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Abstract

This paper concerns the folded concave penalized sparse linear regression (FCPSLR), a class of 

popular sparse recovery methods. Although FCPSLR yields desirable recovery performance when 

solved globally, computing a global solution is NP-complete. Despite some existing statistical 

performance analyses on local minimizers or on specific FCPSLR-based learning algorithms, it 

still remains open questions whether local solutions that are known to admit fully polynomial-time 

approximation schemes (FPTAS) may already be sufficient to ensure the statistical performance, 

and whether that statistical performance can be non-contingent on the specific designs of 

computing procedures. To address the questions, this paper presents the following threefold 

results: (i) Any local solution (stationary point) is a sparse estimator, under some conditions on the 

parameters of the folded concave penalties. (ii) Perhaps more importantly, any local solution 

satisfying a significant subspace second-order necessary condition (S3ONC), which is weaker than 

the second-order KKT condition, yields a bounded error in approximating the true parameter with 

high probability. In addition, if the minimal signal strength is sufficient, the S3ONC solution likely 

recovers the oracle solution. This result also explicates that the goal of improving the statistical 

performance is consistent with the optimization criteria of minimizing the suboptimality gap in 

solving the non-convex programming formulation of FCPSLR. (iii) We apply (ii) to the special 

case of FCPSLR with minimax concave penalty (MCP) and show that under the restricted 
eigenvalue condition, any S3ONC solution with a better objective value than the Lasso solution 

entails the strong oracle property. In addition, such a solution generates a model error (ME) 
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comparable to the optimal but exponential-time sparse estimator given a sufficient sample size, 

while the worst-case ME is comparable to the Lasso in general. Furthermore, to guarantee the 

S3ONC admits FPTAS.
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Sparse recovery; Non-convex programming; NP-completeness; Folded concave penalty; Lasso

1 Introduction

Consider a linear regression model , j = 1, · · ·, n. Denote A: = (a1., …, an.)⊤ 

∈ ℜn×p, b: = (b1, …, bn)⊤. and W: = (ε1, …, εn)⊤ be the design matrix, response vector and 

error vector, respectively. Our target is to reconstruct the true parameter xtrue given only 

finitely many observations of data (A, b), when the problem dimension p is allowed to be 

(much) larger than the sample size n but xtrue is assumed to be sparse.

Following the literature (e.g., [6,43,27,31]), we quantify recovery quality by using model 
error (ME), absolute deviation (AD, i.e., ℓ1 loss), and ℓ2 loss: ME:

(1)

Here |·| and ||·|| denote the ℓ1-norm and ℓ2-norm, respectively. People also considers the 

presence of the (strong) oracle property an important performance index ([14,15,17]). In 

[14], an estimator is said to have the oracle property if its asymptotic distribution is the same 

as the oracle estimator (oracle solution). In [15], an estimator is said to have the strong 
oracle property if with overwhelming probability, the estimator equals the following oracle 

solution

(2)

where  is called the true support set and its complement . 

Let | | be the cardinality of . Throughout the paper it is assumed that | | ≪ n ≪ p and n > 

1. As in [14], the oracle solution is a statistically desirable solution that assumes a priori 
knowledge on . Explicit bounds on the recovery quality of the oracle solution in terms of 

ME, AD, and ℓ2 loss can be obtained from theory of least squares estimator ([21]). Since 

is unknown in practice, the use of (2) is merely for theoretical purposes.

Statisticians ([32,14]) use penalized least squares method to recover xtrue:
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(3)

The objective function in (3) is the sum of the least squares function and a nonnegative 

penalty function Pλ that encourages sparsity. The choices of the penalty functions have been 

studied in literature ([16]). The penalized least squares with the ℓ1 penalty, one of the most 

popular penalties, yield the Lasso [32]:

(4)

For FCPSLR problem, Pλ is set to be a folded concave penalty (FCP) satisfying the 

following properties for given a, λ ∈ ℜ++: (i) Pλ(t) is non-decreasing and concave in t ∈ ℜ+ 

with Pλ(0) = 0 and Pλ(t) > 0 if t > 0; (ii) Pλ(t) is differentiable at any t ∈ ℜ+; (iii) the first 

derivative  for any t ≥ aλ; (iv)  for any t ≥ 0.

This paper will focus on two commonly used FCPs: the smoothly clipped absolute deviation 
(SCAD, [14]), given as 

; and 

the minimax concave penalty (MCP, [41]), given as 

, where a > 1 for SCAD and a > 0 for 

MCP. Here (·) is an indicator function, and (·)+: = max{0, ·}.

As shown in [17], the FCP entails desirable properties, including “unbiasedness”, “sparsity”, 

and “continuity”. Thus, FCP may be intuitively more preferable than the Lasso and ℓp-

penalties in general (0 ≤ p ≤ ∞). Furthermore, under some conditions, global solutions to 

FCPSLR have the oracle property ([44]), while the Lasso does not have the oracle property.

Nonetheless, the FCP renders (3) non-convex, and thus there are limited optimization 

theories to analyze this problem. Existing solution techniques are also scarce to solve this 

problem globally. [24] proposes perhaps the first global scheme called MIPGO, which 

reformulates (3) into a mixed integer linear program (MIP), allowing FCPSLR to be solved 

with theoretically ascertained global optimality. Still, the theoretical worst-case complexity 

of MIP grows exponentially in the problem scale in general, although admittedly many MIPs 

can be solved with reasonable overhead in practice and there has been successful 

applications of MIP to least quantile regression problems by [3].

Such computational complexity is not surprising in theory, as FCPSLR is claimed to be NP-

hard by [44] and [38]. [23] provides a formal proof for the NP-hardness of sparse linear 

regression with SCAD and some other penalty functions. In a more general case, [4] and 

[18] show that the minimization of a sparse regression problem with a “concave” and 

“monotone” penalty function is strongly NP-hard. [24] reformulates FCPSLR into an 
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indefinite quadratic program. Since indefinite quadratic programs are in NP according to 

[34], we know that FCPSLR is in fact NP-complete.

In view of the NP-hardness in global minimization, several studies seek to solve the 

FCPSLR locally (see, e.g., [14,17,37,38]). Some existing studies, such as [14] and [15], 

show the existence of local minimizers that have the oracle property. Other reported 

theoretical findings, such as those by [17], [38], and [37], study specific FCPSLR-based 

learning algorithms in the form of local optimization procedures. Simulation studies in 

[37,17] imply local solutions1 of FCPSLR outperform the Lasso.

In this paper, we consider local solutions to FCPSLR that satisfy a second-order necessary 

condition, called significant subspace second-order necessary condition (S3ONC), which is 

weaker than the second-order KKT condition. We show that, at those S3ONC solutions, the 

sound recovery quality is an intrinsic property, regardless of the choice of solution 

procedures. The S3ONC relaxes the condition of local minimality in [14] and [15], and 

admits a fully polynomial-time approximation scheme (FPTAS, whose complexity is 

polynomial in both dimension and solution accuracy, but not necessarily polynomial in the 

bit length of accuracy). In contrast to [17,38,37], our analysis is algorithm-independent.

Specifically, inspired by [12,13], we present conditions on the choice of parameters a and λ 
to ensure the desired sparsity of local solutions based on a first-order necessary condition 

(FONC) and the S3ONC. With either of these two conditions, we show that any dimension 

of a local solution is necessarily zero once its magnitude is smaller than an explicit threshold 

and that the total number of non-zero variables at a local solution is bounded from above. 

Our results imply that, under our conditions, any local solution is sparse.

Perhaps more interestingly, if the random error vector W is sub-Gaussian and A satisfies the 

restricted eigenvalue (RE) condition ([6]), we show that any solution satisfying the S3ONC 

for FCPSLR may yield a bounded error in approximating the true parameter with high 

probability and even exactly recover the oracle solution. Furthermore, the statistical 

performance of FCPSLR is related with the optimization quality in minimizing the FCPSLR 

formulation. More precisely, the aforementioned error of an S3ONC solution improves 

polynomially when the suboptimality gap decreases.

We apply the above findings to the S3ONC solutions that have smaller objective values than 

a Lasso solution, namely, the S3ONC solutions in the sub-level set {x: f(x) ≤ f(xlasso)}, in the 

case of FCPSLR with MCP. Under the RE condition, we show that those local solutions 

have the strong oracle property, while, in contrast, the Lasso does not have the oracle 

property. Furthermore, when the sample size is above a certain threshold polynomial in ln p, 

those S3ONC solutions can achieve an ME comparable to the optimal but exponential-time 

estimator of the form

1Throughout this paper, a “local solution” refers to a solution that at least satisfies the first-order KKT condition, and may or may not 
satisfy a second-order necessary condition.

Liu et al. Page 4

Math Program. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(5)

which is shown by [43,31] to outperform the Lasso and possibly all the polynomial-time 

estimators in terms of ME. In the meantime, the worst-case ME of those S3ONC solutions is 

comparable to the Lasso.

Our results based on the S3ONC have some important differences from the analyses by [26], 

which shows that all solutions satisfying the FONC share the same upper bound on their 

distances from the true parameter under a restricted strong convexity (RSC) condition. Since 

our finding differentiates local solutions by their sub-level sets, our results may better 

explain the variation in performance among local solutions achieved by the same solution 

technique with different initial points, as observed from simulations by [17] and [37].

To ensure the statistical properties, we impose the RE condition on A. It is shown by [33] 

that RE is a relaxation of the restricted isotropy property (RIP, introduced by [8]) for some 

choices of parameters and is considered as one of the weakest conditions on the design 

matrices to ensure statistical performance for the Lasso as per [30]. Also under RE 

condition, [17] and [37] show respectively that FCPSLR solved specifically by local linear 

approximation (LLA) approach and by ConCave Convex procedure (CCCP), if initialized 

with the Lasso solution, results in the (strong) oracle property. We should note that, although 

both the RIP and the RE are established on fixed design matrices, some literature focuses on 

the probability for a random design matrix to satisfy the RIP or the RE condition. When 

design matrices are random, an isotropicity condition is often necessary for the RIP. To 

ensure the RE condition in random design matrices, the isotropicity condition can be 

dropped for Gaussian or subgaussian random designs [46] and [29]. Some special cases 

without subgaussian assumptions are presented by [30].

One remaining question is how to compute a solution satisfying S3ONC at a reasonable 

overhead. Hereafter, an algorithmis said to be S3ONC-guaranteeing, if it generates a solution 

that satisfies S3ONC at convergence or at termination. Any algorithm that ensures the 

second-order KKT condition is S3ONC-guaranteeing, since S3ONC is weaker than the 

second-order KKT condition. To our knowledge, scarcely is there any discussion on 

S3ONC-guaranteeing computing procedures in the statistics literature in solving FCPSLR, 

despite the several studies on solving the problem locally [14,26,17,38]. Instead, existing 

techniques yield local solutions that are only known to satisfy the first-order KKT condition. 

Nonetheless, in the optimization literature, algorithms ensuring a second-order KKT 

condition in non-convex optimization have been much studied by, for instance, 

[39,40,5,28,11]. In particular, the interior point algorithm by [5] is an FPTAS in achieving a 

second-order KKT solution with ε inaccuracy. In this paper, we elect to employ a S3ONC-

guaranteeing potential reduction (PR) method as an adaptation of [39] and [40].

The rest of the paper is organized as follows. Section 2 formally states the S3ONC and 

presents the conditions for any local solution to be a sparse estimator. Section 3 presents our 
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theoretical results on statistical properties at any solution satisfying the S3ONC. Section 4 

presents proofs and auxiliary lemmas for the results in Section 3. Section 5 briefly discusses 

the PR algorithm and summarizes some preliminary numerical results. Details of both the 

algorithm and the test results are presented in the online supplement [25]. Finally, Section 6 

concludes this paper with final remarks.

Throughout this paper, we will denote by ||·||p the ℓp-norm, except that ||·||0 denotes the 

number of non-zero entries. For a finite set, |·| denotes the cardinality. Considering an 

arbitrary vector x, we denote that x : = (xi: i ∈ ) and x c: = (xi: i ∈ c), which are 

subvectors of x. For any index set Ŝ, we denote by Ŝc the complement of Ŝ with respective to 

{1,…, p}. We will also use the abbreviation “a.s.” for “almost surely”. When we present 

results indifferent between the SCAD and the MCP cases, we will refer to both FCPSLR 

with SCAD and FCPSLR with MCP as FCPSLR for convenience. Accordingly, we will use 

Pλ to denote both Pλ,SCAD and Pλ,MCP. Otherwise, we may use FCPSLR-SCAD and 

FCPSLR-MCP to differentiate the two.

2 Necessary Optimality Conditions and Their Implications to Sparsity

This section first presents in Section 2.1 the necessary optimality conditions, including the 

FONC and the S3ONC. Then, as implications of those necessary conditions, in Sections 

2.2.1 and 2.2.2, we provide some sparsity properties of both FCPSLR-SCAD and -MCP, 

inspired by [12,13]: we show that each dimension of a local solution is necessarily zero once 

its magnitude is smaller than an explicit threshold. Such a threshold differentiates between 

solutions satisfying the FONC and those satisfying the S3ONC. Utilizing that threshold, we 

derive the upper bounds on ||x*||0 of a local solution x*. These bounds are useful to estimate 

the magnitude and the number of the non-zero dimensions of a local solution using 

information that is computationally cheap to acquire. Denote by a.i the i-th column of A for i 
= 1, …, p throughout this paper.

2.1 Necessary conditions

The results in this section rely heavily on the following necessary conditions for a local 

minimal solution to (3).

First-order necessary condition (FONC): Solution x* satisfies:

(6)

where ∂|·| denotes the subdifferential of |·|.

Significant subspace second-order necessary condition (S3ONC): Solution x* satisfies 

FONC. Furthermore, for all ,
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(7)

if the second-order derivative exists.

The S3ONC is based on the fact that a local minimal solution in the entire space must be a 

local minimizer in the subspace that considers only a single non-zero variable (See also 

[12]). Apply this observation to each of the significant (i.e., non-zero) dimensions, we obtain 

the second-order necessary condition in (7).

2.2 Sparsity at local solutions

In the subsequent, we present a set of bounds on the magnitude and the number of the non-

zero dimensions at any local solution satisfying either the FONC or the S3ONC. 

Specifically, Theorem 1 presents some general sparsity results for solutions satisfying the 

FONC. Corollaries 1 and 2 then apply Theorem 1 to the special cases of SCAD and MCP, 

respectively. In Subsection 2.2.2, Theorem 2 is another general result on the sparsity of 

solutions satisfying the S3ONC. Following that are three Corollaries 3, 4, and 5 providing 

more details than Theorem 2 in the special cases of SCAD and MCP.

2.2.1 First-order bounds for non-zero entries—This subsection studies the first set of 

the promised thresholds and bounds based on the FONC. We start with a relatively general 

theorem that applies to both SCAD and MCP.

Theorem 1: Let  be a solution satisfying FONC to (3) and let x0 ∈ 
ℜp be an arbitrary feasible solution. Assume f(x*) ≤ f(x0). If , then 

.

Proof: We first notice that

(8)

Suppose that . The FONC at x* for the i-th dimension yields 

, which, combining with (8), gives us 

. This completes the proof.

The above theorem has direct implications to the special cases of SCAD and MCP, as 

detailed in the following corollaries.
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Corollary 1: Consider the case of SCAD. Let x* be a solution satisfying FONC to (3) and 
x0 ∈ ℜp a feasible solution. Assume f(x*) ≤ f(x0).

a. For any i: 1 ≤ i ≤ p, if  and if

(9)

then  and .

b. Assume that (9) is satisfied for all i: 1 ≤ i ≤ p, then we have 

 and

Proof: By Theorem 1, we have that, if , then 

. Combining with (9), the 

above inequality is satisfied if and only  and  both 

hold, This completes the proofs of Part (a).

As to Part (b), we notice that Pλ vanishes at zero and is positive and non-decreasing on ℜ++. 

Combining with Part (a), we have  if  and 

. Multiplying both sides of (9) by (a − 1), we have  for all i: 1 ≤ i ≤ 

p. Therefore,  for all i: 1 ≤ i ≤ p. We obtain Part (b).

Corollary 2: Consider the case of MCP. Let x* be a solution satisfying FONC to (3) and by 
x0 ∈ ℜp a feasible solution. Assume f(x*) ≤ f(x0).

a.
For any i: 1 ≤ i ≤ p, if , then .
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b.
Assume that  for all i: 1 ≤ i ≤ p, then 

 and

Proof: Using Theorem 1 and definition of the MCP, this corollary can be shown by similar 

arguments to those in the proof of Corollary 1.

2.2.2 Second-order bounds for non-zero entries—This subsection studies a different 

set of thresholds and bounds for the non-zero entries of S3ONC solutions. These bounds are 

in general sharper than the results from the FONC. We will, again, start with a general 

theorem.

Theorem 2: Let x* be a solution satisfying S3ONC to (3) and h( · ) be the second-order 
derivative of Pλ(|·|) when it is twice differentiable. For any i: 1 ≤ i ≤ p, if Pλ(|·|) is twice 

differentiable and concave at , then .

Proof: Per S3ONC, if Pλ(|·|) is twice differentiable at the i-th dimension of x* denoted , 

then . Notice that  per concavity of Pλ(|·|) at . Therefore, 

Corollaries 3 and 4 below are direct applications of Theorem 2 for SCAD and MCP

Corollary 3: Consider the case of SCAD. Let x* be a S3ONC solution to (3).

a. If , then either  or  is satisfied.

b. For feasible solution any x0 satisfying f(x*) ≤ f(x0), if , and 

, then either  or  is satisfied.

Proof: Invoking Theorem 2, if , then . Therefore, if 

, then , or , which is immediately Part (a) of this 

corollary.

Further invoking Corollary 1, and noticing that a solution satisfying S3ONC is also a 

solution satisfying FONC, we have the desired results in Part (b).

Corollary 4: Consider the case of MCP. Let x* be a S3ONC solution to (3). If , 

then either  or  is satisfied.

Proof: This corollary follows by using Theorem 2, definition of the MCP and techniques 

used in the proof of the last corollary.

Liu et al. Page 9

Math Program. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Corollary 5: Let x* be a solution satisfying S3ONC to (3) and x0 ∈ ℜp an arbitrary feasible 
solution. Assume f(x*) ≤ f(x0).

a. Consider the case of SCAD. If  for all i : 1 ≤ i ≤ p and f(x*) ≤ f(x0), 
then ||x*||0 ≤ f(x0)/Pλ(aλ).

b. Consider the case of MCP. Then ||x*||0 ≤ f(x0)/Pλ(aλ).

Proof: To show (a): Per Part (b) of Corollary 3, if , then  for all i : 1 ≤ i ≤ p. 

Combining with the fact that Pλ(·) is non-decreasing, Pλ(0) = 0, we have 

, 

which, combining with the fact that Pλ(aλ) > 0, immediately implies the desired result in 

(a).

Part (b) is evident by following the same argument as in (a). Yet we will invoke Corollary 4 

instead of Corollary 3.

Remark 1: Both the first-order and the second-order bounds are dependent on an arbitrary 

feasible solution x0. We may let x0 = x* in all the results above to obtain the bounds for a 

local solution. Perhaps more interestingly, x0 can also be some solutions that are more easily 

available, such as the all-zero vector or a solution generated by any warm-starting procedure. 

If x* is computed with a descent algorithm that starts at x0, we can ensure the satisfaction of 

the stipulated inequality f(x*) ≤ f(x0). Then, one can use the aforementioned bounds to 

estimate the sparsity of x* using information only on x0. Such information is often 

computationally cheap.

Remark 2: The sparsity results in this section only serve as an estimate on the magnitude 

and the number of (non-)zero variables of a local solution. They do not provide any 

guarantee in approximating | |, the cardinality of the true support set. Nonetheless, in the 

following section, with some additional assumptions, our discussion covers the correctness 

in screening for the non-zero dimensions with the aid of the above analysis.

3 Statistical Accuracy of Local Solutions to FCPSLR

This section studies the statistical accuracy at a local solution satisfying the S3ONC. 

Detailed settings and assumptions are discussed in Section 3.1. Then Section 3.2 presents 

the promised results.

We will denote by aji the entry at the i-th column and j-th row of A. For a scalar x ≥ 0, 

denote by ⌈x⌉ (and ⌊x⌋) the smallest (largest, rep.) integer greater (smaller) or equal to x. By 

definition of SCAD and MCP, we have the following fact will be used in our analysis: for all 

x ∈ ℜ,

(10)
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3.1 Setting and assumption

We will restrict our discussions to linear regression with fixed design matrices and random 

error terms. Our results rely on the following assumptions:

Assumption A

A.1 The vector of errors W = (εj) ∈ ℜn satisfies that Prob[|〈W, υ〉| ≥ t] ≤ 2 

exp(−t2/2σ2) for any υ ∈ ℜn : ||υ|| = 1 and any t > 0.

A.2 The design matrix A satisfies a column normalization condition, i.e., n−1||a·i||2 ≤ 

K for some K > 0 for all i = 1, …, p.

A.3 There exists a sequence {rd ≥ 0 : d = 1, …, p} such that the following are 

satisfied: (i) For any d1, d2 : 1 ≤ d1 ≤ d2 ≤ p, we have rd1 ≥ rd2; (ii) There exists 

some p̃* : 2| | ≤ p̃* ≤ p such that rp̃* > 0; (iii) For all d : 1 ≤ d ≤ p, it holds that 

n−1||Aδx||2 ≥ rd||δx||2 for any δx ∈ ℜp : ||δx||0 ≤ d.

Assumptions A.1 and A.2 are commonly used conditions in the literature (see, e.g., [27,37]). 

Assumption A.1 holds if W follows an isotropic Gaussian distribution as in [6,43]. 

Assumption A.2 can be ensured via normalization. It is satisfied with high probability by 

random design matrices under sub-exponential or even weaker assumptions according to 

[35].

Assumption A.3 is the most critical one. Intuitively, for any d : 1 ≤ d ≤ p, the scalar rd is the 

lower bound on the smallest eigenvalue of all the principle sub-matrices of A⊤A with a size 

d × d. Thus, by rp̃* > 0, it essentially means that any principal sub-matrix of A⊤A with a size 

smaller or equal to p̃* × p̃* is positive definite. Regarding this assumption, we think it 

worthwhile to mention the following observation: When p̃* = 4| |, Assumption A.3 is a 

critical condition for the Lasso to ensure recovery quality – the restricted eigenvalue (RE) 
condition, which is first introduced by [6] (see its definition taken from [43] in Definition 1 

below). We illustrate this relationship between the RE condition and Assumption A.3 in 

Lemma 1. Under the RE condition, [6] shows the recovery quality of the Lasso. [46] 

provides conditions and probability lower bounds for RE condition to hold. Although the RE 

condition with a more general setting of parameters is discussed by [6] and [33], the 

performance of the Lasso is unknown under the more general setting.

Additionally, since the RE condition is also equivalent to the restricted strong convexity 
(RSC) condition in a linear regression model with some choices of parameters according to 

[27], therefore Assumption A.3 is also potentially weaker than the RSC condition discussed 

in [27].

Definition 1 (RE condition [43]): The matrix A ∈ ℜn×p is said to satisfy the RE condition 

if, for some ϰ(A) > 0, it holds that  for all δx ∈ ∪|Ŝ|=| |ℂ(Ŝ) where 

ℂ(Ŝ) := {δx := (δxi) ∈ ℜp : |δxŜc| ≤ 3|δxŜ|}, δxŜc := (δxi : i ∈ Ŝc), and δxŜ := (δxi : i ∈ Ŝ). 

Furthermore, the largest possible ϰ(A) is said to be the restricted eigenvalue constant of A.
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Lemma 1: (a) The RE condition in Definition 1 implies Assumption A.3 with r4| | ≥ ϰ(A) 

> 0 and p̃* ≥ 4| |. (b) The reverse is not true.

Proof: For Part (a), it suffices to show that for any δx = (δxi) ∈ ℜp : ||δx||0 ≤ 4| |, there 

always exists an index set Ŝ′ : |Ŝ′| = | |, such that |δxŜ′c| ≤ 3|δxŜ′|. Here δxŜ′c := (δxi : i ∈ Ŝ
′c), and δxŜ′ := (δxi : i ∈ Ŝ′).

If ||δx||0 ≤ | |, the above is trivially true. Otherwise, if ||δx||0 > | |, one can always pick Ŝ′ 
to be the set of indices of the first | | number of coordinates with the largest absolute value. 

As a result, mini∈Ŝ′ |δxi| ≥ maxi∈Ŝ′c |δxi| and |Ŝ′| = | |. We then know that 

, which leads to 

the desired result in Part (a).

For Part (b), it suffices to show that for some δx ∈ ℜp, there exists an index set Ŝ′ : |Ŝ′| = |

| such that |δxŜ′c| ≤ 3|δxŜ′|, but δx does not satisfy ||δx||0 ≤ 4| |. An example can be δxi = 1/|

| for all i ∈  and δxi = 1/(p−| |) for all i ∉ . If we pick Ŝ′ = , the above is evident.

[46] and [29] show that the RE condition can be satisfied with high probability when the 

design matrix is generated following Gaussian and/or subgaussian distributions. Potentially 

more general settings for the RE condition can be obtained from the discussions by [30], [1] 

and [35]. Since Assumption A.3 can be more general than the RE condition, the former may 

be easier (in the sense of occurring with a better probability or of requiring weaker 

assumptions on the underlying distribution) to hold when the design matrix is random.

We will impose some conditions on the parameters of the FCP:

Condition B

(B1)
For SCAD,  for all 1 ≤ i ≤ p and  for a given 

initial solution x0.

(B2) For MCP,  for all 1 ≤ i ≤ p and λ > 0.

The above condition ensures that the assumptions of Corollaries 3 and 4 hold for both 

SCAD and MCP. The stipulation on λ for the SCAD case is conceivably stronger than for 

the MCP case. For the former, a wise initial solution x0 that has a good solution quality may 

allow for more flexible choices of λ, while, for the latter, Condition B is non-restrictive on 

λ. Under Assumption A.2, the requirements of Condition B on parameter a is satisfied for 

any a : a < 1 + K−1 in the SCAD case and for any a : a < K−1 in the MCP case.
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3.2 Major results

We now present our theoretical findings on the statistical performance of S3ONC solutions. 

All proofs are postponed in Section 4, our main results can be summarized as following:

Section 3.2.1 presents two “general” theorems. Theorem 3 establishes statistical 

performance bounds in terms of ME, AD, and ℓ2 loss, for all S3ONC solutions. These 

bounds imply the dependence of statistical performance on the optimization quality. 

Theorem 4 shows that the oracle solution (2) may be recovered by any S3ONC 

solution under proper choices of parameters (a, λ), when the minimal signal strength 

 is properly large.

Sections 3.2.2 and 3.2.3 apply Theorems 3 and 4 to the case of FCPSLR-MCP and 

show that any S3ONC solution which has a better objective value than the Lasso 

solution entails the strong oracle property (Corollary 6). Furthermore, Corollary 7 in 

Section 3.2.2 shows that those local solutions may incur a substantially better ME 

than the Lasso (4), if the sample size is above a certain threshold polynomial in ln p. 

Otherwise, the worst-case ME of FCPSLR-MCP is comparable to the Lasso.

We remark that, since we only wish to provide theoretical insights here, we anticipate that 

the constants used in our results may not be optimal.

3.2.1 Statistical accuracy of an arbitrary S3ONC solution—This subsection seeks 

to present a “general” result on the statistical performance at an arbitrary S3ONC solution x* 

within the sub-level set {x : f(x) ≤ infx f(x) + Γ} for an arbitrary Γ ≥ 0. To this end, we 

consider a slightly larger sub-level set, {x : f(x) ≤ f(xtrue) + Γ}. Because f(xtrue) ≥ infx f(x), it 

holds that {x : f(x) ≤ infx f(x) + Γ} ⊆ {x : f(x) ≤ f(xtrue) + Γ}.

To aid our presentation of the results, we recall the closed-form of Pλ(aλ) given as in (10). 

We will also make use of some short-hand notations:

(11)

When rp̃* > 0, where p̃* is defined in Assumption A.3,

(12)

Theorem 3: Denote . Consider 
an arbitrary S3ONC solution x* to FCPSLR (3) with either SCAD or MCP. Assume the 
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simultaneous occurrence of (i) the event that Condition B is satisfied with any initial 
solution x0; and (ii) the event that f(x*) ≤ min{f(x0), f(xtrue) + Γ} holds for any Γ ≥ 0. For 
any t > 0, assume that parameters (a, λ) of penalty Pλ satisfy 

. Then under Assumption A.1, the following holds:

1. For any integer , the ME is bounded by

(13)

with probability at least  (as in (11)).

2. If, in addition, Assumption A.3 holds and (a, λ) satisfy that

(14)

where p̃* is defined in Assumption A.3. Then with probability greater or equal to 
P*(t, p̃*) (as in (11)), the following holds simultaneously:

(15)

and

(16)

where Ta,λ,n,xtrue,A(t) is defined as in (12).

Inequalities in (15) provide upper bounds to the statistical errors under different measures. In 

addition to the error bounds above, we show in the following that the S3ONC solutions can 

exactly recover the oracle solution under some additional assumptions on the minimal signal 

strength, .
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Theorem 4: Suppose Assumptions A.1 and A.3 with p̃* ≥ 2| | hold. Consider an arbitrary 
S3ONC solution x* ∈ ℜp to FCPSLR (3) with arbitrarily either SCAD or MCP. Assume the 
simultaneous occurrence of (i) the event that Condition B is satisfied with an arbitrary initial 
solution x0; and (ii) the event that f(x*) ≤ min{f(x0), f(xtrue) + Γ} holds for an arbitrary Γ ≥ 

0. Let the parameters (a, λ) satisfy that  and

(17)

and let minimal signal strength satisfy that

(18)

then x* equals the oracle solution, i.e., , with 
probability at least P*(t, p̃*) (as in (11)).

Remark 3: Theorem 3 provides a set of upper bounds on the performance measures for any 

S3ONC solution. Theorem 4 presents a set of conditions for any S3ONC solution to recover 

the oracle solution. These results are algorithm independent. In contrast, the existing results 

in [17], [38], and [37] relay on specific choices of computing procedures.

Remark 4: If ln p ≥ 1 and t = 2 ln p, one may quickly verify that P*(2 ln p, p̃*) ≥ 1 − O(1) · 

exp(−O(1) · p̃* ln p), where we denote by O(1) problem-independent constants. Recall that n 
≪ p. Theorem 3 implies that the bounds on statistical errors in (13) and (15) hold with high 

probability. Similarly, the recovery of oracle solution as in Theorem 4 holds with high 

probability.

Remark 5: For fixed (a, λ), Theorems 3 and 4 explicate the relationship between 

optimization quality in minimizing the non-convex formulation of FCPSLR and the 

statistical quality in approximating the true parameter. Specifically, the former theorem 

shows that the statistical performance of the S3ONC solutions in terms of ME, ℓ2 loss, and 

AD can all be written in parameterization of Γ, which is always an underestimate of the 

suboptimality gap. For a simple example, consider FCPSLR-MCP, if we (i) choose the 

parameters (a, λ) to be  and a = O(1), (ii) let t = 2 ln p (and assume ln p ≥ 1), 

and (iii) let x0 = x*, we obtain an upper bound on ME from (13) given as
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(19)

with probability lower bounded by 1 − O(1) · exp (−O(1)| | ln p). We think it interesting to 

compare the ME in (19) with that of an optimal, but exponential-time estimator. [31] shows 

that, under a comparatively more critical assumption that W is isotropic Gaussian, the 

exponential-time sparse estimator (5), which is claimed to be the optimal estimator by [43], 

yields an ME of

(20)

We see a comparable performance between (19) with (20) when Γ = 0, that is, when the 

FCPSLR-MCP is minimized globally. Meanwhile, the ME of FCPSLR-MCP deteriorates 

linearly with an increased Γ. Similarly, for the recovery of the oracle solution, Theorem 4 

indicates that the requirement (18) on the minimal signal strength is increasingly demanding 

if Γ becomes larger. To our knowledge, this is the first explication on the relationship 

between statistical performance and optimization quality in a non-convex learning problem. 

Furthermore, in spite of the tendency that the statistical performance degrades with the 

increase of suboptimality gap, S3ONC solutions may still recover the oracle solution when 

the minimal signal strength, namely, , is large enough to satisfy (18).

3.2.2 Strong oracle property—This subsection focuses on FCPSLR-MCP and show that 

any of its S3ONC solutions within the sub-level set {x: f(x) ≤ f(xlasso)} entails the strong 

oracle property. This means that any descent, S3ONC guaranteeing algorithm that starts 

from the solution to the convex formulation of the Lasso in (4) can output the oracle solution 

with overwhelming probability. Initializing computing schemes for FCPSLR with the Lasso 

has been discussed by [17] and [37]. Nonetheless, these analyses are all algorithm-specific. 

We present in the following an algorithm-independent analysis.

Corollary 6: Assume ln p ≥ 1. Denote by x* in ℜp an S3ONC solution to FCPSLR-MCP. 
Let Assumptions A.1, A.2 with K = 1, and the RE condition (as defined in Definition 1) with 
ϰ(A) < 1 be satisfied. Then r4| | ≥ ϰ(A) > 0. Assume that f(x*) ≤ f(xlasso) almost surely, 
where xlasso is defined in (4) with problem data (xtrue, A, b) and parameter 

, where γ ∈[0, 1] is an arbitrary scalar. Let , and a ∈[0.8, 

1). There exists a problem-independent constant c3 such that if
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(21)

then the S3ONC solution x* equals the oracle solution, i.e.,

(22)

with probability at least 1−c1 exp(−c2nγln p)−c4 exp(−c5| |nγln p) for some problem 
independent constants c1, c2, c4, c5 > 0.

Remark 6: Even though we only consider the undesirable case where the principle sub-

matrices of A⊤A is ill-conditioned in the sense that ϰ(A) < 1, which is the same setting as in 

[43], our results can be easily extended to the case of ϰ(A) ≥ 1 by choosing a different value 

for λ.

Remark 7: It is worth mentioning that the choice of (λ, a) can be much more flexible than 

the above corollary presents. In fact, one may follow the same proof for this Corollary to 

verify that for a reasonably wide range of  and a = O(1), the above result 

remains to be true. In practice, one may choose λ via data-driven procedures such as the 

cross validation.

Remark 8: When γ ∈(0, 1], Corollary 6 indicates the overwhelming probability of 

recovering the oracle solution. Thus Corollary 6 implies that any S3ONC solution that has a 

better objective value than the Lasso (with proper choice of parameter λlasso) entails the 

strong oracle property. In contrast, the Lasso in (4) does not have the oracle property 

according to [14] regardless of the choice of λlasso > 0. Therefore, the strong oracle property 

of an S3ONC solution already indicates a possible outperformance of FCPSLR over the 

Lasso.

Remark 9: Corollary 6 is actually a direct implication of Theorem 4 to the case of FCPSLR-

MCP. It is possible to also obtain some oracle property results for FCPSLR-SCAD with the 

Lasso initialization by applying Theorem 4. Nonetheless, due to the additional stipulations 

for λ to satisfy Condition B in the SCAD case, the determination of the penalty parameter λ 
is more involving. We will leave the simplification of Condition B for SCAD to future 

research. Nonetheless, in practice, a proper choice of λ for SCAD can also be determined 

via cross validation.

3.2.3 Comparison with Lasso in terms of ME—Apart from the comparison in terms 

of the oracle property between FCPSLR and the Lasso in Section 3.2.2, the result in this 

subsection may provide a second reason why local solutions to FCPSLR can potentially 

outperform the Lasso. [43] provides a set of intriguing comparisons between an optimal but 
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exponential-time estimator and all the polynomial-time computable estimators, including the 

Lasso. Those comparisons indicate a non-trivial gap in ME between these two types of 

estimators. Motivated by that result, we are particularly interested in how FCPSLR-MCP 

compares with both the optimal estimator and the Lasso under the same criterion of 

performance, namely, ME. Again, we focus on the undesirable case where ϰ(A) < 1, as in 

[43].

Corollary 7: Let ln p ≥ 1 and ϰ(A) < 1. Denote by x* an S3ONC solution to FCPSLR-MCP. 
Suppose that (i) Assumptions A.1, A.2 with K = 1 hold; and (ii) the RE condition (in 
Definition 1) is satisfied, then r4| | ≥ ϰ(A) > 0. Assume in addition f(x*) ≤ f(xlasso) a.s., 
where xlasso is defined in (4) with the problem data (xtrue, A, b) and parameter 

.

1.
If we let  and a ∈[0.8, 1), then there exists a problem-independent 
constant c6 > 0 such that:

(23)

with probability at least 1 − c1 exp(−c2 ln p) − c4 exp(−c5| | ln p) for some 
problem independent constants c1, c2, c4, c5 ∈ ℜ++;

2.
If we let  and a ∈[0.8, 1), then there exists a problem-independent 
constant c7: 0 < c7 < ∞ such that for any n > 1 that satisfies

(24)

where ψ: ℜp → ℜ+ is defined as

the ME is bounded by

(25)

with probability at least 1 − c1 exp(−c2 ln p) − c4 exp(−c5| | ln p).
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Remark 10: We would like to compare the S3ONC solutions to FCPSLR-MCP with both the 

optimal but exponential-time estimator in (5) and the Lasso, a polynomial-time estimator as 

in (4). From [6] the Lasso achieves an ME of

(26)

Comparing the ME of xexp in (20) and that of xlasso in (26), one may anticipate a significant 

gap in the performance when ϰ(A) ∈(0, 1) is small. It is also shown by [43] that, for any 

polynomial-time sparse estimator, the gap incurred by small ϰ(A) cannot be reduced without 

compromising the rate in n. In contrast, the results presented in Corollary 7 indicates that the 

performance of FCPSLR-MCP may resemble either xexp or xlasso in two different modes:

Mode 1. The Lasso-comparable mode: From the first part of Corollary 7, we see that 

the ME of FCPSLR-MCP as presented in (23) is comparable to the Lasso as in (26) 

in the worst-case, when the sample size is small.

Mode 2. The optimal estimator-comparable mode: When the sample size is greater 

than a threshold (24), which is linear in ln p and polynomial in some other problem 

dependent numbers, properly tuning parameter λ allows FCPSLR-MCP to enter a 

substantially enhanced mode that incurs an ME presented as in (25). The resulting 

ME is comparable to the optimal estimator, as in (20), in terms of dependency. Upon 

entering this mode, the ME of the S3ONC solution is no longer dependent on ϰ(A) 

and may dominate the Lasso especially when ϰ(A) is small.

In fact, one may choose a fairly flexible range of  and a = O(1) to achieve the 

same rate as in (23), and of  and a = O(1) to achieve the rate in (25). 

Practitioners can tune λ through in-sample cross validation, which is indeed the commonly 

adopted practice. Therefore, it may be unnecessary to keep in mind the aforementioned rules 

in determining λ, but use whichever value that works best according to the in-sample trials.

Remark 11: The function ψ(xtrue) measures the signal strength of the majority of the non-

zero signals, or more precisely, the largest “max{1, ⌈| | − r4| | · (ϰ(A))2| |⌉}”-many non-

zero dimensions (in terms of their absolute values), in the true parameter. One may observe 

that the inequality  always holds. This indicates that FCPSLR-

MCP may enter the optimal estimator-comparable mode even if  is very close 

to zero, given that the majority of the nonzero signals are strong enough.

Remark 12: Corollary 7 is in fact a direct implication of Theorem 3 to the case of FCPSLR-

MCP. One may also apply Theorem 3 to obtain a bound for ME of FCPSLR-SCAD. 

However, admittedly, Condition B for FCPSLR-SCAD is more restrictive than that for the 

MCP case, resulting in a possibly less desirable theoretical performance estimate. 

Nonetheless, we later will show in Section 5 that the empirical performance of FCPSLR-

SCAD and that of FCPSLR-MCP appear to be quite alike. We therefore think that our 
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results may have underestimated the power of SCAD. Yet we will leave improving the 

analysis for FCPSLR-SCAD to future research.

4 Technical Proofs

We prove our major results in Subsection 4.1, while some auxiliary results are presented in 

Subsection 4.2.

4.1 Proof of major results

4.1.1 Proof of Theorem 3—Firstly, under the simultaneous occurrence of both (a) the 

event that Condition B holds with initial solution x0 and (b) the event that f(x*) ≤ min{f(x0), 

f(xtrue)+Γ} is satisfied, for any t > 0, invoke Lemma 5 with any (a, λ) and p̃: p ≥ p̃ ≥ 2| | 

such that , we have that ||x*−xtrue||0 ≤ p̃ holds 

with probability at least . One obtains via some 

algebra that the above inequality is satisfied if p̃: p ≥ p̃ ≥ min{p, p̃Γ,a,γ} ≥ 2| | for arbitrarily 

fixed . This means that for any integer 

. with probability lower bounded by 

.

We next provide a probabilistic bound on the ME for any S3ONC solution x* satisfying 

. To do so, we invoke Lemma 2 for an arbitrary t > 0, where we let 

 within that lemma. Conditioning on the event that , we have 

with probability at least . (Notice that here we also let t only within 

Lemma 2 to be rescaled into .) By the union bound and by the facts that (a) ||x*||0 ≥ 0 

surely; and that (b)  surely, This completes the proof 

of Theorem 3 Part 1.

To show part 2, under the additional assumption of (14), we may follow almost the same 

argument as in the first part and obtain

(27)

with probability lower bounded by , which is 

the claimed result in the fourth inequality of (15). We also recall the notation of 

Ta,γ,n,xtrue,A(t) as in (12). If we invoke the second part of Lemma 2 by letting p̃:= p̃* (and 

rescale t only within Lemma 2 into p̃*t), together with the fact that ||x*||0 ≥ 0 surely, we 

obtain by the union bound that
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(28)

holds with probability greater or equal to P*(t, p̃*) as defined in (11), which is immediately 

the first inequality in the claimed results (15). Then by Lemma 3 (where we let p̃ = p̃*), 

combined with (28) and (27), we have the rest of the inequalities in (15) and (16) hold as 

desired in Theorem 3.

4.1.2. Proof of Theorem 4—By assumption, (17) holds, which implies both 

 and . Consider the following 

two events: {||x*−xtrue||0 ≤ p̃*} and 

. By Lemma 4 with p̃ = p̃*, we have that under the assumptions of Theorem 4, the 

simultaneous occurrence of the above two events leads to the desired result. The probability 

for their simultaneous occurrence is lower bounded by P*(t, p̃*) due to the second part of 

Theorem 3, which completes the proof.

4.1.3 Proof of Corollary 6—By invoking Lemma 6 under the assumption that f(x*) ≤ 

f(xlasso) almost surely, one has that

(29)

Using Corollaries 1 and 2 of [27], under the RE condition and Assumptions A.1 and A.2 

with K = 1, we have that for λlasso > 0, it holds that , with 

probability at least  for some . Since  for 

some arbitrarily chosen γ ∈[0, 1], combined with (29), we have

(30)

holds with probability 1−c1 exp(−c2nγln p). Invoking Lemma 1, we know that the RE 

condition implies Assumption A.3 with r4| | ≥ ϰ(A) > 0. Under the assumption that ln p ≥ 1, 

n > 1, and ϰ(A) < 1, one may easily verify that, with the given set of parameters, i.e., 

, a ∈[0.80, 1), both  and

Liu et al. Page 21

Math Program. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



are satisfied. Invoking Theorem 4 with x0 = x* (which implies f(x*) ≤ f(x0) surely), t = 2nγln 

p, p̃* = p̃ = 4| |, rp̃*= r4| |, and , to show the strong oracle 

property of x*, it suffices to show that both Condition B and (18) holds.

According to Assumption A.2 with K = 1, Condition B holds if a < 1, as assumed. Then (18) 

holds because of the following: Given  by 

assumption, then 

 for 

some problem-independent constant c̃3. We may as well let c̃3/c3 < 1. As a result, condition 

(18) is satisfied. Combining Theorem 4 with (30) by the union bound, we have x* = xoracle, 

with probability at least P*(2nγln p, 4| |) − c1 exp(−c2nγln p). Further invoking (11) and the 

assumption that n > 1 and ln p ≥ 1, we have P*(2nγln p, 4| |)−c1 exp(−c2nγln p) ≥ 1−c4 

exp(−c5| |nγln p)− c1 exp(−c2nγln p) for some problem independent constants c1, c2, c4, c5 

> 0.

4.1.4 Proof of Corollary 7—It follows by Lemma 1 that r4| | ≥ ϰ(A) > 0. Using Lemma 

6 under the assumption that f(x*) ≤ f(xlasso) a.s., one has that

(31)

Now we may invoke a well-known result on the recovery quality of the Lasso in the form of 

(4): Invoking Corollary 2 by [27], under the RE condition and Assumptions A.1 and A.2 

with K = 1 we have that when , it holds that 

with probability at least 1 − c1 exp(−c2 ln p) for some c1, c2 > 0. Now combining this with 

(31) yields , with 

probability at least 1 − c1 exp(−c2 ln p).

For MCP, Condition B is satisfied by Assumptions A.2, K = 1, and a < 1.

To show Part 1 of the corollary: Since we have assumed that , and a ≥ 0.8, in the 

MCP case of consideration, , which ensures that 

, given ln p ≥ 1 by assumption. Therefore, we may invoke 

(a) the first part of Theorem 3 with x0 = x* (which implies f(x*) ≤ f(x0) almost surely), 

Liu et al. Page 22

Math Program. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



, and ; 

for some problem-independent constant c5, and (b) the union bound, to obtain that 

for some problem-independent constant c6, with probability at least P*(2 ln p,min{p, c5| |·

[ϰ( )]−1})−c1 exp(−c2 ln p). Notice that P* is defined as in (11). Observing that, since ln p 
≥ 1, one has 1/(1 − exp(−ln p)) < 2 and that ϰ( ) < 1. Therefore,

where c4 is some problem-independent constant.

Now, consider the second part of the Corollary, where , and a ∈ [0.8, 1), under 

the assumption that ln p ≥ 1. Since ϰ(A) < 1, one may easily verify that, with the given set of 

parameters, we obtain p̃Γ,a,λ ≤ 4| |. Recall that we have shown r4| | ≥ ϰ(A) > 0 at the 

beginning of this proof. Then we may invoke the second part of Theorem 3 with p*̃ = 4| |, t 

= 2 ln p, x0 = x* (which implies f(x*) ≤ f(x0) almost surely), , 

and obtain that

(32)

holds with probability at least P*(2 ln p, 4| |)−c1 exp(−c2 ln p) ≥ 1−c4 exp(−c5| | ln p)− c1 

exp(−c2 ln p), where

(33)

Recall that

(34)
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If it holds that , then 

 for some 

problem-independent constant c̃7. We also recall that

which is the “max {1, ⌈| | − r4| | · [ϰ(A)]2| |⌉}”-th largest non-zero dimension of xtrue. 

Now, we let c̃7/c7 < 1. Combined with (33), 

. This with (32) and (34) completes the proof.

4.2 Auxiliary results

Lemma 2: Consider an arbitrary S3 ONC solution x* to FCPSLR (3) with either SCAD or 
MCP. For any integer p̃ : 0 ≤ p̃ ≤ p, let Assumptions A.1 and A.3 with p̃* ≥ p̃, i.e., rp̃* > 0, 
hold. Assume the simultaneous occurrence of (i) the event that Condition B is satisfied with 
an arbitrary initial solution x0; (ii) the event that f(x*) ≤ min{f(x0), f(xtrue) + Γ} holds for an 
arbitrary Γ ≥ 0; (iii) the event that p̃ ≥ ||x* − xtrue||0 obtains for some integer p̃. Then for any t 
> 0, 

holds with probability at least 1 − exp (−t + p̃ ln p).

If, in addition, Assumption A.3 holds with p̃* ≥ p̃, then 

holds with probability at least 1 − exp (−t + p̃ ln p), where rp̃ > 0.

Proof: Denote  and Sp̃ ⊆ {1, …, p} such that  for all i ∉ Sp̃. By 

assumption, we can ensure that ||δx*||0 ≤ |Sp̃| = p̃.

Denote by ASp̃ the sub-matrix of A with the largest size such that ASp̃ = (aji : j = 1, …, n, i ∈ 

Sp̃). Also denote . Following the argument in Lemma 8 of [31], ASp̃ 
admits a singular value decomposition with ASp̃ = VSp̃ DSp̃USp̃, for some matrix VSp̃ ∈ ℜn×p̃ 

with orthonormal columns, that is, , where I is an identity matrix. By such a 

construction, we have, for any υ ∈ ℜp̃, ||ASp̃υ|| = ||DSp̃USp̃υ||. Therefore, by the assumed 

event {||x* − xtrue||0 ≤ p̃}, one obtains that
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(35)

We want to make use of Lemma 8, which follows Theorem 2.1 in [22], to find an upper 

bound to (35). In that lemma, considering a fixed Sp̃, we let . Noticing that 

(Σv)2 = ΣvΣv = Σv. This means that Σv is an idempotent matrix. Then ||Σv|| ≤ 1 and Tr(Σv) = 

rank(Σv). Here Tr(·) and rank(·) are the trace and the rank of a matrix. Notice that VSp̃ has 

orthonormal columns. Therefore,  is a projection matrix onto the span of the column 

vectors of VSp̃, which is at most p̃ dimensional. Then . 

Now, we may invoke Lemma 8 with the settings discussed above and obtain 

. This inequality can be easily 

extended to yield

(36)

In this last inequality, we have not used a potentially tighter bound 

 for the sake of notational simplicity. We shall find (36) 

useful soon in the subsequent.

Now we start to derive the claimed bound in the first part of the lemma. For convenience, let 

us denote that

(37)

Invoking the second part of Lemma 7, we obtain
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(38)

If one combines (38) with (35), conditioning on the assumed event that ||x* − xtrue||0 ≤ p̃ 
holds,

(39)

By solving the inequality for  we obtain 

, almost surely, which implies , 

almost surely. Invoking (36), we know that

(40)

with probability at least 1−pp̃ ·exp(−t) = 1−exp (−t + p̃ ln p). This completes the proof for the 

first part of the lemma by the definition of 1 in (37).

To show the second part, we notice that (a) by Corollaries 3 and 4 under Condition B and the 

assumed event that f(x*) ≤ f(x0), we have  for all i = 1, …, p; (b) per 

properties of SCAD and MCP, for any x ∈ ℜ such that |x| ≥ aλ, one has ; (c) per 

properties of SCAD and MCP again,  for any x ∈ ℜ. Combining these 

observations yields  almost 

surely. This combined with (39) and (37) implies 

almost surely. Now by Assumption A.3 with p̃* ≥ p̃, we know that rp̃ ≥ rp̃* > 0. Thus, we 

may continue from the above inequality to obtain 
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almost surely, which immediately leads to 

 almost surely. 

Further invoking (36), one has 

holds with probability at least 1−exp (−t + p̃ ln p). Now, we recall that (40) holds almost 

surely conditioning on the same event. Therefore, with the same probability, one has 

, which is 

immediately the desired result if we recall again the definition of 1 in (37).

Lemma 3: Consider an arbitrary S3ONC solution x* ∈ ℜp to FCPSLR (3) with arbitrarily 
either SCAD or MCP. Assume the simultaneous occurrence of (i) the event that p̃ ≥ ||x* − 

xtrue||0 obtains for some integer p̃; and (ii) Event ℰa(p̃) defined as 

. If Assumption A.3 holds for p̃* ≥ p̃, then rp̃ > 0 and the following inequalities 
simultaneously hold a.s.:

(41)

(42)

and

(43)

Proof: Per Assumption A.3, rp̃ ≥ rp̃* > 0. Combined with the assumed event, ℰa(p̃), we 

immediately have
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(44)

Furthermore, by the assumed event that p̃ ≥ ||x* − xtrue||0 holds, we obtain from the above 

inequality that 

. This along with (44) yields the results in (41) and (42), respectively.

To show (43), combining (44) with the fact that , we know that, for all i ∈ , 

almost surely, . 

As an immediate result, almost surely

Therefore,  if the right hand side of the above is strictly positive. As an immediate 

result, 

, which leads to (43).

Lemma 4: Consider an arbitrary S3ONC solution x* to FCPSLR (3) with either SCAD or 
MCP. Let Assumption A.3 holds with p̃* ≥ p̃. Assume the simultaneous occurrence of (i) the 
event that Condition B is satisfied with any initial solution x0; (ii) the event that f(x*) ≤ f(x0) 

holds; (iii) the event that ||x*−xtrue||0 ≤ p̃ obtains for some integer p̃; (iv) Event ℰa(p̃). If for 
all i ∈ :

(45)

then rp̃ > 0 and it holds a.s. that . Furthermore, if 

, then x* equals the oracle solution, i.e., 

.
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Proof: Per Assumption A.3, rp̃ ≥ rp̃* > 0. Inequality (43) holds by invoking in Lemma 3 

under the assumed events (iii) and (iv) and Assumption A.3. Combining (43) with the 

assumption of (45), we have that

(46)

Therefore, invoking the assumed Event ℰa(p̃) again, one obtains that 

. Due to Corollaries 3 and 4 under S3ONC and the assumed events (i) and (ii), we know that 

 for all i = 1, ···, p a.s.. Combining this with the above inequality, as well 

as the fact that  for all i ∈ c by definition, results in 

, which is the first inequality in the claimed result.

Now if we let , we know from the above inequality that 1 > ||

x c||0 = 0. Consider the satisfaction of S3ONC by x*, which implies that x* also satisfies 

FONC. Therefore,

(47)

Further observe that 

. Recall that  for all i = 1,..., p due to Corollaries 3 and 4 under S3ONC, 

the assumed events (i) and (ii). Also notice that  for all i ∈  as shown in (46), we 

then may continue the above inequality as 

. Since we have shown that x* satisfies (47) and  for all i ∈ c almost surely, that is, x* 

is a feasible solution to {x ∈ ℜp : xi = 0, ∀i ∈ c} a.s. We then know 

, which is immediately the desired 

result.

Lemma 5: Let Assumptions A.1 hold. Consider a solution x* satisfying S3ONC of FCPSLR 
(3) with either SCAD or MCP. Assume the simultaneous occurrence of (i) the event that 
Condition B with any initial solution x0 is satisfied; and (ii) the event that f(x*) ≤ min{f(x0), 
f(xtrue) + Γ} holds for an arbitrary Γ ≥ 0. For any integer p̃ : 2| | ≤ p̃ ≤ p if the penalty 

parameters (a, λ) satisfy that , for an arbitrary t 
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> 0, then ||x* − xtrue||0 ≤ p̃ with probability at least 

.

Proof: Conditioning on the event that f(x*) ≤ f(xtrue) + Γ, we know that 

almost surely. Therefore, combined with the fact that Pλ(|x|) ≤ Pλ(aλ) for all x ∈ ℜ, it holds 

that 

. Combining the satisfaction of S3ONC by x* with (a) Corollaries 3 and 4, conditioning on 

both the event that Condition B holds and the event that f(x*) ≤ f(x0) is satisfied, which 

imply that |x*| ≥ aλ unless |x*| = 0; and with (b) the property of Pλ that Pλ(|x|) = Pλ(aλ) for 

all x ∈ ℜ : |x| ≥ aλ, one knows that  Therefore,

(48)

Now consider an event ℰ1 := {||x* − xtrue||0 = p̃ + k} for an arbitrary integer k : 1 ≤ k ≤ p−p̃. 
Conditioning on this event, following the same argument as in Lemma 3 (inspired by 

Lemma 8 of [31]), we may denote  and Sp̃+k ⊆ {1,..., p} such that 

 for all i ∉ Sp̃+k. By assumption, we can ensure that |Sp̃+k| = p̃ + k. Also denote by 

ASp̃+k the sub-matrix of A of the largest size such that ASp̃+k = (aji : j = 1,..., n, i ∈ Sp̃+k) and 

let . Then, ASp̃+k admits a singular value decomposition with ASp̃+k 
= VSp̃+kDSp̃+kUSp̃+k, for some matrix VSp̃+k ∈ ℜn×(p̃+k) with orthonormal columns, i.e., 

, where I is an identity matrix and for any υ ∈ ℜp̃+k, ||ASp̃+kυ|| = ||DSp̃+k 
USp̃+kυ||. Therefore, one obtains that

(49)

Therefore, conditioning on Event ℰ1 and observing that ||x*||0 ≥ p̃+k−| | almost surely 

(because of Event ℰ1 and the fact that ||xtrue||0 = | |), one may continue from (48) to obtain 

 almost 

surely. One may see the above as a quadratic inequality for . From the analysis 

above, such an inequality is feasible as long as f(x*) ≤ f(xtrue) + Γ, which holds almost surely 

conditioning on the assumed events. This feasibility implies that

Liu et al. Page 30

Math Program. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(50)

Now consider another event 

for an arbitrary t > 0. Conditioning on the simultaneous occurrence of both ℰ1 and ℰ2(t), we 

know from (50) that 

 almost 

surely, which contradicts with the assumption on the parameters (a, λ) such that 

 which 

implies . This means that 0 = Prob[ℰ1 

∩ ℰ2(t)]. Therefore, by the union bound,

(51)

where ℰ̄
1 and ℰ̄

2(t) are the complements of ℰ1 and ℰ2(t), respectively. Inequality (51) 

implies that Prob[ℰ̄
2(t)] ≥ Prob[ℰ1].

Recall the decomposition of ASp̃+k and the definition of Sp̃+k as in (49). We want to use 

Lemma 8, which follows Theorem 2.1 in [22], to bound Prob[ℰ̄
2(t)]. In that lemma, we let 

. Noticing that Σv is an idempotent matrix, then ||Σv|| ≤ 1 and Tr(Σv) = 

rank(Σv), where Tr(·) and rank(·) are trace and rank of a matrix. Because  is a 

projection matrix onto the span of the column vectors of VSp̃+k, which is at most p̃+k 

dimensional. Then . Now, we may invoke Lemma 8 

with the settings discussed above and obtain, for a fixed Sp̃+k and an arbitrary t′ > 0, 

. Further invoking the 

union bound, one obtains 

. For notational simplicity we have not used a potentially tighter bound 

 for the last inequality. By letting t′ = (p̃ + 

k)t, we immediately have Prob[ℰ̄
2(t)] ≤ p(p̃+k) · exp(−(p̃ + k)t).

Notice that the above argument holds for any integer k : 1 ≤ k ≤ p − p̃. Combined with (51), 

one may obtain that Prob [||x* − xtrue||0 = p̃ + k] ≤ exp (−(p̃ + k) (t − ln p)) for all k : 1 ≤ k ≤ 
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p − p̃. Also notice that if ||x* −xtrue||0 ≥ p̃ + 1, then it must hold that ||x* − xtrue||0 ∈ {p̃ + 1,..., 
p}. Hence, invoking the union bound, 

. The last 

equality is from the geometric sum. This immediately implies the desired result.

5 An S3ONC-Guaranteeing Algorithm and Numerical Results

To solve for a solution satisfying S3ONC, we adopt the potential reduction (PR) algorithm 

based on [40]. PR converges to a second-order KKT solution, which implies the S3ONC. 

See the online supplement [25] for more details. Alternative approaches such as interior 

point methods in [5] are theoretically guaranteed FPTAS to a second-order KKT solution. 

Since our analysis on the sparsity and statistical performance of FCPSLR are algorithm-

independent, one may substitute PR by any S3ONC-guaranteeing algorithms. We leave the 

comprehensive comparison among all alternative algorithms for future study.

We conduct two sets of numerical tests. We compare PR with several different initialization 

schemes in solving both FCPSLR-SCAD and FCPSLR-MCP. We also compare the first-

order solutions and the S3ONC solutions to FCPSLR-MCP. The detailed experiment setups 

are provided in [25].

In the first test set, we consider three different initialization schemes for both FCPSLR-

SCAD and -MCP: (i) starting from the analytic center; (ii) starting from the all-zero 

solution; (iii) starting from the Lasso solution. The observations are summarized in the 

following: Firstly, starting from any of the three initial solutions, the PR can correctly 

recover the oracle solution in nearly all instances, while (iii) results in the best performance. 

Secondly, the recovery qualities are fairly insensitive to the choice between MCP and 

SCAD, while our theories presented formerly indicate that SCAD often may require more 

conditions to ensure statistical performance. This implies that our theoretical findings on 

SCAD can potentially be improved. Thirdly, when the minimal signal strength is stronger, 

recovering the oracle solutions becomes easier.

The second test focuses on FCPSLR-MCP and compares between an S3ONC solution 

generated by PR and the FONC solution generated by local linear approximation (LLA). 

LLA is a learning algorithm proposed by [47] to solve sparse estimation problems including 

FCPSLR and is shown by [20] to converge to an FONC solution asymptotically. We 

compare PR with the state-of-the-art variant of LLA variant proposed by [17], namely, LLA 

initialized with the Lasso. The same paper shows the LLA variant entails the strong oracle 

property under the RE condition. With the same set of parameters and the same initialization 

scheme, we think that solutions generated by PR and by LLA are different at least in terms 

of whether the S3ONC is ensured or only the FONC is guaranteed. Therefore, the 
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comparison here may essentially represent the comparison between an S3ONC solution and 

a (wisely determined) FONC solution. From the numerical results, we see that both LLA 

and PR yield good performance. Nonetheless, we observe noticeable outperformance of PR 

over LLA for some choices of parameters, thus showing that the S3ONC solutions are more 

robust than the FONC solutions in statistical performance at least for some choices of 

parameters.

6 Conclusion

This paper studies the properties of an FCPSLR problem using SCAD or MCP for 

regularization. Despite that the global solution is shown to entail desirable recovery 

properties by [44], globally minimizing FCPSLR is NP-complete. This paper shows that the 

global optimality is in fact not necessarily stipulated to ensure the recovery quality. 

Specifically, we provide conditions for the parameters under which any local solution is a 

sparse estimator. More importantly, from an algorithm-independent point of view, we show 

the following results: (i) Any solution satisfying S3ONC to FCPSLR may achieve bounded 

statistical errors. Furthermore, those local solutions may even exactly recover the oracle 

solution, given that the minimal signal strength is large enough. These results also reveal that 

the statistical performance improves polynomially with the reduction in suboptimality gap. 

(ii) In the MCP case, the S3ONC solutions that have a lower objective value than the Lasso 

solution entail the strong oracle property. These local solutions may also dominate the Lasso 

in terms of ME when sample size is greater than a certain threshold, while the worst-case 

ME of those S3ONC solutions is comparable to Lasso. To our knowledge, this is the first 

theoretical guarantee for the statistical performance at the S3ONC solutions, disregarding the 

choice of computing procedures; it is also the first attempt to reveal the correlation between 

the optimization quality in solving the non-convex formulation of the learning problem and 

the statistical quality in sparse recovery. An S3ONC solution admits FPTAS, such as the 

interior point methods proposed by [5].

We employ PR to generate an S3ONC solution. Several predictions by our theory are 

verified by the numerical results. Meanwhile, they also indicate a potential gap between our 

theoretical results and the actual performance of FCPSLR-SCAD, which is an interesting 

question to pursue in future. Also of future interest is a comprehensive comparison among 

different S3ONC-guaranteeing algorithms.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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A Some Useful Lemmas

Lemma 6

For any xtrue ∈ ℜp, A ∈ ℜn×p, W ∈ ℜn, b = Axtrue + W, consider f as defined in (3) with 
arbitrarily either Pλ = Pλ,SCAD or Pλ = Pλ,MCP. Let x0 ∈ ℜp be a feasible solution to (3). If 
f(x0) satisfies that f(x0) ≤ f(xlasso), where xlasso is defined in (4) with the same problem data 
xtrue, A, and b as (3) and with an arbitrary penalty parameter λlasso > 0, then f(x0) − f(xtrue) 

≤ (λlasso + λ) |xlasso − xtrue|.

Proof

Denote that  for any x = (xi) ∈ ℜp.

Firstly, notice that by definition of xlasso in (4), flasso(xlasso) ≤ flasso(xtrue). We then know that 

Secondly, due to the concavity and differentiability of Pλ(·) on ℜ+ and the fact that 

 for all x ∈ ℜ, .

Combining the above and the assumption that f(x0) ≤ f(xlasso), we know that 

, as claimed.

Lemma 7

Assume that Condition B holds with initial solution x0 ∈ ℜp. For any xtrue ∈ ℜp, A ∈ ℜn×p, 

W ∈ ℜn, b = Axtrue + W, and for any  that satisfies (i) S3 ONC to (3) with 
arbitrarily either Pλ = Pλ,SCAD or Pλ = Pλ,MCP; and (ii) the inequality that f(x*) ≤ f(x0), the 
following inequality holds: 
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. If, in addition, f(x*) ≤ f(xtrue)+Γ for an arbitrary Γ ≥ 0, then 

.

Proof

Notice that b = Axtrue + W. Then for any 

.

Since x* satisfies S3ONC, which implies FONC, we know that 

. Therefore, 

. Combining 

the above, we know that 

. Further invoking the definitions of xtrue and  as well as triangular inequality and the fact 

that  for any x ∈ ℜ, we have 

. We then obtain 

the claimed result in the first part of the lemma.

To show the second part, by assumption, f(x*) ≤ f(xtrue)+Γ, we know 

. Noticing the fact that (i) 0 ≤ Pλ(|x|) ≤ Pλ(aλ) for any x ∈ ℜ, (ii) Pλ(|0|) = 0, and (iii) by 

definition of c,  for all i ∈ c, we hence know 

. 

Invoking Corollaries 3 and 4 under Condition B and the assumption that f(x*) ≤ f(x0), we 

know that . Also notice that Pλ(|x|) = Pλ(aλ) for all x ∈ ℜ: |x| ≥ aλ. 

Therefore, the above implies  and (2n)−1||A(x* − xtrue)||2 − 

n−1W⊤ A(x* − xtrue) ≤ Pλ(aλ) · (| | − ||x*||0) + Γ. Combined with the results from the first 

part of this lemma, we have the claimed result in the second part.
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Lemma 8

Consider a subgaussian ñ-dimensional random vector W ̃ in ℜñ that satisfies Prob[|〈W̃, υ〉| ≥ 

t] ≤ 2exp (−t2(2σ2)−1).for any υ ∈ ℜñ: ||υ|| = 1, then for any V ∈ ℜñ×ñ and Σv = V⊤V, 

 for any t > 0, where 
Tr(·) denotes the trace of a matrix.

Proof

Evident from Theorem 2.1 in [22].
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|, Assumption A.3 is a critical condition for the Lasso to ensure recovery quality – the restricted eigenvalue (RE) condition, which is first introduced by [6] (see its definition taken from [43] in Definition 1 below). We illustrate this relationship between the RE condition and Assumption A.3 in Lemma 1. Under the RE condition, [6] shows the recovery quality of the Lasso. [46] provides conditions and probability lower bounds for RE condition to hold. Although the RE condition with a more general setting of parameters is discussed by [6] and [33], the performance of the Lasso is unknown under the more general setting.Additionally, since the RE condition is also equivalent to the restricted strong convexity (RSC) condition in a linear regression model with some choices of parameters according to [27], therefore Assumption A.3 is also potentially weaker than the RSC condition discussed in [27].Definition 1 (RE condition [43]): The matrix A ∈ ℜn×p is said to satisfy the RE condition if, for some ϰ(A) > 0, it holds that  for all δx ∈ ∪|Ŝ|=|
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|ℂ(Ŝ) where ℂ(Ŝ) := {δx := (δxi) ∈ ℜp : |δxŜc| ≤ 3|δxŜ|}, δxŜc := (δxi : i ∈ Ŝc), and δxŜ := (δxi : i ∈ Ŝ). Furthermore, the largest possible ϰ(A) is said to be the restricted eigenvalue constant of A.Lemma 1: (a) The RE condition in Definition 1 implies Assumption A.3 with r4|
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| ≥ ϰ(A) > 0 and p̃* ≥ 4|
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|. (b) The reverse is not true.Proof: For Part (a), it suffices to show that for any δx = (δxi) ∈ ℜp : ||δx||0 ≤ 4|
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|, there always exists an index set Ŝ′ : |Ŝ′| = |
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|, such that |δxŜ′c| ≤ 3|δxŜ′|. Here δxŜ′c := (δxi : i ∈ Ŝ′c), and δxŜ′ := (δxi : i ∈ Ŝ′).If ||δx||0 ≤ |
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|, the above is trivially true. Otherwise, if ||δx||0 > |
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|, one can always pick Ŝ′ to be the set of indices of the first |
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| number of coordinates with the largest absolute value. As a result, mini∈Ŝ′ |δxi| ≥ maxi∈Ŝ′c |δxi| and |Ŝ′| = |
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|. We then know that , which leads to the desired result in Part (a).For Part (b), it suffices to show that for some δx ∈ ℜp, there exists an index set Ŝ′ : |Ŝ′| = |
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| such that |δxŜ′c| ≤ 3|δxŜ′|, but δx does not satisfy ||δx||0 ≤ 4|
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|. An example can be δxi = 1/|
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 and δxi = 1/(p−|
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. If we pick Ŝ′ = 
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, the above is evident.[46] and [29] show that the RE condition can be satisfied with high probability when the design matrix is generated following Gaussian and/or subgaussian distributions. Potentially more general settings for the RE condition can be obtained from the discussions by [30], [1] and [35]. Since Assumption A.3 can be more general than the RE condition, the former may be easier (in the sense of occurring with a better probability or of requiring weaker assumptions on the underlying distribution) to hold when the design matrix is random.We will impose some conditions on the parameters of the FCP:Condition B(B1)For SCAD,  for all 1 ≤ i ≤ p and  for a given initial solution x0.(B2)For MCP,  for all 1 ≤ i ≤ p and λ > 0.The above condition ensures that the assumptions of Corollaries 3 and 4 hold for both SCAD and MCP. The stipulation on λ for the SCAD case is conceivably stronger than for the MCP case. For the former, a wise initial solution x0 that has a good solution quality may allow for more flexible choices of λ, while, for the latter, Condition B is non-restrictive on λ. Under Assumption A.2, the requirements of Condition B on parameter a is satisfied for any a : a < 1 + K−1 in the SCAD case and for any a : a < K−1 in the MCP case.
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1 in (37).To show the second part, we notice that (a) by Corollaries 3 and 4 under Condition B and the assumed event that f(x*) ≤ f(x0), we have  for all i = 1, …, p; (b) per properties of SCAD and MCP, for any x ∈ ℜ such that |x| ≥ aλ, one has ; (c) per properties of SCAD and MCP again,  for any x ∈ ℜ. Combining these observations yields  almost surely. This combined with (39) and (37) implies  almost surely. Now by Assumption A.3 with p̃* ≥ p̃, we know that rp̃ ≥ rp̃* > 0. Thus, we may continue from the above inequality to obtain  almost surely, which immediately leads to  almost surely. Further invoking (36), one has  holds with probability at least 1−exp (−t + p̃ ln p). Now, we recall that (40) holds almost surely conditioning on the same event. Therefore, with the same probability, one has , which is immediately the desired result if we recall again the definition of 
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1 in (37).Lemma 3: Consider an arbitrary S3ONC solution x* ∈ ℜp to FCPSLR (3) with arbitrarily either SCAD or MCP. Assume the simultaneous occurrence of (i) the event that p̃ ≥ ||x* − xtrue||0 obtains for some integer p̃; and (ii) Event ℰa(p̃) defined as . If Assumption A.3 holds for p̃* ≥ p̃, then rp̃ > 0 and the following inequalities simultaneously hold a.s.:(41)(42)and(43)Proof: Per Assumption A.3, rp̃ ≥ rp̃* > 0. Combined with the assumed event, ℰa(p̃), we immediately have(44)Furthermore, by the assumed event that p̃ ≥ ||x* − xtrue||0 holds, we obtain from the above inequality that . This along with (44) yields the results in (41) and (42), respectively.To show (43), combining (44) with the fact that , we know that, for all i ∈ 
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, almost surely, . As an immediate result, almost surelyTherefore,  if the right hand side of the above is strictly positive. As an immediate result, , which leads to (43).Lemma 4: Consider an arbitrary S3ONC solution x* to FCPSLR (3) with either SCAD or MCP. Let Assumption A.3 holds with p̃* ≥ p̃. Assume the simultaneous occurrence of (i) the event that Condition B is satisfied with any initial solution x0; (ii) the event that f(x*) ≤ f(x0) holds; (iii) the event that ||x*−xtrue||0 ≤ p̃ obtains for some integer p̃; (iv) Event ℰa(p̃). If for all i ∈ 
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:(45)then rp̃ > 0 and it holds a.s. that . Furthermore, if , then x* equals the oracle solution, i.e., .Proof: Per Assumption A.3, rp̃ ≥ rp̃* > 0. Inequality (43) holds by invoking in Lemma 3 under the assumed events (iii) and (iv) and Assumption A.3. Combining (43) with the assumption of (45), we have that(46)Therefore, invoking the assumed Event ℰa(p̃) again, one obtains that . Due to Corollaries 3 and 4 under S3ONC and the assumed events (i) and (ii), we know that  for all i = 1, ···, p a.s.. Combining this with the above inequality, as well as the fact that  for all i ∈ 
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c by definition, results in , which is the first inequality in the claimed result.Now if we let , we know from the above inequality that 1 > ||x
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c||0 = 0. Consider the satisfaction of S3ONC by x*, which implies that x* also satisfies FONC. Therefore,(47)Further observe that . Recall that  for all i = 1,..., p due to Corollaries 3 and 4 under S3ONC, the assumed events (i) and (ii). Also notice that  for all i ∈ 
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 as shown in (46), we then may continue the above inequality as . Since we have shown that x* satisfies (47) and  for all i ∈ 
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c almost surely, that is, x* is a feasible solution to {x ∈ ℜp : xi = 0, ∀i ∈ 
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c} a.s. We then know , which is immediately the desired result.Lemma 5: Let Assumptions A.1 hold. Consider a solution x* satisfying S3ONC of FCPSLR (3) with either SCAD or MCP. Assume the simultaneous occurrence of (i) the event that Condition B with any initial solution x0 is satisfied; and (ii) the event that f(x*) ≤ min{f(x0), f(xtrue) + Γ} holds for an arbitrary Γ ≥ 0. For any integer p̃ : 2|
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| ≤ p̃ ≤ p if the penalty parameters (a, λ) satisfy that , for an arbitrary t > 0, then ||x* − xtrue||0 ≤ p̃ with probability at least .Proof: Conditioning on the event that f(x*) ≤ f(xtrue) + Γ, we know that  almost surely. Therefore, combined with the fact that Pλ(|x|) ≤ Pλ(aλ) for all x ∈ ℜ, it holds that . Combining the satisfaction of S3ONC by x* with (a) Corollaries 3 and 4, conditioning on both the event that Condition B holds and the event that f(x*) ≤ f(x0) is satisfied, which imply that |x*| ≥ aλ unless |x*| = 0; and with (b) the property of Pλ that Pλ(|x|) = Pλ(aλ) for all x ∈ ℜ : |x| ≥ aλ, one knows that  Therefore,(48)Now consider an event ℰ1 := {||x* − xtrue||0 = p̃ + k} for an arbitrary integer k : 1 ≤ k ≤ p−p̃. Conditioning on this event, following the same argument as in Lemma 3 (inspired by Lemma 8 of [31]), we may denote  and Sp̃+k ⊆ {1,..., p} such that  for all i ∉ Sp̃+k. By assumption, we can ensure that |Sp̃+k| = p̃ + k. Also denote by ASp̃+k the sub-matrix of A of the largest size such that ASp̃+k = (aji : j = 1,..., n, i ∈ Sp̃+k) and let . Then, ASp̃+k admits a singular value decomposition with ASp̃+k = VSp̃+kDSp̃+kUSp̃+k, for some matrix VSp̃+k ∈ ℜn×(p̃+k) with orthonormal columns, i.e., , where I is an identity matrix and for any υ ∈ ℜp̃+k, ||ASp̃+kυ|| = ||DSp̃+k USp̃+kυ||. Therefore, one obtains that(49)Therefore, conditioning on Event ℰ1 and observing that ||x*||0 ≥ p̃+k−|
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg version="1.0" id="Layer_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px"
width="10.818px" height="9.586px" viewBox="5.424 -1.39 10.818 9.586" enable-background="new 5.424 -1.39 10.818 9.586"
xml:space="preserve">
<path d="M16.242-0.661c0,0.524-0.312,1.131-0.935,1.82c-0.453,0.5-0.986,0.968-1.6,1.402c-0.515,0.359-1.043,0.666-1.586,0.92
c-0.496,1.048-0.93,1.832-1.303,2.35C9.692,7.408,8.381,8.197,6.89,8.197c-0.978,0-1.466-0.373-1.466-1.119
c0-0.227,0.076-0.428,0.227-0.604c0.151-0.178,0.338-0.266,0.56-0.266c0.288,0,0.432,0.137,0.432,0.41
c0,0.316-0.153,0.475-0.46,0.475c-0.123,0-0.245-0.057-0.368-0.17c-0.047,0.062-0.071,0.14-0.071,0.233
c0,0.255,0.156,0.456,0.468,0.602c0.245,0.118,0.51,0.178,0.793,0.178c1.151,0,2.197-0.836,3.137-2.507
c0.193-0.34,0.474-0.856,0.843-1.55c-0.331,0.066-0.626,0.099-0.886,0.099c-0.632,0-1.168-0.175-1.606-0.524
C8.013,3.075,7.775,2.577,7.775,1.959c0-0.878,0.433-1.641,1.296-2.287c0.723-0.543,1.563-0.897,2.521-1.062l0.042,0.234
c-0.92,0.255-1.689,0.649-2.308,1.182C8.579,0.673,8.207,1.419,8.207,2.263c0,0.486,0.21,0.859,0.63,1.119
c0.354,0.222,0.788,0.333,1.303,0.333c0.255,0,0.587-0.052,0.998-0.156c1.185-2.128,2.204-3.561,3.059-4.297
c0.486-0.416,0.937-0.623,1.353-0.623C16.011-1.362,16.242-1.128,16.242-0.661z M15.924-0.661c0-0.292-0.135-0.438-0.403-0.438
c-0.944,0-2.004,1.373-3.179,4.12c0.42-0.174,0.861-0.429,1.323-0.765c0.52-0.382,0.989-0.812,1.409-1.288
C15.641,0.326,15.924-0.217,15.924-0.661z"/>
</svg>
| almost surely (because of Event ℰ1 and the fact that ||xtrue||0 = |
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|), one may continue from (48) to obtain  almost surely. One may see the above as a quadratic inequality for . From the analysis above, such an inequality is feasible as long as f(x*) ≤ f(xtrue) + Γ, which holds almost surely conditioning on the assumed events. This feasibility implies that(50)Now consider another event  for an arbitrary t > 0. Conditioning on the simultaneous occurrence of both ℰ1 and ℰ2(t), we know from (50) that  almost surely, which contradicts with the assumption on the parameters (a, λ) such that  which implies . This means that 0 = Prob[ℰ1 ∩ ℰ2(t)]. Therefore, by the union bound,(51)where ℰ̄1 and ℰ̄2(t) are the complements of ℰ1 and ℰ2(t), respectively. Inequality (51) implies that Prob[ℰ̄2(t)] ≥ Prob[ℰ1].Recall the decomposition of ASp̃+k and the definition of Sp̃+k as in (49). We want to use Lemma 8, which follows Theorem 2.1 in [22], to bound Prob[ℰ̄2(t)]. In that lemma, we let . Noticing that Σv is an idempotent matrix, then ||Σv|| ≤ 1 and Tr(Σv) = rank(Σv), where Tr(·) and rank(·) are trace and rank of a matrix. Because  is a projection matrix onto the span of the column vectors of VSp̃+k, which is at most p̃+k dimensional. Then . Now, we may invoke Lemma 8 with the settings discussed above and obtain, for a fixed Sp̃+k and an arbitrary t′ > 0, . Further invoking the union bound, one obtains . For notational simplicity we have not used a potentially tighter bound  for the last inequality. By letting t′ = (p̃ + k)t, we immediately have Prob[ℰ̄2(t)] ≤ p(p̃+k) · exp(−(p̃ + k)t).Notice that the above argument holds for any integer k : 1 ≤ k ≤ p − p̃. Combined with (51), one may obtain that Prob [||x* − xtrue||0 = p̃ + k] ≤ exp (−(p̃ + k) (t − ln p)) for all k : 1 ≤ k ≤ p − p̃. Also notice that if ||x* −xtrue||0 ≥ p̃ + 1, then it must hold that ||x* − xtrue||0 ∈ {p̃ + 1,..., p}. Hence, invoking the union bound, . The last equality is from the geometric sum. This immediately implies the desired result.
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