Skip to main content
Log in

Semidefinite and linear programming integrality gaps for scheduling identical machines

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

Sherali and Adams (SIAM J Discrete Math 3:411–430, 1990) and Lovász and Schrijver (SIAM J Optim 1:166–190, 1991) developed systematic procedures to construct the hierarchies of relaxations known as lift-and-project methods. They have been proven to be a strong tool for developing approximation algorithms, matching the best relaxations known for problems like Max-Cut and Sparsest-Cut. In this work we provide lower bounds for these hierarchies when applied over the configuration LP for the problem of scheduling identical machines to minimize the makespan. First we show that the configuration LP has an integrality gap of at least 1024/1023 by providing a family of instances with 15 different job sizes. Then we show that for any integer n there is an instance with n jobs in this family such that after \(\varOmega (n)\) rounds of the Sherali–Adams (\(\text {SA}\)) or the Lovász–Schrijver (\(\text {LS}_+\)) hierarchy the integrality gap remains at least 1024/1023.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The description of the projection of the configuration LP onto the assignment space corresponds to the assignment LP stranghtened with additional constraints [29].

  2. This definition is slightly different from the one in Sherali and Adams [27]; for simplicity we give a definition that, in the case of equality constraints, is equivalent. Indeed, note that if for every variable \(x_k\) there exist a set of variables’ indices \(S_k\), \(k \in S_k\) and a constant \(c_k\ge 1\) such that the constraint \(\sum _{\ell \in S_k} x_\ell = c_k\) is valid for the starting polytope P, then for every subsets \(I, K \subseteq [n]\), \(|I \dot{\cup }K| \le r\) and every constraint of P, \(\sum a_j x_j -b \ge 0\) the generated SA constraint \(\mathbb {L}\left( (\sum a_j x_j - b) \prod _{i \in I} x_i \prod _{k \in K}(1-x_k)\right) \ge 0\) can be replaced with \(\mathbb {L}\left( (\sum a_j x_j - b) \prod _{i \in I} x_i \prod _{k \in K}(\sum _{\ell \in S_k \setminus \{k\}} x_\ell +c_k-1) \right) \ge 0\). The operator \(\mathbb {L}\) corresponds to the linearization of the polynomial products.

References

  1. Alekhnovich, M., Arora, S., Tourlakis, I.: Towards strong nonapproximability results in the Lovász–Schrijver hierarchy. In: STOC, pp. 294–303 (2005)

  2. Alon, N., Azar, Y., Woeginger, G.J., Yadid, T.: Approximation schemes for scheduling. In: SODA, pp. 493–500 (1997)

  3. Arora, S., Bollobás, B., Lovász, L., Tourlakis, I.: Proving integrality gaps without knowing the linear program. Theory Comput. 2, 19–51 (2006)

    Article  MathSciNet  Google Scholar 

  4. Arora, S., Rao, S., Vazirani, U.: Expander flows, geometric embeddings and graph partitioning. J. ACM 56(2), 5 (2009)

    Article  MathSciNet  Google Scholar 

  5. Bansal, N.: Approximating independent sets in sparse graphs. In: SODA, pp. 1–8 (2015)

    Google Scholar 

  6. Bansal, N., Srinivasan, A., Svensson, O.: Lift-and-round to improve weighted completion time on unrelated machines. CoRR arXiv:1511.07826 (2015)

  7. Buresh-Oppenheim, J., Galesi, N., Hoory, S., Magen, A., Pitassi, T.: Rank bounds and integrality gaps for cutting planes procedures. Theory Comput. 2, 65–90 (2006)

    Article  MathSciNet  Google Scholar 

  8. Chan, S.O., Lee, J., Raghavendra, P., Steurer, D.: Approximate constraint satisfaction requires large lp relaxations. In: FOCS, pp. 350–359. IEEE (2013)

  9. Charikar, M.: On semidefinite programming relaxations for graph coloring and vertex cover. In: SODA, pp. 616–620 (2002)

  10. Chlamtac, E., Friggstad, Z., Georgiou, K.: Lift-and-project methods for set cover and knapsack. In: Algorithms and Data Structures, pp. 256–267 (2013)

    Google Scholar 

  11. Chlamtac, E., Tulsiani, M.: Convex relaxations and integrality gaps. In: Handbook on semidefinite, conic and polynomial optimization, pp. 139–169. Springer, Berlin (2012)

    MATH  Google Scholar 

  12. Feige, U., Krauthgamer, R.: The probable value of the Lovász–Schrijver relaxations for maximum independent set. SIAM J. Comput. 32, 345–370 (2003)

    Article  MathSciNet  Google Scholar 

  13. Garey, M., Johnson, D.: “Strong” NP-completeness results: motivation, examples, and implications. J. ACM 25, 499–508 (1978)

    Article  MathSciNet  Google Scholar 

  14. Georgiou, K., Magen, A., Pitassi, T., Tourlakis, I.: Integrality gaps of 2-o(1) for vertex cover SDPs in the Lovász–Schrijver hierarchy. SIAM J. Comput. 39, 3553–3570 (2010)

    Article  MathSciNet  Google Scholar 

  15. Goemans, M., Williamson, D.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42, 1115–1145 (1995)

    Article  MathSciNet  Google Scholar 

  16. Gvozdenovic, N., Laurent, M.: The operator \(\psi \) for the chromatic number of a graph. SIAM J. Optim. 19, 572–591 (2008)

    Article  MathSciNet  Google Scholar 

  17. Hochbaum, D., Shmoys, D.: Using dual approximation algorithms for scheduling problems theoretical and practical results. J. ACM 34, 144–162 (1987)

    Article  MathSciNet  Google Scholar 

  18. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  19. Kurpisz, A., Leppänen, S., Mastrolilli, M.: A Lasserre lower bound for the min-sum single machine scheduling problem. Algorithms ESA 2015, 853–864 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Lasserre, J.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11, 796–817 (2001)

    Article  MathSciNet  Google Scholar 

  21. Laurent, M.: A comparison of the Sherali–Adams, Lovász–Schrijver, and Lasserre relaxations for 0–1 programming. Math. Oper. Res. 28, 470–496 (2003)

    Article  MathSciNet  Google Scholar 

  22. Levey, E., Rothvoss, T.: A Lasserre-based \((1+\varepsilon )\)-approximation for \(\text{P}m | p_j=1, \text{ prec } | \text{ C }_{\max }\). CoRR arXiv:1509.07808 (2015)

  23. Lovász, L., Schrijver, A.: Cones of matrices and set-functions and 0–1 optimization. SIAM J. Optim. 1, 166–190 (1991)

    Article  MathSciNet  Google Scholar 

  24. Parrilo, P.: Semidefinite programming relaxations for semialgebraic problems. Math. Program. 96, 293–320 (2003)

    Article  MathSciNet  Google Scholar 

  25. Rothvoß, T.: The lasserre hierarchy in approximation algorithms. Lecture notes for the MAPSP (2013)

  26. Schoenebeck, G., Trevisan, L., Tulsiani, M.: Tight integrality gaps for Lovász–Schrijver LP relaxations of vertex cover and max cut. In: Proceedings of the Thirty-ninth Annual ACM Symposium on Theory of Computing, pp. 302–310 (2007)

  27. Sherali, H., Adams, W.: A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM J. Discrete Math. 3, 411–430 (1990)

    Article  MathSciNet  Google Scholar 

  28. de la Vega, W.F., Mathieu, C.: Linear programming relaxations of maxcut. In: SODA, pp. 53–61 (2007)

  29. Verschae, J., Wiese, A.: On the configuration-LP for scheduling on unrelated machines. J. Sched. 17, 371–383 (2014)

    Article  MathSciNet  Google Scholar 

  30. Williamson, D., Shmoys, D.: The Design of Approximation Algorithms. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Verdugo.

Additional information

Supported by the Swiss National Science Foundation project 200020-144491/1 “Approximation Algorithms for Machine Scheduling Through Theory and Experiments,” by Sciex Project 12.311, by DFG Grant MO 2889/1-1, and by CONICYT-PCHA/Doctorado Nacional/2014-21140930.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurpisz, A., Mastrolilli, M., Mathieu, C. et al. Semidefinite and linear programming integrality gaps for scheduling identical machines. Math. Program. 172, 231–248 (2018). https://doi.org/10.1007/s10107-017-1152-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-017-1152-5

Keywords

Mathematics Subject Classification

Navigation