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Abstract

The class of matrix optimization problems (MOPs) has been recognized in recent years to be a
powerful tool by researchers far beyond the optimization community to model many important ap-
plications involving structured low rank matrices. This trend can be credited to some extent to the
exciting developments in the emerging field of compressed sensing. The Löwner operator, which gen-
erates a matrix valued function by applying a single-variable function to each of the singular values
of a matrix, has played an important role for a long time in solving matrix optimization problems.
However, the classical theory developed for Löwner operators has become inadequate in these recent
applications. The main objective of this paper is to provide some necessary theoretical foundations for
designing numerical methods for solving the MOP. This goal is achieved by introducing and conducting
a thorough study on a new class of matrix valued functions, coined as spectral operators of matrices.
Several fundamental properties of spectral operators, including the well-definedness, continuity, di-
rectional differentiability, Fréchet-differentiability, locally Lipschitzian continuity, ρ-order B(ouligand)-
differentiability (0 < ρ ≤ 1), ρ-order G-semismooth (0 < ρ ≤ 1) and the characterization of Clarke’s
generalized Jacobian, are systematically studied.
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OR/MS subject classifications: Primary: Mathematics/matrices; Secondary: Mathematics/functions
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1 Introduction

Let Rm×n and Cm×n be the vector spaces of m × n real and complex matrices over the scalar field of
real numbers R, respectively. For any X ∈ Cm×n, we denote the conjugate transpose of X by XT. If
X ∈ Rm×n, then XT is just the transpose of X . We use Vm×n to represent either the real Euclidean vector
space Rm×n or Cm×n with the trace inner product 〈X,Y 〉 := Re(trace(XTY )) for X,Y ∈ Vm×n and its
induced norm ‖ · ‖, where “Re” means the real part of a complex number. Without loss of generality, we
assume that m ≤ n throughout this paper. For convenience, we also call Vm×n a matrix space.

Let Sm ⊆ Vm×m be the real vector subspace of m×m real symmetric matrices or complex Hermitian
matrices. For any given Y ∈ Sm, we use λ1(Y ) ≥ λ2(Y ) ≥ . . . ≥ λm(Y ) to denote the eigenvalues of Y
(all real and counting multiplicity) and use λ(Y ) to denote the vector of eigenvalues of Y . For any given
Z ∈ Vm×n, we use σ1(Z) ≥ σ2(Z) ≥ . . . ≥ σm(Z) to denote the singular values of Z (always nonnegative
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and counting multiplicity) and use σ(Z) to denote the vector of the singular values of Z. We use Op

(p = m,n) to denote the set of p × p orthogonal matrices in Rp×p if Vm×n = Rm×n and the set of p × p
unitary matrices in Cp×p if Vm×n = Cm×n. For X ∈ Vm×m, diag(X) denotes the column vector consisting
of all the diagonal entries of X being arranged from the first to the last and for x ∈ Rm, Diag(x) denotes
the m by m diagonal matrix whose i-th diagonal entry is xi, i = 1, . . . ,m.

In this paper, we shall introduce and study a class of matrix valued functions, to be called spectral
operators of matrices. This class of matrix valued functions frequently arise in various applications. Our
first motivating application comes from matrix optimization problems (MOPs). Let X be the vector space
Vm×n or Sn. Suppose that f : X → (−∞,∞] is a closed proper convex function. One simple class of
MOPs just mentioned take the form of

min f0(X) + f(X)

s.t. AX = b, X ∈ X , (1)

where f0 : X → R is a smooth function whose gradient is Lipschitz continuous, e.g., a linear function
f0(·) = 〈C, ·〉 for some C ∈ X , A : X → Rp is a linear operator, and b ∈ Rp is a given vector. The
above MOPs cover many problems as special cases. For example, by considering the particular case that
f ≡ δSm

+
, the indicator function of the positive semidefinite matrix cone Sm+ , we can see that the extensively

studied semidefinite programming (SDP) [53] is in the form of (1) with a linear function f0. MOPs also
arise frequently from other applications such as the matrix norm approximation, matrix completion, rank
minimization, graph theory, machine learning, etc [21, 54, 55, 43, 2, 3, 4, 6, 57, 9, 20, 33, 17, 24]. See [15]
for more details.

The Karush-Kuhn-Tucker (KKT) condition of (1) can be written in the following form [45, Corollary
28.3.1]: 




∇f0(X)−A∗y + Γ = 0 ,
AX − b = 0 ,
Γ ∈ ∂f(X).

(2)

Let ψf : X → R be the Moreau-Yosida regularization of the closed proper convex function f , i.e.,

ψf (X) := min
Y ∈X

{
f(Y ) +

1

2
‖Y −X‖2

}
, X ∈ X , (3)

and Pf (X) be the proximal mapping of f at X , the unique optimal solution to (3). It is well-known (see
e.g., [46, Proposition 12.19]) that the mapping Pf : X → X is globally Lipschitz continuous on X with
modulus 1 and ψf is continuously differentiable on X with ∇ψf (X) = X −Pf (X). From [36] (see also [45,
Theorem 31.5]) we know that the KKT condition (2) is equivalent to the following system of Lipschitzian
equations 


∇f0(X)−A∗y + Γ

AX − b
X − Pf (X + Γ)


 = 0 .

Thus, the study of MOPs depends crucially on the study of various differential properties of Pf . In [60,
7, 31], Newton-CG based proximal-point algorithms have been designed to solve large scale SDPs, matrix
spectral norm approximation, and nuclear norm minimization problems, respectively. Those algorithms
and their convergence analyzes all depend crucially on understanding the various differential properties of
the associated proximal mappings Pf .

For any given Z ∈ Vm×n, let Om,n(Z) denote the set of matrix pairs (U, V ) ∈ Om ×On satisfying the
singular value decomposition Z = U [Σ(Z) 0]V T, where Σ(Z) is an m ×m diagonal matrix whose i-th
diagonal entry is σi(Z) ≥ 0. For any given Y ∈ Sm, we use Om(Y ) to denote the set of matrices P ∈ Om

satisfying the eigenvalue decomposition Y = PΛ(Y )P T, where Λ(Y ) is anm×m diagonal matrix whose i-th
diagonal entry is λi(Y ), a real number. Assume that the closed proper convex function f : X → (−∞,∞]
is unitarily invariant, i.e., for any X ∈ X ≡ Vm×n, U ∈ Om and V ∈ On, f(X) = f(UTXV ), or for any
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X ∈ X ≡ Sm, P ∈ Om, f(X) = f(P TXP ). For example, for a given k ∈ {1, . . . ,m}, Ky Fan’s k-norm

matrix function ‖X‖(k) =
∑k

i=1σi(X), X ∈ Vm×n and the indicator function δSm
+

are unitarily invariant.

Recall that a function φ : Rm → (−∞,∞] is said to be symmetric if φ(x) = φ(Qx) ∀ x ∈ Rm and any
permutation matrix Q, and is said to be absolutely symmetric if φ(x) = φ(Qx) ∀ x ∈ Rm and any signed
permutation matrix Q, which has exactly one nonzero entry in each row and each column, and that entry
being ±1. For the unitarily invariant function f : X → (−∞,∞], we know from Lewis [26, Proposition
2.1] and Davis [11] that there exists an absolutely symmetric function θ : Rm → (−∞,+∞] such that
f(·) ≡ θ(σ(·)) if X ≡ Vm×n and a symmetric function θ : Rm → (−∞,+∞] such that f(·) ≡ θ(λ(·)) if
X ≡ Sm, respectively. Furthermore, from [27, 26, 29], we know that the proximal mapping Pf : X → X
can be written as

Pf (X) =

{
U
[
Diag

(
Pθ(σ(X))

)
0
]
V T if X ∈ X ≡ Vm×n,

PDiag
(
Pθ(λ(X))

)
P T if X ∈ X ≡ Sm ,

where (U, V ) ∈ Om,n(X) if X ∈ Vm×n and P ∈ Om(X) if X ∈ Sm. The proximal mapping Pf is a spectral
operator with respect to the mixed symmetric mapping Pθ : Rm → Rm (see Definition 2.1 in Section 2).

Proximal mappings of unitarily invariant proper closed convex functions belong to a class of matrix
functions studied previously in two seminal papers by Lewis [27], and Lewis and Sendov [28]. In [27],
Lewis defined a Hermitian matrix valued function by using the gradient mapping g(·) = ∇φ(·) : Rm →
Rm of a symmetric function φ : Rm → (−∞,∞]. The corresponding Hermitian matrix valued function
G : Sm → Sm is defined by G(Y ) =

∑m

i=1gi(λ(Y ))pip
T
i , where P ∈ Om(Y ) and pi is the i-th column

of P . Lewis [27] proved that such a function G is well-defined, by using the “block-refineness” property
of g. It was further shown by Lewis and Sendov in [28] that G is (continuously) differentiable at X if
and only if g is (continuously) differentiable at λ(X). Qi and Yang [39] proved that the locally Lipschitz
continuous function G is (strongly) semismooth at X if and only if g is (strongly) semismooth at λ(X).
Note that if the function g has the form g(y) = (h(y1), . . . , h(ym)) ∀ y ∈ Rm for some given real valued
functional h : R → R, then the corresponding Hermitian matrix valued function G is called Löwner’s
(Hermitian) operator [32], which has been well-studied in the literature. See e.g., [8, 52] for more details.
For the non-Hermitian case, by considering the gradient mapping g(·) = ∇φ(·) : Rm → Rm of an absolutely
symmetric function φ : Rm → (−∞,∞], Lewis [26] studied the corresponding matrix valued function by
G(Z) =

∑m
i=1gi(σ(Z))uiv

T
i for Z ∈ Vm×n, where (U, V ) ∈ Om,n(Z) and ui and vi are the i-th column of U

and V , respectively. See also Lewis and Sendov [29] for more details. If the function g has the form g(z) =
(h(z1), . . . , h(zm))T ∀ z ∈ Rm for some given real valued functional h : R → R satisfying h(0) = 0, then
the corresponding non-Hermitian matrix valued function G is called Löwner’s (non-Hermitian) operator in
Yang’s thesis [59]. Some important properties of Löwner’s (non-Hermitian) operators have been studied by
Yang in [59], including the well-definedness, (continuous) differentiability and (strongly) semismoothness.

Besides MOPs, the proximal mapping Pf has also played a crucial role in some recent applications. For
instance, by employing its differentiability and the corresponding derivative formulas, one can derive the
divergence expression of the proximal mapping Pf , which can be used to obtain the Stein unbiased risk
estimator (SURE) [48] of the regularization solution of the matrix recovery problem involving the nuclear
norm regularization. Candés et al. [5] provided a parameter selection method based on the SURE for the
singular value thresholding (SVT) operator. See also [12] for more details. Although some partial work
has been done on different cases, many fundamental problems of the proximal mapping are unsolved. For
example, even in the Hermitian case, there still remain two important issues to be explored (i) an explicit
formula for the directional derivative of G and (ii) the characterization of Clarke’s generalized Jacobian of
the general Hermitian matrix valued function G.

The spectral operators of matrices to be considered in this paper go much beyond proximal mappings.
As a matter of fact, the spectral operators arising from applications may not even be the gradient mapping
of any scalar valued (absolutely) symmetric function. Therefore, the theoretical results on the spectral
operators obtained in this paper are not covered by the previous works just mentioned [27, 28, 39, 59].
For instance, such spectral operators have already been used in low-rank matrix completion problems with
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fixed basis coefficients [34]. The problem of low-rank matrix completion aims to recover an unknown low-
rank matrix from some under-sampled observations with or without noises. A basic approach to solve a
low-rank matrix completion problem is to minimize the rank of a matrix subject to certain constraints
consistent with the sampled observations. Since minimizing a rank function with constraints is generally
NP-hard, a widely-used convex relaxation approach is to replace the rank function with the nuclear norm.
For various theoretical breakthroughs along this direction, we refer the readers to [2, 3, 22, 23, 42, 43]
and references therein. However, since for many situations, such as the correlation matrix completion in
statistics and the density matrix completion in the quantum state tomography where the nuclear norm is
a constant, the efficacy of the nuclear norm minimization approach for recovery is inadequate, Miao et al.
[34] proposed a rank-corrected procedure to generate an estimator of high accuracy and low rank, in which

non-traditional spectral operators play a pivotal role. A rank-correction term of the form −〈G(X̃), X〉 was
added to the nuclear norm penalized least squares model, where X̃ ∈ Vm×n is a given initial estimator and
G : Vm×n → Vm×n is a matrix-valued function defined by

G(X) = U
[
Diag

(
g(σ(X))

)
0
]
V T, X ∈ Vm×n

with (U, V ) ∈ Om,n(X), and g : Rm → Rm is given by

gi(x) = h

(
xi

‖x‖∞

)
if x ∈ Rm \ {0}, gi(0) = 0 (4)

for some scalar valued function h : R → R. For example, for given ε, τ > 0, the following h was considered
in [34]:

h(t) = sgn(t)(1 + ετ )
|t|τ

|t|τ + ετ
, t ∈ R . (5)

It can be checked that G is the spectral operator with respect to the absolutely symmetric mapping g
(Definition 2.1). Note that for such a spectral operator G, there does not exist a function ψ : Vm×n → R

such that G is derived through the gradient mapping of ψ because the Jacobian of G at X , when it exists, is
not self-adjoint. By using the rank-correction term, Miao et al. [34] established a non-asymptotic recovery
error result and provided necessary and sufficient conditions for rank consistency. Various properties of
spectral operators such as well-definedness and continuity play an important role in their study. More
discussions on the rank-correction function can be found in Miao’s PhD thesis [35].

Spectral operators of matrices can also be used in some other related areas such as in statistical shape
analysis, which involves low rank matrices. For instance, in order to establish necessary and sufficient
conditions on the existence of the extrinsic mean shape for the reflection shape space (see e.g., [1] for the
definition) and to provide the corresponding explicit formula (which has important applications in biology,
medicine, image analysis, archeology, etc (cf. [18])), very recently Ding and Qi [16] used the following
matrix valued function G : Sm → Sm defined by

G(X) = PDiag(g(λ(X)))P T, X ∈ Sm

with P ∈ Om(X), and g : Rm → Rm being given by g(x) = QTp(x), where for x ∈ Rm, Q is an m by
m permutation matrix such that Qx = x↓, the vector of entries of x being arranged in the non-increasing
order x↓1 ≥ . . . ≥ x↓m and p(x) is the unique optimal solution to the following convex optimization problem

min

{
1

2
‖y − x↓‖2 |

m∑

i=1

yi = 1, y1 ≥ . . . ≥ yk ≥ 0, yk+1 = . . . = ym = 0

}
,

where 1 ≤ k ≤ m is a given integer to indicate the rank of a desired matrix. For a certain nonempty open
set N ∈ Sm, e.g., N = {X ∈ Sm | λk−1(X) > λk(X) > λk+1(X)}, one can easily check that g : Rm → Rm

is symmetric (see Definition 2.1) on λN := {λ(X) | X ∈ N} and the defined matrix function G is a spectral
operator on N .
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The remaining parts of this paper are organized as follows. In Section 2, we give the definition of
spectral operators of matrices and study their well-definedness. Some preliminary results on the dif-
ferential properties of singular values and vectors of matrices are also given in this section. We study
the continuity, directional and Fréchet-differentiability of spectral operators defined on the single matrix
space Vm×n in Section 3. More sophisticated differential properties such as Bouligand-differentiability and
G-semismoothness of spectral operators are presented in Section 4. In Section 5, we study the spectral
operators defined on the Cartesian product of several matrix spaces, and list the main results corresponding
to those derived in Sections 3 and 4. We conclude our paper in the final section.

2 Spectral operators of matrices

In this section, we will first define spectral operators on the Cartesian product of several real or complex
matrix spaces. The study of spectral operators under this general setting is not only useful but also
necessary. In fact, spectral operators defined on the Cartesian product of several matrix spaces appear
naturally in the study of the differentiability of spectral operators, even if they are only defined on a single
matrix space (see Section 3.1). Moreover, the spectral operators used in many applications are defined on
the Cartesian product of several matrix spaces. See e.g., [14, 58] for more details.

Let s be a positive integer and 0 ≤ s0 ≤ s be a nonnegative integer. For given positive integers
m1, . . . ,ms and ns0+1, . . . , ns, define the finite dimensional real vector space X by

X := Sm1 × . . .× Sms0 × Vms0+1×ns0+1 × . . .× Vms×ns .

Without loss of generality, we assume that mk ≤ nk, k = s0 + 1, . . . , s. For any X = (X1, . . . , Xs) ∈ X ,
we have for 1 ≤ k ≤ s0, Xk ∈ Smk and s0 + 1 ≤ k ≤ s, Xk ∈ Vmk×nk . Denote m0 :=

∑s0
k=1mk and

m =
∑s

k=s0+1mk. For any X ∈ X , define κ(X) ∈ Rm0+m by

κ(X) := (λ(X1), . . . , λ(Xs0), σ(Xs0+1), . . . , σ(Xs)) .

Recall that a matrix Q ∈ Rp×p is said to be a signed permutation matrix if Q has exactly one nonzero
entry in each row and each column and that entry being ±1. Let Pp and ±Pp be the sets of all p × p
permutation matrices and signed permutation matrices, respectively. For X , define the set P by

P := {(Q1, . . . , Qs) |Qk ∈ Pmk , 1 ≤ k ≤ s0 and Qk ∈ ±Pmk , s0 + 1 ≤ k ≤ s} .
Let g : Rm0+m → Rm0+m be a given mapping. For any x = (x1, . . . ,xs) ∈ Rm0+m with xk ∈ Rmk , rewrite
g(x) ∈ Rm0+m in the form g(x) = (g1(x), . . . ,gs(x)) with gk(x) ∈ Rmk for 1 ≤ k ≤ s.

Definition 2.1 The given mapping g : Rm0+m → Rm0+m is said to be mixed symmetric, with respect to
P, at x = (x1, . . . ,xs) ∈ Rm0+m with xk ∈ Rmk , if

g(Q1x1, . . . , Qsxs) = (Q1g1(x), . . . , Qsgs(x)) ∀ (Q1, . . . , Qs) ∈ P . (6)

The mapping g is said to be mixed symmetric, with respect to P, over a set D ⊆ Rm0+m if (6) holds for
every x ∈ D. We call g a mixed symmetric mapping, with respect to P, if (6) holds for every x ∈ Rm0+m.

Note that for each k ∈ {1, . . . , s}, the function value gk(x) ∈ Rm0+m is dependent on all x1, . . . ,xs.
With causing no confusion, in later discussions we often drop “with respect to P” from Definition 2.1. The
following result on g can be checked directly from the definition.

Proposition 2.1 Suppose that the mapping g : Rm0+m → Rm0+m is mixed symmetric at x = (x1, . . . ,xs) ∈
Rm0+m with xk ∈ Rmk . Then, for any i, j ∈ {1, . . . ,mk},

(gk(x))i = (gk(x))j if (xk)i = (xk)j , ∀ 1 ≤ k ≤ s

and
(gk(x))i = 0 if (xk)i = 0, ∀ s0 + 1 ≤ k ≤ s.
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Let N be a given nonempty set in X . Define

κN := {κ(X) | X ∈ N} .

Definition 2.2 Suppose that g : Rm0+m → Rm0+m is mixed symmetric on κN . The spectral operator
G : N → X with respect to g is defined by

G(X) := (G1(X), . . . , Gs(X)) , X = (X1, . . . , Xs) ∈ N

with

Gk(X) :=

{
PkDiag

(
gk(κ(X))

)
P T

k if 1 ≤ k ≤ s0,

Uk

[
Diag

(
gk(κ(X))

)
0
]
V T

k if s0 + 1 ≤ k ≤ s,

where Pk ∈ Omk(Xk), 1 ≤ k ≤ s0, (Uk, Vk) ∈ Omk,nk(Xk), s0 + 1 ≤ k ≤ s.

Before studying the well-definedness of spectral operators, it is worth mentioning that for the case that
X ≡ Sm (or Vm×n) if g has the form g(y) = (h(y1), . . . , h(ym)) ∈ Rm with yi ∈ R for some given scalar
valued functional h : R → R, then the corresponding spectral operator G is called Löwner operator by
Sun and Sun [52] in recognitions of Löwner’s original contribution on this topic in [32] (or the Löwner
non-Hermitian operator by Yang in her thesis [59] if h(0) = 0).

2.1 The well-definedness

In order to show the well-definedness of spectral operators, we need the following two simple propositions.
Let Y ∈ Sm be given. Denote µ1 > µ2 > . . . > µr the distinct eigenvalues of Y . Define the index sets

αl := {i |λi(Y ) = µl, 1 ≤ i ≤ m}, l = 1, . . . , r .

Let Λ(Y ) be the m×m diagonal matrix whose i-th diagonal entry is λi(Y ). Then, the following elementary
property on the eigenvalue decomposition of Y can be checked directly.

Proposition 2.2 The matrix Q ∈ Om satisfies QΛ(Y ) = Λ(Y )Q if and only if there exist Ql ∈ Q|αl|,
l = 1, . . . , r such that Q is a block diagonal matrix whose l-th diagonal block is Ql, i.e.,

Q = Diag(Q1, Q2, . . . , Qr) .

Let Z ∈ Vm×n be given. We use ν1 > ν2 > . . . > νr > 0 to denote the nonzero distinct singular values
of Z. Define

al := {i |σi(Z) = νl, 1 ≤ i ≤ m}, l = 1, . . . , r and b := {i |σi(Z) = 0, 1 ≤ i ≤ m}. (7)

The following observation can be derived easily. For the real case, the proof can be found in [30, Theorem
3.7], and the corresponding result for the complex case can be obtained similarly.

Proposition 2.3 Let Σ := Σ(Z). Then, P ∈ Om and W ∈ On satisfy

P
[
Σ 0

]
=

[
Σ 0

]
W

if and only if there exist Q ∈ O|a|, Q′ ∈ O|b| and Q′′ ∈ On−|a| such that

P =

[
Q 0
0 Q′

]
and W =

[
Q 0
0 Q′′

]
,

where |a| = |a1| + . . .+ |ar| and Q = Diag(Q1, Q2, . . . , Qr) is a block diagonal matrix whose l-th diagonal
block is Ql ∈ O|al|.
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By combining Propositions 2.2 and 2.3 with the mixed symmetric property of g, we are able to obtain
the following result on the well-definedness of spectral operators.

Theorem 2.1 Let g : Rm0+m → Rm0+m be mixed symmetric on κN . Then the spectral operator G : N →
X defined in Definition 2.2 with respect to g is well-defined.

Proof. Let X = (X1, . . . , Xs) ∈ N be arbitrarily chosen with Xk ∈ Smk for 1 ≤ k ≤ s0 and Xk ∈ Vmk×nk

for s0 +1 ≤ k ≤ s. Let x = (x1, . . . ,xs) := κ(X) with xk ∈ Rmk . Then we know from Proposition 2.1 that
for any i, j ∈ {1, . . . ,mk},

(gk(x))i = (gk(x))j if (xk)i = (xk)j , ∀ 1 ≤ k ≤ s

and
(gk(x))i = 0 if (xk)i = 0, ∀ s0 + 1 ≤ k ≤ s,

which, together with Propositions 2.2 and 2.3, imply that the matrix G(X) is independent of the choices
of Pk ∈ Omk(Xk), 1 ≤ k ≤ s0, (Uk, Vk) ∈ Omk,nk(Xk), s0 + 1 ≤ k ≤ s. That is, G is well defined at X .
Since X is arbitrarily chosen from N , the spectral operator G is well-defined on N . �

2.2 Differential properties of singular values and vectors

In this subsection, we collect some useful preliminary results on the singular value decomposition (SVD)
of matrices. Let Z ∈ Vm×n be given. Consider the following SVD of Z:

Z = U
[
Σ(Z) 0

]
V

T

= U
[
Σ(Z) 0

] [
V 1 V 2

]T
= UΣ(Z)V

T

1 , (8)

where U ∈ Om and V =
[
V 1 V 2

]
∈ On with V 1 ∈ Vn×m and V 2 ∈ Vn×(n−m). Define the index sets a

and c by
a := {i |σi(Z) > 0, 1 ≤ i ≤ m} and c := {m+ 1, . . . , n} . (9)

Let the index sets al, l = 1, . . . , r and b be defined by (7). For each i ∈ {1, . . . ,m}, we also define li(Z)
to be the number of singular values which are equal to σi(Z) but are ranked before i (including i), and
l̃i(Z) to be the number of singular values which are equal to σi(Z) but are ranked after i (excluding i),
i.e., define li(Z) and l̃i(Z) such that

σ1(Z) ≥ . . . ≥ σi−li(Z)(Z) > σi−li(Z)+1(Z) = . . . = σi(Z) = . . . = σi+l̃i(Z)(Z)

> σi+l̃i(Z)+1(Z) ≥ . . . ≥ σm(Z) . (10)

In later discussions, when the dependence of li and l̃i on Z are clear from the context, we often drop Z
from these notations.

For any Y ∈ Vm×n, let Yij be the (i, j)-th entry of Y . For any Y ∈ Vm×n and the given index sets
I ⊆ {1, . . . ,m} and J ⊆ {1, . . . , n}, we use YJ to denote the sub-matrix of Y obtained by removing all
the columns of Y not in J and use YIJ to denote the |I| × |J | sub-matrix of Y obtained by removing all
the rows of Y not in I and all the columns of Y not in J . For notational convenience, we define two linear
matrix operators S : Vp×p → Sp, T : Vp×p → Vp×p by

S(Y ) :=
1

2
(Y + Y T) T (Y ) :=

1

2
(Y − Y T), Y ∈ Vp×p . (11)

The following proposition can be derived directly from the directional differentiability (e.g., see [25, The-
orem 7] and [56, Proposition 1.4]) of the eigenvalues of a Hermitian matrix. For more details, see [30,
Section 5.1].
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Proposition 2.4 Suppose that Z ∈ Vm×n has the SVD (8). For any Vm×n ∋ H → 0, we have

σi(Z +H)− σi(Z)− σ′
i(Z;H) = O(‖H‖2) , i = 1, . . . ,m , (12)

where

σ′
i(Z;H) =





λli

(
S(U

T

al
HV al

)
)

if i ∈ al, l = 1, . . . , r ,

σli

( [
U

T

bHV b U
T

bHV 2

] )
if i ∈ b ,

(13)

where for each i ∈ {1, . . . ,m}, li is defined in (10).

The following results are also needed for subsequent discussions. For the real case, the detailed proof
can be found in [14, Proposition 7]. The results for the complex case can be derived in a similar manner.

Proposition 2.5 For any Vm×n ∋ H → 0, let Z :=
[
Σ(Z) 0

]
+ H. Suppose that U ∈ Om and V =

[V1 V2] ∈ On with V1 ∈ Vn×m and V2 ∈ Vn×(n−m) satisfy

Z =
[
Σ(Z) 0

]
+H = U [Σ(Z) 0]V T = U [Σ(Z) 0] [V1 V2]

T .

Then, there exist Q ∈ O|a|, Q′ ∈ O|b| and Q′′ ∈ On−|a| such that

U =

[
Q 0
0 Q′

]
+O(‖H‖) and V =

[
Q 0
0 Q′′

]
+O(‖H‖) , (14)

where Q = Diag(Q1, Q2, . . . , Qr), Ql ∈ O|al|. Furthermore, we have

Σ(Z)alal
− Σ(Z)alal

= QT

l S(Halal
)Ql +O(‖H‖2), l = 1, . . . , r, (15)

[
Σ(Z)bb − Σ(Z)bb 0

]
= Q′T [Hbb Hbc]Q

′′ +O(‖H‖2) . (16)

Given the index set al for l ∈ {1, . . . , r} at Z ∈ Vm×n, we define Ul : V
m×n → Vm×n by

Ul(Z) =
∑

i∈al

uiv
T

i , Z ∈ Vm×n , (17)

where ui and vi are the i-th column of U and V , respectively, and (U, V ) ∈ Om,n(Z). Let B ⊆ Vm×n be
an open neighborhood of Z. By shrinking B if necessary, we may assume that for any Z ∈ B, if i ∈ al,
1 ≤ l ≤ r, then σi(Z) > 0, and if i ∈ al, j ∈ al and 1 ≤ l 6= l′ ≤ r, then σi(Z) 6= σj(Z). Therefore, for any
Z ∈ B, we may define matrices Γl(Z), Ξl(Z) ∈ Rm×m and Υl(Z) ∈ Rm×(n−m), l = 1, . . . , r by

(Γl(Z))ij =





1

σi(Z)− σj(Z)
if i ∈ al, j ∈ al′ , l 6= l′, l′ = 1, . . . , r + 1 ,

−1

σi(Z)− σj(Z)
if i ∈ al′ , j ∈ al, l 6= l′, l′ = 1, . . . , r + 1 ,

0 otherwise ,

(18)

(Ξl(Z))ij =





1

σi(Z) + σj(Z)
if i ∈ al, j ∈ al′ , l 6= l′, l′ = 1, . . . , r + 1 ,

1

σi(Z) + σj(Z)
if i ∈ al′ , j ∈ al, l 6= l′, l′ = 1, . . . , r + 1 ,

2

σi(Z) + σj(Z)
if i, j ∈ al,

0 otherwise,

(19)

(Υl(Z))ij =





1

σi(Z)
if i ∈ al, j = 1, . . . , n−m,

0 otherwise.
(20)
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We use “ ◦ ” to denote the usual Hadamard product between two matrices, i.e., for any two matrices A and
B in Vm×n the (i, j)-th entry of Z := A ◦ B ∈ Vm×n is Zij = AijBij . We have the following differential
properties of Ul, l = 1, . . . , r. For the real case, the results have been shown in [14, Proposition 2.11]. By
using similar arguments to the real case, one can derive the corresponding results for the complex case.

Proposition 2.6 Let Ul, l = 1, . . . , r be defined by (17). Then, there exists an open neighborhood B of
Z such that Ul is at least twice continuously differentiable in B, and for any H ∈ Vm×n, the first order
derivative of Ul at Z ∈ B is given by

U ′
l (Z)H = U [Γl(Z) ◦ S(UTHV1) + Ξl(Z) ◦ T (UTHV1)]V

T

1 + U(Υl(Z) ◦ UTHV2)V
T

2 , (21)

where (U, V ) ∈ Om,n(Z) and the linear operators S and T are defined by (11).

3 Continuity, directional and Fréchet differentiability

In this and the next section, we will first focus on the study of spectral operators for the case that
X ≡ Vm×n. The corresponding extensions for the spectral operators defined on the general Cartesian
product of several matrix spaces will be presented in Section 5.

Let N be a given nonempty open set in Vm×n. Suppose that g : Rm → Rm is mixed symmetric,
with respect to P ≡ ±Pm (called absolutely symmetric in this case), on an open set σ̂N in Rm containing
σN := {σ(X) | X ∈ N}. The spectral operator G : N → Vm×n with respect to g defined in Definition 2.2
then takes the form of

G(X) = U [Diag(g(σ(X))) 0]V T, X ∈ N ,

where (U, V ) ∈ Om,n(X). Let X ∈ N be given. Consider the SVD (8) for X, i.e.,

X = U
[
Σ(X) 0

]
V

T
, (22)

where V =
[
V 1 V 2

]
∈ On with V 1 ∈ Vn×m and V 2 ∈ Vn×(n−m). Let σ := σ(X) ∈ Rm. Let a, b, c, al,

l = 1, . . . , r be the index sets defined by (9) and (7) with Z being replaced by X. Denote ā := {1, . . . , n}\a.
For any given vector y ∈ Rm, let |y|↓ be the vector of entries of |y| = (|y1|, . . . , |ym|) being arranged in

the non-increasing order |y|↓1 ≥ . . . ≥ |y|↓m. The following result follows from the absolutely symmetric
property of g on σ̂N .

Proposition 3.1 Let U ∈ Om and V = [V1 V2] ∈ On with V1 ∈ Vn×m and V2 ∈ Vn×(n−m) be given. Let
y ∈ σ̂N . Then, for Y := U [Diag(y) 0]V T it always holds that

G(Y ) = U [Diag(g(y)) 0]V T = UDiag(g(y))V T

1 .

Proof. Let P ∈ ±Pm be a signed permutation matrix such that Py = |y|↓. Then, we know that σ(Y ) = |y|↓
and Y has the following SVD

Y = U [P TDiag(|y|↓)W 0]V T = UP T
[
Diag(|y|↓) 0

]
[V1W

T V2]
T ,

where W := |P | ∈ Pm is the m by m permutation matrix whose (i, j)-th element is the absolute value of
the (i, j)-th element of P . Then, we know from Definition 2.2 that

G(Y ) = UP T
[
Diag(g(|y|↓)) 0

]
[V1W

T V2]
T .

Since g is absolutely symmetric at y, one has

Diag(g(|y|↓)) = Diag(g(Py)) = Diag(Pg(y)) = PDiag(g(y))W T .

9



Thus,
G(Y ) = UP T

[
PDiag(g(y))W T 0

]
[V1W

T V2]
T = U [Diag(g(y)) 0]V T ,

which, proves the conclusion. �

By using Proposition 2.5, we have the following result on the continuity of the spectral operator G.

Theorem 3.1 Suppose that X ∈ N has the SVD (22). The spectral operator G is continuous at X if and
only if g is continuous at σ(X).

Proof. “ ⇐= ” Let X ∈ N . Denote H = X −X and σ = σ(X). Let U ∈ Om and V ∈ On be such that
X = X +H = U [Σ(X) 0]V T. Then, we know from (22) that

[
Σ(X) 0

]
+ U

T
HV = U

T
U [Σ(X) 0]V TV .

From (14) in Proposition 2.5, we know that for any X sufficiently close to X, there exist Q ∈ O|a|, Q′ ∈ O|b|

and Q′′ ∈ On−|a| such that

U
T

U =

[
Q 0
0 Q′

]
+O(‖H‖) and V

T

V =

[
Q 0
0 Q′′

]
+O(‖H‖) , (23)

where Q = Diag(Q1, Q2, . . . , Qr), Ql ∈ O|al|. On the other hand, from the definition of the spectral
operator G one has

UT
(
G(X)−G(X)

)
V = [Diag(g(σ)) 0]− UTU [Diag(g(σ)) 0]V

T

V .

Thus, we obtain from (23) and Proposition 2.1 that for any X sufficiently close to X,

UT
(
G(X)−G(X)

)
V = [Diag(g(σ)− g(σ)) 0] +O(‖H‖) .

Thus, since g is assumed to be continuous at σ, we can conclude that the spectral operator G is continuous
at X .

“ =⇒ ” Suppose that G is continuous at X . Let (U, V ) ∈ Om×n(X) be fixed. Choose any σ ∈ σ̂N and

denote X := U [Diag(σ) 0]V
T

. We know from Proposition 3.1 that G(X) = UDiag(g(σ))V
T

1 and

Diag(g(σ)− g(σ)) = U
T (
G(X)−G(X)

)
V 1 .

Hence, we know from the assumption that g is continuous at σ. �

Next, we introduce some notations which are frequently used in later discussions. For any given X ∈ N ,
let σ = σ(X). For the mapping g, we define three matrices E1(σ), E2(σ) ∈ Rm×m and F(σ) ∈ Rm×(n−m)

(depending on X ∈ N ) by

(E0
1 (σ))ij :=





gi(σ)− gj(σ)

σi − σj
if σi 6= σj ,

0 otherwise ,
i, j ∈ {1, . . . ,m} , (24)

(E0
2 (σ)ij :=





gi(σ) + gj(σ)

σi + σj
if σi + σj 6= 0 ,

0 otherwise ,
i, j ∈ {1, . . . ,m} , (25)

(F0(σ))ij :=





gi(σ)

σi
if σi 6= 0 ,

0 otherwise,
i ∈ {1, . . . ,m}, j ∈ {1, . . . , n−m} . (26)
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Note that when the dependence of E0
1 (σ), E0

2 (σ) and F0(σ) on σ are clear from the context, we often drop

σ from these notations. In particular, let E0

1, E
0

2 ∈ Vm×m and F0 ∈ Vm×(n−m) be the matrices defined
by (24)-(26) with respect to σ = σ(X). Since g is absolutely symmetric at σ, we know that for all i ∈ al,
1 ≤ l ≤ r, the function values gi(σ) are the same (denoted by ḡl). Therefore, for any X ∈ N , define

GS(X) :=

r∑

l=1

ḡlUl(X) and GR(X) := G(X)−GS(X) , (27)

where Ul(X) is given by (17). The following lemma follows from Proposition 2.6 directly.

Lemma 3.1 Let GS : N → Vm×n be defined by (27). Then, there exists an open neighborhood B of X in
N such that GS is twice continuously differentiable on B, and for any Vm×n ∋ H → 0,

GS(X +H)−GS(X) = G′
S(X)H +O(‖H‖2)

with
G′

S(X)H = U
[
E0

1 ◦ S(U
T

HV 1) + E0

2 ◦ T (U
T

HV 1) F0 ◦ (UT

HV 2)
]
V

T

. (28)

Lemma 3.1 says that in an open neighborhood of X, G(·) can be decomposed into a “smooth part”GS(·)
plus a “nonsmooth part” GR(·). As we will see in the later developments, this decomposition simplifies
many of our proofs.

3.1 Directional differentiability

Let Z and Z ′ be two finite dimensional real Euclidean spaces and O be an open set in Z. A function
F : O ⊆ Z → Z ′ is said to be Hadamard directionally differentiable at z ∈ O if the limit

lim
t↓0, h′→h

F (z + th′)− F (z)

t
exists for any h ∈ Z . (29)

It is clear that if F is Hadamard directionally differentiable at z, then F is directionally differentiable at
z, and the limit in (29) equals the directional derivative F ′(z;h) for any h ∈ Z.

Assume that the g is directionally differentiable at σ. Then, from the definition of directional derivative
and the absolutely symmetry of g on the nonempty open set σ̂N , it is easy to see that the directional
derivative φ := g′(σ; ·) : Rm → Rm satisfies

φ(Qh) = Qφ(h) ∀Q ∈ ±Pm
σ and ∀h ∈ Rm , (30)

where ±Pm
σ is the subset defined with respect to σ by

± Pm
σ := {Q ∈ ±Pm |σ = Qσ} . (31)

Note that Q ∈ ±Pm
σ if and only if

Q = Diag
(
Q1, . . . , Qr, Qr+1

)
with Ql ∈ P|al|, l = 1, . . . , r and Qr+1 ∈ ±P|b| . (32)

For any h ∈ Rm, we rewrite φ(h) in the following form φ(h) = (φ1(h), . . . , φr(h), φr+1(h)) with φl(h) ∈ R|al|,
l = 1, . . . , r and φr+1(h) ∈ R|b|. Therefore, we know from (30) and (32) that the function φ : Rm → Rm is
a mixed symmetric mapping, with respect to P|a1| × . . .× P|ar| ×±P|b|, over R|a1| × . . .×R|ar| ×R|b|. Let
W := S|a1| × . . .× S|ar | ×V|b|×(n−|a|). We can define the spectral operator Φ : W → W with respect to the
symmetric mapping φ as follows: for any W = (W1, . . . ,Wr,Wr+1) ∈ W ,

Φ(W ) :=
(
Φ1(W ), . . . ,Φr(W ),Φr+1(W )

)
(33)
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with

Φl(W ) :=

{
P̃lDiag(φl(κ(W )))P̃ T

l if 1 ≤ l ≤ r,

M̃Diag(φl(κ(W )))ÑT
1 if l = r + 1,

where κ(W ) := (λ(W1), . . . , λ(Wr), σ(Wr+1)) ∈ Rm; P̃l ∈ O|al|(Wl); and (M̃, Ñ) ∈ O|b|,n−|a|(Wr+1),

Ñ :=
[
Ñ1 Ñ2

]
with Ñ1 ∈ V(n−|a|)×|b|, Ñ2 ∈ V(n−|a|)×(n−m). From Theorem 2.1, we know that Φ is well

defined on W .
In order to present the directional differentiability results for the spectral operator G, we define the

following first divided directional difference g[1](X ;H) ∈ Vm×n of g at X along the direction H ∈ Vm×n

by

g[1](X ;H) :=
[
E0

1 ◦ S(U
T
HV 1) + E0

2 ◦ T (U
T
HV 1) F0 ◦ UT

HV 2

]
+ Φ̂(D(H)), (34)

where E1, E2,F are defined as in (24)–(26) at σ = σ(X),

D(H) :=
(
S(U

T

a1
HV a1

), . . . , S(U
T

ar
HV ar

), U
T

bH [V b V 2]
)
∈ W (35)

and for any W = (W1, . . . ,Wr ,Wr+1) ∈ W , Φ̂(W ) ∈ Vm×n is defined by

Φ̂(W ) :=

[
Diag (Φ1(W ), . . . ,Φr(W )) 0

0 Φr+1(W )

]
. (36)

For the directional differentiability of the spectral operator, we have the following result.

Theorem 3.2 Suppose that X ∈ N has the SVD (22). The spectral operator G is Hadamard directionally
differentiable at X if and only if g is Hadamard directionally differentiable at σ = σ(X). In that case, the
directional derivative of G at X along any direction H ∈ Vm×n is given by

G′(X;H) = Ug[1](X;H)V
T

. (37)

Proof. “ ⇐= ” Let H ∈ Vm×n be any given direction. For any Vm×n ∋ H ′ → H and τ > 0, denote
X := X + τH ′. Consider the SVD of X , i.e.,

X = U [Σ(X) 0]V T . (38)

Denote σ = σ(X). For τ and H ′ sufficiently close to 0 and H , let GS and GR be the mappings defined in
(27). Then, by Lemma 3.1, we know that

lim
τ↓0, H′→H

1

τ
(GS(X)−GS(X)) = G′

S(X)H , (39)

where G′
S(X)H is given by (28). On the other hand, for τ and H ′ sufficiently close to 0 and H , we have

Ul(X) =
∑

i∈al
uiv

T
i , l = 1, . . . , r and

GR(X) = G(X)−GS(X) =
r∑

l=1

∑

i∈al

[gi(σ) − gi(σ)]uiv
T

i +
∑

i∈b

gi(σ)uiv
T

i . (40)

For τ and H ′ sufficiently close to 0 and H , let

∆l(τ,H
′) =

1

τ

∑

i∈al

[gi(σ) − gi(σ)]uiv
T

i , l = 1, . . . , r and ∆r+1(τ,H
′) =

∑

i∈b

gi(σ)uiv
T

i .
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Firstly, consider the case that X = [Σ(X) 0]. Then, from (12) and (13), we know that for any τ and
H ′ ∈ Vm×n sufficiently close to 0 and H ,

σ(X) = σ(X) + τσ′(X;H ′) +O(τ2‖H ′‖2) , (41)

where (σ′(X ;H ′))al
= λ(S(H ′

alal
)), l = 1, . . . , r and (σ′(X ;H ′))b = σ([H ′

bb H ′
bc]). Denote h′ := σ′(X ;H ′)

and h := σ′(X ;H). By using the fact that the singular value functions of a general matrix are globally
Lipschitz continuous, we know that

lim
τ↓0, H′→H

(h′ +O(τ‖H ′‖2)) = h . (42)

Since g is assumed to be Hadamard directionally differentiable at σ, we have

lim
τ↓0, H′→H

g(σ)− g(σ)

τ
= lim

τ↓0, H′→H

1

τ
[g(σ + τ(h′ +O(τ‖H ′‖2)))− g(σ)] = g′(σ;h) = φ(h) ,

where φ ≡ g′(σ; ·) : Rm → Rm satisfies the condition (30). Since uiv
T
i , i = 1, . . . ,m are uniformly bounded,

we know that for τ and H ′ sufficiently close to 0 and H ,

∆l(τ,H
′) = Ual

Diag(φl(h))V
T

al
+ o(1) l = 1, . . . , r ,

∆r+1(τ,H
′) = UbDiag(φr+1(h))V

T

b + o(1) .

By (14) in Proposition 2.5, we know that there exist Ql ∈ O|al|, l = 1, . . . , r,M ∈ O|b| and N = [N1 N2] ∈
On−|a| with N1 ∈ V(n−|a|)×|b| and N2 ∈ V(n−|a|)×(n−m) (depending on τ and H ′) such that

Ual
=




O(τ‖H ′‖)
Ql +O(τ‖H ′‖)
O(τ‖H ′‖)


 , Val

=




O(τ‖H ′‖)
Ql +O(τ‖H ′‖)
O(τ‖H ′‖)


 l = 1, . . . , r ,

Ub =

[
O(τ‖H ′‖)

M +O(τ‖H ′‖)

]
, [Vb Vc] =

[
O(τ‖H ′‖)

N +O(τ‖H ′‖)

]
.

Thus, we have

∆l(τ,H
′) =




0 0 0

0 QlDiag(φl(h))Q
T

l 0

0 0 0


+O(τ‖H ′‖) + o(1), l = 1, . . . , r , (43)

∆r+1(τ,H
′) =

[
0 0
0 MDiag(φr+1(h))N

T
1

]
+O(τ‖H ′‖) + o(1) . (44)

We know from (15) and (16) that

S(H ′
alal

) = S(Halal
) + o(1) =

1

τ
Ql[Σ(X)alal

− νlI|al|]Q
T

l +O(τ‖H ′‖2), l = 1, . . . , r , (45)

[H ′
bb H ′

bc] = [Hbb Hbc] + o(1) =
1

τ
M [Σ(X)bb − νr+1I|b|]N

T

1 +O(τ‖H ′‖2) . (46)

Since Ql, l = 1, . . . , r, M and N are uniformly bounded, by taking subsequences if necessary, we may
assume that when τ ↓ 0 and H ′ → H , Ql, M and N converge to Q̃l, M̃ and Ñ , respectively. Therefore,
by taking limits in (45) and (46), we obtain from (41) and (42) that

S(Halal
) = Q̃lΛ(S(Halal

))Q̃T

l , l = 1, . . . , r ,

[Hbb Hbc] = M̃ [Σ([Hbb Hbc]) 0] ÑT = M̃Σ([Hbb Hbc])Ñ
T

1 .
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Hence, by using the notation (33), we know from (40), (43), (44) and (36) that

lim
τ↓0, H′→H

1

τ
GR(X) = lim

τ↓0, H′→H

r+1∑

l=1

∆l(τ,H
′) = Φ̂(D(H)) , (47)

where D(H) = (S(Ha1a1
), . . . , S(Harar

), Hbā).
To prove the conclusion for the general case of X, rewrite (38) as

[
Σ(X) 0

]
+ U

T

H ′V = U
T

U [Σ(X) 0]V TV .

Let Ũ := U
T
U , Ṽ := V

T
V and H̃ = U

T
HV . Denote X̃ := [Σ(X) 0] + U

T
H ′V . Then, we obtain that

GR(X) = UGR(X̃)V
T

. Thus, we know from (47) that

lim
τ↓0, H′→H

1

τ
GR(X) = U Φ̂(D(H̃))V

T

. (48)

Therefore, by combining (39) and (48) and noting that G(X) = GS(X), we obtain that for any given
H ∈ Vm×n,

lim
τ↓0, H′→H

G(X)−G(X)

τ
= lim

τ↓0, H′→H

GS(X)−GS(X) +GR(X)

τ
= Ug[1](X ; H̃)V

T

,

where g[1](X ; H̃) is given by (34). This implies that G is Hadamard directionally differentiable at X and
(37) holds.

“ =⇒ ” Suppose that G is Hadamard directionally differentiable at X . Let (U, V ) ∈ Om×n(X) be fixed.

For any given direction h ∈ Rm, suppose that Rm ∋ h′ → h. Denote H ′ := U [Diag(h′) 0]V
T ∈ Vm×n and

H := U [Diag(h) 0]V
T ∈ Vm×n. Then, we have H ′ → H as h′ → h. Since for all τ > 0 and h′ sufficiently

close to 0 and h, σ := σ + τh′ ∈ σ̂N , we know from Proposition 3.1 that for all τ > 0 and h′ sufficiently

close to 0 and h, G(X + τH ′) = UDiag(g(σ + τh′))V
T

1 . This implies that

Diag
(

lim
τ↓0, h′→h

g(σ + τh′)− g(σ)

τ

)
= U

T

(
lim

τ↓0, H′→H

G(X + τH ′)−G(X)

τ

)
V 1 .

Thus, we know from the assumption that lim
τ↓0, h′→h

g(σ + τh′)− g(σ)

τ
exists and that g is Hadamard direc-

tionally differentiable at σ. �

Remark 1 Note that for a general spectral operator G, we cannot obtain the directional differentiability at
X if we only assume that g is directionally differentiable at σ(X). In fact, a counterexample can be found in
[27]. However, since Vm×n is a finite dimensional Euclidean space, it is well-known that for locally Lipschitz
continuous functions, the directional differentiability in the sense of Hadamard and Gâteaux are equivalent
(see e.g. [37, Theorem 1.13], [13, Lemma 3.2], [19, p.259]). Therefore, if G and g are locally Lipschitz
continuous near X and σ(X), respectively (e.g., the proximal mapping Pf and its vector counterpart Pθ),
then G is directionally differentiable at X if and only if g is directionally differentiable at σ(X).

3.2 Fréchet differentiability

For a given X ∈ N , suppose that the given absolutely symmetric mapping g is F(réchet)-differentiable at
σ = σ(X). The following results on the Jacobian matrix g′(σ) can be obtained directly from the assumed
absolute symmetry of g on σ̂N and the block structure (32) for any Q ∈ ±Pm

σ .
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Lemma 3.2 For any X ∈ N , suppose that g is F-differentiable at σ = σ(X). Then, the Jacobian matrix
g′(σ) has the following property

g′(σ) = QTg′(σ)Q ∀Q ∈ ±Pm
σ .

In particular,





(g′(σ))ii = (g′(σ))i′i′ if σi = σi′ and i, i
′ ∈ {1, . . . ,m},

(g′(σ))ij = (g′(σ))i′j′ if σi = σi′ , σj = σj′ , i 6= j, i′ 6= j′ and i, i′, j, j′ ∈ {1, . . . ,m},
(g′(σ))ij = (g′(σ))ji = 0 if σi = 0, i 6= j and i, j ∈ {1, . . . ,m}.

Lemma 3.2 is a simple extension of [28, Lemma 2.1] for symmetric mappings. But one should note that
the Jacobian matrix g′(σ) of g at the F-differentiable point σ may not be symmetric since here g is not
assumed to be the gradient mapping as in [28, Lemma 2.1]. For example, let us consider the absolutely
symmetric mapping g defined by (4) in the introduction. Then g is differentiable at x = (2, 1) by taking
m = 2 and τ = ε = 1 in (5). However, it is easy to see that the Jacobian matrix g′(x) is not symmetric.

Let η(σ) ∈ Rm be the vector defined by

(η(σ))i :=

{
(g′(σ))ii − (g′(σ))i(i+1) if ∃ j ∈ {1, . . . ,m} and j 6= i such that σi = σj ,
(g′(σ))ii otherwise ,

i ∈ {1, . . . ,m} .
(49)

Define the corresponding divided difference matrix E1(σ) ∈ Rm×m, the divided addition matrix E2(σ) ∈
Rm×m, the division matrix F(σ) ∈ Rm×(n−m), respectively, by

(E1(σ))ij :=





gi(σ)− gj(σ)

σi − σj
if σi 6= σj ,

(η(σ))i otherwise ,
i, j ∈ {1, . . . ,m} , (50)

(E2(σ))ij :=





gi(σ) + gj(σ)

σi + σj
if σi + σj 6= 0 ,

g′(σ))ii otherwise ,
i, j ∈ {1, . . . ,m} , (51)

(F(σ))ij :=





gi(σ)

σi
if σi 6= 0 ,

(g′(σ))ii otherwise,
i ∈ {1, . . . ,m}, j ∈ {1, . . . , n−m} . (52)

Define the matrix C(σ) ∈ Rm×m to be the difference between g′(σ) and Diag(η(σ)), i.e.,

C(σ) := g′(σ)−Diag(η(σ)) . (53)

Note that when the dependence of η, E1, E2, F and C on σ is clear from the context, we often drop σ from
the corresponding notations.

Let X ∈ N be given and denote σ = σ(X). Denote η = η(σ) ∈ Rm to be the vector defined by (49).
Let E1, E2, F and C be the real matrices defined in (50)–(53) with respect to σ. Now, we are ready to
state the result on the F-differentiability of spectral operators.

Theorem 3.3 Suppose that the given matrix X ∈ N has the SVD (22). Then the spectral operator G is
F-differentiable at X if and only if g is F-differentiable at σ. In that case, the derivative of G at X is given
by

G′(X)H = U [E1 ◦ S(A) + Diag
(
Cdiag(S(A))

)
+ E2 ◦ T (A) F ◦B]V

T ∀ H ∈ Vm×n, (54)

where A := U
T
HV 1 and B := U

T
HV 2.
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Proof. “ ⇐= ” For any Vm×n ∋ H = [H1 H2] → 0 with H1 ∈ Vm×m and H2 ∈ Vm×(n−m), denote
X = X +H . Let U ∈ Om and V ∈ On be such that

X = U [Σ(X) 0]V T . (55)

Denote σ = σ(X). Let GS(X) and GR(X) be defined by (27). Then, by Lemma 3.1, we know that for any
H → 0,

GS(X)−GS(X) = G′
S(X)H +O(‖H‖2) = G′

S(X)H +O(‖H‖2) , (56)

whereG′
S(X)H is given by (28). ForH ∈ Vm×n sufficiently small, we have Ul(X) =

∑
i∈al

uiv
T
i , l = 1, . . . , r.

Therefore,

GR(X) = G(X)−GS(X) =

r+1∑

l=1

∆l(H) , (57)

where ∆l(H) =
∑

i∈al
(gi(σ) − gi(σ))uiv

T
i , l = 1, . . . , r and ∆r+1(H) =

∑
i∈b gi(σ)uiv

T
i .

Firstly, consider the case that X = [Σ(X) 0]. Then, from (12) and (13), for any H ∈ Vm×n sufficiently
small, we have

σ = σ + h+O(‖H‖2) , (58)

where h := σ′(X ;H) ∈ Rm with

(σ′(X ;H))al
= λ(S(Halal

)), l = 1, . . . , r and (σ′(X ;H))b = σ([Hbb Hbc]) . (59)

Since g is F-differentiable at σ and the singular value functions are globally Lipschitz continuous, we know
from (58) that for any H ∈ Vm×n sufficiently small,

g(σ)− g(σ) = g(σ + h+O(‖H‖2))− g(σ) = g′(σ)(h+O(‖H‖2)) + o(‖h‖) = g′(σ)h+ o(‖H‖) .
Since uiv

T
i , i = 1, . . . ,m are uniformly bounded, we have for H sufficiently small,

∆l(H) = Ual
Diag((g′(σ)h)al

)V T

al
+ o(‖H‖), l = 1, . . . , r, ∆r+1(H) = UbDiag((g′(σ)h)b)V

T

b + o(‖H‖) .

By (14) in Proposition 2.5, we know that there exist Ql ∈ O|al|, M ∈ O|b| and N = [N1 N2] ∈ On−|a|

with N1 ∈ V(n−|a|)×|b| and N2 ∈ V(n−|a|)×(n−m) (depending on H) such that

Ual
=




O(‖H‖)
Ql +O(‖H‖)
O(‖H‖)


 , Val

=




O(‖H‖)
Ql +O(‖H‖)
O(‖H‖)


 , l = 1, . . . , r ,

Ub =

[
O(‖H‖)

M +O(‖H‖)

]
, [Vb Vc] =

[
O(‖H‖)

N +O(‖H‖)

]
.

Therefore, since ‖g′(σ)h‖ = O(‖H‖), we obtain that

∆l(H) =




0 0 0

0 QlDiag((g′(σ)h)al
)QT

l 0

0 0 0


+ o(‖H‖), l = 1, . . . , r , (60)

∆r+1(H) =

[
0 0
0 MDiag((g′(σ)h)b)N

T
1

]
+ o(‖H‖) . (61)

We know from (49) and Lemma 3.2 that ηal
= γle

|al| for some γl ∈ R, l = 1, . . . , r and ηr+1 = γr+1e
|b| for

some γr+1 ∈ R, where ep is the vector of all ones in Rp and C = g′(σ)−Diag(η) ∈ Rm×m has the following
form

C =




c11E
|a1||a1| · · · c1rE

|a1||ar| 0
...

. . .
...

...
cr1E

|ar ||a1| · · · crrE
|ar ||ar| 0

0 · · · 0 0


 , (62)
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where Epq ∈ Rp×q is the p by q matrix of all ones and c̄ ∈ Rr×r. Then we know from (59) that

(g′(σ)h)al
=

{ (
Ch

)
al
+ γlλ(S(Halal

)) if l = 1, . . . , r,

γr+1σ([Hbb Hbc]) if l = r + 1 ,

where for l ∈ {1, . . . , r},
(
Ch

)
al

=
∑r

l′=1c̄ll′tr(S(Hal′al′
))e|al| =

(
Cdiag(S(H1))

)
al
. On the other hand, we

know from (15), (16), (58) and (59) that for H sufficiently close to 0, and l = 1, . . . , r,

S(Halal
) = Ql(Σ(X)alal

− νlI|al|)Q
T

l +O(‖H‖2) = QlΛ(S(Halal
))QT

l +O(‖H‖2),

[Hbb Hbc] = M(Σ(X)bb − νr+1I|b|)N
T

1 +O(‖H‖2) =MΣ([Hbb Hbc])N1 +O(‖H‖2) .

Therefore, from (59), (60) and (61), we obtain that

∆l(H) =




0 0 0

0 Diag
(
(Cdiag(S(H1)))al

)
+ γ̄lS(Halal

) 0

0 0 0


+ o(‖H‖), l = 1, . . . , r ,

∆r+1(H) =

[
0 0 0
0 γr+1Hbb γr+1Hbc

]
+ o(‖H‖) .

Thus, we know from (57) that for any H sufficiently close to 0,

GR(X) =
[
Diag

(
Cdiag(S(H1))

)
0
]
+




γ1S(Ha1a1
) 0 0 0 0

0
. . . 0 0 0

0 0 γrS(Harar
) 0 0

0 0 0 γr+1Hbb γr+1Hbc


+o(‖H‖) .

(63)
Next, consider the general X ∈ Vm×n. For any H ∈ Vm×n sufficiently close to 0, rewrite (55) as

[Σ(X) 0] + U
T

HV = U
T

U [Σ(X) 0]V TV .

Denote Ũ := U
T
U and Ṽ := V

T
V . Let X̃ := [Σ(X) 0] + U

T
HV . Then, since U and V are unitary

matrices, we know from (63) that

GR(X) = UGR(X̃)V
T

= U
[
Diag

(
Cdiag(S(A))

)
0
]
V

T

+U




γ1S(Aa1a1
) 0 0 0 0

0
. . . 0 0 0

0 0 γrS(Aarar
) 0 0

0 0 0 γr+1Abb γr+1Bbc


V

T

+ o(‖H‖). (64)

Thus, by combining (56) and (64) with (28) and noting that G(X) = GS(X), we obtain that for any
H ∈ Vm×n sufficiently small,

G(X)−G(X) = U [E1 ◦ S(A) + Diag
(
Cdiag(S(A))

)
+ E2 ◦ T (A) F ◦B]V

T

+ o(‖H‖) .

Therefore, we know that G is F-differentiable at X and (54) holds.
“ =⇒ ” Suppose that G is F-differentiable at X. Let (U, V ) ∈ Om×n(X) be fixed. For any h ∈ Rm,

let H = U [Diag(h) 0]V
T ∈ Vm×n. We know from Proposition 3.1 that for all h sufficiently close to 0,

G(X +H) = UDiag(g(σ+ h))V
T

1 . Therefore, we know from the assumption that for all h sufficiently close
to 0,

Diag(g(σ + h)− g(σ)) = U
T (
G(X +H)−G(X)

)
V 1 = U

T

G′(X)HV 1 + o(‖h‖) .
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Hence, we know that g is F-differentiable at σ and Diag(g′(σ)h) = U
T

G′(X)HV 1. The proof is competed.�

Finally, we can present the continuous differentiability result of spectral operators in the following
theorem.

Theorem 3.4 Suppose that X ∈ N has the SVD (22). Then, G is continuously differentiable at X if and
only if g is continuously differentiable at σ = σ(X).

Proof. “ ⇐= ” By the assumption, we know from Theorem 3.3 that there exists an open neighborhood
B ⊆ N of X such that the spectral operator G is differentiable on B, and for any X ∈ B, the derivative
G′(X) is given by

G′(X)H = U [E1 ◦ S(A) + Diag (Cdiag(S(A))) + E2 ◦ T (A) F ◦B]V T ∀H ∈ Vm×n , (65)

where (U, V ) ∈ Om,n(X), A = UTHV1, B = UTHV2 and η, E1, E2, F and C are defined by (49)–(53) with
respect to σ = σ(X), respectively. Next, we shall prove that

lim
X→X

G′(X)H → G′(X)H ∀H ∈ Vm×n . (66)

Firstly, we will show that (66) holds for the special case that X = [Σ(X) 0] and X = [Σ(X) 0] → X.
Let {F (ij)} be the standard basis of Vm×n, i.e., for each i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}, F (ij) ∈ Vm×n

is a matrix whose entries are zeros, except the (i, j)-th entry is 1 or
√
−1. Therefore, we only need to

show (66) holds for all F (ij). Note that since σ(·) is globally Lipschitz continuous, we know that for X
sufficiently close to X, σi 6= σj if σi 6= σj .

For each i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}, write F (ij) in the following form

F (ij) =
[
F

(ij)
1 F

(ij)
2

]

with F
(ij)
1 ∈ Vm×m and F

(ij)
2 ∈ Vm×(n−m). Next, we consider the following cases.

Case 1: i, j ∈ {1, . . . ,m} and i = j. In this case, since g′ is continuous at σ, we know that if F (ij) is
real, then

lim
X→X

G′(X)F (ij) = lim
X→X

[Diag(g′(σ)ei) 0] = [Diag(g′(σ)ei) 0] = G′(X)F (ij) ,

where ei is the vector whose i-th entry is one, and zero otherwise; if F (ij) is complex, then

lim
X→X

G′(X)F (ij) = lim
X→X

[
gi(σ) + gj(σ)

σi + σj
T (F

(ij)
1 ) 0

]
=

[
gi(σ) + gj(σ)

σi + σj
T (F

(ij)
1 ) 0

]
= G′(X)F (ij) .

Case 2: i, j ∈ {1, . . . ,m}, i 6= j, σi = σj and σi = σj > 0. Therefore, we know that there exists
l ∈ {1, . . . , r} such that i, j ∈ al. Since g

′ is continuous at σ, we know from (49) that

lim
X→X

G′(X)F (ij) = lim
X→X

[
((g′(σ))ii − (g′(σ))ij)S(F

(ij)
1 ) +

gi(σ) + gj(σ)

σi(X) + σj(X)
T (F

(ij)
1 ) 0

]

=

[
((g′(σ))ii − (g′(σ))ij)S(F

(ij)
1 ) +

gi(σ) + gj(σ)

σi + σj

T (F
(ij)
1 ) 0

]

= G′(X)F (ij) .

Case 3: i, j ∈ {1, . . . ,m}, i 6= j, σi 6= σj and σi = σj > 0. In this case, we know that

G′(X)F (ij) =

[
gi(σ) − gj(σ)

σi − σj
S(F

(ij)
1 ) +

gi(σ) + gj(σ)

σi + σj
T (F

(ij)
1 ) 0

]
.
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Let s, t ∈ Rm be two vectors defined by

sp :=

{
σp if p 6= i,
σj if p = i

and tp :=





σp if p 6= i, j,
σj if p = i,
σi if p = j,

p ∈ {1, . . . ,m} . (67)

It is clear that both s and t converge to σ as X → X . By noting that g is absolutely symmetric on σ̂N ,
we know from (6) that gj(σ) = gi(t), since the vector t is obtained from σ by swapping the i-th and the
j-th components. By the mean value theorem (cf. e.g., [38, Page 68-69]), we have

gi(σ)− gj(σ)

σi − σj
=

gi(σ) − gi(s) + gi(s)− gj(σ)

σi − σj
=

∂gi(ξ)

∂µi

(σi − σj) + gi(s)− gj(σ)

σi − σj

=
∂gi(ξ)

∂µi

+
gi(s)− gi(t) + gi(t)− gj(σ)

σi − σj

=
∂gi(ξ)

∂µi

+

∂gi(ξ̂)

∂µj

(σj − σi) + gi(t)− gj(σ)

σi − σj
=
∂gi(ξ)

∂µi

− ∂gi(ξ̂)

∂µj

, (68)

where ξ ∈ Rm lies between σ and s and ξ̂ ∈ Rm is between s and t. Consequently, we have ξ → σ and
ξ̂ → σ as X → X. By the continuity of g′, we have

lim
X→X

gi(σ) − gj(σ)

σi − σj
= (g′(σ))ii − (g′(σ))ij and lim

X→X

gi(σ) + gj(σ)

σi + σj
=
gi(σ) + gj(σ)

σi + σj

.

Therefore, we have

lim
X→X

G′(X)F (ij) =

[
((g′(σ))ii − (g′(σ))ij)S(F

(ij)
1 ) +

gi(σ) + gj(σ)

σi + σj

T (F
(ij)
1 ) 0

]
= G′(X)F (ij) .

Case 4: i, j ∈ {1, . . . ,m}, i 6= j, σi > 0 or σj > 0 and σi 6= σj . Then, we have σi > 0 or σj > 0 and
σi 6= σj . Since g

′ is continuous at σ, we know that

lim
X→X

G′(X)F (ij) = lim
X→X

[
gi(σ)− gj(σ)

σi − σj
S(F

(ij)
1 ) +

gi(σ) + gj(σ)

σi + σj
T (F

(ij)
1 ) 0

]

=

[
gi(σ)− gj(σ)

σi − σj

S(F
(ij)
1 ) +

gi(σ) + gj(σ)

σi + σj

T (F
(ij)
1 ) 0

]
= G′(X)F (ij) .

Case 5: j ∈ {m+ 1, . . . , n} and σi > 0. Since g′ is continuous at σ, we obtain that

lim
X→X

G′(X)F (ij) = lim
X→X

[
0

gi(σ)

σi
F

(ij)
2

]
=

[
0

gi(σ)

σi

F
(ij)
2

]
= G′(X)F (ij) .

Case 6: i, j ∈ {1, . . . ,m}, i 6= j, σi = σj = 0 and σi = σj > 0. Therefore, we know that

G′(X)F (ij) =

[
((g′(σ))ii − (g′(σ))ij)S(F

(ij)
1 ) +

gi(σ) + gj(σ)

σi + σj
T (F

(ij)
1 ) 0

]
.

We know from (49) and Lemma 3.2 that

lim
X→X

(g′(σ))ii = (g′(σ))ii = ηi and lim
X→X

(g′(σ))ij = (g′(σ))ij = 0 . (69)
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Let ŝ, t̂ ∈ Rm be two vectors defined by

ŝp :=

{
σp if p 6= i,
−σj if p = i

and t̂p :=





σp if p 6= i, j,
−σj if p = i ,
−σi if p = j ,

p ∈ {1, . . . ,m} . (70)

Also, it clear that both ŝ and t̂ converge to σ as X → X. Again, by noting that g is absolutely symmetric
on σ̂N , we know from (6) that

gi(σ) = −gj(t̂) and gj(σ) = −gi(t̂) .

By using similar arguments for deriving (68), we have

gi(σ) + gj(σ)

σi + σj
=
∂gi(ζ)

∂µi

+
∂gi(ζ̂)

∂µj

, (71)

where ζ ∈ Rm is between σ and ŝ and ζ̂ ∈ Rm is between ŝ and t̂. Consequently, we know that ζ, ζ̂ → σ
as X → X . By the continuity of g′, we know from (49) that

lim
X→X

gi(σ) + gj(σ)

σi + σj
= (g′(σ))ii = ηi . (72)

Therefore, from (69) and (72), we have

lim
X→X

G′(X)F (ij) =
[
ηiF

(ij)
1 0

]
= G′(σ)F (ij) .

Case 7: i, j ∈ {1, . . . ,m}, i 6= j, σi = σj = 0, σi 6= σj and σi > 0 or σj > 0. Let s, t and ŝ, t̂ be defined
by (67) and (70), respectively. By the continuity of g′, we know from (68) and (71) that

lim
X→X

G′(X)F (ij) = lim
X→X

[
gi(σ) − gj(σ)

σi − σj
S(F

(ij)
1 ) +

gi(σ) + gj(σ)

σi + σj
T (F

(ij)
1 ) 0

]

=
[
ηiS(F

(ij)
1 ) + ηiT (F

(ij)
1 ) 0

]
=

[
ηiF

(ij)
1 0

]
= G′(X)F (ij) .

Case 8: i 6= j ∈ {1, . . . ,m}, σi = σj = 0 and σi = σj = 0. By the continuity of g′, we obtain that

lim
X→X

G′(X)F (ij) = lim
X→X

[
(g′(σ))iiF

(ij)
1 0

]
=

[
(g′(σ))iiF

(ij)
1 0

]
=

[
ηiF

(ij)
1 0

]
= G′(X)F (ij) .

Case 9: j ∈ {m+ 1, . . . , n}, σi = 0 and σi > 0. We know that

G′(X)F (ij) =

[
0

gi(σ)

σi
F

(ij)
2

]
.

Let s̃ ∈ Rm be a vector given by

s̃p :=

{
σp if p 6= i,
0 if p = i,

p ∈ {1, . . . ,m} .

Therefore, we have s̃ converges to σ as X → X. Since g is absolutely symmetric on σ̂N , we know that
gi(s̃) = 0. Also, by the mean value theorem, we have

gi(σ)

σi
=
gi(σ)− gi(s̃)

σi
=
∂gi(ρ)

∂µi

,
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where ρ ∈ Rm is between σ and s̃. Consequently, we have ρ converges to σ as X → X . By the continuity
of g′, we know from (49) that

lim
X→X

gi(σ)

σi
= (g′(σ))ii = ηi .

Thus,

lim
X→X

G′(X)F (ij) = lim
X→X

[
0

gi(σ)

σi
F

(ij)
2

]
=

[
0 ηiF

(ij)
2

]
= G′(X)F (ij) .

Case 10: j ∈ {m+ 1, . . . , n}, σi = 0 and σi = 0. By the continuity of g′, we know that

lim
X→X

G′(X)F (ij) = lim
X→X

[
0 (g′(σ))iiF

(ij)
2

]
=

[
0 (g′(σ))iiF

(ij)
2

]
= G′(X)F (ij) .

Finally, we consider the general case that

X = U [Σ(X) 0]V T and X = U
[
Σ(X) 0

]
V

T

.

By noting from Theorem 3.3 that G is F-differential at X if and only if G is F-differential at [Σ(X) 0]
and for any H ∈ Vm×n,

G′(X)H = U
(
G′([Σ(X) 0])(UTHV )

)
V T ,

we know from the above analysis that G is continuously differentiable at X .
“ =⇒ ” Suppose that G is continuously differentiable at X. Let (U, V ) ∈ Om×n(X) be fixed. For any

σ ∈ Rm, define X := U [Diag(σ) 0]V
T

. For any h ∈ Rm, let H := U [Diag(h) 0]V
T

. From the proof of
the second part of Theorem 3.3, we know from the assumption that for all σ sufficiently close to σ,

Diag(g′(σ)h) = U
T

(G′(X)H)V 1, h ∈ Rm .

Consequently, g is also continuously differentiable at σ. �

Remark 2 In order to compute (54), it appears that one needs to compute and store V 2 ∈ Vn×(n−m)

explicitly, which would incur huge memory cost if n ≫ m. Fortunately, due to the special form of F , the
explicit computation of V 2 can be avoided as we shall show next. Let f̄ = (f̄1, . . . , f̄m)T be defined by

f̄i =

{
gi(σ̄)/σ̄i if σ̄i 6= 0 ,

(g′(σ̄))ii otherwise.

Observe that the term in (54) involving V 2 is given by

U(F ◦ (UT

HV 2))V
T

2 = UDiag(f̄)U
T

HV 2V
T

2 = UDiag(f̄)U
T

H(In − V 1V
T

1 ) = UDiag(f̄)U
T

(H − (HV 1)V
T

1 ).

Thus in numerical implementation, the large matrix V 2 is not needed.

4 Lipschitz continuity, Bouligand differentiability, G-semismoothness,

and Clarke’s generalized Jacobian

4.1 Lipschitz continuity

In this subsection, we analyze the local Lipschitz continuity of the spectral operator G defined on a
nonempty set N . Let X ∈ N be given. Assume that g is locally Lipschitz continuous near σ = σ(X) with
module L > 0. Therefore, there exists a positive constant δ0 > 0 such that

‖g(σ)− g(σ′)‖ ≤ L‖σ − σ′‖ ∀σ, σ′ ∈ B(σ, δ0) := {y ∈ σ̂N | ‖y − σ‖ ≤ δ0} .

By using the absolutely symmetric property of g on σ̂N , we obtain the following simple proposition.
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Proposition 4.1 There exist a positive constant L′ > 0 and a positive constant δ > 0 such that for any
σ ∈ B(σ, δ),

|gi(σ) − gj(σ)| ≤ L′|σi − σj | ∀ i, j ∈ {1, . . . ,m}, i 6= j, σi 6= σj , (73)

|gi(σ) + gj(σ)| ≤ L′|σi + σj | ∀ i, j ∈ {1, . . . ,m}, σi + σj > 0 , (74)

|gi(σ)| ≤ L′|σi| ∀ i ∈ {1, . . . ,m}, σi > 0 . (75)

Proof. It is easy to check that there exists a positive constant δ1 > 0 such that for any σ ∈ B(σ, δ1),

|σi − σj | ≥ δ1 > 0 ∀ i, j ∈ {1, . . . ,m}, i 6= j, σi 6= σj , (76)

|σi + σj | ≥ δ1 > 0 ∀ i, j ∈ {1, . . . ,m}, σi + σj > 0 , (77)

|σi| ≥ δ1 > 0 ∀ i ∈ {1, . . . ,m}, σi > 0 . (78)

Let δ := min{δ0, δ1} > 0. Denote τ := max
i,j

{|gi(σ)− gj(σ)|, |gi(σ) + gj(σ)|, |gi(σ)|} ≥ 0, L1 := (2Lδ + τ)/δ

and L′ := max{L1,
√
2L}. Let σ be any fixed vector in B(σ, δ).

Firstly, we consider the case that i, j ∈ {1, . . . ,m}, i 6= j and σi 6= σj . If σi 6= σj , then from (76), we
know that

|gi(σ) − gj(σ)| = |gi(σ) − gi(σ) + gi(σ)− gj(σ) + gj(σ)− gj(σ)|

≤ 2‖g(σ)− g(σ)‖+ τ ≤ 2Lδ + τ

δ
|σi − σj | = L1|σi − σj | . (79)

If σi = σj , define t ∈ Rm by

tp :=





σp if p 6= i, j,
σj if p = i,
σi if p = j,

p = 1, . . . ,m .

Then, we have ‖t − σ‖ = ‖σ − σ‖ ≤ δ. Moreover, since g is absolutely symmetric on σ̂N , we have
gi(t) = gj(σ). Therefore

|gi(σ)− gj(σ)| = |gi(σ)− gi(t)| ≤ ‖g(σ)− g(t)‖ ≤ L‖σ − t‖ =
√
2L|σi − σj | . (80)

Thus, the inequality (73) follows from (79) and (80) immediately.
Secondly, consider the case i, j ∈ {1, . . . ,m} and σi + σj > 0. If σi + σj > 0, it follows from (77) that

|gi(σ) + gj(σ)| = |gi(σ) − gi(σ) + gi(σ) + gj(σ)− gj(σ) + gj(σ)|

≤ 2‖g(σ)− g(σ)‖+ τ ≤ 2Lδ + τ

δ
|σi + σj | = L1|σi + σj | . (81)

If σi + σj = 0, i.e., σi = σj = 0, define the vector t̂ ∈ Rm by

t̂p :=





σp if p 6= i, j,
−σj if p = i,
−σi if p = j,

p = 1, . . . ,m .

By noting that σi = σj = 0, we obtain that ‖t̂− σ‖ = ‖σ− σ‖ ≤ δ. Again, since g is absolutely symmetric
on σ̂N , we have gi(t) = gj(σ), we have gi(t̂) = −gj(σ). Therefore,

|gi(σ) + gj(σ)| = |gi(σ)− gi(t̂)| ≤ ‖g(σ)− g(t̂)‖ ≤ L‖σ − t̂‖ =
√
2L|σi + σj | . (82)

Thus the inequality (74) follows from (81) and (82).
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Finally, we consider the case that i ∈ {1, . . . ,m} and σi > 0 . If σi > 0, then we know from (78) that

|gi(σ)| = |gi(σ)− gi(σ) + gi(σ)| ≤ |gi(σ) − gi(σ)|+ |gi(σ)|

≤ ‖g(σ)− g(σ)‖+ τ ≤ 2Lδ + τ

δ
|σi| ≤ L1|σi| . (83)

If σi = 0, define s ∈ Rm by

sp :=

{
σp if p 6= i,
0 if p = i,

p = 1, . . . ,m .

Then, since σi > 0, we know that ‖s − σ‖ < ‖σ − σ‖ ≤ δ. Moreover, since g is absolutely symmetric on
σ̂N , we have gi(t) = gj(σ), we know that gi(s) = 0. Therefore, we have

|gi(σ)| = |gi(σ)− gi(s)| ≤ ‖g(σ)− g(s)‖ ≤ L‖σ − s‖ ≤ L|σi| . (84)

Thus, the inequality (73) follows from (83) and (84) immediately. This completes the proof. �

For any fixed 0 < ω ≤ δ0/
√
m and y ∈ B(σ, δ0/(2

√
m)) := {‖y − σ‖∞ ≤ δ0/(2

√
m)}, the function g is

integrable on Vω(y) := {z ∈ Rm | ‖y − z‖∞ ≤ ω/2} (in the sense of Lebesgue). Therefore, we know that
the function

g(ω, y) :=
1

ωm

∫

Vω(y)

g(z)dz (85)

is well-defined on (0, δ0/
√
m ]×B(σ, δ0/(2

√
m)) and is said to be Steklov averaged function [49] of g. For

the sake of convenience, we always define g(0, y) = g(y). Since g is absolutely symmetric on σ̂N , we have
gi(t) = gj(σ), it is easy to check that for each fixed 0 < ω ≤ δ0/

√
m, the function g(ω, ·) is also absolutely

symmetric on B(σ, δ0/(2
√
m)). By the definition, we know that g(·, ·) is locally Lipschitz continuous on

(0, δ0/
√
m ] × B(σ, δ0/(2

√
m)) with the module L. Meanwhile, by elementary calculations, we know that

g(·, ·) is continuously differentiable on (0, δ0/
√
m ]×B(σ, δ0/(2

√
m)) and for any fixed ω ∈ (0, δ0/

√
m ] and

y ∈ B(σ, δ0/(2
√
m)),

‖g′y(ω, y)‖ ≤ L .

Moreover, we know that g(ω, ·) converges to g uniformly on the compact set B(σ, δ0/(2
√
m)) as ω ↓ 0.

By using the formula (54), the following results can be obtained from Theorem 3.4 and Proposition 4.1
directly.

Proposition 4.2 Suppose that g is locally Lipschitz continuous near σ, Let g(·, ·) be the corresponding
Steklov averaged function defined in (85). Then, for any given ω ∈ (0, δ0/

√
m ], the spectral operator

G(ω, ·) with respect to g(ω, ·) is continuously differentiable on B(X, δ0/(2
√
m)) := {X ∈ X | ‖σ(X)−σ‖∞ ≤

δ0/(2
√
m)}, and there exist two positive constants δ1 > 0 and L > 0 such that

‖G′(ω,X)‖ ≤ L ∀ 0 < ω ≤ min{δ0/
√
m, δ1} and X ∈ B(X, δ0/(2

√
m)) . (86)

Moreover, G(ω, ·) converges to G uniformly in the compact set B(X, δ0/(2
√
m)) as ω ↓ 0.

Proposition 4.2 allows us to derive the following result on the local Lipschitz continuity of spectral
operators.

Theorem 4.1 Suppose that X has the SVD (22). The spectral operator G is locally Lipschitz continuous
near X if and only if g is locally Lipschitz continuous near σ = σ(X).

Proof. “ ⇐= ” Suppose that g is locally Lipschitz continuous near σ = σ(X) with module L > 0, i.e.,
there exists a positive constant δ0 > 0 such that

‖g(σ)− g(σ′)‖ ≤ L‖σ − σ′‖ ∀σ, σ′ ∈ B(σ, δ0) .
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By Proposition 4.2, for any ω ∈ (0, δ0/
√
m ], the spectral operator G(ω, ·) defined with respect to the

Steklov averaged function g(ω, ·) is continuously differentiable. Since G(ω, ·) converges to G uniformly in
the compact set B(X, δ0/(2

√
m)) as ω ↓ 0, we know that for any ε > 0, there exists a constant δ2 > 0 such

that for any 0 < ω ≤ δ2,

‖G(ω,X)−G(X)‖ ≤ ε ∀X ∈ B(X, δ0/(2
√
m)) .

Fix any X,X ′ ∈ B(X, δ0/(2
√
m)) with X 6= X ′. By Proposition 4.2, we know that there exists δ1 > 0

such that (86) holds. Let δ̄ := min{δ1, δ2, δ0/
√
m}. Then, by the mean value theorem, we know that

‖G(X)−G(X ′)‖ = ‖G(X)−G(ω,X) +G(ω,X)−G(ω,X ′) +G(ω,X ′)−G(X ′)‖

≤ 2ε+ ‖
∫ 1

0

G′(ω,X + t(X −X ′))dt‖

≤ L‖X −X ′‖+ 2ε ∀ 0 < ω < δ̄ .

Since X,X ′ ∈ B(X, δ0/(2
√
m)) and ε > 0 are arbitrary, by letting ε ↓ 0, we obtain that

‖G(X)−G(X ′)‖ ≤ L‖X −X ′‖ ∀X,X ′ ∈ B(X, δ0/(2
√
m)) .

Thus G is locally Lipschitz continuous near X .
“ =⇒ ” Suppose that G is locally Lipschitz continuous near X with module L > 0, i.e., there exists an

open neighborhood B of X in N such that for any X,X ′ ∈ B,

‖G(X)−G(X ′)‖ ≤ L‖X −X ′‖ .

Let (U, V ) ∈ Om×n(X) be fixed. For any y ∈ σ̂N , we define Y := U [Diag(y) 0]V
T

. Then, we know

from Proposition 3.1 that G(Y ) = U [Diag(g(y)) 0]V
T
. Therefore, we obtain that there exists an open

neighborhood Bσ of σ in σ̂N such that

‖g(y)− g(y′)‖ = ‖G(Y )−G(Y ′)‖ ≤ L‖Y − Y ′‖ = L‖y − y′‖ ∀ y, y′ ∈ Bσ .

This completes the proof. �

4.2 Bouligand-differentiability

In this section, we study the ρ-order Bouligand-differentiability of G with 0 < ρ ≤ 1, which is stronger than
the directional differentiability. Let Z be a finite dimensional real Euclidean space equipped with an inner
product 〈·, ·〉 and its induced norm ‖ · ‖. Let O be an open set in Z and Z ′ be another finite dimensional
real Euclidean space. The function F : O ⊆ Z → Z ′ is said to be B(ouligand)-differentiable at z ∈ O if for
any h ∈ Z with h→ 0,

F (z + h)− F (z)− F ′(z;h) = o(‖h‖) .
A stronger notion than B-differentiability is ρ-order B-differentiability with ρ > 0. The function F : O ⊆
Z → Z ′ is said to be ρ-order B-differentiable at z ∈ O if for any h ∈ Z with h→ 0,

F (z + h)− F (z)− F ′(z;h) = O(‖h‖1+ρ) .

Let X ∈ Vm×n be given. We have the following results on the ρ-order B-differentiability of spectral
operators.

Theorem 4.2 Suppose that X ∈ N has the SVD (22). Let 0 < ρ ≤ 1 be given. Then,

(i) if g is locally Lipschitz continuous near σ(X) and ρ-order B-differentiable at σ(X), then G is ρ-order
B-differentiable at X;
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(ii) if G is ρ-order B-differentiable at X, then g is ρ-order B-differentiable at σ(X).

Proof. Without loss of generality, we only consider the case that ρ = 1.
(i) For any H ∈ Vm×n, denote X = X +H . Let U ∈ Om and V ∈ On be such that

X = U [Σ(X) 0]V T . (87)

Denote σ = σ(X). Let GS(X) and GR(X) be defined by (27). Therefore, by Lemma 3.1, we know that
for any H → 0,

GS(X)−GS(X) = G′
S(X)H +O(‖H‖2) = G′

S(X)H +O(‖H‖2) , (88)

whereG′
S(X)H is given by (28). ForH ∈ Vm×n sufficiently small, we have Ul(X) =

∑
i∈al

uiv
T
i , l = 1, . . . , r.

Therefore, we know that

GR(X) = G(X)−GS(X) =

r+1∑

l=1

∆l(H) , (89)

where
∆l(H) =

∑

i∈al

(gi(σ) − gi(σ))uiv
T

i l = 1, . . . , r and ∆r+1(H) =
∑

i∈b

gi(σ)uiv
T

i .

We first consider the case that X = [Σ(X) 0]. Then, we know from (12) and (13) that for any H
sufficiently small,

σ = σ + σ′(X;H) +O(‖H‖2) , (90)

where σ′(X ;H) = (λ(S(Ha1a1
)), . . . , λ(S(Barar

)), σ([Hbb Hbc])) ∈ Rm. Denote h := σ′(X ;H). Since g is
locally Lipschitz continuous near σ and 1-order B-differentiable at σ, we know that for any H sufficiently
small,

g(σ)− g(σ) = g(σ + h+O(‖H‖2))− g(σ) = g(σ + h)− g(σ) +O(‖H‖2) = g′(σ;h) +O(‖H‖2) .

Let φ = g′(σ; ·). Since uivTi , i = 1, . . . ,m are uniformly bounded, we obtain that for H sufficiently small,

∆l(H) = Ual
Diag(φl(h))V

T

al
+O(‖H‖2), l = 1, . . . , r ,

∆r+1(H) = UbDiag(φr+1(h))V
T

b +O(‖H‖2) .

Again, we know from (14) that there exist Ql ∈ O|al|, M ∈ O|b| and N = [N1 N2] ∈ On−|a| with
N1 ∈ V(n−|a|)×|b| and N2 ∈ V(n−|a|)×(n−m) (depending on H) such that

Ual
=




O(‖H‖)
Ql +O(‖H‖)
O(‖H‖)


 , Val

=




O(‖H‖)
Ql +O(‖H‖)
O(‖H‖)


 , l = 1, . . . , r ,

Ub =

[
O(‖H‖)

M +O(‖H‖)

]
, [Vb Vc] =

[
O(‖H‖)

N +O(‖H‖)

]
.

Since g is locally Lipschitz continuous near σ and directionally differentiable at σ, we know from [44,
Theorem A.2] or [41, Lemma 2.2] that the directional derivative φ is globally Lipschitz continuous on Rm.
Thus, for H sufficiently small, we have ‖φ(h)‖ = O(‖H‖). Therefore, we obtain that

∆l(H) =




0 0 0

0 QlDiag(φl(h))Q
T

l 0

0 0 0


+O(‖H‖2), l = 1, . . . , r , (91)

∆r+1(H) =

[
0 0
0 MDiag(φr+1(h))N

T
1

]
+O(‖H‖2) . (92)
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Again, we know from (15) and (16) that

S(Halal
) = Ql(Σ(X)alal

− νlI|al|)Q
T

l +O(‖H‖2), l = 1, . . . , r , (93)

[Hbb Hbc] = M(Σ(X)bb − νr+1I|b|)N
T

1 +O(‖H‖2) . (94)

Since g is locally Lipschitz continuous near σ = σ(X), we know from Theorem 4.1 that the spectral operator
G is locally Lipschitz continuous near X. Therefore, we know from Theorem 3.2 and Remark 1 that G is
directional differentiable at X . Thus, from [44, Theorem A.2] or [41, Lemma 2.2], we know that G′(X, ·)
is globally Lipschitz continuous on Vm×n. Thus, the corresponding spectral operator Φ defined by (33) is
globally Lipschitz continuous on W . Hence, we know from (89) that for H sufficiently small,

GR(X) = Φ̂(D(H)) +O(‖H‖2) , (95)

where D(H) = (S(Ha1a1
), . . . , S(Harar

), Hbā) and Φ̂(·) is defined by (36).
Next, consider the general case that X ∈ Vm×n. For any H ∈ Vm×n, rewrite (87) as

[Σ(X) 0] + U
T

HV = U
T

U [Σ(Z) 0]V TV .

Denote Ũ := U
T

U and Ṽ := V
T

V . Let X̃ := [Σ(X) 0] + U
T

HV . Then, since U and V are unitary
matrices, we know from (95) that

GR(X) = U Φ̂(D(H))V
T

+O(‖H‖2) , (96)

where D(H) =
(
S(H̃a1a1

), . . . , S(H̃arar
), H̃bā

)
and H̃ = U

T

HV . Thus, by combining (88) and (96) and

noting that G(X) = GS(X), we obtain that for any H ∈ Vm×n sufficiently close to 0,

G(X)−G(X)−G′(X;H) = O(‖H‖2) ,

where G′(X;H) is given by (37). This implies that G is 1-order B-differentiable at X .
(ii) Suppose that G is 1-order B-differentiable at X. Let (U, V ) ∈ Om×n(X) be fixed. For any h ∈ Rm,

let H = U [Diag(h) 0]V
T ∈ Vm×n. We know from Proposition 3.1 that for all h sufficiently close to 0,

G(X +H) = UDiag(g(σ + h))V
T

1 . Therefore, we know from the assumption that

Diag(g(σ + h)− g(σ)) = U
T (
G(X +H)−G(X)

)
V 1 = U

T
G′(X ;H)V 1 +O(‖H‖2) .

This shows that g is 1-order B-differentiable at σ. The proof is competed. �

4.3 G-semismoothness

Let Z and Z ′ be two finite dimensional real Euclidean spaces and O be an open set in Z. Suppose that
F : O ⊆ Z → Z ′ is a locally Lipschitz continuous function onO. Then, according to Rademacher’s theorem,
F is almost everywhere differentiable (in the sense of Fréchet) in O. Let DF be the set of points in O
where F is differentiable. Let F ′(z) be the derivative of F at z ∈ DF . Then the B(ouligand)-subdifferential
of F at z ∈ O is denoted by [40]:

∂BF (z) :=

{
lim

DF∋zk→z
F ′(zk)

}

and Clarke’s generalized Jacobian of F at z ∈ O [10] takes the form:

∂F (z) = conv{∂BF (z)} ,
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where “conv” stands for the convex hull in the usual sense of convex analysis [45]. The function F is said
to be G-semismooth at a point z ∈ O if for any y → z and V ∈ ∂F (y),

F (y)− F (z)− V (y − z) = o(‖y − z‖) .

A stronger notion than G-semismoothness is ρ-order G-semismoothness with ρ > 0. The function F is said
to be ρ-order G-semismooth at z if for any y → z and V ∈ ∂F (y),

F (y)− F (z)− V (y − z) = O(‖y − z‖1+ρ) .

In particular, the function F is said to be strongly G-semismooth at z if F is 1-order G-semismooth at z.
Furthermore, the function F is said to be (ρ-order, strongly) semismooth at z ∈ O if (i) the directional
derivative of F at z along any direction d ∈ Z, denoted by F ′(z; d), exists; and (ii) F is (ρ-order, strongly)
G-semismooth.

The following result taken from [50, Theorem 3.7] provides a convenient tool for proving the G-
semismoothness of Lipschitz functions.

Lemma 4.1 Let F : O ⊆ Z → Z ′ be a locally Lipschitz continuous function on the open set O. Let ρ > 0
be a constant. F is ρ-order G-semismooth (G-semismooth) at z if and only if for any DF ∋ y → z,

F (y)− F (z)− F ′(y)(y − z) = O(‖y − z‖1+ρ)
(
= o(‖y − z‖)

)
. (97)

Let X ∈ N be given. Assume that g is locally Lipschitz continuous near σ = σ(X). Thus, from
Theorem 4.1 we know that the corresponding spectral operator G is locally Lipschitz continuous near X.
The following theorem is on the G-semismoothness of the spectral operator G.

Theorem 4.3 Suppose that X ∈ N has the decomposition (22). Let 0 < ρ ≤ 1 be given. G is ρ-order
G-semismooth at X if and only if g is ρ-order G-semismooth at σ.

Proof. Without loss of generality, we only consider the case that ρ = 1.
“ ⇐= ” For any H ∈ Vm×n, denote X = X +H . Let U ∈ Om and V ∈ On be such that

X = U [Σ(X) 0]V T . (98)

Denote σ = σ(X). GS and GR are two mappings defined in (27). We know from Lemma 3.1 that there
exists an open neighborhood B ⊆ N of X such that GS twice continuously differentiable on B and

GS(X)−GS(X) =

r∑

l=1

ḡl U ′
l (X)H +O(‖H‖2)

=

r∑

l=1

ḡl
{
U [Γl(X) ◦ S(UTHV1) + Ξl(X) ◦ T (UTHV1)]V

T

1 + U(Υl(X) ◦ UTHV2)V
T

2

}
+O(‖H‖2) ,

(99)

where for each l ∈ {1, . . . , r}, Γl(X), Ξl(X) and Υl(X) are given by (18)-(20) with X , respectively. By
taking a smaller B if necessary, we assume that for any X ∈ B and l, l′ ∈ {1, . . . , r},

σi(X) > 0, σi(X) 6= σj(X) ∀ i ∈ al, j ∈ al′ and l 6= l′ . (100)

Since g is locally Lipschitz continuous near σ, we know that for any H sufficiently small,

ḡl = gi(σ) +O(‖H‖) ∀ i ∈ al, l = 1, . . . , r .
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Let E1, E2 and F (depending on X) be the matrices defined by (24)-(26). By noting that U ∈ Om and
V ∈ On are uniformly bounded, since g is locally Lipschitz continuous near σ, we know that for any X ∈ B
(shrinking B if necessary),

GS(X)−GS(X) = U
[
E0
1 ◦ S(UTHV1) + E0

2 ◦ T (UTHV1) F0 ◦ UTHV2
]
V T +O(‖H‖2) , (101)

where E0
1 , E0

2 and F0 are the corresponding real matrices defined in (24)-(26), respectively.
Let X ∈ DG ∩ B, where DG is the set of points in Vm×n for which G is (F-)differentiable. Define the

corresponding index sets in {1, . . . ,m} for X by a′ := {i | σi(X) > 0} and b′ := {i | σi(X) = 0}. By (100),
we have

a′ ⊇ a and b′ ⊆ b . (102)

Let E1, E2, F and C be the corresponding real matrices defined in (50)–(53), respectively. We know from
Theorem 3.3 that

G′(X)H = U [E1 ◦ S(UTHV1) + E2 ◦ T (UTHV1) + Diag
(
Cdiag(S(UTHV1))

)
F ◦ UTHV2]V

T , (103)

where η, E1, E2, F and C are defined by (49)–(53) with respect to σ, respectively. Denote

∆(H) := G′(X)H − (GS(X)−GS(X)).

Moreover, since there exists an integer j ∈ {0, . . . , |b|} such that |a′| = |a|+ j, we can define two index sets
b1 := {|a|+1, . . . , |a|+ j} and b2 := {|a|+ j+1, . . . , |a|+ |b|} such that a′ = a∪ b1 and b′ = b2. From (101)
and (103), we obtain that

∆(H) = UR̂(H)V T +O(‖H‖2) , (104)

where R̂(H) ∈ Vm×n is defined by

R̂(H) :=

[
Diag (R1(H), . . . , Rr(H)) 0

0 Rr+1(H)

]
,

Rl(H) = (E1)alal
◦ S(UT

al
HVal

) + Diag
(
(Cdiag(S(UTHV1)))alal

)
, l = 1, . . . , r, (105)

Rr+1(H) =

[
(E1)b1b1 ◦ S(UT

b1
HVb1) + Diag

(
(Cdiag(S(UTHV1)))b1b1

)
0 0

0 γUT

b2
HVb2 γUT

b2
HV2

]
(106)

and γ := (g′(σ))ii for any i ∈ b2. By (22), we obtain from (98) that

[
Σ(X) 0

]
+ U

T
HV = U

T
U [Σ(X) 0]V TV .

Let Ĥ := U
T
HV , Û := U

T
U and V̂ := V

T
V . Then, UTHV = ÛTU

T
HV V̂ = ÛTĤV̂ . We know from (14)

that there exist Ql ∈ O|al|, l = 1, . . . , r and M ∈ O|b|, N ∈ On−|a| such that

UT
al
HVal

= ÛT
al
ĤV̂al

= QT

l Ĥalal
Ql +O(‖H‖2), l = 1, . . . , r ,

[
UT

b HVb UT

b HV2
]
=

[
ÛT

b ĤV̂b ÛT

b ĤV̂2

]
=MT

[
Ĥbb Ĥbc

]
N +O(‖H‖2) .

Moreover, from (15) and (16), we obtain that

S(UT
al
HVal

) = QT

l S(Ĥalal
)Ql +O(‖H‖2) = Σ(X)alal

− Σ(X)alal
+O(‖H‖2), l = 1, . . . , r ,

[
UT

b HVb UT

b HV2
]
=MT

[
Ĥbb Ĥbc

]
N =

[
Σ(X)bb − Σ(X)bb 0

]
+ O(‖H‖2) .

Denote h = σ′(X ;H) ∈ Rm. Since the single value functions are strongly semismooth [51], we know that

S(UT
al
HVal

) = Diag(hal
) +O(‖H‖2), l = 1, . . . , r ,

S(UT

b1
HVb1) = Diag(hb1) +O(‖H‖2),

[
UT

b2
HVb2 UT

b2
HV2

]
= [Diag(hb2) 0] +O(‖H‖2).
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Therefore, since C = g′(σ)−Diag(η), by (105) and (106), we obtain from (104) that

∆(H) = U [Diag (g′(σ)h) 0]V T = U [Diag (g′(σ)h) 0]V T +O(‖H‖2) . (107)

On the other hand, for X sufficiently close to X , we have Ul(X) =
∑

i∈al
uiv

T
i , l = 1, . . . , r. Therefore,

GR(X) = G(X)−GS(X) =
r∑

l=1

∑

i∈al

[gi(σ) − gi(σ)]uiv
T

i +
∑

i∈b

gi(σ)uiv
T

i . (108)

We know from Theorem 3.3 that G is differentiable at X if and only if g is differentiable at σ. Since g is
1-order G-semismooth at σ and σ(·) is strongly semismooth, we obtain that for any X ∈ DG∩B (shrinking
B if necessary),

g(σ)− g(σ) = g′(σ)(σ − σ) +O(‖H‖2) = g′(σ)(h +O(‖H‖2)) +O(‖H‖2) = g′(σ)h+O(‖H‖2) .

Then, since U ∈ Om and U ∈ On are uniformly bounded, we obtain from (108) that

GR(X) = U [Diag (g′(σ)h) 0]V T +O(‖H‖2) .

Thus, from (107), we obtain that ∆(H) = GR(X) +O(‖H‖2). That is, for any X ∈ DG converging to X,

G(X)−G(X)−G′(X)H = −∆(H) +GR(X) = O(‖H‖2) .

“ =⇒ ” Suppose that G is 1-order G-semismooth at X. Let (U, V ) ∈ Om×n(X) be fixed. Assume that

σ = σ + h ∈ Dg and h ∈ Rm is sufficiently small. Let X = U [Diag(σ) 0]V
T

and H = U [Diag(h) 0]V
T

.
Then, X ∈ DG and converges to X if h goes to zero. We know from Proposition 3.1 that for all h sufficiently

close to 0, G(X) = UDiag(g(σ))V
T

1 . Therefore, for any h sufficiently close to 0,

Diag(g(σ + h)− g(σ)) = U
T (
G(X)−G(X)

)
V 1 = U

T

G′(X)HV 1 +O(‖H‖2) .

Hence, since obviously Diag(g′(σ)h) = U
T
G′(X)HV 1, we know that for h sufficiently small, g(σ + h) −

g(σ) = g′(σ)h+O(‖h‖2). Then, g is 1-order G-semismooth at σ. �

4.4 Characterization of Clarke’s generalized Jacobian

Let X ∈ N be given. In this section, we assume that g is locally Lipschitz continuous near σ = σ(X) and
directionally differentiable at σ. Therefore, from Theorem 4.1, Theorem 3.2 and Remark 1, we know that
the corresponding spectral operatorG is locally Lipschitz continuous nearX and directionally differentiable
at X . Furthermore, we define the function d : Rm → Rm by

d(h) := g(σ + h)− g(σ)− g′(σ;h), h ∈ Rm . (109)

Thus, since g is absolutely symmetric on the nonempty open set σ̂N , we know from (30) and (32) that d is
also a mixed symmetric mapping, with respect to P|a1| × . . .× P|ar| ×±P|b|, over R|a1| × . . .×R|ar| ×R|b|.
Moreover, since g is locally Lipschitz continuous near σ and directional differentiable at σ, we know that g is
B-differentiable at σ (cf. [47]). Thus, d is differentiable at zero with the derivative d′(0) = 0. Furthermore,
if we assume that the function d is also strictly differentiable at zero, then we have

lim
w,w′→0

w 6=w′

d(w)− d(w′)

‖w − w′‖ = 0 . (110)

Thus, by using the mixed symmetric property of d, one can easily obtain the following results. We omit
the details of the proof here.
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Lemma 4.2 Let d : Rm → Rm be the function given by (109). Suppose that d is strictly differentiable
at zero. Let {wk} be a given sequence in Rm converging to zero. Then, if there exist i, j ∈ al for some
l ∈ {1, . . . , r} or i, j ∈ b such that wk

i 6= wk
j for all k sufficiently large, then

lim
k→∞

di(w
k)− dj(w

k)

wk
i − wk

j

= 0 ; (111)

if there exist i, j ∈ b such that wk
i + wk

j 6= 0 for all k sufficiently large, then

lim
k→∞

di(w
k) + dj(w

k)

wk
i + wk

j

= 0 ; (112)

and if there exists i ∈ b such that wk
i 6= 0 for all k sufficiently large, then

lim
k→∞

di(w
k)

wk
i

= 0 . (113)

Let Ψ(·) := G′(X ; ·) : Vm×n → Vm×n be the directional derivative of G at X. We know from (37) that
for any Z ∈ Vm×n,

Ψ(Z) = G′(X ;Z) = U
[
E0

1 ◦ S(U
T
ZV 1) + E0

2 ◦ T (U
T
ZV 1) F0 ◦ UT

ZV 2

]
V

T
+ U Φ̂(D(Z))V

T
, (114)

whereD(Z) =
(
S(Z̃a1a1

), . . . , S(Z̃arar
), Z̃bā

)
∈ W , Z̃ = U

T

ZV and Φ̂(·) : W → Vm×n is given by (36) with

Φ(·) : W → W being the spectral operator defined by (33) with respect to the mixed symmetric mapping
φ(·) := g′(σ; ·). Since the spectral operator G is locally Lipschitz continuous near X, we know that Ψ(·) =
G′(X; ·) is globally Lipschitz continuous (cf. [44, Theorem A.2] or [41, Lemma 2.2]). Therefore, ∂BΨ(0)
and ∂Ψ(0) are well-defined. Furthermore, we have the following useful results on the characterization of
the B-subdifferential and Clarke’s subdifferential of the spectral operator G at X.

Theorem 4.4 Suppose that the given X ∈ N has the decomposition (22). Suppose that there exists an
open neighborhood B ⊆ Rm of σ in σ̂N such that g(·) is differentiable at σ ∈ B if and only if g′(σ; ·)
is differentiable at σ − σ. Assume further that the function d : Rm → Rm defined by (109) is strictly
differentiable at zero. Then, we have

∂BG(X) = ∂BΨ(0) and ∂G(X) = ∂Ψ(0) .

Proof. We only need to prove the result for the B-subdifferentials. Let V be any element of ∂BG(X).
Then, there exists a sequence {Xk} in DG converging to X such that V = lim

k→∞
G′(Xk). For each Xk, let

Uk ∈ Om and V k ∈ On be the matrices such that

Xk = Uk[Σ(Xk) 0](V k)T .

For each Xk, denote σk = σ(Xk). Then, we know from Theorem 3.3 that for each k, σk ∈ Dg. For k
sufficiently large, we know from Lemma 3.1 that for each k, GS is twice continuously differentiable at X.
Thus, lim

k→∞
G′

S(X
k) = G′

S(X). Hence, we have for any H ∈ Vm×n,

lim
k→∞

G′
S(X

k)H = G′
S(X)H = U

[
E0

1 ◦ S(U
T

HV 1) + E0

2 ◦ T (U
T

HV 1) F0 ◦ UT

HV 2

]
V

T

. (115)

Moreover, we know that the mapping GR = G−GS is also differentiable at each Xk for k sufficiently large.
Therefore, we have

V = lim
k→∞

G′(Xk) = G′
S(X) + lim

k→∞
G′

R(X
k) . (116)
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From the continuity of the singular value function σ(·), by taking a subsequence if necessary, we assume
that for each Xk and l, l′ ∈ {1, . . . , r}, σi(Xk) > 0, σi(X

k) 6= σj(X
k) for any i ∈ al, j ∈ al′ and l 6= l′.

Since {Uk} and {V k} are uniformly bounded, by taking subsequences if necessary, we may also assume that
{Uk} and {V k} converge and denote the limits by U∞ ∈ Om and V∞ ∈ On, respectively. It is clear that
(U∞, V∞) ∈ Om,n(X). Therefore, we know from Proposition 2.3 that there exist Ql ∈ O|al|, l = 1, . . . , r,
Q′ ∈ O|b| and Q′′ ∈ On−|a| such that U∞ = UM and V∞ = V N , where M = Diag(Q1, . . . , Qr, Q

′) ∈
Om and N = Diag(Q1, . . . , Qr, Q

′′) ∈ On. Let H ∈ Vm×n be arbitrarily given. For each k, denote

H̃k := (Uk)THV k. Since {(Uk, V k)} ∈ Om,n(Xk) converges to (U∞, V∞) ∈ Om,n(X), we know that

lim
k→∞

H̃k = (U∞)THV∞. For the notational simplicity, we denote H̃ := U
T

HV and Ĥ := (U∞)THV∞.

For k sufficiently large, we know from (21) and (54) that for any H ∈ Vm×n, G′
R(X

k)H = Uk∆k(V k)T

with

∆k :=

[
Diag

(
∆k

1 , . . . ,∆
k
r

)
0

0 ∆k
r+1

]
∈ Vm×n ,

where for each k, ∆k
l = (El(σk))alal

◦ S(H̃k
alal

) + Diag((C(σ)diag(S(H̃k)))al
), l = 1, . . . , r,

∆k
r+1 =

[
(E1(σk))bb ◦ S(H̃k

bb) + Diag((C(σ)diag(S(H̃k)))b) + (E2(σk))bb ◦ T (H̃k
bb) (F2(σ

k))bc ◦ H̃k
bc

]

and E1(σk), E2(σk), F(σk) and C(σk) are defined for σk by (50)-(52), respectively. Again, since {Uk} and
{V k} are uniformly bounded, we know that

lim
k→∞

G′
R(X

k)H = U∞( lim
k→∞

∆k)(V∞)T = UM( lim
k→∞

∆k)NTV
T

. (117)

Next, we shall show that V ∈ ∂BΨ(0). For each k, denote wk := σk − σ ∈ Rm. Moreover, for each k,
we can define W k

l := QlDiag(wk
al
)QT

l ∈ S|al|, l = 1, . . . , r and W k
r+1 := Q′[Diag(wk

b ) 0]Q′′T ∈ V|b|×(n−|a|).

Therefore, it is clear that for each k, W k := (W k
1 , . . . ,W

k
l ,W

k
r+1) ∈ W and κ(W k) = wk. Moreover, since

limk→∞σ
k = σ, we know that limk→∞W

k = 0 inW . From the assumption, we know that φ(·) = g′(σ; ·) and
d(·) are differentiable at each wk and φ′(wk) = g′(σk)− d′(wk) for all wk. Since d is strictly differentiable
at zero, it can be checked easily that limk→∞ d′(wk) = d′(0) = 0. By taking a subsequence if necessary, we
may assume that limk→∞ g′(σk) exists. Therefore, we have

lim
k→∞

φ′(wk) = lim
k→∞

g′(σk) . (118)

Since Φ is the spectral operator with respect to the mixed symmetric mapping φ, from Theorem 5.3 in
Section 51 we know that Φ is differentiable at W ∈ W if and only if φ is differentiable at κ(W ). Recall

that Φ̂ : W → Vm×n is defined by (36). Then, for k sufficiently large, Φ̂ is differentiable at W k. Moreover,
for each k, we define the matrix Ck ∈ Vm×n by

Ck = U

[
Diag

(
W k

1 , . . . ,W
k
r

)
0

0 W k
r+1

]
V

T

.

Then, we know that for k sufficiently large, Ψ is differentiable at Ck and limk→∞C
k = 0 in Vm×n. Thus,

we know from (114) that for each k,

Ψ′(Ck)H = G′
S(X)H + U

[
Φ̂′(W k)D(H)

]
V

T ∀ H ∈ Vm×n ,

where D(H) =
(
S(Ĥa1a1

), . . . , S(Ĥarar
), Ĥbā

)
∈ W is defined by (35) and Φ̂′(W k)D(H) can be derived

from (128). By comparing with (116) and (117), we know that the conclusion then follows if we show that

lim
k→∞

∆k = lim
k→∞

MTΦ̂′(W k)D(H)N . (119)

1We could present the results in this subsection after introducing Theorem 5.3 in Section 5. We include it here for the

sake of readability and notational convenience.
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For any (i, j) ∈ {1, . . . ,m} × {1, . . . , n}, consider the following cases.
Case 1: i = j. It is easy to check that for each k,

(∆k)ii = (g′(σk)hk)i and
(
MTΦ̂′(W k)D(H)N

)
ii
= (φ′(wk)ĥ)i ,

where hk =
(
diag(S(H̃k

aa)), diag(H̃
k
bb)

)
and ĥ =

(
diag(S(Ĥaa)), diag(Ĥbb)

)
. Therefore, we know from

(118) that

lim
k→∞

(∆k)ii = lim
k→∞

(g′(σk)hk)i = lim
k→∞

(φ′(wk)ĥ)i = lim
k→∞

(
MTΦ̂′(W k)D(H)N

)
ii
.

Case 2: i, j ∈ al for some l ∈ {1, . . . , r}, i 6= j and σk
i 6= σk

j for k sufficiently large. We obtain that for
k sufficiently large,

(∆k)ij =
gi(σ

k)−gj(σ
k)

σk
i
−σk

j

(S(H̃k
alal

))ij ,
(
MTΦ̂′(W k)D(H)N

)
ij
=

φi(w
k)−φj(w

k)

wk
i −wk

j

(S(Ĥalal
))ij .

Since σi = σj and gi(σ) = gj(σ), we know that for k sufficiently large,

gi(σ
k)− gj(σ

k)

σk
i − σk

j

=
gi(σ + wk)− gj(σ + wk)

wk
i − wk

j

=
gi(σ + wk)− gi(σ) + gj(σ)− gj(σ + wk)

wk
i − wk

j

=
di(w

k)− dj(w
k)

wk
i − wk

j

+
φi(w

k)− φj(w
k)

wk
i − wk

j

. (120)

Therefore, we know from (111) that

lim
k→∞

gi(σ
k)− gj(σ

k)

σk
i − σk

j

(S(H̃k
alal

))ij = lim
k→∞

φi(w
k)− φj(w

k)

wk
i − wk

j

(S(Ĥalal
))ij ,

which implies lim
k→∞

(∆k)ij = lim
k→∞

(
MTΦ̂′(W k)D(H)N

)
ij
.

Case 3: i, j ∈ al for some l ∈ {1, . . . , r}, i 6= j and σk
i = σk

j for k sufficiently large. We have for k
sufficiently large,

(∆k)ij =
(
(g′(σk))ii − (g′(σk))ij

)
(S(H̃k

alal
))ij ,

(
MTΦ̂′(W k)D(H)N

)
ij
=

(
(φ′(wk))ii − (φ′(wk))ij

)
(S(Ĥalal

))ij .

Therefore, we obtain from (118) that

lim
k→∞

(
(g′(σk))ii − (g′(σk))ij

)
(S(H̃k

alal
))ij = lim

k→∞

(
(φ′(wk))ii − (φ′(wk))ij

)
(S(Ĥalal

))ij .

Thus, we have lim
k→∞

(∆k)ij = lim
k→∞

(
MTΦ̂′(W k)D(H)N

)
ij
.

Case 4: i, j ∈ b, i 6= j and σk
i = σk

j > 0 for k sufficiently large. We have for k large,

(∆k)ij =
(
(g′(σk))ii − (g′(σk))ij

)
(S(H̃k

bb))ij +
gi(σ

k)+gj(σ
k)

σk
i
+σk

j

(T (H̃k
bb))ij ,

(
MTΦ̂′(W k)D(H)N

)
ij
=

(
(φ′(wk))ii − (φ′(wk))ij

)
(S(Ĥbb))ij +

φi(w
k)+φj(w

k)

wk
i
+wk

j

(T (Ĥbb))ij .
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Since σi = σj = 0 and gi(σ) = gj(σ) = 0, we get

gi(σ
k) + gj(σ

k)

σk
i + σk

j

=
di(w

k) + dj(w
k)

wk
i + wk

j

+
φi(w

k) + φj(w
k)

wk
i + wk

j

. (121)

Therefore, we know from (112) and (118) that lim
k→∞

(∆k)ij = lim
k→∞

(
MTΦ̂′(W k)D(H)N

)
ij
.

Case 5: i, j ∈ b, i 6= j and σk
i 6= σk

j for k sufficiently large. For large k, we have

(∆k)ij =
gi(σ

k)−gj(σ
k)

σk
i
−σk

j

(S(H̃k
bb))ij +

gi(σ
k)+gj(σ

k)

σk
i
+σk

j

(T (H̃k
bb))ij ,

(
MTΦ̂′(W k)D(H)N

)
ij
=

φi(w
k)−φj(w

k)

wk
i
−wk

j

(S(Ĥbb))ij +
φi(w

k)+φj(w
k)

wk
i
+wk

j

(T (Ĥbb))ij .

Thus, by (120) and (121), we know from (111) and (112) that lim
k→∞

(∆k)ij = lim
k→∞

(
MTΦ̂′(W k)D(H)N

)
ij
.

Case 6: i, j ∈ b, i 6= j and σk
i = σk

j = 0 for k sufficiently large. We know for k large,

(∆k)ij =
(
(g′(σk))ii − (g′(σk))ij

)
(S(H̃k

bb))ij + (g′(σk))ii(T (H̃
k
bb))ij ,

(
MTΦ̂′(W k)D(H)N

)
ij
=

(
(φ′(wk))ii − (φ′(wk))ij

)
(S(Ĥbb))ij + (φ′(wk))ii(T (Ĥbb))ij .

Again, we obtain from (118) that lim
k→∞

(∆k)ij = lim
k→∞

(
MTΦ̂′(W k)D(H)N

)
ij
.

Case 7: i ∈ b, j ∈ c and σk
i > 0 for k sufficiently large. We have for k sufficiently large,

(∆k)ij =
gi(σ

k)

σk
i

(H̃k
bc)ij ,

(
MTΦ̂′(W k)D(H)N

)
ij
=
φi(w

k)

wk
i

(Ĥbc)ij .

Since σi = 0 and gi(σ) = 0, we get

gi(σ
k)

σk
i

=
gi(σ + wk)− gi(σ)

wk
i

=
di(w

k)

wk
i

+
φi(w

k)

wk
i

.

Therefore, by (113), we obtain that lim
k→∞

(∆k)ij = lim
k→∞

(
MTΦ̂′(W k)D(H)N

)
ij
.

Case 8: i ∈ b, j ∈ c and σk
i = 0 for k sufficiently large. We have for k sufficiently large,

(∆k)ij = (g′(σk))ii(H̃
k
bc)ij ,

(
MTΦ̂′(W k)D(H)N

)
ij
= (φ′(wk))ii(Ĥbc)ij .

Therefore, by (118), we obtain that lim
k→∞

(∆k)ij = lim
k→∞

(
MTΦ̂′(W k)D(H)N

)
ij
.

Thus, we know that (119) holds. Therefore, by (116) and (117), we obtain that V ∈ ∂BΨ(0).
Conversely, suppose that V ∈ ∂BΨ(0) is arbitrarily chosen. Then, from the definition of ∂BΨ(0), we

know that there exists a sequence {Ck} ⊆ Vm×n converging to zero such that Ψ is differentiable at each
Ck and V = limk→∞Ψ′(Ck). For each k, we know from (114) that Ψ is differentiable at Ck if and only if

the spectral operator Φ : W → W is differentiable at W k := D(Ck) =
(
S(C̃k

a1a1
), . . . , S(C̃k

arar
), C̃k

bā

)
∈ W ,

where for each k, C̃k = U
T

CkV . Moreover, for each k, we have the following decompositions

S(C̃k
alal

) = Qk
l Λ(S(C̃

k
alal

))(Qk
l )

T, l = 1, . . . , r, C̃k
bā = Q′k

[
Σ(C̃k

bā) 0
]
(Q′′k)T ,
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where Qk
l ∈ O|al|, Q′k ∈ O|b| and Q′′k ∈ On−|a|. For each k, let

wk :=
(
λ(S(C̃k

a1a1
)), . . . , λ(S(C̃k

arar
)), σ(C̃k

bā)
)
∈ Rm,

Mk := Diag
(
Qk

1 , . . . , Q
k
r , Q

′k
)
∈ Om, Nk := Diag

(
Qk

1 , . . . , Q
k
r , Q

′′k
)
∈ On.

Since {Mk} and {Nk} are uniformly bounded, by taking subsequences if necessary, we know that there
exist Ql ∈ O|al|, Q′ ∈ O|b| and Q′′ ∈ On−|b| such that

lim
k→∞

Mk =M := Diag
(
Q1, . . . , Qr, Q

′
)

lim
k→∞

Nk = N := Diag
(
Q1, . . . , Qr, Q

′′
)
.

For each k, by (128) (in Section 5), we know that for any H ∈ Vm×n,

Ψ′(Ck)H = U
[
E0

1 ◦ S(U
T

HV 1) + E0

2 ◦ T (U
T

HV 1) F0 ◦ UT

HV 2

]
V

T

+ U
[
Φ̂′(W k)D(H)

]
V

T

, (122)

where D(H) ∈ W is defined by (35). Let Rk := Φ′
k(W

k)D(H), k = 1, . . . , r + 1.
For each k, define σk := σ + wk ∈ Rm. Since limk→∞w

k = 0 and for each k, wk
i ≥ 0 for all i ∈ b, we

have σk ≥ 0 for k sufficiently large. Therefore, for k sufficiently large, we are able to define

Xk := UM [Diag(σk) 0]NTV
T ∈ Vm×n .

For simplicity, denote U = UM ∈ Om and V = V N ∈ On. It is clear that the sequence {Xk} converges
to X . From the assumption, we know that g is differentiable at each σk and d is differentiable at each wk

with g′(σk) = φ′(wk) + d′(wk) for all σk. Therefore, by Theorem 3.3, we know that G is differentiable at
each Xk. By taking subsequences if necessary, we may assume that limk→∞ φ′(wk) exists. Thus, since d is
strictly differentiable at zero, we know that (118) holds. Since the derivative formula (28) is independent
of (U, V ) ∈ Om,n(X), we know from (54) that for any H ∈ Vm×n,

G′(Xk)H = U
[
E0

1 ◦ S(U
T

HV 1) + E0

2 ◦ T (U
T

HV 1) F0 ◦ UT

HV 2

]
V

T

+ U

[
Diag

(
Q1Ω

k
1Q

T
1 , . . . , QrΩ

k
rQ

T
r

)
0

0 Q′Ωk
r+1Q

′′T

]
V

T

, (123)

where for each k, Ωk
l = (El(σk))alal

◦ S(Ĥalal
) + Diag((C(σk)diag(S(Ĥ)))al

), l = 1, . . . , r and

Ωk
r+1 =

[
(E1(σk))bb ◦ S(Ĥbb) + Diag((C(σk)diag(S(Ĥ)))b) + (E2(σk))bb ◦ T (Ĥbb) (F2(σ

k))bc ◦ Ĥbc

]
,

E1(σk), E2(σk) and F(σk) are defined by (50)–(52), respectively and Ĥ :=MTU
T

HVN =MTH̃N . There-
fore, by comparing (122) and (123), we know that the inclusion V ∈ ∂BG(X) follows if we show that

lim
k→∞

(
Rk

1 , . . . , R
k
r , R

k
r+1

)
= lim

k→∞

(
Q1Ω

k
1Q

T

1 , . . . , QrΩ
k
rQ

T

r , Q
′Ωk

r+1Q
′′T
)
. (124)

Similarly to the proofs to Cases 1-8 in the first part, by using (118) and (111)–(113) in Lemma 4.2, we
can show that (124) holds. For simplicity, we omit the details here. Therefore, we obtain that ∂BG(X) =
∂BΨ(0). This completes the proof. �

5 Extensions

In this section, we consider the spectral operators defined on the Cartesian product of several real or complex
matrices. The corresponding properties, including continuity, directional differentiability, (continuous)
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differentiability, locally Lipschitzian continuity, ρ-order B-differentiability, ρ-order G-semismoothness and
the characterization of Clarke’s generalized Jacobian, can be studied in the same fashion as those in Section
3 and Section 4. Instead of presenting the proofs here, we refer the readers to the PhD thesis of Ding [15]
to work out details.

Without loss of generality, from now on, we assume that X = Sm1 × Vm2×n2 with m = m1 +m2. For
any X = (X1, X2) ∈ Sm1 × Vm2×n2 , denote κ(X) = (λ(X1), σ(X2)). Let N be a given nonempty open
set in X . Suppose that g : Rm → Rm is mixed symmetric, with respect to P ≡ Pm1 × ±Pm2 , on an open
set κ̂N in Rm containing κN = {κ(X) | X ∈ N}. Let G : X → X be the corresponding spectral operator
defined in Definition 2.2.

Let X = (X1, X2) ∈ N be given. Suppose the given X1 ∈ Sm1 and X2 ∈ Vm2×n2 have the following
decompositions

X1 = PDiag(λ(X1))P
T

and X2 = U [Diag(σ(X2)) 0]V
T

, (125)

where P ∈ Om1 , U ∈ Om2 and V =
[
V 1 V 2

]
∈ On2 with V 1 ∈ Vn2×m2 and V 2 ∈ Vn2×(n2−m2). Denote

λ := λ(X1), σ := σ(X2) and κ :=
(
λ, σ

)
. We use ν1 > . . . > νr1 to denote the distinct eigenvalues of X1

and νr1+1 > . . . > νr1+r2 > 0 to denote the distinct nonzero singular values of X2. Define the index sets

{
al := {i |λi = νl, 1 ≤ i ≤ m1} l = 1, . . . , r1 ,

al := {i |σi = νl, 1 ≤ i ≤ m2} l = r1 + 1, . . . , r1 + r2 .

Define b := {i |σi = 0, 1 ≤ i ≤ m2}. We have the following result on the continuity of spectral operators.

Theorem 5.1 Let X = (X1, X2) ∈ N be given. Suppose that X1 and X2 have the decompositions (125).
The spectral operator G is continuous at X if and only if g is continuous at κ(X).

In order to present the results on the directional differentiability of spectral operators of matrices, we
introduce some notations. For the given mixed symmetric mapping g = (g1,g2) : Rm → Rm1 × Rm2 ,
define the matrices A0(κ) ∈ Sm1 , E0

1 (κ) ∈ Sm2 , E0
2 (κ) ∈ Vm2×m2 and F0(κ) ∈ Vm2×(n2−m2) with respect

to κ = (λ, σ) by

(A0(κ))ij :=





(g1(κ))i − (g1(κ))j

λi − λj
if λi 6= λj ,

0 otherwise,
i, j ∈ {1, . . . ,m1} ,

(E0
1 (κ))ij :=





(g2(κ))i − (g2(κ))j
σi − σj

if σi 6= σj ,

0 otherwise ,
i, j ∈ {1, . . . ,m2} ,

(E0
2 (κ))ij :=





(g2(κ))i + (g2(κ))j
σi + σj

if σi + σj 6= 0 ,

0 otherwise ,
i, j ∈ {1, . . . ,m2}

and

(F0(κ))ij :=





(g2(κ))i
σi

if σi 6= 0 ,

0 otherwise.
i ∈ {1, . . . ,m2}, j ∈ {1, . . . , n2 −m2} .

Suppose that g is directionally differentiable at κ. Then, we know that the directional derivative
g′(κ; ·) = (g′

1(κ; ·),g′
2(κ; ·)) : Rm1+m2 → Rm1+m2 satisfies that for any (Q1, Q2) ∈ Pκ and any (h1,h2) ∈

Rm1 × Rm2 ,

(
g′
1(κ; (Q1h1, Q2h2)),g

′
2(κ; (Q1h1, Q2h2))

)
=

(
Q1g

′
1(κ; (h1,h2)), Q2g

′
2(κ; (h1,h2))

)
, (126)
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where Pκ is the subset of P ≡ Pm1 ×±Pm2 defined with respect to κ by

Pκ :=
{
(Q1, Q2) ∈ Pm1 ×±Pm2 | (λ, σ) = (Q1λ,Q2σ)

}
.

It is easy to check that (Q1, Q2) ∈ Pκ if and only if there exist Ql
1 ∈ P|al|, l = 1, . . . , r1, Q

l
2 ∈ P|al|,

l = r1 + 1, . . . , r1 + r2 and Qr1+r2+1
2 ∈ ±P|b| such that

Q1 = Diag
(
Q1

1, . . . , Q
r1
1

)
∈ Pm1 and Q2 = Diag

(
Qr1+1

2 , . . . , Qr1+r2
2 , Qr1+r2+1

2

)
∈ ±Pm2 . (127)

Denote φ(·) := g′(κ; ·). For any h ∈ Rm, rewrite φ(h) ∈ Rm as φ(h) = (φ1(h), . . . , φr1+r2(h), φr1+r2+1(h))
with φl(h) ∈ R|al| for l = 1, . . . , r1 + r2 and φr1+r2+1(h) ∈ R|b|. Therefore, we know from (126) and (127)
that the directional derivative φ is mixed symmetric mapping, with respect to P|a1|× . . .×P|ar1+r2

|×±P|b|,
over R|a1| × . . .× R|ar1+r2

| × R|b|. Denote

W := S|a1| × . . .× S|ar1+r2
| × V|b|×(|b|+n2−m2).

Let Φ : W → W be the corresponding spectral operator defined in Definition 2.2 with respect to the mixed
symmetric mapping φ, i.e., for any W = (W1, . . . ,Wr1+r2 ,Wr1+r2+1) ∈ W ,

Φ(W ) =
(
Φ1(W ), . . . ,Φr1+r2(W ),Φr1+r2+1(W )

)

with

Φl(W ) =

{
R̃lDiag(φl(κ(W )))R̃T

l if l = 1, . . . , r1 + r2,

M̃Diag(φr1+r2+1(κ(W )))ÑT
1 if l = r1 + r2 + 1,

where κ(W ) = (λ(W1), . . . , λ(Wr1+r2), σ(Wr1+r2+1)) ∈ Rm, R̃l ∈ O|al|(Wl), and (M̃, Ñ) ∈ O|b|,|b|+n2−m2(Wr1+r2+1),

Ñ =
[
Ñ1 Ñ2

]
with Ñ1 ∈ V(|b|+n2−m2)×|b|, Ñ2 ∈ V(|b|+n2−m2)×(n2−m2). Then, the first divided directional

difference g[1](X ;H) ∈ X of g at X along the direction H = (H1, H2) ∈ X is defined by

g[1](X;H) :=
(
g
[1]
1 (X;H), g

[1]
2 (X ;H)

)

with

g
[1]
1 (X;H) = A0(κ) ◦ P T

H1P +Diag
(
Φ1(D(H)), . . . ,Φr1(D(H))

)
∈ Sm1 ,

g
[1]
2 (X;H) =

[
E0
1 (κ) ◦ S(U

T
H2V 1) + E0

2 (κ) ◦ T (U
T
H2V 1) F0(κ) ◦ UT

H2V 2

]

+

[
Diag (Φr1+1(D(H)), . . . ,Φr1+r2(D(H))) 0

0 Φr1+r2+1(D(H))

]
∈ Vm2×n2 ,

where

D(H) =
(
P

T

a1
H1P a1

, . . . , P
T

ar1
H1P ar1

, S(U
T

ar1+1
H2V ar1+1

), . . . , S(U
T

ar1+r2
H2V ar1+r2

), U
T

bH2[V b V 2]
)
∈ W .

Now, we are ready to state the results on the directional differentiability of the spectral operator G.

Theorem 5.2 Let X = (X1, X2) ∈ N be given. Suppose that X1 and X2 have the decompositions
(125). The spectral operator G is Hadamard directionally differentiable at X if and only if g is Hadamard
directionally differentiable at κ(X). In that case, G is directionally differentiable at X and the directional
derivative at X along any direction H ∈ X is given by

G′(X ;H) =
(
Pg

[1]
1 (X;H)P

T

, Ug
[1]
2 (X;H)V

T
)
.
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In order to present the derivative formulas of spectral operators, we introduce the following notations.
For the givenX = (X1, X2) ∈ N , suppose that g is F-differentiable at κ = κ(X). Denote by g′(κ) ∈ Rm×m

the Jacobian matrix of g at κ. Let η1(κ) ∈ Rm1 and η2(κ) ∈ Rm2 be the vectors defined by

(η1(κ))i :=

{
(g′

1(κ))ii − (g′
1(κ))i(i+1) if ∃ j ∈ {1, . . . ,m1} and j 6= i such that λi = λj ,

(g′
1(κ))ii otherwise ,

i ∈ {1, . . . ,m1}

and

(η2(κ))i :=

{
(g′

2(κ))ii − (g′
2(κ))i(i+1) if ∃ j ∈ {1, . . . ,m2} and j 6= i such that σi = σj ,

(g′
2(κ))ii otherwise ,

i ∈ {1, . . . ,m2} .

Define the corresponding divided difference matrices A(κ) ∈ Rm1×m1 and E1(κ) ∈ Rm2×m2 , the divided
addition matrix E2(κ) ∈ Rm2×m2 , the division matrix F(κ) ∈ Rm2×(n2−m2), respectively, by

(A(κ))ij :=





(g1(κ))i − (g1(κ))j

λi − λj
if λi 6= λj ,

(η1(κ))i otherwise,
i, j ∈ {1, . . . ,m1} ,

(E1(κ))ij :=





(g2(κ))i − (g2(κ))j
σi − σj

if σi 6= σj ,

(η2(κ))i otherwise,
i, j ∈ {1, . . . ,m2} ,

(E2(κ))ij :=





(g2(κ))i + (g2(κ))j
σi + σj

if σi + σj 6= 0,

(g′
2(κ))ii otherwise,

i, j ∈ {1, . . . ,m2} ,

(F(κ))ij :=





(g2(κ))i
σi

if σi 6= 0,

(g′
2(κ))ii otherwise,

i ∈ {1, . . . ,m2}, j ∈ {1, . . . , n2 −m2}.

Define the matrices C1(κ) ∈ Rm1×m and C2(κ) ∈ Rm2×m by

C1(κ) = g′
1(κ)− [Diag (η1(κ)) 0] and C2(κ) = g′

2(κ)− [0 Diag (η2(κ))] .

Then, we have the following results on the F-differentiability of spectral operators.

Theorem 5.3 Let X = (X1, X2) ∈ N be given. Suppose that X1 and X2 have the decompositions (125).
The spectral operator G is (continuously) differentiable at X if and only if g is (continuously) differentiable
at κ = κ(X). In that case, the derivative of G at X is given by for any H = (H1, H2) ∈ X ,

G′(X)(H) =
(
P [A(κ) ◦ P T

H1P +Diag (C1(κ)h)]P T
,

U
[
E1(κ) ◦ S(U

T

H2V 1) + Diag (C2(κ)h) + E2(κ) ◦ T (U
T

H2V 1) F(κ) ◦ UT

H2V 2

]
V

T
)
,

(128)

where h :=
(
diag

(
P

T

H1P
)
, diag

(
S(U

T

H2V 1)
))

∈ Rm.

The following theorem is on the locally Lipschitzian continuity of spectral operators of matrices.

Theorem 5.4 Let X = (X1, X2) ∈ N be given. Suppose that X1 and X2 have the decompositions (125).
Then, the spectral operator G is locally Lipschitz continuous near X if and only if g is locally Lipschitz
continuous near κ(X).

For the ρ-order B(ouligand)-differentiability of spectral operators, we have the following theorem.

Theorem 5.5 Let X = (X1, X2) ∈ N be given. Suppose that X1 and X2 have the decompositions (125).
Let 0 < ρ ≤ 1 be given. Then,
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(i) if g is locally Lipschitz continuous near κ(X) and ρ-order B-differentiable at κ(X), then G is ρ-order
B-differentiable at X;

(ii) if G is ρ-order B-differentiable at X, then g is ρ-order B-differentiable at κ(X).

Suppose that g is locally Lipschitz continuous near κ(X). Thus, we know from Theorem 5.4 that the
corresponding spectral operator G is also locally Lipschitz continuous near X . We have the following
theorem on the G-semismoothness of spectral operators.

Theorem 5.6 Let X = (X1, X2) ∈ N be given. Suppose that X1 and X2 have the decompositions (125).
Let 0 < ρ ≤ 1 be given. Then, G is ρ-order G-semismooth at X if and only if g is ρ-order G-semismooth
at κ(X).

Finally, we assume that g is locally Lipschitz continuous near κ = κ(X) and directionally differentiable
at κ. From Theorems 5.2 and Theorem 5.4, the spectral operator G is also locally Lipschitz continuous
near X and directionally differentiable at X. Then, we have the following results on the characterization
of the B-subdifferential ∂BG(X) and Clarke’s subdifferential ∂G(X).

Theorem 5.7 Let X = (X1, X2) ∈ N be given. Suppose that X1 and X2 have the decompositions (125).
Suppose that there exists an open neighborhood B ⊆ Rm of κ in κ̂N such that g(·) is differentiable at κ ∈ B
if and only if φ = g′(κ; ·) is differentiable at κ− κ. Assume that the function d : Rm → Rm defined by

d(h) = g(κ+ h)− g(κ)− g′(κ;h), h ∈ Rm

is strictly differentiable at zero. Then, we have

∂BG(X) = ∂BΨ(0) and ∂G(X) = ∂Ψ(0) ,

where Ψ(·) := G′(X ; ·) : X → X is the directional derivative of G at X.

6 Conclusions

In this paper, we introduced and studied a class of matrix-valued functions, termed spectral operators
of matrices, which frequently arise and play a crucial role in various applications including matrix opti-
mization problems, matrix completion, multi-dimensional shape analysis and others. Several fundamental
properties of spectral operators, including well-definedness, continuity, directional differentiability, Fréchet-
differentiability, locally Lipschitz continuity, ρ-order B(ouligand)-differentiability (0 < ρ ≤ 1), ρ-order
G-semismooth (0 < ρ ≤ 1) and the characterization of Clarke’s generalized Jacobian, are studied system-
atically. These results provide the necessary theoretical foundations for many applications. Consequently,
one is able to use these results to design some efficient numerical methods for solving large-scale matrix
optimization problems arising from many important applications. For instance, Chen et al. [7] proposed
an efficient and robust semismooth Newton-CG dual proximal point algorithm for solving large scale ma-
trix spectral norm approximation problems. In [7], the properties of the spectral operator, such as the
semismoothness and the characterization of Clarke’s generalized Jacobian, played an important role in the
convergence analysis of the proposed algorithm. The work done in this paper on spectral operators of
matrices is by no means complete. Due to the rapid advances in the applications of matrix optimization in
different fields, spectral operators of matrices will become even more important and many other properties
of spectral operators are waiting to be explored.
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