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Abstract

Positive semidefinite rank (PSD-rank) is a relatively new quantity with applications to combinatorial
optimization and communication complexity. We first study several basic properties of PSD-rank, and
then develop new techniques for showing lower bounds on the PSD-rank. All of these bounds are based
on viewing a positive semidefinite factorization of a matrix M as a quantum communication protocol.
These lower bounds depend on the entries of the matrix and not only on its support (the zero/nonzero
pattern), overcoming a limitation of some previous techniques. We compare these new lower bounds
with known bounds, and give examples where the new ones are better. As an application we determine
the PSD-rank of (approximations of) some common matrices.

1 Introduction

1.1 Background

We study the properties of positive semidefinite factorizations. Such a factorization (of size r) of a non-
negative m-by-n matrix A is given by r-by-r positive semidefinite matrices E1, . . . , Em and F1, . . . , Fn
satisfying A(i, j) = Tr(EiFj). The positive semidefinite rank (PSD-rank) of A is the smallest r such that
A has a positive semidefinite factorization of size r. We denote it by rankpsd(A). The notion of PSD-rank
has been introduced relatively recently because of applications to combinatorial optimization and commu-
nication complexity [GPT13, FMP+12]. These applications closely parallel those of the nonnegative rank
of A, which is the minimal number of rank-one nonnegative matrices that sum to A.

In the context of combinatorial optimization, a polytope P is associated with a nonnegative matrix
known as the slack matrix of P . A classic result of Yannakakis [Yan91] shows that the nonnegative rank
of the slack matrix of P characterizes the size of a natural way of formulating the optimization of a linear
function over P as a linear program. More precisely, the nonnegative rank of the slack matrix of P equals
the linear extended formulation size of P , which is the minimum number of facets of a (higher-dimensional)
polytope Q that projects to P . Analogously, the PSD-rank of the slack matrix of P captures the size of a
natural way of optimizing a linear function over P as a semidefinite program [GPT13, FMP+12]. More
precisely, the PSD-rank of the slack matrix of P is equal to the positive semidefinite extension size of P ,
which is the smallest r for which P can be expressed as the projection of an affine slice of the cone of
r-dimensional positive semidefinite matrices.
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There have recently been great strides in understanding linear extended formulations, showing that the
linear extended formulation size for the traveling salesman and matching polytopes is exponentially large in
the number of vertices of the underlying graph [FMP+12, Rot14]. It is similarly conjectured that the trav-
eling salesman polytope requires superpolynomial positive semidefinite extension complexity, and proving
this requires showing lower bounds on the PSD-rank of the corresponding slack matrix.

In communication complexity, nonnegative and PSD-rank arise in the model of computing a function
f : {0, 1}m × {0, 1}n → R+ in expectation. In this model, Alice has an input x ∈ {0, 1}m, Bob has
an input y ∈ {0, 1}n and their goal is to communicate in order for Bob to output a nonnegative random
variable whose expectation is f(x, y). The associated communication matrix for this problem is a 2m-by-2n

matrix whose (x, y) entry is f(x, y). The nonnegative rank of the communication matrix of f characterizes
the amount of classical communication needed to compute f in expectation [CFFT12]. Analogously, the
PSD-rank of the communication matrix of f characterizes the amount of quantum communication needed
to compute f in expectation [FMP+12]. Alternatively, one can consider the problem where Alice and Bob
wish to generate a probability distribution P (x, y) using shared randomness or shared entanglement, but
without communication. The number of bits of shared randomness or qubits of shared entanglement are
again characterized by the nonnegative rank and PSD-rank, respectively [Zha12, JSWZ13].

Accordingly, providing lower and upper bounds on the PSD-rank is interesting in the context of commu-
nication complexity as well. Here we will pin down, up to constant factors, the PSD-rank of some common
matrices studied in communication complexity like inner product and non-equality.

1.2 Our results

As PSD-rank is a relatively new quantity, even some basic questions about its behavior remain unanswered.
We address several properties here. First we show that, unlike the usual rank, PSD-rank is not strictly multi-
plicative under tensor product: we give an example of a matrix P where rankpsd(P ⊗P ) < rankpsd(P )2.
We do this by making a connection between PSD-rank and planar geometry to give a simple sufficient
condition for when the PSD-rank is not full.

The second question we address is the dependence of PSD-rank on the underlying field. At the Dagstuhl
Seminar 13082 (February 2013), Dirk Oliver Theis raised the question if the PSD-rank where the factoriza-
tion is by real symmetric PSD-matrices is the same as that by complex Hermitian PSD-matrices. It is easy
to see that the real PSD-rank can be at most a factor of 2 larger than the complex PSD-rank; we give an
infinite family of matrices where the real PSD-rank is asymptotically a factor of

√
2 larger than the complex

PSD-rank.
Our main goal in this paper is showing lower bounds on the PSD-rank, a task of great importance

to both the applications to combinatorial optimization and communication complexity mentioned above.
Unfortunately, at this point very few techniques exist to lower bound the PSD-rank.

One lower bound direction is to consider only the support of the matrix, that is the pattern of zero/nonzero
entries. For the nonnegative rank, this method can show good lower bounds—in particular, support-based
arguments sufficed to show exponential lower bounds on the linear extension complexity of the traveling
salesman polytope [FMP+12]. For the PSD-rank, however, support-based arguments cannot show lower
bounds larger than the rank of the matrix [LT12]. This means that for cases like the traveling salesman
polytope, where we believe the positive semidefinite extension complexity is superpolynomial in the rank
of the slack matrix, other techniques need to be developed.

We develop three easy-to-compute lower bounds on PSD-rank. All three depend on the values of the
matrix and not only on its support structure—in particular, they can show nontrivial lower bounds for ma-
trices without zero entries. All three are derived from the viewpoint of PSD-rank of a nonnegative matrix

2



as a quantum communication protocol. We compare these lower bounds with previous techniques and show
examples where they are better.

We also give nearly tight bounds on the PSD-rank of (approximations of) the identity matrix and on the
PSD-rank of the matrix corresponding to the inner product and nonequality functions.

2 Preliminaries

Let M = [M(i, j)] be an arbitrary m-by-n matrix of rank r with the (i, j)-th entry being M(i, j), and let
σ1, σ2, . . . , σr be the nonzero singular values of M . The trace norm of M is defined as ‖M‖tr =

∑
i σi,

and the Frobenius norm of M is defined as ‖M‖F = (
∑

i σ
2
i )

1/2; this equals (
∑

i,jM(i, j)2)1/2. Note that
‖M‖F ≤ ‖M‖tr. By the Cauchy-Schwarz inequality we have

rank(M) ≥
(
‖M‖tr
‖M‖F

)2

(1)

2.1 PSD-rank

Since it is the central topic of this paper, we repeat the definition of PSD-rank from the introduction:

Definition 1 Let A be a nonnegative m-by-n matrix. A positive semidefinite factorization of size r of A is
given by r-by-r positive semidefinite matrices E1, . . . , Em and F1, . . . , Fn satisfying A(i, j) = Tr(EiFj).
The positive semidefinite rank (PSD-rank, rankpsd(A)) of A is the smallest integer r such that A has a
positive semidefinite factorization of size r.

Note that for a nonnegative matrix A, the PSD-rank is unchanged when we remove all-zero rows and
columns. Also, for nonnegative diagonal matrices D1, D2, the PSD-rank of D1AD2 is at most that of A.
Throughout this paper we will use these facts to achieve a particular normalization for A. In particular,
we will frequently assume without loss of generality that each column of A sums to one, i.e., that A is a
stochastic matrix.

The following lemma is very useful for giving upper bounds on the PSD-rank.

Lemma 2 ([Zha12]) If A is a nonnegative matrix, then

rankpsd(A) ≤ min
M : M◦M̄=A

rank(M),

where ◦ is the Hadamard product (entry-wise product) and M̄ is the entry-wise complex conjugate of M .

In the definition of PSD-rank, we allow the matrices of the PSD-factorization to be arbitrary Hermitian
PSD matrices, with complex-valued entries. One can also consider the real PSD-rank, where the matrices
of the factorization are restricted to be real symmetric PSD matrices. For a nonnegative matrixA, we denote
its real PSD-rank by rankRpsd(A).

We now review some existing lower bound methods for the PSD-rank. Firstly, it is well known that the
PSD-rank cannot be much smaller than the normal rank rank(A) of A.

Definition 3 For a nonnegative matrix A, define

B1(A) =
√
rank(A) and B′1(A) =

1

2

(√
1 + 8rank(A)− 1

)
.
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Fact 4 ([GPT13]) rankpsd(A) ≥ B1(A) and rankRpsd(A) ≥ B′1(A).

This bound does not look very powerful since, as stated in the introduction, usually our goal is to show
lower bounds on the PSD-rank that are superpolynomial in the rank. Surprisingly, however, this bound can
be nearly tight and we give two examples in Section 6 where this is the case.

Jain et al. [JSWZ13] proved that quantum communication needed for two separated players to generate
a joint probability distribution P is completely characterized by the logarithm of the PSD-rank of P . Com-
bining this result and Holevo’s bound, a trivial lower bound for PSD-rank is given by mutual information.

Definition 5 Let P = [P (i, j)]i,j be a two-dimensional probability distribution between two players A and
B. Define B2(P ) = 2H(A:B), where H(A : B) is the mutual information between the two players.

Fact 6 rankpsd(P ) ≥ B2(P ).

As an application of this lower bound, it is easy to see that the PSD-rank of a diagonal nonnegative
matrix is the same as its normal rank.

The only result we are aware of showing lower bounds on PSD-rank asymptotically larger than the rank
is a very general result of Gouveia et al. [GPT13] that shows the following.

Fact 7 ([GPT13]) Let P ⊆ Rd be a polytope with f facets and let SP be its associated slack matrix. Let
T =

√
log(f)/d. Then

rankpsd(SP ) = Ω

(
T√

log(T )

)

In particular, this shows that the slack matrix of a regular n-gon in R2, which has n facets and rank 3, has
PSD-rank Ω(

√
log n/ log log n). The nonnegative rank of this matrix is known to be Θ(log n) [BTN01].

2.2 Quantum background

A quantum state ρ is a positive semidefinite matrix with trace Tr(ρ) = 1. A POVM (“Positive Operator
Valued Measure”) E = {Em} consists of positive semidefinite matrices Em that sum to the identity. When
measuring a quantum state ρ with this POVM, the outcome is m with probability pm = Tr(ρEm).

For our purposes, a (one-way) quantum protocol between two players Alice (with input x) and Bob
(with input y) is the following: Alice sends a quantum state ρx to Bob, who measures it with a POVM
Ey = {Em}. Each outcome m of this POVM is associated with a nonnegative value, which is Bob’s output.
We say the protocol computes an m-by-n matrix M in expectation if, for every x ∈ [m] and y ∈ [n], the
expected value of Bob’s output equalsM(x, y). Fiorini et al. [FMP+12] showed that the minimal dimension
of the states ρx in such a protocol is either rankpsd(M) or rankpsd(M) + 1, so the minimal number of
qubits of communication is essentially log rankpsd(M).

For two quantum states ρ and σ, we definite the fidelity between them by

F (ρ, σ) = ‖
√
σ
√
ρ‖tr.

See [NC00, Chapter 9] for additional properties and equivalent formulations of the fidelity. The fidelity
between two probability distributions p, q is F (diag(p),diag(q)).

The following two facts about fidelity will be useful for us.
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Fact 8 If σ, ρ are quantum states, then Tr(σρ) ≤ F (σ, ρ)2.

Proof: We have Tr(σρ) = Tr((
√
σ
√
ρ)(
√
σ
√
ρ)†) = ‖

√
σ
√
ρ‖2F ≤ ‖

√
σ
√
ρ‖2tr = F (σ, ρ)2. 2

Fact 9 ([NC00]) If σ, ρ are quantum states, then

F (σ, ρ) = min
{Em}

F (p, q),

where the minimum is over all POVMs {Em}, and p and q are the probability distributions when ρ and σ
are measured by POVM {Em} respectively, i.e., pm = Tr(ρEm), and qm = Tr(σEm) for any m.

3 Some properties of PSD-rank

The PSD-rank is a relatively new quantity, and even some of its basic properties are still not yet known. In
this section we give a simple condition for the PSD-rank of a matrix to not be full. We then use this condition
to show that PSD-rank can be strictly sub-multiplicative under tensor product. Finally, we investigate the
power of using complex Hermitian over real symmetric matrices in a PSD factorization.

3.1 A sufficient condition for PSD-rank to be less than maximal

We first need a definition and a simple lemma. Let v ∈ Rm be a vector. We say that an entry vk is dominant
if |vk| >

∑
j 6=k |vj |.

Lemma 10 Suppose that v ∈ Rm is nonnegative and has no dominant entries. Then there exist complex
units eiθj such that

∑
j vje

iθj = 0.

Proof: Let v ∈ Rm. If m = 1 then v has a dominant entry and there is nothing to prove. If m = 2 and v
has no dominant entries, then v1 = v2 and the lemma holds as v1 − v2 = 0.

The first interesting case is m = 3. That v has no dominant entries means there is a triangle with
side lengths v1, v2, v3, as these satisfy the triangle inequality with respect to all permutations. Letting
v1e

iθ1 , v2e
iθ2 , v3e

iθ3 be the vectors (oriented head to tail) defining the sides of this triangle gives v1e
iθ1 +

v2e
iθ2 + v3e

iθ3 = 0 as desired.
We can reduce the case m > 3 to the case m = 3. Without loss of generality, order v such that

v1 ≥ v2 ≥ · · · ≥ vm. Choose k such that

m∑
j=k+1

vj ≤
k∑
j=2

vj ≤
m∑

j=k+1

vj + v1.

Then v1,
∑k

j=2 vj ,
∑m

j=k+1 vj mutually satisfy the triangle inequality and we can repeat the construction
from the case m = 3 with these lengths. 2

Using the construction of Lemma 2, we can give a simple condition for A not to have full PSD-rank.

Theorem 11 Let A be an m-by-n nonnegative matrix, and A′ be the entry-wise square root of A (so A′ is
nonnegative as well). If every column of A′ has no dominant entry, then the PSD-rank of A is less than m.
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Proof: As each column of A′ has no dominant entry, by Lemma 10 there exist complex units eiθjk such that∑
j A
′(j, k)eiθjk = 0 for every k. DefineM(j, k) = A′(j, k)eiθjk . ThenM ◦M = A andM has rank< m:

as each column of M sums to zero, the sum of the m rows is the 0-vector so they are linearly dependent.
Lemma 2 then completes the proof. 2

3.2 The behavior of PSD-rank under tensoring

In this subsection, we discuss how PSD-rank behaves under tensoring. Firstly, we have the following trivial
observation on PSD-rank.

Lemma 12 If P1 and P2 are two nonnegative matrices, then it holds that

rankpsd(P1 ⊗ P2) ≤ rankpsd(P1)rankpsd(P2).

Proof: Suppose {Ci} and {Dj} form a size-optimal PSD-factorization of P1, and {Ek} and {Fl} form a
size-optimal PSD-factorization of P2, where the indices are determined by the sizes of P1 and P2. Then it
can be seen that {Ci ⊗ Ek} and {Dj ⊗ Fl} form a PSD-factorization of P1 ⊗ P2. 2

We now consider an example. Let x, y be two subsets of {1, 2, . . . , n}. The disjointness function,
DISJn(x, y), is defined to be 1 if x ∩ y = ∅ and 0 otherwise. We denote its corresponding 2n-by-2n

matrix by Dn, i.e., Dn(x, y) = DISJn(x, y). This function is one of the most important and well-studied in
communication complexity. It can be easily checked that for any natural number k, Dk = D⊗k1 . According
to the above lemma, we have that rankpsd(Dn) ≤ 2n, where we used the fact that rankpsd(D1) = 2. This
upper bound is trivial as the size ofDn is 2n, but in this case it is tight. The following lemma was also found
independently by Gábor Braun and Sebastian Pokutta [BP].

Lemma 13 Suppose A is an m-by-n nonnegative matrix, and has the following block expression,

A =

[
B C
D 0

]
.

Then rankpsd(A) ≥ rankpsd(C) + rankpsd(D).

Proof: Suppose {E1, E2, . . . , Em} and {F1, F2, . . . , Fn} form a size-optimal PSD-factorization of A. Sup-
pose the size of B is k-by-l, then {E1, E2, . . . , Ek} and {Fl+1, Fk+2, . . . , Fn} form a PSD-factorization
of C, while {Ek+1, Ek+2, . . . , Em} and {F1, F2, . . . , Fl} form a PSD-factorization of D. According to the
definition of PSD-factorization, the dimension of the support of

∑n
i=l+1 Fi will be at least rankpsd(C),

and similarly, the dimension of the support of
∑m

i=k+1Ei will be at least rankpsd(D).
On the other hand, for any i ∈ {k+1, k+2, . . . ,m} and j ∈ {l+1, . . . , n}, Tr(EiFj) = 0, so the support

of
∑m

i=k+1Ei is orthogonal to that of
∑n

i=l+1 Fi. Hence rankpsd(A) ≥ rankpsd(C) + rankpsd(D). 2

Then we have that

Theorem 14 rankpsd(Dn) = 2n.
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Proof: Note that for any integer k, Dk+1 can be expressed as the following block matrix.

Dk+1 =

[
Dk Dk

Dk 0

]
,

Then by Lemma 13 we have that rankpsd(Dk+1) ≥ 2rankpsd(Dk). Since rankpsd(D1) = 2, it follows
that rankpsd(Dn) ≥ 2n. Since rankpsd(Dn) ≤ 2n, this completes the proof. 2

Based on this example and by analogy to the normal rank, one might conjecture that generally rankpsd(P1⊗
P2) = rankpsd(P1)rankpsd(P2). This is false, however, as shown by the following counterexample.

Example 15 Let A =

[
1 a
a 1

]
for nonnegative a. Then A has rank 2, and therefore PSD-rank 2, as long as

a 6= 1. On the other hand,

A⊗A =


1 a a a2

a 1 a2 a
a a2 1 a
a2 a a 1


satisfies the condition of Theorem 11 for any a ∈ [−1 +

√
2, 1 +

√
2]. Thus for a ∈ [−1 +

√
2, 1 +

√
2]\{1}

we have rankpsd(A⊗A) < rankpsd(A)2.

3.3 PSD-rank and real PSD-rank

In the original definition of PSD-rank, the matrices of the PSD-factorization can be arbitrary complex Her-
mitian PSD matrices. A natural and interesting question is what happens if we restrict these matrices instead
to be positive semidefinite real matrices.1 We call this restriction the real PSD-rank, and for a nonnegative
matrix A we denote it by rankRpsd(A). The following observation (proved in the appendix) shows that the
multiplicative gap between these notions cannot be too large.

Theorem 16 If A is a nonnegative matrix, then rankpsd(A) ≤ rankRpsd(A) ≤ 2rankpsd(A).

Below in Example 41 we will exhibit a gap between rankpsd(A) and rankRpsd(A) by a factor of
√

2.

4 Three new lower bounds for PSD-rank

In this section we give three new lower bounds on the PSD-rank. All of these bounds are based on the
interpretation of PSD-rank in terms of communication complexity.

4.1 A physical explanation of PSD-rank

For a nonnegative m × n matrix P = [P (i, j)]i,j , suppose rankpsd(P ) = r. Then there exist r × r
positive semidefinite matrices Ei, Fj , satisfying that P (i, j) = Tr(EiFj), for every i ∈ [m] and j ∈ [n].
Fiorini et al. show how from a size-r PSD-factorization of a matrix P , one can construct a one-way quantum
communication protocol sending (r+ 1)-dimensional messages that computes P in expectation [FMP+12].

1This question was raised by Dirk Oliver Theis in the Dagstuhl seminar 13082 (February 2013).
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We will now show that without loss of generality that factors E1, . . . , Em, F1, . . . , Fn have a very particular
form. Namely, we can assume that

∑
iEi = I (so they form a POVM) and Tr(Fj) = 1 (so the Fj can be

viewed as quantum states). We now give a direct proof of this without increasing the size. This observation
will be the key to our lower bounds.

Lemma 17 Let P be an m-by-n matrix where each column is a probability distribution. If rankpsd(P ) =
r, then there exists a PSD-factorization for P (i, j) = Tr(EiFj) such that Tr(Fj) = 1 for each j and

m∑
i=1

Ei = I,

where I is the r-dimensional identity.

Proof: Suppose r-by-r positive semidefinite matricesC1, . . . , Cm andD1, . . . , Dn form a PSD-factorization
for P . Note that for any r-by-r unitary matrix U , it holds that

Tr(CiDj) = Tr((UCiU
†)(UDjU

†)).

Therefore UCiU † and UDjU
† also form a PSD-factorization for P . In the following, we choose U as the

unitary matrix that makes C ′ = UCU † diagonal, where C =
∑

iCi.
We first show that C is full-rank. Suppose not. Then, without loss of generality, we may assume C ′

is a rank-(r − 1) diagonal matrix with the rth diagonal entry being 0. Since C ′ =
∑

i UCiU
†, we have

that for any i ∈ [m], the rth column and the rth row of UCiU † are all zeros. That is to say, in the PSD-
factorization for P formed by UCiU † and UDjU

†, the rth dimension has no contribution, resulting in a
smaller PSD-factorization for P , which is a contradiction.

Now that C ′ is full-rank, one can always find another full-rank nonnegative diagonal matrix V such that
V C ′V † = I . Let Ei = V UCiU

†V †, and Fj = V −1UDjU
†(V −1)†. Then it is not difficult to verify that Ei

and Fj form another PSD-factorization for P with size r, satisfying
∑

iEi = I .
Finally note that Tr(Fj) = Tr(FjI) =

∑
i Tr(EiFj) = 1 as each column of P sums to one. 2

4.2 A lower bound based on fidelity

Definition 18 For nonnegative stochastic matrix P , define

B3(P ) = max
q

1∑
i,j qiqjF (Pi, Pj)2

,

where Pi is the ith column of P and the max is taken over probability distributions q = {qj}.

Theorem 19 rankpsd(P ) ≥ B3(P ).

Proof: Let {Ei}, {ρj} be a size-optimal PSD-factorization of P . According to Lemma 17, we may assume
that

∑
iEi = I and Tr(ρj) = 1 for each j. For a probability distribution {qj}, let ρ =

∑
j qjρj . Notice that

the dimension of ρ is rankpsd(P ), thus the rank of ρ will be at most rankpsd(P ). We use the trace norm
bound Eq. (1) to lower bound the rank of ρ giving

rankpsd(P ) ≥ ‖ρ‖
2
tr

‖ρ‖2F
=

1

‖ρ‖2F
.
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Let us now proceed to upper bound ‖ρ‖2F . We have

‖ρ‖2F = Tr(ρ2) =
∑
i,j

qiqjTr(ρiρj) ≤
∑
i,j

qiqjF (ρi, ρj)
2,

where we used Fact 8. As Pi is obtained from measuring ρi with the POVM {Ej}, according to Fact 9 we

have that F (ρi, ρj) ≤ F (Pi, Pj), which gives the bound rankpsd(P ) ≥ max
q

1∑
i,j qiqjF (Pi, Pj)2

. 2

We can extend the notationB3(P ) to nonnegative matrices P that are not stochastic, by first normalizing
the columns of P to make it stochastic and then applying B3 to the resulting stochastic matrix. As rescaling
a nonnegative matrix by multiplying its rows or columns with nonnegative numbers does not increase its
PSD-rank, we have the following definition and corollary.

Definition 20 For a nonnegative m× n matrix P = [P (i, j)]i,j , define

B′3(P ) = max
q,D

1∑
i,j qiqjF ((DP )i, (DP )j)2

,

where q = {qj} is a probability distribution, D is a diagonal nonnegative matrix, and (DP )i is the proba-
bility distribution obtained by normalizing the ith column of DP via a constant factor.

Corollary 21 rankpsd(P ) ≥ B′3(P ).

We now see an example where rescaling can improve the bound.

Example 22 Consider the following n× n nonnegative matrix A, where n = 10, and ε = 0.01.

A =



1 1 1 · · · 1 1
ε 1 ε · · · ε ε
ε ε 1 · · · ε ε
...

...
...

. . .
...

...
ε ε ε · · · 1 ε
ε ε ε · · · ε 1


.

Suppose P is the nonnegative stochastic matrix obtained by normalizing the columns of A by constant
factors, then it has the same PSD-rank as A. By choosing q as the uniform probability distribution, we can
get a lower bound of B3(P ) as follows. Note that for any i ∈ [n] \ {1}, we have that

f1 := F (P1, Pi) =
1 +
√
ε+ (n− 2)ε√

1 + (n− 1)ε ·
√

2 + (n− 2)ε
,

and for any distinct i, j ∈ [n] \ {1}, it holds that

f2 := F (Pi, Pj) =
1 + 2

√
ε+ (n− 3)ε

2 + (n− 2)ε
.

Then we get

B3(A) ≥ n2

n+ 2(n− 1) · f1
2 + (n− 2)(n− 1) · f2

2 ≈ 2.09.

We now multiply every row of A by 10 except that the first one is multiplied by 0, i.e., the matrix D in Corol-
lary 21 is a diagonal nonnegative matrix with diagonal (0, 10, . . . , 10). Then we obtain another nonnegative
matrix Â = DA. By a similar calculation as above, it can be verified that B3(Â) ≥ 4.88, hence we have
B′3(A) ≥ 4.88, which is a better lower bound.
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4.3 A lower bound based on the structure of POVMs

Definition 23 For nonnegative stochastic matrix P , define B4(P ) =
∑

i maxj P (i, j).

Theorem 24 rankpsd(P ) ≥ B4(P ).

Proof: Let {Ei}, {ρj} be a size-optimal PSD-factorization of P with
∑

iEi = I and Tr(ρj) = 1 for each j.
Note that this condition on the trace of ρj implies I � ρj . Thus

Tr(Ei) = Tr(Ei · I) ≥ max
j

Tr(Eiρj) = max
j
P (i, j).

On the other hand, since
∑

iEi = I , we have

rankpsd(P ) =
∑
i

Tr(Ei) ≥
∑
i

max
j
P (i, j),

where we used that the size of I is rankpsd(P ). 2

A variant of B4 involving rescaling can sometimes lead to better bounds:

Definition 25 For a nonnegative m× n matrix P = [P (i, j)]i,j , define

B′4(P ) = max
D

∑
i

max
j

((DP )j)i,

where D is a diagonal nonnegative matrix, (DP )j is the probability distribution obtained by normalizing
the jth column of DP via a constant factor, and ((DP )j)i is the ith entry of (DP )j .

Corollary 26 rankpsd(P ) ≥ B′4(P ).

Example 27 We consider the same matrices A and D as in Example 22, and get that

B4(A) =
1

1 + (n− 1)ε
+ (n− 1) · 1

2 + (n− 2)ε
≈ 5.24.

Similarly, it can be checked that B′4(A) ≥ 8.33. The latter indicates that rankpsd(A) ≥ 9, which is better
than the bound 4 given by B1(A) or 6 by B2(A).

4.4 Another bound that combines B3 with B4

Here we will show that B4 can be strengthened further by combining it with the idea that bounds Tr(σ2)
in B3, where σ is a quantum state that can be expressed as some linear combination of ρi’s.

Definition 28 For a nonnegative stochastic matrix P = [P (i, j)]i,j , define

B5(P ) =
∑
i

max
q(i)

∑
k q

(i)
k P (i, k)√∑

s,t q
(i)
s q

(i)
t F (Ps, Pt)2

,

where Ps is the sth column of P , and for every i, q(i) = {q(i)
k } is a probability distribution.

10



Theorem 29 rankpsd(P ) ≥ B5(P ).

Proof: We define {Ei} and {ρj} as before. For an arbitrary i, we define σi =
∑

k q
(i)
k ρk. This is a valid

quantum state. Since Tr(Eiρj) = P (i, j), it holds that Tr(Eiσi) =
∑

k q
(i)
k P (i, k). The Cauchy-Schwarz

inequality gives Tr2(Eiσi) ≤ Tr(E2
i )Tr(σ2

i ). This implies that(∑
k

q
(i)
k P (i, k)

)2

≤ Tr2(Ei)
∑
s,t

q(i)
s q

(i)
t F (Ps, Pt)

2,

where we used the facts that Tr(E2
i ) ≤ Tr2(Ei) and Tr(σ2

i ) ≤
∑

s,t q
(i)
s q

(i)
t F (Ps, Pt)

2; the latter has been
proved in Theorem 19. Therefore, for any distribution q(i) it holds that

Tr(Ei) ≥
∑

k q
(i)
k P (i, k)√∑

s,t q
(i)
s q

(i)
t F (Ps, Pt)2

.

Substituting this result into the fact that
∑

i Tr(Ei) = rankpsd(P ) completes the proof. 2

We also have the following corollary that allows rescaling.

Definition 30 For a nonnegative m× n matrix P = [P (i, j)]i,j , define

B′5(P ) = max
D

∑
i

max
q(i)

∑
k q

(i)
k ((DP )k)i√∑

s,t q
(i)
s q

(i)
t F ((DP )s, (DP )t)2

,

where for every i, q(i) = {q(i)
k } is a probability distribution, D is a diagonal nonnegative matrix, (DP )k

is the probability distribution obtained by normalizing the kth column of DP via a constant factor, and
((DP )k)i is the ith entry of (DP )k.

Corollary 31 rankpsd(P ) ≥ B′5(P ).

We now give an example showing that B5 can be better than B4.

Example 32 Consider the following n× n nonnegative matrix A, where n = 10, and ε = 0.01.

A =



1 1 ε · · · ε ε
ε 1 1 · · · ε ε
ε ε 1 · · · ε ε
...

...
...

. . .
...

...
ε ε ε · · · 1 1
1 ε ε · · · ε 1


.

It can be verified that B4(A) ≈ 4.81. In order to provide a lower bound for B5(A), for any i we choose q(i)

as {0, . . . , 0, 1/2, 1/2, 0, . . . 0}, where the positions of 1/2 are exactly the same as those of 1 in the ith row
of A. Straightforward calculation shows that B5(A) ≥ 5.36, which is better than B4(A).

Even B5 can be quite weak in some cases. For example for the matrix in Example 35 one can show
B5(A) < 1.1, which is weaker than B1(A) ≈ 3.16.
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5 Comparisons between the bounds

In this section we give explicit examples comparing the three new lower bounds on PSD-rank (B3, B4 and
B5) and the two that were already known (B1 and B2).

All our examples will only use positive entries, which trivializes all support-based lower bound methods,
i.e., methods the only look at the pattern of zero and non-zero entries in the matrix. Note that most lower
bounds on nonnegative rank are in fact support-based (one exception is [FP12]). Since PSD-rank is always
less than or equal to nonnegative rank, the results obtained in the current paper could also serve as new
lower bounds for nonnegative rank that apply to arbitrary nonnegative matrices. Serving as lower bounds
for nonnegative rank, our bounds are more coarse than the bounds in [FP12] (this is natural, as we focus on
PSD-rank essentially, and the gap between PSD-rank and nonnegative rank can be very large [FMP+12]).
On the other hand, our bounds are much easier to calculate.

The first example indicates that in some cases B4 can be at least quadratically better than each of B1,
B2 and B3.

Example 33 Consider the following (n+ 1)× (n+ 1) nonnegative matrix A, where ε = 1/n.

A =



1 ε ε · · · ε ε
ε 1 ε · · · ε ε
ε ε 1 · · · ε ε
...

...
...

. . .
...

...
ε ε ε · · · 1 ε
ε ε ε · · · ε 1


.

Theorem 43 (below) shows that B4(A) = n+1
2 , and by straightforward calculation one can also get that

B1(A) =
√
n, B2(A) = n+1

2
√
n
≈
√
n

2 , and numerical calculation indicates that B3(A) is around 4.

The second example shows that B3 can also be the best among the four lower bounds B1, B2, B3, B4,
indicating that B3 and B4 are incomparable.

Example 34 Consider the following n× n nonnegative matrix A, where n = 10, and ε = 0.001.

A =



1 1 ε · · · ε ε
1 1 1 · · · ε ε
ε 1 1 · · · ε ε
...

...
...

. . .
...

...
ε ε ε · · · 1 1
ε ε ε · · · 1 1


.

That is, A = (1 − ε) · B + ε · J , where B is the tridiagonal matrix with all nonzero elements being 1,
and J is the all-one matrix. By straightforward calculation, we find that B1(A) ≈ 3.16, B2(A) ≈ 3.42,
B4(A) ≈ 3.99, and the calculation based on uniform probability distribution q shows that B3(A) ≥ 4.52.
The result of B3(A) shows that rankpsd(A) ≥ 5.

Unfortunately, sometimesB3 andB4 can be very weak bounds2, and even the trivial rank-based boundB1

can be much better than both of them.
2Even though a nonnegative matrix has the same PSD-rank as its transposition, the bounds given by B3 (or B4) can be quite

different, for instance for the matrix A of Example 22.

12



Example 35 Consider the following n× n nonnegative matrix A, where n = 10, and ε = 0.9.

A =



1 ε ε · · · ε ε
ε 1 ε · · · ε ε
ε ε 1 · · · ε ε
...

...
...

. . .
...

...
ε ε ε · · · 1 ε
ε ε ε · · · ε 1


.

It can be verified that B2(A) ≈ 1.0005, and B4(A) ≈ 1.099. For B3(A), numerical calculation indicates
that it is also around 1. However, it is easy to see that B1(A) ≈ 3.16. Thus, the best lower bound is given
by B1(A), i.e., rankpsd(A) ≥ 4.

Example 36 For slack matrices of regular polygons, the two new bounds B3 and B4 are not good either,
and in many cases they are at most 3. Moreover, numerical calculations show that rescaling probably
cannot improve much. Note that the two trivial bounds B1 and B2 are also very weak for these cases. As an
instance, consider a slack matrix of the regular hexagon [GPT13]

A =



0 0 1 2 2 1
1 0 0 1 2 2
2 1 0 0 1 2
2 2 1 0 0 1
1 2 2 1 0 0
0 1 2 2 1 0

 .

It can be verified that B1(A) ≈ 1.73, B2(A) ≈ 1.59, B4(A) = 6× 2
6 = 2, and choosing q in the definition

of B3(A) as uniform distribution gives that B3(A) > 2.1. Furthermore, our numerical calculations showed
that choosing other distributions or utilizing rescaling could not improve the results much, and never gave
lower bounds ≥ 3.

6 PSD-factorizations for specific functions

In this section we show the surprising power of PSD-factorizations by giving nontrivial upper bounds on the
PSD-rank of the nonequality and inner product functions. These bounds are tight up to constant factors.

6.1 The nonequality function

The nonequality function defines an n-by-n matrix An with entries An(i, i) = 0 and An(i, j) = 1 if i 6= j.
In other words, An = Jn − In where Jn is the all-ones matrix and In is the identity of size n. This is also
known as the “derangement matrix.” Note that for n > 1 it has full rank.

The basic idea of our PSD factorization is the following. We first construct n2 Hermitian matrices Gij
of size n with spectral norm at most 1. Then the matrices I +Gij and I −Gij will be positive semidefinite,
and these will form the factorization. Note that

Tr((I +Gij)(I −Gkl)∗) = Tr(I) + Tr(Gij)− Tr(G∗kl)− Tr(GijG
∗
kl).
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Thus if we can design the Gij such that Tr(Gij) = Tr(Gkl) for all i, j, k, l and Tr(GijGkl) = δikδjln
(where δij = 1 if i = j, and δij = 0 otherwise), this will give a factorization proportional to the nonequality
matrix.

For the case where n is odd, we are able to carry out this plan exactly.

Lemma 37 Let n be odd. Then there are n2 Hermitian matrices Gij of size n such that

• Tr(Gij) = Tr(Gkl) for all i, j, k, l ∈ [n] := {0, . . . , n− 1}.

• Tr(GijG
∗
kl) = δikδjln.

• GijG∗ij = In.

Proof: We will use two auxiliary matrices in our construction. We will label matrix entries from [n]. Let L
be the addition table of Zn, that is L(i, j) = i+ j mod n. Notice that L is a symmetric Latin square3 with
distinct entries along the main diagonal. Let V be the Vandermonde matrix that is V (k, l) = e−2klπi/n for
k, l ∈ [n]. Note that V V ∗ = nIn.

We now define the matrices Gij for i, j ∈ [n]. The matrix Gij will be nonzero only in those entries
where L(k, l) = i. Thus the zero/nonzero pattern of eachGij forms a permutation matrix with exactly one 1
on the diagonal. These nonzero entries will be filled in from the jth row of V . We do this in a way to ensure
that Gij is Hermitian. Thus V (j, 0) = 1 will be placed on the diagonal entry of Gij . Now fix an ordering
of the bn/2c other pairs (k, l), (l, k) of nonzero entries of Gij (say that each (k, l) is above the diagonal).
In the tth such pair we put the conjugate pair V (j, t), V (j, n− t). In this way, Gij is Hermitian, and as the
ordering is the same for all j we have that Tr(GijG

∗
ik) = 〈Vi|Vk〉 = nδi,k.

To finish, we check the other properties. Each Gij has trace one. If i 6= k then Tr(GijG
∗
kl) = 0 as the

zero/nonzero patterns are disjoint. Finally as the zero/nonzero pattern of each Gij is a permutation matrix,
and entries are roots of unity, GijG∗ij = In. 2

This gives the following theorem for the n2-by-n2 nonequality matrix.

Theorem 38 Suppose n is odd, and let An2 be nonequality matrix of size n2. Then rankpsd(An2) ≤ n.

Proof: Suppose n2 Hermitian matrices Gij have been constructed as in Lemma 37. We now define the
matrices Xij = (1/

√
n)(I + Gij) and Yij = (1/

√
n)(I − G∗ij). Note that the spectral norm of each Gij

is 1, so Xij and Yij are PSD. Also, we have

Tr(XijYkl) =
1

n
(Tr(I) + Tr(Gij)− Tr(G∗kl)− Tr(GijG

∗
kl))

=
1

n
(n− δikδjln) = 1− δikδjl.

2

We now turn to the case that n is even. The result is slightly worse here.

Lemma 39 Let n be even. Then there are n2 − 1 Hermitian matrices Gij such that

• Tr(Gij) = Tr(Gkl) for all i, j, k, l.

3A Latin square is an n-by-n matrix in which each row and each column is a permutation of [n].
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• Tr(GijG
∗
kl) = δikδjln.

• GijG∗ij = In.

Proof: The construction is similar. Again let V be the Vandermonde matrix of roots of unity and this time
let L be a symmetric Latin square with entries from [n] where the diagonal has all entries 0.

For i > 0, the matrix Gij is defined as before, with the additional subtlety that if j is odd then V (j, 0) =
1 and V (j, n/2) = −1 and instead of taking this pair we use (i,−i) in the matrix.

For i = 0 we use all the rows of V except V0, the all-one row, to ensure that the trace of all Gij is zero
(this is why we can only create n2 − 1 matrices). 2

As with the case where n is odd, we have the following theorem based on Lemma 39.

Theorem 40 Suppose n is even, and let An2−1 be the nonequality matrix of size n2 − 1. Then it holds that
rankpsd(An2−1) ≤ n.

The nonequality function gives a family of matrices where PSD-rank is smaller than the real PSD-rank.

Example 41 We have seen that for odd n, the PSD-rank of the nonequality matrix of size n2 is at most n.
This is tight by Fact 4, since the rank of the nonequality matrix of this size is n2. On the other hand,
also by Fact 4, the real PSD-rank is at least

⌈√
2n− 1/2

⌉
, and actually this bound has been shown to be

tight [FGP+14, Example 5.1]. This shows a multiplicative gap of approximately
√

2 between the real and
complex PSD-rank.

Fawzi et al. [FGP+14, Section 2.2] independently observed that the real and complex PSD-rank are not
the same, showing that the 4-by-4 derangement matrix has complex PSD-rank 2, while by Fact 4 the real
PSD-rank is at least 3.

It should be pointed out that the results in the current subsection reveal a fundamental difference between
PSD-rank and the normal rank. Recall that for the normal rank we have that rank(A−B) ≥ rank(B)−
rank(A). Thus if A is a rank-one matrix, the ranks of A − B and B cannot be very different. The results
above, on the other hand, indicate that the situation is very different for PSD-rank, where A−B and B can
have vastly different PSD-ranks even for a rank-one matrix A. This fact shows that the PSD-rank is not as
robust to perturbations as the normal rank, a contributing reason to why the PSD-rank is difficult to bound.

Proposition 42 For every positive integer d, there exists a nonnegative matrix A, such that J − A is also
nonnegative, and ∣∣rankpsd(J −A)− rankpsd(A)

∣∣ > d,

where J is the all-one matrix.

Proof: ChooseA = I , and the size to be n, then we have that rankpsd(J−A) ≈
√
n, while rankpsd(A) =

n. Choosing n large enough gives the desired separation. 2
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6.2 Approximations of the identity

Here we first consider the PSD-rank of approximations of the identity. We say that an n-by-n matrix A is
an ε-approximation of the identity if A(i, i) = 1 for all i ∈ [n] and 0 ≤ A(i, j) ≤ ε for all i 6= j. The usual
rank of approximations of the identity has been well studied [Alo09].

In particular, it is easy to show that if A is an ε-approximation of the identity then

rank(A) ≥ n

1 + ε2(n− 1)
.

Using the bound B4 we can show a very analogous result for PSD-rank.

Theorem 43 If an n-by-n matrix A is an ε-approximation of the identity, then

rankpsd(A) ≥ n

1 + ε(n− 1)
.

In particular, if ε ≤ 1/n then rankpsd(A) > n/2.

Proof: We first normalize each column of A to a probability distribution, obtaining a stochastic matrix P .
Each column will be divided by a number at most 1 + ε(n− 1). Thus the largest entry of each column is at
least 1/(1 + ε(n− 1)). Hence the method B4 gives the claimed bound. 2

We now show that this bound is tight in the case of small ε. If ε ≥ 1/(n− 1)2, then by Theorem 11 the
PSD-rank of the n-by-n matrix with ones on the diagonal and ε off the diagonal is not full. On the other
hand, if ε < 1/(n − 1)2 then any ε-approximation of the identity has full PSD-rank, by Theorem 43. This
gives the following proposition.

Proposition 44 Suppose A(i, i) = 1 for all i ∈ [n] and A(i, j) = ε for i 6= j, then rankpsd(A) = n if and
only if ε < 1/(n− 1)2.

Proposition 45 Let m divide n and consider the m-by-m matrix B where B(i, i) = 1 and B(i, j) =
1/(m− 1)2. Then A = In/m ⊗B is an ε-approximation of the identity, and rankpsd(A) ≤ n− n

m , where
ε = 1/(m− 1)2.

Proof: Consider Lemma 12 and the fact that rankpsd(B) = m− 1. 2

As a generalization of approximations of the identity with the same off-diagonal entries, we now turn to
consider the PSD-rank of the following class of matrices.

Mc =



c 1 1 · · · 1 1
1 c 1 · · · 1 1
1 1 c · · · 1 1
...

...
...

. . .
...

...
1 1 1 · · · c 1
1 1 1 · · · 1 c


,

where c could be any nonnegative real number, and suppose the size of Mc is n-by-n. For c = 0, Mc is
exactly the matrix corresponding to the Nonequality function. Besides, if c > (n − 1)2, Proposition 44
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implies that the PSD-rank of Mc will be full. In both of these two cases, our results are very tight. Then a
natural question is, how about the case when 0 < c < (n− 1)2 (excluding c = 1)? For this case, it turns out
that we have the following theorem. Combined with B1(Mc) =

√
n, this result indicates that when c is not

very large, rankpsd(Mc) is very small, which is much stronger than Proposition 45.

Theorem 46 If c > 2, rankRpsd(Mc) ≤ 2dce · d
√
ne. If c ∈ [0, 2], rankRpsd(Mc) ≤ d

√
2ne+ 1.

Proof: We first suppose c is an integer larger than 2. For a fixed r ≥ c, we consider the largest set
S of subsets of [r] such that every subset has exactly c elements and the intersection of any two subsets
contains at most one element in [r]. Suppose the cardinality of S is p(r, c), and the elements of S are
{S1, S2, . . . , Sp(r,c)}, i.e., for any i ∈ [p(r, c)], Si is a subset of [r] with size c.

For any i ∈ [p(r, c)], we now construct two r-by-r matrices Ei and Fi based on Si as follows. In Ei,
we first choose the submatrix whose row index set and column index set are Si, and let this submatrix be a
c-by-c all-one matrix. All the other entries of Ei are set to 0. Fi is similar to Ei except that all its diagonal
entries are 1. Thus, for every i, both Ei and Fi are positive semidefinite.

It is not difficult to verify that for any x, y ∈ [p(r, c)], if x = y then Tr(ExFy) = c2, and if x 6= y
then Tr(ExFy) = c. That is, if p(r, c) ≥ n, then {1

cE1, . . . ,
1
cEn} and {F1, . . . , Fn} form a size-r PSD-

factorization of Mc, which shows that rankRpsd(Mc) ≤ r. We have the following lemma to provide bounds
on p(r, c).

Lemma 47 Let c be a positive integer and q be a prime number. There exists a family of q2 c-element sets
over a universe of size cq, such that any two distinct sets from this family intersect in at most one point.

Proof: Since q is a prime number, Fq is a finite field. With each (a, b) ∈ Fq×Fq we associate the following
set in the universe [c]× Fq. It is a c-element subset of the graph of the line y = ax+ b.

Sab = {(x, ax+ b) : x ∈ [c]}.

We have q2 such sets, one for each choice of a, b. Since two distinct lines can intersect in at most one
(x, y)-pair, we have |Sab ∩ Sa′b′ | ≤ 1 if a 6= a′ and/or b 6= b′. 2

Let us go back to the proof for Theorem 46. Let q be the smallest prime number≥ d
√
ne, then we know

q ≤ 2d
√
ne. Now by the above lemma there exist q2 ≥ n c-element sets over a universe of size cq. This

results in a PSD-factorization for Mc of size cq, hence rankRpsd(Mc) ≤ cq ≤ 2c · d
√
ne.

We now turn to the case that c > 2 and c is not an integer. Firstly, we construct the PSD-factorization
for Mdce as above. Then we replace all the nonzero off-diagonal entries of the Ei’s (which are 1’s) by
a = c−1

dce−1 , and obtain E′i’s. Now {E′1, . . . , E′n} and {F1, . . . , Fn} form a PSD-factorization for Mc.
Finally, in order to settle the case that c ∈ [0, 2], we first focus on the special case that c = 2. It is easy

to see that in this case, p(r, c) = 1
2r(r − 1). Thus if we choose r = d

√
2ne + 1, it holds that p(r, c) ≥ n,

and we have rankRpsd(M2) ≤ d
√

2ne+ 1. When c ∈ [0, 2), we replace all the nonzero off-diagonal entries
of the Ei’s (which are 1’s) by c− 1, and obtain E′i’s. It can be verified that {E′1, . . . , E′n} and {F1, . . . , Fn}
form a valid PSD-factorization for Mc. 2

We now consider a more general approximation of the identity than Mc, where the diagonal entries do
not have to be 1, and the off-diagonal entries do not have to be equal. Alon [Alo09] proved:
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Theorem 48 ([Alo09]) There exists an absolute positive constant c so that the following holds. Let A =
[a(i, j)] be an n-by-n real matrix with |a(i, i)| ≥ 1/2 for all i and |a(i, j)| ≤ ε for any i 6= j, where

1
2
√
n
≤ ε ≤ 1/4. Then the rank of A satisfies

rank(A) ≥ c log n

ε2 log (1/ε)
.

Combining the above theorem and Fact 4, we immediately obtain that

Theorem 49 There exists an absolute positive constant c so that the following holds. Let A = [a(i, j)] be
an n-by-n real matrix with |a(i, i)| ≥ 1/2 for all i and |a(i, j)| ≤ ε for any i 6= j, where 1

2
√
n
≤ ε ≤ 1/4.

Then the PSD-rank of A satisfies

rankpsd(A) ≥ c
√

log n

ε
√

log (1/ε)
.

We do not know if this lower bound on PSD-rank is tight. It is not hard to show that the nonnegative rank
of approximations of the n-by-n identity matrix is O(log n) for constant ε. For example, we can take a set
of n random `-bit words C1, . . . , Cn ∈ {0, 1}`. For ` = c log n and c a sufficiently large constant, 〈Ci|Cj〉
will be close to `/2 for all i = j and close to `/4 for all i 6= j. Hence if we associate both the ith row

and the ith column with the `-dimension vector
√

2
`Ci, we get an ` = O(log n)-dimensional nonnegative

factorization of an approximation of the identity.

6.3 The inner product function

Let x, y ∈ {0, 1}n be two n-bit strings. The inner product function is defined as IP(x, y) =
∑n

i=1 xiyi mod
2. We denote the corresponding N -by-N matrix by IPn, where N = 2n. We have the following theorem.

Theorem 50 rankpsd(IPn) ≤ 2
√
N .

Proof: We will design a one-way quantum protocol to compute IPn in expectation and then invoke the
equivalence between rankpsd and communication complexity mentioned in Section 2.2. We will actu-
ally prove the bound for more general 0/1-matrices, of which IPn is a special case. Let W be an N -by-
N 0/1-matrix, with rows and columns indexed by n-bit strings x and y respectively. View x = x0x1

as concatenation of two n/2-bit strings x0 and x1. Suppose there exist two Boolean functions f, g :
{0, 1}n/2+n → {0, 1} such that W (x, y) = f(x0, y) ⊕ g(x1, y). Then IPn is a special case of such a W ,
where f(x0, y) = IP(x0, y0) and g(x1, y) = IP(x1, y1). We now show there exists a one-way quantum
protocol that computesW in expectation and whose quantum communication complexity is at most n/2+1
qubits. This implies rankpsd(W ) ≤ 2n/2+1 = 2

√
N .

For any input x, Alice sends the following state of 1 + n/2 qubits to Bob:

|ψx〉 =
1√
2

(|0, x0〉+ |1, x1〉).

Then by a unitary operation, Bob turns the state into

|ψxy〉 =
1√
2

((−1)f(x0,y)|0, x0〉+ (−1)g(x1,y)|1, x1〉).

Bob then applies the Hadamard gate to the last n/2 qubits and measures those in the computational basis.
If he gets any outcome other than 0n/2, he outputs 0. With probability 1/

√
2n he gets outcome 0n/2, and
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then the first qubit will have become 1√
2
((−1)f(x0,y)|0〉 + (−1)g(x1,y)|1〉). By another Hadamard gate and

a measurement in the computational basis, Bob learns the bit f(x0, y) ⊕ g(x1, y) = W (x, y). Then he
outputs that bit times

√
2n. The expected value of the output is 1√

2n
· (W (x, y) ·

√
2n) = W (x, y). 2

We give another proof of this theorem by explicitly providing a PSD-factorization for IPn. Note that the
factors in the following PSD-factorization are rank-1 real matrices.

Theorem 51 rankRpsd(IPn) ≤ c
√
N . If n is even, c = 2, and if n is odd, c = 3

2

√
2.

Proof: For any k we have IPk+1 =

[
IPk IPk
IPk Jk − IPk

]
, where Jk is the k-by-k all one matrix. Using this

relation twice, we have that

IPk+2 =


IPk IPk IPk IPk
IPk Jk − IPk IPk Jk − IPk
IPk IPk Jk − IPk Jk − IPk
IPk Jk − IPk Jk − IPk IPk

 .
Repeating this procedure, it can be seen that IPn can be expressed as a block matrix with each block being
IPk or J − IPk for some k < n to be chosen later. We now consider a new block matrix Mn with the
same block configuration as IPn generated as follows. The blocks in the first block row of Mn are the same
as IPn, that is they are IPk’s. In the rest of the block rows, if a block of IPn is IPk, then we choose the
corresponding block of Mn to be −IPk, and if a block of IPn is Jk − IPk, the corresponding block of Mn

is also Jk − IPk. It is not difficult to check that Mn ◦ Mn = IPn, and since Mn is real, we have that
rankRpsd(IPn) ≤ rank(Mn).

In order to upper bound the rank of Mn, we add its first block row to the other block rows, and obtain
another matrix M ′n, with the same rank as Mn, in which all the blocks are 0 or Jk except those in the first
row are still IPk’s. Since the rank of M ′n can be upper bounded by the sum of the rank of the first block row
and that of the remaining block rows, we have that

rankRpsd(IPn) ≤ rank(Mn) = rank(M ′n) ≤ 2k − 1 +
N

2k
,

where 2k − 1 comes from the rank of IPk, and N
2k

comes from the number of blocks in every row of M ′n.
If n is even, we choose k = n/2, and the inequality above is rankRpsd(IPn) ≤ 2

√
N − 1. If n is odd, we

choose k = (n+ 1)/2, and the inequality becomes rankRpsd(IPn) ≤ (3
2

√
2)
√
N − 1. 2
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A Proof of Theorem 16

It is trivial that rankpsd(A) ≤ rankRpsd(A), so we only need to prove the second inequality. Suppose
r = rankpsd(A), and {Ek} and {Fl} are a size-optimal PSD-factorization of A. We now separate all the
matrices involved into their real and imaginary parts. Specifically, for any k and l, let Ek = Ck + i ·Dk, and
Fl = Gl + i · Hl, where Ck and Gl are real symmetric matrices, and Dk and Hl are real skew-symmetric
matrices (i.e., DT

k = −Dk and HT
l = −Hl). Then it holds that

Akl = Tr(EkFl) = (Tr(CkGl)− Tr(DkHl)) + i · (Tr(DkGl) + Tr(CkHl)).
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Since Akl is real, we in fact have
Akl = Tr(CkGl)− Tr(DkHl).

Now for any k and l, define new matrices as follows: Sk = 1√
2

[
Ck Dk

−Dk Ck

]
, and Tl = 1√

2

[
Gl Hl

−Hl Gl

]
.

Then Sk and Tl are real symmetric matrices, and Tr(SkTl) = Tr(CkGl)− Tr(DkHl) = Akl.

It remains to show that the matrices Sk and Tl are positive semidefinite. Suppose u =

[
v1

v2

]
is a 2r-

dimensional real vector, where v1 and v2 are two arbitrary r-dimensional real vectors. Starting from the fact
that Ek is positive semidefinite, we have

0 ≤ (vT2 − i · vT1 )Ek(v2 + i · v1) = vT1 Ckv1 − vT2 Dkv1 + vT1 Dkv2 + vT2 Ckv2 =
√

2uTSku.

Hence Sk is positive semidefinite. Similarly we can show that Tl is positive semidefinite for every l.
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