Skip to main content
Log in

Approximating graph-constrained max-cut

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

An instance of the graph-constrained max-cut (\(\mathsf {GCMC}\)) problem consists of (i) an undirected graph \(G=(V,E)\) and (ii) edge-weights \(c:{V\atopwithdelims ()2} \rightarrow \mathbb {R}_+\) on a complete undirected graph. The objective is to find a subset \(S \subseteq V\) of vertices satisfying some graph-based constraint in G that maximizes the weight \(\sum _{u\in S, v\not \in S} c_{uv}\) of edges in the cut \((S,V{\setminus } S)\). The types of graph constraints we can handle include independent set, vertex cover, dominating set and connectivity. Our main results are for the case when G is a graph with bounded treewidth, where we obtain a \(\frac{1}{2}\)-approximation algorithm. Our algorithm uses an LP relaxation based on the Sherali–Adams hierarchy. It can handle any graph constraint for which there is a dynamic program of a specific form. Using known decomposition results, these imply essentially the same approximation ratio for \(\mathsf {GCMC}\) under constraints such as independent set, dominating set and connectivity on a planar graph G.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. For other polynomial-time dynamic programs, the LP has quasi-polynomial size.

  2. A partition P is said to be satisfied by another partition \(P'\) if every pair of elements in the same part of P also lie in the same part of \(P'\).

References

  1. Ageev, A.A., Hassin, R., Sviridenko, M.: A 0.5-approximation algorithm for MAX DICUT with given sizes of parts. SIAM J. Discrete Math. 14(2), 246–255 (2001)

    Article  MathSciNet  Google Scholar 

  2. Ageev, A.A., Sviridenko, M.: Approximation algorithms for maximum coverage and max cut with given sizes of parts. In: G. Cornuéjols, R.E. Burkard, G.J. Woeginger (eds.) Integer Programming and Combinatorial Optimization, 7th International IPCO Conference, Graz, June 9–11, 1999, Proceedings, Lecture Notes in Computer Science, vol. 1610, pp. 17–30. Springer, Berlin (1999)

    Chapter  Google Scholar 

  3. Bansal, N., Lee, K., Nagarajan, V., Zafer, M.: Minimum congestion mapping in a cloud. SIAM J. Comput. 44(3), 819–843 (2015)

    Article  MathSciNet  Google Scholar 

  4. Barahona, F., Grötschel, M., Jünger, M., Reinelt, G.: An application of combinatorial optimization to statistical physics and circuit layout design. Oper. Res. 36(3), 493–513 (1988)

    Article  Google Scholar 

  5. Bateni, M., Charikar, M., Guruswami, V.: Maxmin allocation via degree lower-bounded arborescences. In: M. Mitzenmacher (ed.) Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, May 31–June 2, pp. 543–552. ACM (2009)

  6. Bienstock, D., Özbay, N.: Tree-width and the Sherali–Adams operator. Discrete Optim. 1(1), 13–21 (2004)

    Article  MathSciNet  Google Scholar 

  7. Bodlaender, H.L.: NC-algorithms for graphs with small treewidth. In: van Leeuwen, J. (ed.) Graph-Theoretic Concepts in Computer Science, 14th International Workshop, WG’88, Amsterdam, June 15–17, 1988, Proceedings, Lecture Notes in Computer Science, vol. 344, pp. 1–10. Springer, Berlin (1988)

    Google Scholar 

  8. Călinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM J. Comput. 40(6), 1740–1766 (2011)

    Article  MathSciNet  Google Scholar 

  9. Chan, S.O., Lee, J.R., Raghavendra, P., Steurer, D.: Approximate constraint satisfaction requires large LP relaxations. J. ACM 63(4), 34:1–342:2 (2016)

    Article  MathSciNet  Google Scholar 

  10. Chang, K.C., Du, D.H.: Efficient algorithms for layer assignment problem. IEEE Trans. CAD Integr. Circuits Syst. 6(1), 67–78 (1987)

    Article  Google Scholar 

  11. Chekuri, C., Vondrák, J., Zenklusen, R.: Submodular function maximization via the multilinear relaxation and contention resolution schemes. SIAM J. Comput. 43(6), 1831–1879 (2014)

    Article  MathSciNet  Google Scholar 

  12. Demaine, E.D., Hajiaghayi, M., Kawarabayashi, K.: Contraction decomposition in h-minor-free graphs and algorithmic applications. In: Fortnow, L., Vadhan, S.P. (eds.) Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA, 6–8 June 2011, pp. 441–450. ACM (2011)

  13. Demaine, E.D., Hajiaghayi, M.T., Kawarabayashi, K.: Algorithmic graph minor theory: decomposition, approximation, and coloring. In: 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2005), 23–25 Oct 2005, Pittsburgh, PA, Proceedings, pp. 637–646. IEEE Computer Society (2005)

  14. Feldman, M., Naor, J., Schwartz, R.: A unified continuous greedy algorithm for submodular maximization. In: Ostrovsky, R. (ed.) IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011, Palm Springs, CA, Oct 22–25, 2011, pp. 570–579. IEEE Computer Society (2011)

  15. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  16. Friggstad, Z., Könemann, J., Kun-Ko, Y., Louis, A., Shadravan, M., Tulsiani, M.: Linear programming hierarchies suffice for directed Steiner tree. In: Lee, J., Vygen, J. (eds.) Integer Programming and Combinatorial Optimization—17th International Conference, IPCO 2014, Bonn, June 23–25, 2014. Proceedings, Lecture Notes in Computer Science, vol. 8494, pp. 285–296. Springer (2014)

  17. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42(6), 1115–1145 (1995)

    Article  MathSciNet  Google Scholar 

  18. Gupta, A., Talwar, K., Witmer, D.: Sparsest cut on bounded treewidth graphs: algorithms and hardness results. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA, June 1–4, 2013, pp. 281–290. ACM (2013)

  19. Hajiaghayi, M.T., Kortsarz, G., MacDavid, R., Purohit, M., Sarpatwar, K.K.: Approximation algorithms for connected maximum cut and related problems. In: Bansal, N., Finocchi, I. (eds.) Algorithms—ESA 2015—23rd Annual European Symposium, Patras, Sept 14–16, 2015, Proceedings, vol. 9294, pp. 693–704. Springer, Berlin (2015)

    Chapter  Google Scholar 

  20. Håstad, J.: Clique is hard to approximate withinn \(1- \varepsilon \). Acta Math. 182(1), 105–142 (1999)

    Article  MathSciNet  Google Scholar 

  21. Jalali, A., Srebro, N.: Clustering using max-norm constrained optimization. In: Proceedings of the 29th International Conference on Machine Learning, ICML 2012, Edinburgh, Scotland, June 26–July 1, 2012. icml.cc/Omnipress (2012)

  22. Khot, S., Kindler, G., Mossel, E., O’Donnell, R.: Optimal inapproximability results for MAX-CUT and other 2-variable CSPs? SIAM J. Comput. 37(1), 319–357 (2007)

    Article  MathSciNet  Google Scholar 

  23. Lee, J., Mirrokni, V.S., Nagarajan, V., Sviridenko, M.: Maximizing nonmonotone submodular functions under matroid or knapsack constraints. SIAM J. Discrete Math. 23(4), 2053–2078 (2010)

    Article  MathSciNet  Google Scholar 

  24. Lee, J., Nagarajan, V., Shen, X.: Max-cut under graph constraints. In: Louveaux, Q., Skutella, M. (eds.) Integer Programming and Combinatorial Optimization—18th International Conference, IPCO 2016, Liège, Belgium, June 1–3, 2016, Proceedings, Lecture Notes in Computer Science, vol. 9682, pp. 50–62. Springer, Berlin (2016)

    Google Scholar 

  25. Lee, J., Sviridenko, M., Vondrák, J.: Submodular maximization over multiple matroids via generalized exchange properties. Math. Oper. Res. 35(4), 795–806 (2010)

    Article  MathSciNet  Google Scholar 

  26. Lee, J.D., Recht, B., Salakhutdinov, R., Srebro, N., Tropp, J.A.: Practical large-scale optimization for max-norm regularization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a meeting held 6–9 Dec 2010, Vancouver, BC, pp. 1297–1305. Curran Associates, Inc, Red Hook (2010)

  27. Magen, A., Moharrami, M.: Robust algorithms for on minor-free graphs based on the Sherali–Adams hierarchy. In: Dinur, I., Jansen, K., Naor, J., Rolim, J.D.P. (eds.) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 12th International Workshop, APPROX 2009, and 13th International Workshop, RANDOM 2009, Berkeley, CA, Aug 21–23, 2009. Proceedings, Lecture Notes in Computer Science, vol. 5687, pp. 258–271. Springer, Berlin (2009)

    Chapter  Google Scholar 

  28. Sherali, H.D., Adams, W.P.: A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM J. Discrete Math. 3(3), 411–430 (1990)

    Article  MathSciNet  Google Scholar 

  29. Vicente, S., Kolmogorov, V., Rother, C.: Graph cut based image segmentation with connectivity priors. In: 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2008), 24–26 June 2008, Anchorage, Alaska. IEEE Computer Society (2008)

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable comments and suggestions to improve the quality of the paper. The cleaner proof of Observation 1 presented here was provided by an anonymous reviewer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangkun Shen.

Additional information

A preliminary announcement of this work appeared as the extended abstract [24].

Research of J. Lee was partially supported by NSF Grant CMMI-1160915 and ONR Grant N00014-14-1-0315.

Research of V. Nagarajan supported in part by a faculty award from Bloomberg Labs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, X., Lee, J. & Nagarajan, V. Approximating graph-constrained max-cut. Math. Program. 172, 35–58 (2018). https://doi.org/10.1007/s10107-017-1154-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-017-1154-3

Mathematics Subject Classification

Navigation