms,
Table B.3 lists all the terms up to a scalar factor s and possibly a matrix M . The table also gives
these scalars and matrices for each term, as well as the source of the term.

We combine the expressions from Table B.3 using the stated groups in the last column. For example,
we add together all the terms in group 0 to obtain a scalar coefficient B0 for terms in this group.
We do this in the straightforward way (using that g′(x) = 1

ne
>f ′(x) and g′(x∗) = 0) for groups 0,

1, 2, 5, 8, and 9. For groups 6 and 7 we split into terms that have an identity matrix M (B6) and
terms with an ee> term (B7). Similarly, B3 comes from terms with an identity matrix in M and B4

correspond to terms with an ee> term. Combining expressions in this way (and adding/subtracting
(B3/n)ee>) gives:

E
(
L(θk)|Fk−1

)
− (1− δ)L(θk−1)

6 B0

(
g(xk−1)− g(x∗)

)
+B9‖xk−1 − x∗‖2 + (xk−1 − x∗)>g′(xk−1)B1 −B2‖g′(xk−1)‖2

−(yk−1 − y∗)>
[
B3(I − 1

n
ee>) +B4

1

n
ee>

]
(yk−1 − y∗)

+(yk−1 − y∗)>
[
B5e(x

k−1 − x∗) +B6(f ′(xk−1)− f ′(x∗)) +B7eg
′(xk−1)

]
+B8‖f ′(xk−1)− f ′(x∗)‖2,

38

T
er

m
S

ca
la

r
s

M
a
tr

ix
M

S
o
u

rc
e

G
ro

u
p

sg
(x
∗)

−
2h

E(L(
θk

)|F
k
−
1

) 0
sg

(x
∗)

2
h

(1
−
δ)

L
(θ
k
−
1
)

0
s(
y
k
−
1
−
f
′ (
x
∗)

)>
M

(y
k
−
1
−
f
′ (
x
∗)

)
−

(1
−
δ)

a
1
ee
>

+
a
2
I

L
(θ
k
−
1
)

3
a
n

d
4

s(
y
k
−
1
−
f
′ (
x
∗)

)>
M

(x
k
−
1
−
x
∗)

−
2
(1
−
δ)

be
L

(θ
k
−
1
)

5
s(
x
k
−
1
−
x
∗)
>
M

(x
k
−
1
−
x
∗)

−
(1
−
δ)

cI
L

(θ
k
−
1
)

9
sg

(x
k
−
1
)

−
2h

(1
−
δ)

In
eq

u
a
li

ty
(1

2
)

0
sg
′ (
x
k
−
1
)>
M
y
k
−
1

−
2h

(1
−
δ)
d

e>
In

eq
u

a
li

ty
(1

2
)

7
s(
y
k
−
1
)>
M
y
k
−
1

−
h

(1
−
δ)
µ
d
2

ee
>

In
eq

u
a
li

ty
(1

2
)

4
sg

(x
k
−
1
)

2h
In

eq
u

a
li

ty
(1

3
)

0
sg
′ (
x
k
−
1
)>
M
y
k
−
1

2h
(d
−

α n
)

(1
−

1 n
)e
>

In
eq

u
a
li

ty
(1

3
)

7
sg
′ (
x
k
−
1
)>
M
f
′ (
x
k
−
1
)

2h
(d
−

α n
)

1 n
e>

In
eq

u
a
li

ty
(1

3
)

2
s(
y
k
−
1
−
f
′ (
x
∗)

)>
M

(y
k
−
1
−
f
′ (
x
∗)

)
L
h

(d
−

α n
)2

(1
−

2 n

) ee>
+

1 n
I

In
eq

u
a
li

ty
(1

3
)

3
a
n

d
4

s(
f
′ (
x
k
−
1
)
−
f
′ (
x
∗)

)>
M

(f
′ (
x
k
−
1
)
−
f
′ (
x
∗)

)
L
h n

(d
−

α n
)2

I
In

eq
u

a
li

ty
(1

3
)

8
s(
y
k
−
1
−
f
′ (
x
∗)

)>
M

(f
′ (
x
k
−
1
)
−
f
′ (
x
∗)

)
2
L
h
n

(d
−

α n
)2

ee
>
−
I

In
eq

u
a
li

ty
(1

3
)

6
a
n

d
7

s(
y
k
−
1
−
f
′ (
x
∗)

)>
M

(y
k
−
1
−
f
′ (
x
∗)

)
1

(1
−

2 n

) S+
1 n

D
ia

g
(d

ia
g
(S

))
L

em
m

a
1

3
a
n

d
4

s(
y
k
−
1
−
f
′ (
x
∗)

)>
M

(x
k
−
1
−
x
∗)

2
(1
−

1 n

)
(b
−

α n
c)
e

L
em

m
a

1
5

s(
x
k
−
1
−
x
∗)
>
M

(x
k
−
1
−
x
∗)

1
cI

L
em

m
a

1
9

s(
f
′ (
x
k
−
1
)
−
f
′ (
x
∗)

)>
M

(f
′ (
x
k
−
1
)
−
f
′ (
x
∗)

)
1 n

D
ia

g
(d

ia
g
(S

))
L

em
m

a
1

8
s(
y
k
−
1
−
f
′ (
x
∗)

)>
M

(f
′ (
x
k
−
1
)
−
f
′ (
x
∗)

)
2 n

S
−

D
ia

g
(d

ia
g
(S

))
L

em
m

a
1

6
a
n

d
7

s(
f
′ (
x
k
−
1
)
−
f
′ (
x
∗)

)>
M

(x
k
−
1
−
x
∗)

2 n
(b
−

α n
c)
e

L
em

m
a

1
1

T
ab

le
3:

E
x
p

re
ss

io
n

s
in

u
p

p
er

b
o
u

n
d

o
n
E(L(

θk
)|F

k
−
1

) −(
1
−
δ)
L

(θ
k
−
1
).

39

with

B0 = 2δh

B1 = 2(b− α

n
c)

B2 = 2(
α

n
− d)h

B3 = −
[(

1− 2

n

)
a2 +

1

n

[
a1 + a2 − 2

α

n
b+

α2

n2
c
]
− (1− δ)a2 + Lh

1

n

(
d− α

n

)2]
B4 = B3

− n

[(
1− 2

n

)
(a1 − 2

α

n
b+

α2

n2
c)− (1− δ)a1 + L(1− 2

n
)h
(
d− α

n

)2 − (1− δ)µhd2
]

B5 = 2

[
(δ − 1

n
)b− α

n
(1− 1

n
)c

]
B6 = − 2

n

(
hL
(
d− α

n

)2
+ a1 −

2α

n
b+

α2

n2
c

)
B7 =

([
2

(
hL
(
d− α

n

)2
+ a1 −

2α

n
b+

α2

n2
c

)
+ 2

(
h(d− α

n
)(1− 1

n
)− h(1− δ)d

)])
B8 =

[
1

n

(
a1 + a2 − 2

α

n
b+

α2

n2
c
)

+
L

n
h
(
d− α

n

)2]
B9 = cδ.

In this expression, yk−1−y∗ only appears through a quadratic form, with a quadratic term −(yk−1−

y∗)>
[
B3(I − 1

nee
>) + B4

1
nee
>
]
(yk−1 − y∗). If B3 > 0 and B4 > 0, then this quadratic term

is non-positive and we may maximize in closed form with respect to yk−1 to obtain an upper

bound. Assuming that B3 6= 0 and B4 6= 0, we use Lemma 2,

[
B3(I − 1

nee
>) + B4

1
nee
>
]−1

=[
B−13 (I − 1

nee
>) +B−14

1
nee
>
]
, to obtain:

E
(
L(θk)|Fk−1

)
− (1− δ)L(θk−1)

6 B0

(
g(xk−1)− g(x∗)

)
+B9‖xk−1 − x∗‖2 + (xk−1 − x∗)>g′(xk−1)B1 −B2‖g′(xk−1)‖2

+
1

4

B2
6

B3
(f ′(xk−1)− f ′(x∗))>(I − 1

n
ee>)(f ′(xk−1)− f ′(x∗))

+
1

4

1

B4

[
B5e(x

k−1 − x∗) +B6(f ′(xk−1)− f ′(x∗)) +B7eg
′(xk−1)

]>
(

1

n
ee>)[

B5e(x
k−1 − x∗) +B6(f ′(xk−1)− f ′(x∗)) +B7eg

′(xk−1)

]
+B8‖f ′(xk−1)− f ′(x∗)‖2

= B0

(
g(xk−1)− g(x∗)

)
+B9‖xk−1 − x∗‖2 + (xk−1 − x∗)>g′(xk−1)B1 −B2‖g′(xk−1)‖2

+
1

4

B2
6

B3
(f ′(xk−1)− f ′(x∗))>(I − 1

n
ee>)(f ′(xk−1)− f ′(x∗))

+
n

4

1

B4

∥∥B5(xk−1 − x∗) +
(
B7 +B6

)
g′(xk−1)

∥∥2
+B8‖f ′(xk−1)− f ′(x∗)‖2.

40

By using Lipschitz continuity of each f ′i to observe that ‖f ′(xk−1) − f ′(x∗)‖2 =
∑n
i=1 ‖f ′i(xk−1) −

f ′i(x
∗)‖2 6 L

∑n
i=1(f ′i(x

k−1)− f ′i(x∗))>(xk−1 − x∗) = nLg′(xk−1)>(xk−1 − x∗), we obtain:

E
(
L(θk)|Fk−1

)
− (1− δ)L(θk−1)

6 B0

[
(xk−1 − x∗)>g′(xk−1)− µ

2
‖xk−1 − x∗‖2

]
+B9‖xk−1 − x∗‖2

+(xk−1 − x∗)>g′(xk−1)B1 −B2‖g′(xk−1)‖2

+

(
nL

4

B2
6

B3
+ nLB8

)
(xk−1 − x∗)>g′(xk−1)− n

4

B2
6

B3
‖g′(xk−1)‖2

+
n

4

B2
5

B4
‖xk−1 − x∗‖2 +

n

4

(B6 +B7)2

B4
‖g′(xk−1)‖2

+
2n

4

B5(B6 +B7)

B4
(xk−1 − x∗)>g′(xk−1)

= ‖xk−1 − x∗‖2
[
−B0

µ

2
+B9 +

n

4

B2
5

B4

]
+(xk−1 − x∗)>g′(xk−1)

[
B0 +B1 +

nL

4

B2
6

B3
+

2n

4

B5(B6 +B7)

B4
+ nLB8

]
+‖g′(xk−1)‖2

[
−B2 −

n

4

B2
6

B3
+
n

4

(B6 +B7)2

B4

]
= C0‖xk−1 − x∗‖2 + C1(xk−1 − x∗)>g′(xk−1) + C2‖g′(xk−1)‖2,

with

C0 = −B0
µ

2
+B9 +

n

4

B2
5

B4

C1 = B0 +B1 +
nL

4

B2
6

B3
+

2n

4

B5(B6 +B7)

B4
+ nLB8

C2 = −B2 −
n

4

B2
6

B3
+
n

4

(B6 +B7)2

B4
.

In order to show the decrease of the Lyapunov function, we need to show that C0‖xk−1 − x∗‖2 +
C1(xk−1 − x∗)>g′(xk−1) + C2‖g′(xk−1)‖2 6 0 for all xk−1.

If we assume that C1 6 0 and C2 6 0, then we have by strong-convexity

C0‖xk−1 − x∗‖2 + C1(xk−1 − x∗)>g′(xk−1) + C2‖g′(xk−1)‖2 6 ‖xk−1 − x∗‖2
(
C0 + µC1 + µ2C2

)
,

and thus the condition is that
C0 + µC1 + µ2C2 6 0.

And if we want to show that E
(
L(θk)|Fk−1

)
− (1− δ)L(θk−1) 6 −C3(xk−1 − x∗)>g′(xk−1), then it

suffices to have C1 + C3 6 0 and C0 + µ(C1 + C3) + µ2C2 6 0.

41

B.4 Domination of g(xk)− g(x∗)

By again using the strong convexity of g (as in (12)), we have

L(θk)− γ
[
g(xk)− g(x∗)

]
> (2h− γ)

[
g(xk)− g(x∗)

]
+ c‖xk − x∗‖2

+(yk − y∗)>
[
a2(I − 1

n
ee>) +

1

n
ee>(na1 + a2 + nµd2)

]
(yk − y∗)

+(yk − y∗)>e
[
2dg′(xk) + 2b(xk − x∗)

]
> (2h− γ)

[
g(xk)− g(x∗)

]
+ c‖xk − x∗‖2

−1

4

n

na1 + a2 + nµd2
‖2dg′(xk) + 2b(xk − x∗)‖2 by minimizing with respect to yk,

> ‖xk − x∗‖2
[
L

2
(2h− γ) + c− n

na1 + a2 + nµd2
(
dL+ b

)2]
,

using the smoothness of g and the assumption that 2h− γ 6 0.

Thus, in order for L(θk) to dominate g(xk)− g(x∗) we require the additional constraints

L

2
(2h− γ) + c− n

na1 + a2 + nµd2
(
dL+ b

)2
> 0

na1 + a2 + nµd2 > 0

2h− γ 6 0.

B.5 Finding constants

Given the algorithm and result parameters (α, γ, δ), we have the following constraints:

h > 0 (Constraint 1)

2h− γ 6 0 (Constraint 2)

B3 > 0 (Constraint 3)

B4 > 0 (Constraint 4)

na1 + a2 + nµd2 > 0 (Constraint 5)

L

2
(2h− γ) + c− n

na1 + a2 + nµd2
(
dL+ b

)2
> 0 (Constraint 6)

C2 6 0 (Constraint 7)

C1 + C3 6 0 (Constraint 8)

C0 + µ(C1 + C3) + µ2C2 6 0 (Constraint 9)

We also require C1 6 0, but this will follow from Constraint 8 since we will have C3 > 0. All of the
constraints above are convex in a1, a2, b, c, d, h. Thus, given candidate values for the remaining
values, the feasibility of these constraints may be checked using a numerical toolbox (as a second-
order cone program). However, these parameters should be functions of n and should be valid for
all µ. Thus, given a sampling of values of µ and n, representing these parameters as polynomials in
1/n, the candidate functions may be found through a second-order cone programs.

42

By experimenting with this strategy, we have come up with the following values for the constants:

a1 =
1

32nL

(
1− 1

2n

)
a2 =

1

16nL

(
1− 1

2n

)
b = − 1

4n

(
1− 1

n

)
c =

4L

n

h =
1

2
− 1

n

d =
α

n

α =
1

16L

δ = min
(1

8n
,
µ

16L

)
γ = 1

C3 =
1

32n
.

We will assume n > 1, since the result for n = 1 follows because SAG is equivalent to gradient
descent in this case. Under this assumption, we see that Constraints 1 and 2 are satisfied by the
above parameterizaiton. Below we verify that Constraints 3-9 are also satisfied using symbolic
computations in Matlab (the code used in this section is available on the first author’s webpage).
Specifically, we parameterize the constraints as polynomials and then verify that the polynomials are
positive over an appropriate interval using the function below (which simply checks that no roots of
the polynomial P lie in the interval (x1, x2), and that P is positive at the mid-point of the interval).

B.6 Verifying the result

To verify the result under these constants, we consider whether δ = 1/8n or µ/16L. In B4, we discard
the term of the form (1−δ)µhd2, which does not impact the validity of our result. Moreover, without
loss of generality, we may assume L = 1 and µ ∈ [0, 1].

B.6.1 Well-conditioned problems (µ > 2/n)

In this situation, it suffices to show the result for µ = 2/n since, (a) if a function is µ-strongly
convex, then it is µ′-strongly convex for all smaller µ′, and (b) the final inequality does not involve
µ. All constraints (when properly multiplied where appropriate by B3B4) can be written as rational

43

functions of x = 1/n:

B3 (Constraint 3)

B4 (Constraint 4)

na1 + a2 + nµd2 (Constraint 5)[L
2

(2h− γ) + c
]
(na1 + a2 + nµd2)− n

(
dL+ b

)2
(Constraint 6)

− C2B3B4 (Constraint 7)

− (C1 + C3)B3B4 (Constraint 8)

−B4B3(C0 + (C1 + C3)µ+ C2µ
2) (Constraint 9)

We only need to check the positivity of these polynomials in x. We do this using the function above,
via the script below. Note that we also have B3 > 0 and B4 > 0 for n > 1.

B.6.2 Ill-conditioned problems (µ 6 2/n)

We consider the variables x = 1/n ∈ [0, 1/2] and y = nµ/2 ∈ [0, 1], so that µ = 2y/n. We may
express all quantities using x and y. The difficulty here is that we have two variables. We first

44

check the dependency in terms of y of the expressions B3, B4, and B6 + B7. These are univariate
polynomials with an affine dependence on y, so their positivity can be checked by checking positivity
for y = 1 or y = 0. Again making use of symbolic computation, we can deduce that

B3 is non-negative and decreasing in y, (Constraint 3)

B4 is non-negative and decreasing in y, (Constraint 4)

B6 +B7 is non-negative and increasing in y,

We include below the additional commands to verify these properties:

Given the monotonicity of the bounds in B3 and B4, we only need to check our results for the smaller
values of B3 and B4, i.e., for y = 1. Similarly, because of the monotonicity in the term (B6 +B7)2,
we may replace (B6 +B7)2 by (B6 +B7) times its upper-bound (i.e., its value at y = 1). Also note
that B5 is divisble by y, and we have B3 > 0 and B4 > 0 for n > 1. Using this, we can show that
Constraints 5-9 are satisfied by checking the positivity of the following polynomials:

na1 + a2 + nµd2 (Constraint 5)[L
2

(2h− γ) + c
]
(na1 + a2 + nµd2)− n

(
dL+ b

)2
(Constraint 6)

− C2B3B4 (Constraint 7)

− (C1 + C3)B3B4 (Constraint 8)

−B4B3(C0/µ+ (C1 + C3) + C2µ) (Constraint 9)

Constraints 5-7 are affine in y and we thus only need to check positivity for y = 0 and y = 1.

45

The other two expressions (Constraints 8 and 9) are more complicated as there are second-order
polynomials in y. If n > 5, they have positive second derivatives, negative derivatives at y = 0 and
y = 1, and positive values at y = 1. They are thus positive, which is verified by the code below.

For the remaining scenarios where n ∈ {2, 3, 4}, we have a fixed x so we can check the positivity
of the polynomials in y. A Matlab script that does the steps above in addition to checking these
not-particularly-interesting cases is available from the first author’s web page.

B.7 Convergence Rate

We have that
g(xk)− g(x∗) 6 L(θk),

and that

E(L(θk)|Fk−1)− (1− δ)L(θk−1) 6 − 1

32n
(xk−1 − x∗)>g′(xk−1) 6 0.

In the strongly-convex case (δ > 0), combining these gives us the linear convergence rate

E(g(xk))− g(x∗) 6 (1− δ)kL(θ0).

In the convex case (µ = 0 and δ = 0), we have by convexity that

− 1

32n
(xk−1 − x∗)>g′(xk−1) 6

1

32n
[g(x∗)− g(xk−1)],

We then have
1

32n
[g(xk−1)− g(x∗)] 6 L(θk−1)− E(L(θk)|Fk−1).

46

Summing this up to iteration k yields

1

32n

k∑
i=1

[E(g(xi−1))− g(x∗)] 6
k∑
i=1

E[L(θi−1)− L(θi)] = L(θ0)− E[L(θk)] 6 L(θ0).

Finally, by Jensen’s inequality note that

E

[
g

(
1

k

k−1∑
i=0

xi

)]
≤ 1

k

k−1∑
i=0

E[g(xi)],

so with x̄k = 1
k

∑k−1
i=0 x

i we have

E[g(x̄k)]− g(x∗) 6
32n

k
L(θ0).

B.8 Intial values of Lyapunov function

To obtain the results of Theorem 1, all that remains is computing the initial value of the Lyapunov
function for the two initializations.

B.8.1 Initialization with the zero vector

If we initialize with y0 = 0 we have

L(θ0) = 2h(g(x0)− g(x∗)) + f ′(x∗)>(a1ee
> + a2I)f ′(x∗)

+ 2bf ′(x∗)>e(x0 − x∗) + c(x0 − x∗)>(x0 − x∗).

Plugging in the values of our parameters,

h =
1

2
− 1

n
, a1 = 1

32nL

(
1− 1

2n

)
, a2 =

1

16nL

(
1− 1

2n

)
,

b = − 1
4n

(
1− 1

n

)
, c =

4L

n
,

and using σ2 = 1
n

∑
i ‖f ′i(x∗)‖2 we obtain (noting that e>f ′(x∗) = 0)

L(θ0) =

(
1− 2

n

)
(g(x0)− g(x∗)) +

(
1− 1

2n

)
f ′(x∗)>(

1

32nL
ee> +

1

16nL
I)f ′(x∗)

− 1

2n

(
1− 1

n

)
f ′(x∗)>e(x0 − x∗) +

4L

n
(x0 − x∗)>(x0 − x∗)

6 g(x0)− g(x∗) +
σ2

16L
+

4L

n
‖x0 − x∗‖2

B.8.2 Initialization with average gradient

If we initialize with y0i = y0i = f ′i(x
0) − (1/n)

∑
i f
′
i(x

0) we have, by noting that we still have
(y0)>e = 0,

L(θ0) =

(
1− 2

n

)
(g(x0)− g(x∗)) +

1

16nL

(
1− 2

n

)
‖y0 − f ′(x∗)‖2 +

4L

n
‖x0 − x∗‖2.

47

By observing that y0 = f ′(x0)− eg′(x0) and using [Nesterov, 2004, Equations 2.17], we can bound
the norm in the second term as follows:

‖y0 − f ′(x∗)‖2 = ‖(f ′(x0)− f ′(x∗))− e(g′(x0)− g′(x∗)‖2

6 2‖f ′(x0)− f ′(x∗)‖2 + 2‖e(g′(x0)− g′(x∗))‖2

= 2

n∑
i=1

‖f ′i(x0)− f ′i(x∗)‖2 + 2n‖g′(x0)− g′(x∗)‖2

6 4L

n∑
i=1

[fi(x
0)− fi(x∗)− f ′i(x∗)>(x0 − x∗)] + 4nL(g(x0)− g(x∗))

= 8nL(g(x0)− g(x∗)).

Using this in the Lyapunov function we obtain

L(θ0) 6
3

2
(g(x0)− g(x∗)) +

4L

n
‖x0 − x∗‖2.

References

A. Agarwal and L. Bottou. A lower bound for the optimization of finite sums. arXiv preprint, 2014.

A. Agarwal, P. L. Bartlett, P. Ravikumar, and M. J. Wainwright. Information-theoretic lower bounds
on the oracle complexity of stochastic convex optimization. IEEE Transactions on Information
Theory, 58(5), 2012.

F. Bach and E. Moulines. Non-asymptotic analysis of stochastic approximation algorithms for
machine learning. Advances in Neural Information Processing Systems, 2011.

F. Bach and E. Moulines. Non-strongly-convex smooth stochastic approximation with convergence
rate o(1/n). arXiv preprint, 2013.

D. P. Bertsekas. A new class of incremental gradient methods for least squares problems. SIAM
Journal on Optimization, 7(4):913–926, 1997.

D. Blatt, A. O. Hero, and H. Gauchman. A convergent incremental gradient method with a constant
step size. SIAM Journal on Optimization, 18(1):29–51, 2007.

Antoine Bordes, Léon Bottou, and Patrick Gallinari. Sgd-qn: Careful quasi-newton stochastic
gradient descent. Journal of Machine Learning Research, 10:1737–1754, 2009.

L. Bottou and Y. LeCun. Large scale online learning. Advances in Neural Information Processing
Systems, 2003.

P. Carbonetto. New probabilistic inference algorithms that harness the strengths of variational and
Monte Carlo methods. PhD thesis, Univ. of British Columbia, May 2009.

R. Caruana, T. Joachims, and L. Backstrom. KDD-cup 2004: results and analysis. ACM SIGKDD
Newsletter, 6(2):95–108, 2004.

A.L. Cauchy. Méthode générale pour la résolution des systèmes d’équations simultanées. Comptes
rendus des séances de l’Académie des sciences de Paris, 25:536–538, 1847.

Antonin Chambolle and Thomas Pock. A first-order primal-dual algorithm for convex problems
with applications to imaging. Journal of Mathematical Imaging and Vision, 40(1):120–145, 2011.

48

M. Collins, A. Globerson, T. Koo, X. Carreras, and P.L. Bartlett. Exponentiated gradient algorithms
for conditional random fields and max-margin markov networks. The Journal of Machine Learning
Research, 9:1775–1822, 2008.

G. V. Cormack and T. R. Lynam. Spam corpus creation for TREC. In Proc. 2nd Conference on
Email and Anti-Spam, 2005. http://plg.uwaterloo.ca/~gvcormac/treccorpus/.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient method
with support for non-strongly convex composite objectives. Advances in Neural Information Pro-
cessing Systems, 2014a.

Aaron J Defazio, ANUEDU AU, Tibério S Caetano, NICTA COM AU, and Justin Domke. Finito: A
faster, permutable incremental gradient method for big data problems. International Conference
on Machine Learning, 2014b.

B. Delyon and A. Juditsky. Accelerated stochastic approximation. SIAM Journal on Optimization,
3(4):868–881, 1993.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12:2121–2159, 2011.

A. Frank and A. Asuncion. UCI machine learning repository, 2010. URL http://archive.ics.

uci.edu/ml.

M. P. Friedlander and M. Schmidt. Hybrid deterministic-stochastic methods for data fitting. SIAM
Journal of Scientific Computing, 34(3):A1351–A1379, 2012.

S. Ghadimi and G. Lan. Optimal stochastic approximation algorithms for strongly convex stochastic
composite optimization. Optimization Online, July, 2010.

Pinghua Gong and Jieping Ye. Linear convergence of variance-reduced projected stochastic gradient
without strong convexity. arXiv preprint, 2014.

I. Guyon. Sido: A phamacology dataset, 2008. URL http://www.causality.inf.ethz.ch/data/

SIDO.html.

E. Hazan and S. Kale. Beyond the regret minimization barrier: an optimal algorithm for stochastic
strongly-convex optimization. Conference on Learning Theory, 2011.

C. Hu, J.T. Kwok, and W. Pan. Accelerated gradient methods for stochastic optimization and online
learning. Advances in Neural Information Processing Systems, 2009.

R. Johnson and T Zhang. Accelerating stochastic gradient descent using predictive variance reduc-
tion. Advances in Neural Information Processing Systems, 2013.

S.S. Keerthi and D. DeCoste. A modified finite newton method for fast solution of large scale linear
svms. Journal of Machine Learning Research, 6:341–361, 2005.

H. Kesten. Accelerated stochastic approximation. Annals of Mathematical Statistics, 29(1):41–59,
1958.

Jakub Konečnỳ and Peter Richtárik. Semi-stochastic gradient descent methods. arXiv preprint,
2013.

Jakub Konečnỳ, Zheng Qu, and Peter Richtárik. Semi-stochastic coordinate descent. arXiv preprint,
2014.

49

http://plg.uwaterloo.ca/~gvcormac/treccorpus/
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://www.causality.inf.ethz.ch/data/SIDO.html
http://www.causality.inf.ethz.ch/data/SIDO.html

H. J. Kushner and G. Yin. Stochastic approximation and recursive algorithms and applications.
Springer-Verlag, Second edition, 2003.

S. Lacoste-Julien, M. Jaggi, M. Schmidt, and P. Pletscher. Block-coordinate frank-wolfe optimization
for structural svms. International Conference on Machine Learning, 2013.

N. Le Roux, M. Schmidt, and F. Bach. A stochastic gradient method with an exponential convergence
rate for strongly-convex optimization with finite training sets. Advances in Neural Information
Processing Systems, 2012.

D.D. Lewis, Y. Yang, T. Rose, and F. Li. RCV1: A new benchmark collection for text categorization
research. Journal of Machine Learning Research, 5:361–397, 2004.

Qihang Lin, Zhaosong Lu, and Lin Xiao. An accelerated proximal coordinate gradient method and
its application to regularized empirical risk minimization. arXiv preprint, 2014.

J. Liu, J. Chen, and J. Ye. Large-scale sparse logistic regression. ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, 2009.

Zhi-Quan Luo and Paul Tseng. On the convergence of the coordinate descent method for convex
differentiable minimization. Journal of Optimization Theory and Applications, 72(1):7–35, 1992.

M. Mahdavi and R. Jin. Mixedgrad: An o(1/t) convergence rate algorithm for stochastic smooth
optimization. Advances in Neural Information Processing Systems, 2013.

Julien Mairal. Optimization with first-order surrogate functions. International Conference on Ma-
chine Learning, 2013.

Julien Mairal. Incremental majorization-minimization optimization with application to large-scale
machine learning. arXiv preprint, 2014.

J. Martens. Deep learning via Hessian-free optimization. International Conference on Machine
Learning, 2010.

A. Nedic and D. Bertsekas. Convergence rate of incremental subgradient algorithms. In Stochastic
Optimization: Algorithms and Applications, pages 263–304. Kluwer Academic, 2000.

D. Needell, N. Srebro, and R. Ward. Stochastic gradient descent, weighted sampling, and the
randomized Kaczmarz algorithm. Advances in Neural Information Processing Systems, 2014.

A. Nemirovski and D. B. Yudin. Problem complexity and method efficiency in optimization. Wiley,
1983.

A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to
stochastic programming. SIAM Journal on Optimization, 19(4):1574–1609, 2009.

Y. Nesterov. A method for unconstrained convex minimization problem with the rate of convergence
O(1/k2). Doklady AN SSSR, 269(3):543–547, 1983.

Y. Nesterov. Introductory lectures on convex optimization: A basic course. Springer, 2004.

Y. Nesterov. Gradient methods for minimizing composite objective function. CORE Discussion
Papers, 2007.

Y. Nesterov. Primal-dual subgradient methods for convex problems. Mathematical programming,
120(1):221–259, 2009.

50

Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. CORE
Discussion Paper, 2010.

Yu Nesterov. Smooth minimization of non-smooth functions. Mathematical Programming, 103(1):
127–152, 2005.

Atsushi Nitanda. Stochastic proximal gradient descent with acceleration techniques. Advances in
Neural Information Processing Systems, 2014.

J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New York, second edition, 2006.

B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging. SIAM
Journal on Control and Optimization, 30(4):838–855, 1992.

Zheng Qu, Peter Richtárik, and Tong Zhang. Randomized dual coordinate ascent with arbitrary
sampling. arXiv preprint arXiv:1411.5873, 2014.

A. Rakhlin, O. Shamir, and K. Sridharan. Making gradient descent optimal for strongly convex
stochastic optimization. International Conference on Machine Learning, 2012.

H. Robbins and S. Monro. A stochastic approximation method. Annals of Mathematical Statistics,
22(3):400–407, 1951.

Christian P Robert and George Casella. Monte Carlo Statistical Methods. Springer, 2nd edition,
2004.

M. Schmidt. minfunc: unconstrained differentiable multivariate optimization in matlab. https:

//www.cs.ubc.ca/~schmidtm/Software/minFunc.html, 2005.

M. Schmidt and N. Le Roux. Fast convergence of stochastic gradient descent under a strong growth
condition. arXiv preprint, 2013.

M. Schmidt, N. Le Roux, and F. Bach. Convergence rates of inexact proximal-gradient methods for
convex optimization. Advances in Neural Information Processing Systems, 2011.

M. Schmidt, R. Babanezhad, M.O. Ahemd, A. Clifton, and A. Sarkar. Non-uniform stochastic
average gradient method for training conditional random fields. International Conference on
Artificial Intelligence and Statistics, 2015.

S. Shalev-Schwartz and T. Zhang. Proximal stochastic dual coordinate ascent. arXiv preprint, 2013a.

S. Shalev-Schwartz and T. Zhang. Stochastic dual coordinate ascent methods for regularized loss
minimization. Journal of Machine Learning Research, 14:567–599, 2013b.

S. Shalev-Schwartz and T. Zhang. Accelerated proximal stochastic dual coordinate ascent for regu-
larized loss minimization. International Conference on Machine Learning, 2014.

S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter. Pegasos: primal estimated sub-gradient
solver for svm. Mathematical programming, 127(1):3–30, 2011.

Shai Shalev-Shwartz and Tong Zhang. Accelerated mini-batch stochastic dual coordinate ascent.
Advances in Neural Information Processing Systems, 2013.

Jascha Sohl-Dickstein, Ben Poole, and Surya Ganguli. Fast large-scale optimization by unifying
stochastic gradient and quasi-newton methods. International Conference on Machine Learning,
2014.

51

https://www.cs.ubc.ca/~schmidtm/Software/minFunc.html
https://www.cs.ubc.ca/~schmidtm/Software/minFunc.html

M.V. Solodov. Incremental gradient algorithms with stepsizes bounded away from zero. Computa-
tional Optimization and Applications, 11(1):23–35, 1998.

N. Srebro and K. Sridharan. Theoretical basis for “more data less work”? NIPS Workshop on
Computataional Trade-offs in Statistical Learning, 2011.

T. Strohmer and R. Vershynin. A randomized kaczmarz algorithm with exponential convergence.
Journal of Fourier Analysis and Applications, 15(2):262–278, 2009.

P. Sunehag, J. Trumpf, SVN Vishwanathan, and N. Schraudolph. Variable metric stochastic ap-
proximation theory. International Conference on Artificial Intelligence and Statistics, 2009.

Taiji Suzuki. Stochastic dual coordinate ascent with alternating direction method of multipliers.
International Conference on Machine Learning, 2014.

C. H. Teo, Q. Le, A. J. Smola, and S. V. N. Vishwanathan. A scalable modular convex solver
for regularized risk minimization. ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, 2007.

P. Tseng. An incremental gradient(-projection) method with momentum term and adaptive stepsize
rule. SIAM Journal on Optimization, 8(2):506–531, 1998.

Chong Wang, Xi Chen, Alex Smola, and Eric Xing. Variance reduction for stochastic gradient
optimization. Advances in Neural Information Processing Systems, 2013.

L. Xiao. Dual averaging methods for regularized stochastic learning and online optimization. Journal
of Machine Learning Research, 11:2543–2596, 2010.

Lin Xiao and Tong Zhang. A proximal stochastic gradient method with progressive variance reduc-
tion. SIAM Journal on Optimization, 24(2):2057–2075, 2014.

Lijun Zhang, Mehrdad Mahdavi, and Rong Jin. Linear convergence with condition number inde-
pendent access of full gradients. Advances in Neural Information Processing Systems, 2013.

Yuchen Zhang and Lin Xiao. Stochastic primal-dual coordinate method for regularized empirical
risk minimization. arXiv preprint, 2014.

Peilin Zhao and Tong Zhang. Stochastic optimization with importance sampling. arXiv preprint
arXiv:1401.2753, 2014.

L.W. Zhong and J.T. Kwok. Fast stochastic alternating direction method of multipliers. Interna-
tional Conference on Machine Learning, 2014.

52

	1 Introduction
	2 Related Work
	3 Convergence Analysis
	4 Implementation Details
	4.1 Structured gradients and just-in-time parameter updates
	4.2 Re-weighting on early iterations
	4.3 Exact and efficient regularization
	4.4 Warm starting
	4.5 Larger step sizes
	4.6 Line-search when L is not known
	4.7 Mini-batches for vectorized computation and reduced storage
	4.8 Non-uniform example selection

	5 Experimental Results
	5.1 Comparison to FG and SG Methods
	5.2 Comparison to Coordinate Optimization Methods
	5.3 Comparison of Step-Size Strategies
	5.4 Effect of mini-batches
	5.5 Effect of non-uniform sampling

	6 Discussion
	6.1 Alternative Algorithms
	6.2 Generalizations and Other Issues
	A.1 Full Gradient Methods
	A.2 Coordinate-Descent Methods
	A.3 Stochastic Average Gradient
	B.1 Problem set-up and notation
	B.2 General Lyapunov function
	B.3 Lyapunov upper bound
	B.4 Domination of g(xk) - g(x)
	B.5 Finding constants
	B.6 Verifying the result
	B.6.1 Well-conditioned problems (2/ n)
	B.6.2 Ill-conditioned problems (2 / n)

	B.7 Convergence Rate
	B.8 Intial values of Lyapunov function
	B.8.1 Initialization with the zero vector
	B.8.2 Initialization with average gradient

