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Abstract The notion of degree-constrained spanning hierarchies, also called k-trails,
was recently introduced in the context of network routing problems. They describe
graphs that are homomorphic images of connected graphs of degree at most k. First
results highlight several interesting advantages of k-trails compared to previous routing
approaches. However, so far, only little is known regarding computational aspects of
k-trails. In this work we aim to fill this gap by presenting how k-trails can be analyzed
using techniques from algorithmic matroid theory. Exploiting this connection, we
resolve several open questions about k-trails. In particular, we show that one can
recognize efficiently whether a graph is a k-trail, and every graph containing a k-trail
is a (k+1)-trail. Moreover, further leveraging the connection to matroids, we consider
the problem of finding a minimum weight k-trail contained in a graph G. We show
that one can efficiently find a (2k − 1)-trail contained in G whose weight is no more
than the cheapest k-trail contained in G, even when allowing negative weights. The
above results settle several open questions raised by Molnár, Newman, and Sebő.
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1 Introduction

Motivated by applications in network routing, the notion of degree-constrained span-
ning hierarchies was introduced as a way to obtain lower-degree routing structures
than what could be obtained with low-degree spanning subgraphs [8,9]. These hier-
archies, which, for brevity, have also simply been called k-trails [10,13], describe
how a given graph can be described as the homomorphic image of another low-degree
graph. More precisely, the motivation for studying k-trails comes from network rout-
ing contexts where routing protocols with “branchings” of low degree are desirable.
One simple routing possibility to achieve this, is to route messages over spanning trees
with small degrees. This was a main motivation for the study of degree-constrained
spanning trees (see [4,11,14,15] and references therein). The idea of k-trails is to
allow for more flexibility than a simple spanning tree protocol, while still maintain-
ing a tree-like routing topology with branchings of low degree. Loosely speaking, a
k-trail can be interpreted as a routing protocol described by a tree, where every edge
corresponds to an edge of the original graph, but vertices of the original graph may
appear several times. Hence, the possibility of using vertices multiple times leads to an
additional flexibility compared to degree-bounded spanning trees. For more informa-
tion, we refer the interested reader to [8,9]. First results have been reported that show
advantages of k-trails compared to traditional methods in network routing contexts
[9].

However, many basic questions around k-trails remained open, like whether one
can efficiently decide if a graph is a k-trail; we refer the interested reader to [13] for a
nice overview of some open problems around k-trails. The goal of this work is to fill
this gap by revealing and exploiting a connection to matroids.

Before giving a summary of our main results, we start by formally defining k-trails
as well as some closely related notions. In particular, the notion of homomorphic
images introduced below is the basis for defining k-trails. Throughout this paper, we
focus on undirected connected graphs with possibly loops and parallel edges, and with
at least 2 vertices to avoid trivial special cases.

Definition 1 (Homomorphic image) A graph G = (V, E) is the homomorphic image
of a graph H = (W, F) if there is an onto function φ : W → V such that for any two
vertices u, v ∈ V (with possibly u = v), the number of edges in G between u and v

is equal to the number of edges in H whose endpoints get mapped by φ to {u, v}.

We would like to highlight that, contrary to some other definitions of graph homo-
morphisms found in the literature, our definition of a homomorphic image H of G
preserves edge-multiplicities, and thus induces a bijection between the edges ofG and
H . Figure 1 shows an example graph and two homomorphic preimages of it.

In other words, a preimage H = (W, F) ofG corresponds to a graph obtained from
G by splitting each of its vertices v ∈ V into |φ−1(v)| many copies. We therefore call
|φ−1(v)| the φ-multiplicity, or simply multiplicity, of v.

Definition 2 (k-Trail) A graph G = (V, E) is a k-trail if it is the homomorphic image
of a connected graph H = (W, F) with maximum degree at most k.
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G = (V, E) H1 = (W1, F1) H2 = (W2, F2)

Fig. 1 The graph G is the homomorphic image of H1 as well as H2. The naming of the vertices has been
chosen to highlight the corresponding homomorphisms, e.g., the nodes 3a and 3b in H1 are both mapped
to node 3 in G. G is a 3-trail, because the homomorphic preimage H2 has maximum degree 3

The graph G shown in Fig. 1 is a 3-trail since it is the homomorphic image of H2,
which has maximum degree 3. It is not hard to see that k-trails can equivalently be
defined as preimages of trees of degree at most k.

Definition 3 (k-Tree) A graph is a k-tree if it is a tree of maximum degree at most k.

Lemma 1 If G is a k-trail then it is a homomorphic image of a k-tree. More precisely,
given a connected graph H = (W, F) and onto function φ : W → V such that G is
the homomorphic image of H by φ, we can construct efficiently a tree H ′ = (W ′, F ′)
and onto function φ′ : W ′ → W such that H is the homomorphic image of H ′ by φ′.
Thus, G is the φ ◦φ′-homomorphic image of H ′, and for v ∈ V , the φ ◦φ′-multiplicity
of v is at least the φ-multiplicity of v.

Proof Let G be a homomorphic image of the connected graph H = (W, F) with
maximum degree k. We show how vertices of H can be split step-by-step to arrive at
H ′. We only show a single splitting step transforming H into H̄ = (W̄ , F̄). Assume
that H contains a cycle, say C ; otherwise we can set H ′ = H . Let {w1, w2} be an
edge in C . Let W̄ = W ∪ {x} where x is a new vertex. Let H̄ = (W̄ , F̄) where
F̄ = F ∪ {{x, w1}} \ {{w1, w2}} and φ̄ : W̄ → W where φ̄(w) = w if w ∈ W and
φ̄(x) = w2. Clearly H̄ is connected with maximum degree k and H is a homomorphic
image of H̄ by φ̄. Since H̄ has one more vertex than H , repeatedly applying this
procedure will stop as soon as we split G into a connected graph with |E |+1 vertices,
in which case it has to be a tree H ′. ��

Prior to this work, little was known regarding computational questions linked to
k-trails. In particular, it was unknown whether one can efficiently determine if a graph
is a k-trail for a given k, an open question raised in [13]. A nice result shown in [10,13]
is that every 2-edge-connected graph is a 3-trail. Further interesting open questions on
k-trails that are motivated by routing applications are linked to the notion of whether
a graph contains a k-trail, which is defined as follows.

Definition 4 (Containing a k-trail)We say that a graphG = (V, E) contains a k-trail
if there is a set U ⊆ E such that G ′ = (V,U ) is a k-trail.

Notice that all k-trails are connected graphs, since they are homomorphic images
of connected graphs. Hence, candidate edge sets U ⊆ E , for G = (V, E) to contain
a k-trail (V,U ), must be such that (V,U ) is connected.
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172 M. Singh, R. Zenklusen

Also for the containment of k-trails, littlewas knownprior to thiswork. In particular,
it was conjectured in [13] that for any nonnegative edge weights w : E → Z≥0 and
any k ≥ 3, there exists a polynomial algorithm returning a (2k − 2)-trail in G whose
cost is not larger than the minimum weight k-trail in G, if G contains a k-trail.

In this paper we are able to settle most of the above-mentioned open questions, by
presenting a new viewpoint on k-trails in terms of matroids.

1.1 Our results

One of our main results, whose derivation will also be used to highlight a strong link
between k-trails and matroids, is the fact that k-trails can be recognized efficiently.

Theorem 1 Given a graph G = (V, E) and k ∈ Z>0, one can check efficiently
whether G is a k-trail. Moreover, if G is a k-trail, one can find efficiently a connected
graph H = (W, F) with degrees bounded by k and an onto function φ : W → V
such that G is the homomorphic image of H by φ.

Contrary to the recognition problem, the containment problem is hard. Our hardness
proof can be interpreted as a natural extension of a hardness proof shown in [8], for a
weighted version of the problem. For completeness, we provide a full proof in Sect. 3.

Theorem 2 For any k ∈ Z≥2, the problem of deciding whether a graph contains a
k-trail is NP-complete.

Despite the different complexity status of the containment and recognition question,
the following theorem shows that they are closely related.

Theorem 3 If G contains a k-trail then it is a (k + 1)-trail.

Using that recognition is polynomial time solvable, we can thus find the smallest
k for which a given graph G is a k-trail, which then implies by Theorem 3 that the
smallest k′ for which G contains a k′-trail is either k or k − 1. Finally, we obtain the
following result on the containment of weighted k-trails.

Theorem 4 There exists a polynomial time algorithm that, given a graph G = (V, E)

with weight function w : E → Z and an integer k ≥ 2, either shows that there is no
k-trail contained in G or returns a (2k − 1)-trail contained in G whose total weight
is at most the weight of any k-trail contained in G.

Theorem 4 almost resolves a conjecture in [13], claiming that one can efficiently
find a (2k − 2)-trail in G of weight no more than the weight of any k-trail contained
in G, assuming k ≥ 3 and nonnegativity of the weights. Our result only implies the
existence of a cheap (2k−1)-trail; however, it holds for arbitrary weights, and not just
nonnegative ones. Furthermore, we can show that, even for nonnegative weights, the
factor 2k − 1 is optimal when comparing to a natural LP relaxation. More precisely,
for any k ≥ 3 there is a graph G such that the natural LP relaxation is feasible for
k, i.e., there is a “fractional k-trail”, whereas G does not contain any (2k − 2)-trail.
Hence, a different approach is needed to resolve the conjecture on the existence of
cheap (2k − 2)-trails.
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k-Trails: recognition, complexity, and approximations 173

1.2 Organization of paper

Section 2 proves Theorem 1 and shows how k-trails can be studied using tools from
algorithmic matroid theory. Section 3 discusses the hardness proof for Theorem 2 as
well as an algorithm implyingTheorem3. InSect. 3.1,weproveTheorem4. Section 3.2
shows an integrality gap example with respect to a natural LP for finding a light k-trail
contained in a given graph.

1.3 Basic terminology

The degree of a vertex v ∈ V in a graph G = (V, E) is denoted by degG(v), or simply
deg(v) if there is no danger of confusion. If the graph is clear from context, we will
also use the notation degU (v) := |δ(v) ∩U | for a set U ⊆ E and v ∈ V .

2 Recognition of k-trails

LetG = (V, E) be an undirected graph and supposewewant to show thatG is a k-trail
for k as small as possible. Consider some connected graph H = (W, F) such that G
is the homomorphic image of H by some onto function φ : W → V . Let v ∈ V and
consider all vertices of H that get mapped to v, i.e., φ−1(v) = {w1, . . . , w�}, where
� = |φ−1(v)| is the multiplicity of v. Clearly, we have

degG(v) =
�∑

i=1

degH (wi ).

Knowing that v gets split into � vertices by φ, for degrees to be low in H it would
be best if all wi for i ∈ [�] have about the same degree. It turns out that starting
with any H and corresponding φ, we can balance out the degrees of vertices in H
that correspond to the same vertex in G, using a simple modification algorithm. The
following lemma formalizes this statement.

Lemma 2 Given two connected graphs G = (V, E) and H = (W, F), and an onto
function φ : W → V such that G is the homomorphic image of H, one can determine
in polynomial time a connected graph H ′ = (W, F ′) such that

(i) G is the homomorphic image of H ′ by φ.
(ii) For any v ∈ V and w ∈ W such that φ(w) = v, the degree of w in H ′ is either⌊

degG (v)

|φ−1(v)|
⌋
or

⌈
degG (v)

|φ−1(v)|
⌉
.

Proof Notice that condition (ii) of the lemma is equivalent to the property that for
every v ∈ V andw,w′ ∈ φ−1(v), we have | degH ′(w)−degH ′(w′)| ≤ 1. Suppose that
H = (W, F) does not satisfy this property. Thus, for some v ∈ V andw,w′ ∈ φ−1(v),
we have degH (w) ≥ 2 + degH (w′). Consider an arbitrary w-w′ path in H , and
let u be a neighbor of w not lying on this path. Since the degree of w is at least
three, such a neighbor always exists. Now, we construct a Ĥ = (W, F̂) where we let
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174 M. Singh, R. Zenklusen

F̂ = F ∪ {{u, w′}} \ {{u, w}}. It is straightforward to see that Ĥ is connected and G
is also a homomorphic image of Ĥ . We now repeat this operation as long as we can
find such a pair of vertices. Observe that

∑
u∈W degĤ (u)2 <

∑
u∈W degH (u)2 and

thus a potential argument implies that the sequence is polynomially bounded. Thus,
the graph obtained at the end of the sequence, H ′ = (W, F ′), satisfies the conditions
of the lemma. ��

We leverage the above lemma to rephrase the problem of whether a graph is a k-trail
in terms of multiplicities.

Definition 5 (Feasible multiplicity vector) Let G = (V, E) be a graph. A vector
λ ∈ Z

V
>0 is a feasible multiplicity vector (for G) if G is the homomorphic image of a

connected graph with multiplicities given by λ; more formally, if there is a connected
graph H = (W, F) such thatG is the homomorphic image of H by some onto function
φ : W → V , and |φ−1(v)| = λ(v) ∀v ∈ V .

Feasible multiplicity vectors fulfill the following down-monotonicity property.

Lemma 3 Let G be a graph and λ ∈ Z
V
>0 be a feasible multiplicity vector. Then any

vector λ′ ∈ Z
V
>0 with λ′ ≤ λ (component-wise) is also a feasible multiplicity vector.

Furthermore, this result is constructive: Given a connected graph H and homo-
morphism φ such that G is the φ-homomorphic image of H and λ is the multiplicity
vector corresponding to φ, we can efficiently construct for any λ′ ≤ λ a connected
graph H ′ and homomorphism φ′ such that G is the φ′-homomorphic image of H ′ with
corresponding multiplicity vector λ′.

Proof Given a feasible vector λ ∈ Z
V
>0 with λ(v) ≥ 2, we show that λ̄ is also a feasible

vector where λ̄(v) = λ(v) − 1 and λ̄(u) = λ(u) for each u ∈ V \ {v}. The lemma
then follows from induction.

Let H = (W, F) and φ : W → V certify the feasibility of λ. Since λ(v) ≥ 2,
there exists w1, w2 ∈ φ−1(v) such that w1 �= w2. Let H ′ = (W ′, F ′) be obtained
by merging w1 and w2 into a new vertex w. Thus W ′ = W ∪ {w} \ {w1, w2}. Let
φ′ : W ′ → V where φ′(w) = v and φ′(x) = φ(x) for each x ∈ W ′ \ {w}. Then G is
a homomorphic image of H ′ by φ′ and H ′ certifies the feasibility of λ̄, thus proving
the lemma. ��

Lemmas 2 and 3 easily imply that the question of whether G is a k-trail for some
given k can be reduced to the problem of deciding whether some multiplicity vector
λ ∈ Z

V
>0 is feasible.

Lemma 4 A graph G = (V, E) is a k-trail if and only if the following multiplicity
vector λ ∈ Z

V
>0 is feasible:

λ(v) =
⌈
degG(v)

k

⌉
∀v ∈ V .

Proof Let G be a k-trail witnessed by H and φ. Since H has maximum degree k, we

must have |φ−1(v)| ≥
⌈
degG (v)

k

⌉
for all v ∈ V , proving the only if direction.
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Now, let λ be feasible where λ(v) =
⌈
degG (v)

k

⌉
for each v ∈ V . From Lemma 2,

it follows that G is a homomorphic image of a connected graph H = (W, F) by φ :
W → V such that degH (w) ≤

⌈
degG (v)

λ(v)

⌉
for each w ∈ φ−1(v). Since

⌈
degG (v)

λ(v)

⌉
≤ k,

the lemma follows. ��
To finally provide an efficient recognition algorithm to decide whether a graph is a

k-trail, we show that feasible multiplicity vectors are highly structured.
Notice that a feasible multiplicity vector is at least 1 in each coordinate. For sim-

plicity, we introduce a shifted version of feasible multiplicity vectors, called feasible
split vector; a vectorμ ∈ Z

V≥0 is a feasible split vector ifμ+1 is a feasible multiplicity
vector, where 1 ∈ Z

V is the all-ones vector. Hence, a split vector tells us how many
times a vertex is split.

Theorem 5 Let G be an undirected graph. The set of feasible split vectors corresponds
to the integral points of a polymatroid,1 i.e.,

PG := conv({μ ∈ Z
V≥0 | μ is a feasible split vector}),

is a polymatroid. Furthermore,we can efficiently optimize over PG, and for any feasible
split vector μ ∈ Z

V≥0 we can efficiently find a connected graph H = (W, F) and
an onto function φ : W → V such that G is the homomorphic image of H, and
|φ−1(v)| = μ(v) ∀v ∈ V .

Before proving the theorem, we start with a few observations and show that Theo-
rem 5 implies Theorem 1. It is well-known that PG being a polymatroid implies that
PG is given by

PG = {x ∈ R
V≥0 | x(S) ≤ f (S) ∀S ⊆ V },

where f : 2V → Z≥0 is the submodular function defined by

f (S) = max{x(S) | x ∈ PG} ∀S ⊆ V .

Many results on polymatroids typically assume that a polymatroid is given through a
value oracle for the function f . Clearly, if we can efficiently optimize over PG , we
can also evaluate efficiently the submodular function f , which, as described above,
corresponds to maximizing a {0, 1}-objective over PG .

We are particularly interested in checking whether some split vector μ ∈ Z
V≥0 is

feasible. Having an efficient evaluation oracle for f allows for checking whether μ ∈
PG by standard techniques: It suffices to solve the submodular function minimization
problem min{ f (S) − x(S) | S ⊆ V }; if the optimal value is negative then μ /∈ PG ,
otherwise μ ∈ PG . We will later see that the link between k-trails and matroids that

1 A polymatroid over a finite set N is a polytope P ⊆ R
N≥0 described by P = {x ∈ R

N≥0 | x(S) ≤
f (S) ∀S ⊆ N }, where f : 2N → Z≥0 is a submodular function, and x(S) = ∑

v∈S xv . We refer the
interested reader to [12, Volume B] for more information on polymatroids.
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176 M. Singh, R. Zenklusen

we establish implies an easy way to check whether μ ∈ PG using a simple matroid
intersection problem (without relying on submodular function minimization).

Combining the above results and observations, Theorem 1 easily follows.

Proof of Theorem 1 Let λ ∈ Z
V
>0 be defined as in Lemma 4, and let μ = λ − 1.

Lemma 4—rephrased in terms of μ—states that G is a k-trail if and only if μ is a
feasible split vector, which can be checked efficiently by Theorem 5. Furthermore, if
μ is feasible, then Theorem 5 also shows that we can efficiently obtain a connected
graph H̄ = (W, F̄) and onto function φ : W → V such that

(i) G is the homomorphic image of H̄ by φ, and
(ii) |φ−1(v)| = μ(v) + 1 ∀v ∈ V .

By Lemma 2 we can balance the degrees of H̄ for each vertex set φ−1(v) efficiently,
to obtain a connected graph H = (W, F)with balanced degrees as stated in Lemma 2.
It remains to observe that all degrees in H are bounded by k. This indeed holds: let
w ∈ W and v = φ(w); we thus obtain

degH (w) ≤
⌈
degG(v)

|φ−1(v)|
⌉

=
⌈
degG(v)

μ(v) + 1

⌉
=

⎡

⎢⎢⎢
degG(v)⌈
degG (v)

k

⌉

⎤

⎥⎥⎥
≤

⌈
degG(v)

degG (v)

k

⌉
= k ,

where the first inequality follows by Lemma 2 and the second equality by μ(v)+ 1 =
λ(v) = �degG(v)/k�. ��

2.1 Matroidal description of k-trails and proof of Theorem 5

We start by introducing an auxiliary graph G ′ = (V ′, E ′) such that spanning trees in
G ′ can be interpreted as graphs H such that G is a homomorphic image of H . Using
this connection, we then derive that PG is a polymatroid over which we can optimize
efficiently, and show how to construct a homomorphic preimage of G corresponding
to some split vector μ, as claimed by Theorem 5.

Hence, let G = (V, E) be an undirected graph. The graph G ′ = (V ′, E ′) contains
a vertex for each of the two endpoints of each edge in E . More formally, for each
v ∈ V , the Graph G ′ contains degG(v) many vertices V ′

v := {ve}e∈δ(v); hence,

V ′ =
⋃

v∈V
V ′

v.

We note that describing V ′
v by {ve}e∈δ(v) is a slight abuse of notation, since for each

loop at v we include two vertices in V ′
v and not just one. Furthermore,
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u

v

e
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ve

G = (V,E) G = (V ,E )

Fig. 2 An example for the construction of the auxiliary graph G′ = (V ′, E ′) from G = (V, E). In G′ the
thick edges correspond to edges in Ē and the thin ones to edges in K . The dashed gray circles correspond
to the cliques (V ′

v, Kv) and highlight the link between the vertices v ∈ V in G and vertex sets V ′
v in G′

which correspond to v

E ′ = Ē ∪ K , where

Ē = {{ve, ue} | e = {u, v} ∈ E}, and

K =
⋃

v∈V
Kv, where

Kv = {{ve, v f } | ve, v f ∈ V ′
v, ve �= v f } ∀v ∈ V .

See Fig. 2 for an example of the above construction.
For any spanning tree T ⊆ E ′ in G ′ that contains E , we define a graph HT =

(WT , FT ) and an onto function φT : WT → V , such that G is the homomorphic
image of HT by φ, as follows. For each v ∈ V consider the connected components of
(V ′

v, Kv ∩ T ). Let qv be the number of these connected components and let

V ′
v = C1

v ∪ C2
v ∪ · · · ∪ Cqv

v

be the partition of V ′
v into vertex sets of the qv connected components in (V ′

v, Kv ∩T ).
We now define HT = (WT , FT ) as the graph obtained from (V ′, T ) by contracting

all C j
v for v ∈ V and j ∈ [qv] := {1, . . . , qv}. For clarity, we call the vertices in

HT nodes. Contracting C j
v corresponds to replacing C j

v with a single node, which we
identify with the set C j

v for simplicity, thus leading to the following set of nodes for
HT :

WT = {C j
v | v ∈ V, j ∈ [qv]}.
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178 M. Singh, R. Zenklusen

(V , T ) HT = (WT , FT )

Fig. 3 On the left-hand side, a spanning tree T in the auxiliary graph G′ = (V ′, E ′) is highlighted, which
corresponds to the graph G shown in Figure 2. On the right-hand side, the corresponding graph HT is
shown. The homomorphism φT : WT → V maps all vertices of HT within the same dashed circle to the
same vertex of G. For v ∈ V , the number qv is equal to the number of vertices on the right-hand side lying
inside the dashed circle corresponding to v

Furthermore, two nodes C j
v ,C�

w ∈ WT are adjacent in HT if and only if there is a pair

of vertices, one inC j
v and one inC�

w, that are connected by an edge in T ∩ Ē ; formally,
this corresponds to the existence of e ∈ E such that the edge in Ē that corresponds to
e is contained in T , and ve ∈ C j

v and we ∈ C�
w. Moreover, φT : WT → V is defined

by

φT (C j
v ) = v ∀ C j

v ∈ WT .

Figure 3 shows an example construction of HT from a spanning tree T that contains
Ē .

We start with some observations that follow immediately from the above construc-
tion:

– G is the homomorphic image of HT by φT .
– The multiplicity of v ∈ V is qv .
– G ′ can be constructed efficiently from G.
– Several spanning trees T can lead to the same graph HT and homomorphism φT ;
indeed, for any component C j

v , the edges of T with both endpoints in C j
v form a

spanning tree over C j
v , which can be replaced by any other spanning tree without

changing HT or φT .

Conversely, every description of G as a homomorphic image of a tree can be
obtained by the above construction:

Claim Let H = (W, F) be a tree and φ : W → V be an onto function such that G
is the homomorphic image of H by φ. Then there exists a spanning tree T in G ′ such
that H = HT and φ = φT .

123



k-Trails: recognition, complexity, and approximations 179

Proof of claim The spanning tree T can be chosen as follows. Starting with T = ∅,
we first add to T all edges in Ē . For each w ∈ W , we do the following: Let v = φ(w),
and let e1, . . . , eh ∈ E be the φ-images of the edges δH (w); in particular, e1, . . . , eh ∈
δG(v). We add to T an arbitrary set of h − 1 edges of G ′ that form a spanning tree
over the vertices ve1 , . . . , veh . One can now easily observe that the constructed tree T
has the desired properties. ��

The equivalence between (ii) and (iii) in the following statement summarizes the
above discussion. The equivalence between (i) and (ii) follows from Lemma 1 (imply-
ing (i) ⇒ (ii)) and Lemma 3 (implying (ii) ⇒ (i)). Furthermore, we highlight that the
equivalences in Property 1 are all constructive.

Property 1 LetG = (V, E) be an undirected graph andμ ∈ Z
V≥0. The following three

statements are equivalent:

(i) G is the homomorphic image of a connected graph H = (W, F) by an onto
function φ : W → V such that |φ−1(v)| = μ(v) + 1 ∀v ∈ V .

(ii) G is the homomorphic image of a tree H = (V,W ) by an onto function φ : W →
V such that |φ−1(v)| ≥ μ(v) + 1 ∀v ∈ V .

(iii) There is a spanning tree T in the auxiliary graph G ′ = (V ′, E ′) such that Ē ⊆ T
and |T ∩ Kv| ≤ |δ(v)| − 1 − μ(v) ∀v ∈ V .

Using the above connection between the auxiliary graph G ′ and homomorphic
preimages of G, Theorem 5 can now be derived as follows. For brevity, we use the
following notation. For any spanning tree T in G ′ such that Ē ⊆ T , we define αT ∈
Z
V≥0 by αT (v) := |T ∩ Kv| ∀v ∈ V . Furthermore, let deg ∈ Z

V≥0 be the degree vector
of G, i.e., deg(v) is the degree of v as usual. The equivalence between point (i) and
point (iii) of Property 1 can thus be rephrased as follows.

μ ∈ Z
V≥0 is a feasible split vector ⇔ ∃ spanning tree T in G ′ with Ē ⊆

T and αT ≤ deg−1 − μ,
(1)

where 1 ∈ Z
V is the all-ones vector.

The equivalence highlighted by (1) directly leads to an efficient way to check
whether a given vector μ ∈ Z

V≥0 is a feasible split vector, and if so, obtain a homo-
morphic preimage of G that certifies it. Indeed, finding a spanning tree T in G ′ that
contains Ē and satisfies αT ≤ deg−1 − μ is a matroid intersection problem. More
precisely, the task is to find a spanning tree in G ′/Ē (the graph G ′ after contract-
ing Ē)—such spanning trees are the bases of the graphic matroid on G ′/Ē—whose
edges are simultaneously an independent set in the partition matroid on the partition
K = ∪v∈V Kv , requiring that no more than deg(v) − 1 − μ(v) edges are selected
within Kv for each v ∈ V . If this matroid intersection problem has a solution, then
we get the desired spanning tree T fulfilling the conditions of point (iii) in Property 1,
which is equivalent to point (i), and this equivalence is constructive, thus leading to
the desired homomorphic preimage H of G that corresponds to the split vector μ.

In particular, to check whether G is a k-trail, we know by Lemma 4 that G is a

k-trail if and only if the split vectorμ ∈ Z
V≥0 given byμ(v) =

⌈
deg(v)

k

⌉
−1 is feasible.
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Together with (1), this leads to the following characterization of G being a k-trail in
terms of a matroid intersection problem.

Corollary 1 The following two statements are equivalent:

(i) G is a k-trail.
(ii) There exists a spanning T in the auxiliary graph G ′ such that

|T ∩ Kv| ≤ deg(v) −
⌈
deg(v)

k

⌉
∀v ∈ V .

We finish by proving the claims about PG in Theorem 5. For this, we start by
observing that the vectors αT are integral base vectors of a polymatroid.

Lemma 5 The polytope

B̄G = conv({αT | T is a spanning tree in G ′ with Ē ⊆ T })

is the base polytope of a polymatroid. Furthermore, we can optimize efficiently over
B̄G.

Proof Let M = (K , I) be the graphic matroid obtained by starting with the graphic
matroid on G ′ and contracting the edges Ē . Notice that the ground set of M is indeed
K , i.e., all edges with both endpoints in one of the set V ′

v for v ∈ V . Spanning trees T
in G ′ that contain Ē are precisely the bases of M . Thus the vectors αT are obtained by
taking a basis in M , considering the partition K = ∪v∈V Kv of K , and counting the
number of elements that T has in each part of this partition. This way of constructing
vectors out of a matroid is often called the aggregation of a matroid (see, e.g, [3,
page 54]), and is well known to lead to the integral points of a base polytope of a
polymatroid (see [3] and [12, Volume B]). This shows that B̄G is indeed a polymatroid
base polytope. Furthermore, optimization over B̄G can simply be done by optimizing
over M , using the greedy algorithm. More precisely, for a weight function w ∈ Z

V , a
maximumweight point in B̄G is obtained by finding a maximumweight spanning tree
in G ′ after contracting Ē and by assigning, for v ∈ V , to each edge in Kv a weight
equal to w(v). ��

Consider the polymatroid P̄G that corresponds to the base polytope B̄G , i.e.,

P̄G = {x ∈ R
V≥0 | ∃α ∈ B̄G with x ≤ α}.

Wefinish the proof of Theorem5 by showing that PG is the (polymatroidal) dual of P̄G .
More precisely, McDiarmid [7] (see also [12, Volume B, Section 44.6f]) introduced
the following notion of a dual of a polymatroid, say P̄G ⊆ R

V . Consider a vector
y ∈ Z

V such that P̄G is contained in the box [0, y]; we choose y = deg−1. Then the
set of all points y − α for α ∈ P̄G correspond to the bases of a polymatroid, which is
called the dual of P̄G with respect to y. By (1), the vectors μ ∈ Z

V obtained by taking
any integral point α ∈ B̄G and setting μ = deg−1 − α correspond precisely to the
maximal vertices of PG as defined in Theorem 5. Hence, PG is the dual of P̄G with
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respect to y, and thus a polymatroid. Moreover, analogous to matroid duality, we can
efficiently optimize over PG because we can efficiently optimize over P̄G (see [12,
Volume B] for details).

3 Containment of k-trails

We first prove the hardness result claimed in Theorem 2.

Proof of Theorem 2 We give a reduction to the Hamiltonian path problem in cubic
graphs which is known to be NP-complete. First we prove the theorem for k = 2. We
claim a cubic graph G contains a 2-trail if and only if G contains a Hamiltonian path.
Indeed if G contains a Hamiltonian path G ′ = (V, E ′), then the Hamiltonian path G ′
certifies thatG contains a 2-trail with φ given by the identity map between the vertices
of G ′ and G.

Now, suppose that G contains a 2-trail and let G ′ = (V,U ) be a 2-trail contained
in G withminimum number of edges. Let H = (W, F) be a 2-tree, i.e., a Hamiltonian
path, and φ : W → V certify that G ′ is a 2-trail. Let w be one of the two leaves in H
and v = φ(w) and {w,w′} ∈ F . If |φ−1(v)| > 1, then we can consider Ĥ = H \ {w}
and restrict φ toW \ {w}. It is straightforward to see that Ĝ = (V,U \ {φ(w), φ(w′)}
is a 2-trail with possible preimage Ĥ , thus contradicting the minimality of G ′. Thus
for each v ∈ V , if |φ−1(v)| ≥ 2 then φ−1(v) does not contain a leaf of H . But the
degree of v is three and if |φ−1(v)| ≥ 2 then at least one of the vertices in φ−1(v)

must be a leaf. This implies that φ is one to one and G ′ is a Hamiltonian path as well.
Consider any k ≥ 3. We now reduce it to the k = 2 case. Again consider any cubic

graph G̃ = (Ṽ , Ẽ). For each vertex v ∈ Ṽ , we introduce a new set of vertices vi ,
1 ≤ i ≤ k − 2 and connect them to v via the edge {v, vi }. We let the new graph be
G = (V, E) where V = Ṽ ∪ X , with X denoting the new vertices introduced. We
now claim that G has a k-trail if and only if G̃ contains a 2-trail. Let H = (W, F)

denote the k-tree and φ : W → V be such that Ḡ = (V,U ) be the homomorphic
image of H by φ and U ⊆ E . Since every vertex v ∈ X is a leaf in G, it must also be
a leaf in Ḡ. Thus |φ−1(v)| = 1 and if {w} = φ−1(v), then w is also a leaf in H . Thus
deleting φ−1(X) from H keeps it connected. Let H ′ = (W ′, F ′) be the connected
graph obtained by deleting φ−1(X) from H . Restricting φ to W ′, we obtain a map
φ′ : W ′ → Ṽ . Let G ′ = (Ṽ ,U ′) denote the image of H ′ by φ′ where U ′ ⊆ Ẽ . We
claim that H ′ is a Hamiltonian path. Suppose for sake of contradiction that there exists
a vertexw ∈ W ′ of degree at least three in H ′. Let v = φ′(w) ∈ Ṽ . Since v has degree
three in G̃, it must have degree exactly three in G ′ and moreover, |φ−1(v)| = 1. But
then in H , the sole vertex in φ−1(vi ) must be connected to w as well since w is the
only vertex in φ−1(v). Since there are k−2 such vertices vi , we obtain that the degree
of w in H is at least 3 + k − 2 = k + 1 which is a contradiction. Thus we obtain that
H is a Hamiltonian path and therefore, G̃ contains a 2-trail, completing the proof. ��

To complement the hardness result, we prove Theorem 3 which implies that we can
approximate the minimum k such that G contains a k-trail by an additive one.
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Proof of Theorem 3 Let G ′ = (V,U ) denote a k-trail contained in G with maximum
number of edges. Let H = (W, F) denote a k-tree and let φ : W → V be an onto
function such that G ′ is the φ-homomorphic image of H .

Property 2 G \U is acyclic.

Proof of Property 2 Suppose for sake of contradiction, there is a cycleC inG \U . We
will augment G ′ to a k-trail which also includes all edges of C . Let C = (v1, . . . , vr )

where {vi , vi+1} ∈ E for each 1 ≤ i ≤ r where we let vr+1 = v1. Let wi ∈ φ−1(vi )

for each 1 ≤ i ≤ r . Introduce a new vertex ui for each 1 ≤ i ≤ r , and let W ′ =
W ∪ {u1, . . . , ur } and F ′ = F ∪ {{wi , ui+1} : 1 ≤ i ≤ r}. Moreover, we extend φ

to φ′ by letting φ′(ui ) = vi for each i . It is easy to see that G ′′ = (V,U ∪ C) is an
homomorphic image of H ′ = (W ′, F ′) by φ′ : W ′ → V . While H ′ is not necessarily
a k-tree, Lemma 2 implies that there is another H̃ = (W ′, F̃) such that the degree of
any vertex w ∈ φ−1(v) for v ∈ C is at most

⌈
degG ′(v) + 2

|φ′−1(v)|
⌉

≤
⌈
k|φ−1(v)| + 2

|φ−1(v)| + 1

⌉
≤ k.

For any other vertex w, the degree does not change and therefore, remains at most k.
This proves Property 2. ��

Now we will augment U to Û inductively one edge at a time while maintaining
two hypotheses. Firstly, Ĝ = (V, Û )will be a (k+1)-trail. Moreover, only vertices in
Ĥ = (Ŵ , F̂)—the preimage of Ĝ—of degree k + 1 will be isolated nodes in G \ Û .
Clearly, the conditions are satisfied initially when Û = U and Ĝ = G ′ since there
are no vertices of degree k + 1 in Ĥ = H . Suppose it is true for some Û ⊇ U such
that E \ Û �= ∅. Since G \ Û is a forest, there exists a leaf vertex u with the only
edge incident being {u, v}. We include {u, v} in Û , introduce another a new vertex
v′ in Ŵ such that φ(v′) = v. Moreover, we include the edge {u′, v′} in F̂ where
u′ ∈ φ−1(u). By the induction hypothesis, u′ must have had degree k initially and
after the introduction of the edge {u′, v′}, its degree increases to k + 1. Since u is now
isolated in G \ Û the induction hypothesis continues to hold.

Thus, after inclusion of all edges we obtain a (k + 1)-tree such that G is the
homomorphic image of the tree, proving the theorem. ��

3.1 Containment of minimum weight k-trails

Now we consider the problem of finding the minimum weight k-trail contained in
G = (V, E) and proveTheorem4.Our goal is to use the auxiliary graphG ′ = (V ′, E ′)
described in the proof of Theorem 1 for the recognition algorithm. Recall that edges
in E are in one-to-one correspondence with Ē ⊆ E ′. We extend the weight function
w : E → Z to all edges in E ′, where e ∈ Ē gets the same weight as the corresponding
edge in E . The rest of the edges in E ′ \ Ē are assigned weight 0. Recall, V ′

v denotes
the set of vertices introduced for vertex v, and Kv = E ′(V ′

v) denotes all edges with
both endpoints in V ′

v . We start by rephrasing the problem of finding a light k-trail in
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terms of the auxiliary graph G ′. This reformulation of the problem in terms of G ′ is
very similar in spirit to the way we rephrased the recognition problem on G ′. The
key difference is that, since a k-trail contained in G may not use all edges of G, the
spanning trees we consider in G ′ do not need to contain all of the edges in Ē . We
provide a brief proof of the lemma below for completeness.

Lemma 6 The following two statements are equivalent:

(i) G = (V, E) contains a k-trail of weight α ∈ Z.
(ii) There is a spanning tree T with w(T ) = α in the auxiliary graph G ′ = (V ′, E ′)

such that 1
k degT (v) + |T ∩ Kv| ≤ degE (v) for v ∈ V . In this case, the graph

(V, E ∩ T ) is a k-trail contained in G = (V, E) of weight α.

Proof (ii) ⇒ (i): Analogous to the discussion in Sect. 2 about the auxiliary graph, we
can derive from T a homomorphic preimage of a subgraph of G. We quickly recall
the main steps. In the auxiliary graph G ′ we first contract all edges in T ∩ Kv for
v ∈ V . We then define a homomorphism φ from this resulting graph to a subgraph of
G by mapping each vertex u of the contracted version of G ′—notice that u represents
a set of contracted vertices in some V ′

v—to the vertex v. The average degree of the

preimages of v is equal to degT (v)

degE (v)−|T∩Kv | , which is at most k by assumption. Hence,
because the degrees can be balanced out by Lemma 2, this implies that (V, E ∩ T )

is indeed a k-trail in G. Clearly, the weight w(T ∩ E) of (V, E ∩ T ) is equal to the
weight of T in G ′.

(i)⇒ (ii): Let (V,U )withU ⊆ E be a k-trail contained in G of weightw(U ) = α.
Consider the auxiliary graph G ′′ = (V ′′, E ′′) that corresponds to (V,U ). Analogous
to the discussion in Sect. 2, there is a spanning tree T ′′ ⊆ E ′′ in G ′′ that contains
all edges corresponding to U and corresponds—when contracting all edges of T ′′ in
each blob V ′′

v for v ∈ V—to a k-tree that is a preimage of (V,U ). Notice that each
edge in T ′′ also exists in the auxiliary graph G ′ = (V ′, E ′). Also observe, that G ′ may
contain more vertices than G ′′, namely one vertex for each endpoint of E \ U . We
conclude by observing that T ′′ can be extended to a spanning tree T in the auxiliary
graph G ′ = (V ′, E ′) by adding edges within each V ′

v for v ∈ V as follows. For each
v ∈ V , there are |V ′

v| − |V ′′
v | vertices in V ′

v that are not connected by T ′′. For each
such vertex, we add an edge of E ′(V ′

v) to T ′′ connecting it to T ′′. Thus a tree T in
G ′ = (V ′, E ′) is obtained with w(T ) = w(U ) that corresponds to the same splitting
vector as T ′′. Hence, T represents a homomorphic preimage of the k-trail (V,U ), and
thus fulfills (ii). ��

We will prove Theorem 4 through an algorithm based on the iterative relaxation
paradigm. Iterative relaxation and related techniques have previously been applied to
degree-constrained spanning tree problems [1,2,5,14,15], and we refer the reader to
[6] for further details and examples related to this technique.

Our algorithm is based on a natural linear programming relaxation for the problem,
highlighted below as LPA. Since we will delete edges, or more precisely fix their value
to zero, and drop degree constraints throughout our algorithm, we define LPA for an
arbitrary subset of the edge E∗ ⊆ E ′, which corresponds to edges that have not been
set to zero yet and is initially set to E ′ = E∗, and we impose degree constraints only
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on a subset Q ⊆ V , which is initially set to Q = V . For any set S ⊆ V ′ and set of
edges F ⊆ E ′, we denote by F(S) = {{u, v} ∈ F : u, v ∈ S} all edges of F with
both endpoints in S. Notice that the first two lines of constraints in LPA together with
the nonnegativity constraints described the spanning tree polytope over G ′. Hence, by
Lemma 6, a {0, 1}-solution x ∈ {0, 1}E ′

to LPA for E∗ = E ′ and Q = V corresponds
precisely to a k-trail contained in G. Thus, LPA for E∗ = E ′ and Q = V is indeed a
relaxation of the problem of finding a minimum weight k-trail in G.

min
∑

e∈E∗
wexe

x(E∗) = |V ′| − 1
x(E∗(S)) ≤ |S| − 1 ∀S ⊆ V ′, |S| ≥ 2
x(δE∗(V ′

v)) + k x(E∗(V ′
v)) ≤ k · degE (v) ∀v ∈ Q

xe ≥ 0 ∀e ∈ E ′
xe = 0 ∀e ∈ E ′ \ E∗

(LPA)

Algorithm 1 describes our iterative relaxation procedure to find a light (2k−1)-trail.

Algorithm 1: Obtaining a light (2k − 1)-trail through iterative relaxation.
1. Initialize Q ← V , E∗ ← E .
2. While Q �= ∅

(a) Let x denote the optimal extreme point solution to LPA.
(b) If there exists an edge e ∈ E∗ such that xe = 0, then E∗ ← E∗ \ {e}.
(c) If there exists a vertex v ∈ V such that one of the following is satisfied

degE∗ (v) + (2k − 1) · |E∗(V ′
v)| ≤ (2k − 1) · degE (v), or

degE∗ (v) ≤ 2k − 1 ,

then Q ← Q \ {v}.
3. Return the optimal extreme point solution x∗ to LPA.

Observe that when Q = ∅, then LPA optimizes over the convex hull of spanning
trees of G ′, and therefore, x∗ is an indicator of a spanning tree T of G ′. Moreover, the
weight of x∗ is at most the weight of the initial linear programming solution since we
either delete edges with zero fractional value or remove constraints. Consider a vertex
v ∈ V , and let E∗ be the support of the fractional solution x∗ at the moment of the
algorithm when v was removed from Q. If degE∗(v) ≤ 2k − 1 then it follows that
degT (v) ≤ 2k − 1 since the returned spanning tree T satisfies T ⊆ E∗. Moreover,
because |T (V ′

v)| ≤ |V ′
v| − 1 = degE (v) − 1, following by T being a spanning tree,

we have that degT (v) + (2k − 1) · |T (V ′
v)| ≤ (2k − 1) · degE (v), showing that

the constraint for v will be fulfilled for 2k − 1 even after dropping the constraint in
LPA that corresponds to v. In the other case, we also have that degT (v) + (2k −
1) · |T (V ′

v)| ≤ (2k − 1) · degE (v) since T ⊆ E∗. Thus, from Lemma 6 it follows
that if Algorithm 1 terminates, then the returned spanning tree T (defined through
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χ(T ) = x∗) corresponds to a (2k − 1)-trail of G of weight at most the optimal value
of the LP relaxation at the beginning of the algorithm, i.e., LPA with E∗ = E ′ and
Q = V , proving the theorem. It remains to prove that the algorithm is able to make
progress in each iteration, which is shown in the following lemma.

Lemma 7 Let x denote an extreme point solution to LPA for some sets E∗ ⊆ E ′ and
Q ⊆ V . Then either there is an edge e ∈ E∗ with xe = 0 or a vertex v ∈ Q such that
one of the following is satisfied

degE∗(v) + (2k − 1) · |E∗(V ′
v)| ≤ (2k − 1) · degE (v), or

degE∗(v) ≤ 2k − 1 .

The proof of Theorem 4 now follows from Lemma 7. Later in Sect. 3.2, we show
a matching integrality gap example. It remains to prove Lemma 7.

Proof of Lemma 7 Suppose for sake of contradiction that the conditions in the lemma
are not satisfied by some extreme point solution x . We consider the set of tight linear
constraints defining x . Let τ = {S ⊆ V ′ : |S| ≥ 2, x(E∗(S)) = |S| − 1} be the
tight constraints among the spanning tree constraints and let Qt ⊆ Q denote the tight
degree constraints. Standard uncrossing arguments imply the following lemma (see
Lau et al. [6] Chapter 4 for details).

Lemma 8 There exists a laminar family L ⊆ τ and Q′ ⊆ Qt such that the following
hold.

(i) |L| + |Q′| = |E∗|.
(ii) The vectors {χ(E∗(S)) : S ∈ L} ∪ {χ(δE∗(V ′

v)) + kχ(E∗(V ′
v)) : v ∈ Q′} are

linearly independent.
(iii) {χ(E∗(S)) : S ∈ L} span all the tight constraints corresponding to sets in τ , and

{χ(E∗(S)) : S ∈ L} ∪ {χ(δE∗(V ′
v)) + kχ(E∗(V ′

v)) : v ∈ Q′} span all the tight
constraints corresponding to sets in τ and vertices in Qt .

We now show a contradiction by a counting argument. Observe that we have |L| ≤
|V ′| − 1 since L is a laminar family over a ground set of size |V ′| and contains only
sets of size at least two. Let z ∈ R

E∗
≥0 be the slack vector defined by ze = 1− xe for any

edge e ∈ E∗. Hence, using the fact that x(E∗) = |V ′| − 1, the total slack is bounded
by

z(E∗) = |E∗| − x(E∗) ≤ |L| + |Q′| − |V ′| + 1 ≤ |Q′| .

Since we assume the conditions of the lemma are not satisfied and constraints for
vertices in Q′ are tight, the following inequality and equation follow for any v ∈ Q′:

k

2k − 1

(
degE∗(v) + (2k − 1) · |E∗(V ′

v)|
) ≥ k

2k − 1

(
(2k − 1) · degE (v) + 1

)
,

− (
x(δE∗(V ′

v)) + k · x(E∗(V ′
v))

) = −k · degE (v).
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Summing up the left-hand sides and right-hand sides of the above relations, adding to
both sides k−1

2k−1 degE∗(v), and exploiting that ze + xe = 1 for each edge e ∈ E∗, we
obtain the following inequality:

z(δE∗(V ′
v)) + k · z(E∗(V ′

v)) ≥ k − 1

2k − 1
degE∗(v) + k

2k − 1
∀v ∈ Q′ .

Since we assume that none of the two conditions of Lemma 7 holds, we have
degE∗(v) ≥ 2k, and thus

z(δE∗(V ′
v)) + k · z(E∗(V ′

v)) ≥ k − 1

2k − 1
· 2k + k

2k − 1
= k .

Summing over all vertices v ∈ Q′, we get
∑

v∈Q′

(
z(δE∗(V ′

v)) + k · z(E∗(V ′
v))

) ≥ k · |Q′| . (2)

Since E∗(Vv) are disjoint for different vertices v, every edge is counted at most k
times in the left-hand side and therefore it is at most k · z(E∗). Moreover, we have

z(E∗) = |E∗| − x(E∗) = |E∗| − |V ′| + 1 ≤ |E∗| − |L| = |Q′|. (3)

We thus obtain

k|Q′| ≥ k z(E∗) ≥ k|Q′|,

where the first inequality is due to (3) and the second one is due to (2). Thus we must
have equality everywhere and, unless k = 2, we must have z(δE∗(V ′

v)) = 0 for each
v ∈ Q′ since these edges were counted at most twice in (2).

First assume k ≥ 3 and thus we have z(E∗(V ′
v)) = 1 for each v ∈ Q′. Since

E∗(V ′
v) are disjoint, this implies that z(E∗) ≥ z(∪v∈Q′E∗(V ′

v)) = |Q′| which is a
contradiction unless ze = 0 for each e ∈ E∗ \ (∪v∈Q′E∗(V ′

v)
)
. Now, we show a linear

dependence. Since xe = 1 for each e ∈ E∗ \ (∪v∈Q′E∗(V ′
v)

)
, we have that χ({e}) is

in the span of tight constraints in L. Subtracting these vectors from χ(E∗) we obtain
that χ

(∪v∈Q′E∗(V ′
v)

)
is in the span of tight constraints in τ which includes the vector

χ(E∗). But this vector is also in the span of {χ(δE∗(V ′
v)) + kχ(E∗(V ′

v)) : v ∈ Q′}
and {χ({e}) : e ∈ ∪v∈Q′E∗(V ′

v)} which contradicts point (ii) of Lemma 8.
In the case when k = 2, we let R ⊆ E∗ be all edges e ∈ E∗ \ (∪v∈Q′E∗(V ′

v)
)

such that the two endpoints u, v ∈ V of the edge e in G are not both contained
in Q′. Because (2) must hold with equality and the total spare is bounded by |Q′|,
there is no spare on edges in R, and hence xe = 1 for each e ∈ R. But summing
{χ(δE∗(V ′

v)) + 2χ(E∗(V ′
v)) : v ∈ Q′} we obtain 2χ(E∗ \ R) = 2χ(E∗) − 2χ(R).

Since χ({e}) for each e ∈ R, and χ(E∗) is in the span of tight constraints in τ ,
and therefore also in L, we again obtain a contradiction with respect to point (ii) of
Lemma 8. This completes the proof of the lemma and Theorem 4. ��
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cn−1
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2k − 3 many

2k − 24 k − 4

2k − 5 2k − 5

2k − 5 2k − 5

Fig. 4 The construction of our integrality gap example. Each vertex ci for 1 ≤ i ≤ n has degree 2k − 1.
All vertices in C apart from c1, c2, and cn have the same number of attached pending edges, namely 2k − 5

3.2 Integrality gap example

In this section, we give an integrality gap example for the linear program LPA, for
E∗ = E ′ and Q = V . First observe that for k = 2, Theorem 4 returns a 3-trail and
therefore is optimal. Now consider any integer k ≥ 3. We show that there is a graph
G = (V, E) such that G contains no (2k − 2)-trail but the linear program is feasible
for k.

Consider the cycle C = {c1, . . . , cn} where we have two parallel edges between ci
and ci+1 for each 2 ≤ i ≤ n− 1. Thus, c1 has degree two, c2 and cn have degree three
and every other vertex has degree four. Now we subdivide each of these 2n − 2 edges
by introducing a vertex of degree two on each edge. Moreover, for each 1 ≤ i ≤ n, we
add 2k − 1 − deg(ci ) additional distinct vertices, say Ri = {w1

i , . . . , w
bi
i }, and there

is an edge (w, vi ) for each w ∈ Ri . Thus, the degree of each vertex is now exactly
2k − 1. Figure 4 summarizes the construction of our instance G = (V, E).

Observe that any split vectorμwith a single zero and n−1 ones among the vertices
C , and zeros everywhere else, is feasible. Taking the uniform convex combination of
all these split vectors, we obtain a fractional split vector, which splits each vertex in C
precisely 1− 1

n times. This shows that there is an LP solution x to LPA (with E∗ = E ′
and Q = V )—defined as usual over the auxiliary graph G ′—such that x(e) = 1 for
all edges e ∈ E and

x(E ′(V ′
c)) = degE (c) − 1 −

(
1 − 1

n

)
= 2k − 2 −

(
1 − 1

n

)
∀ c ∈ C.
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If n ≥ k, this LP solution is indeed feasible for k because for any c ∈ C ,

x(δE ′(V ′
c)) + k x(E ′(V ′

c)) = degE (v) + k

(
2k − 2 − 1 −

(
1 − 1

n

))

= 2k − 1 + k

(
2k − 2 −

(
1 − 1

n

))

= k(2k − 1) + k

n
− 1

≤ k(2k − 1)

= k degE (v).

Hence, in terms of the LP, the graph G is a fractional k-trail.
We now consider (integral) trails contained in G. For any k′ ≥ 2, to show that G

contains a k′-trail, we have to choose a subsetU ⊆ E of the edges in G and show that
there is a homomorphism φ from a k′-tree H = (W, F) to (V,U ).We start by deriving
a basic relation between the total number of splits α = |W |− |V |, and β = |E |− |U |,
which is the number of edges to be removed from G to obtain the k′-trail contained
in G.

Notice that |F | = |U | since edges between H and G are in one-to-one correspon-
dence. Moreover, because H is a tree, we must have

|W | = |F | + 1 = |U | + 1.

Thus,

α + β = |W | − |U | + |E | − |V | = 1 + |E | − |V |.

Note that the total number of vertices and edges of our instance G are

|V | = (2k − 1) · n − n + 2, and

|E | = (2k − 1) · n,

respectively. Thus

α + β = n − 1.

In words, when constructing a homomorphism from a tree to a subgraph of G, then
the sum of the total number of times vertices get split and the total number of edges
removed from G to obtain the subgraph is equal to n − 1. Since we have n vertices
on our cycle, and each edge is incident with precisely one vertex of C , we have by the
pigeonhole principle that there is at least one vertex c ∈ C such that c does not get split
and no edge incident with c got removed. However, this implies that the constructed
subgraph has a vertex of degree 2k − 1 that does not get split. Hence, G does not
contain any k′-trail for k′ < 2k − 1.
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10. Molnár, M., Newman, A., Sebő, A.: Travelling salesmen on bounded degree trails (2015). Hausdorff
report (in preparation)

11. Ravi, R., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Hunt III, H.B.: Approximation algorithms for
degree-constrained minimum-cost network-design problems. Algorithmica 31(1), 58–78 (2001)

12. Schrijver, A.: Combinatorial Optimization, Polyhedra and Efficiency. Springer, Berlin (2003)
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