Skip to main content
Log in

Optimization problems involving group sparsity terms

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

This paper studies a general form problem in which a lower bounded continuously differentiable function is minimized over a block separable set incorporating a group sparsity expression as a constraint or a penalty (or both) in the group sparsity setting. This class of problems is generally hard to solve, yet highly applicable in numerous practical settings. Particularly, we study the proximal mapping that includes group-sparsity terms, and derive an efficient method to compute it. Necessary optimality conditions for the problem are devised, and a hierarchy between stationary-based and coordinate-wised based conditions is established. Methods that obtain points satisfying the optimality conditions are presented, analyzed and tested in applications from the fields of investment and graph theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. If \(I_1(\mathbf{y}) \cap \{j : \omega (\mathbf{x})_j < 2\lambda \}=\emptyset \), then the sum equals 0, and otherwise it is negative.

  2. We use a convention that if \(T = \emptyset \), then \(\mathbf{U}_{{{{\mathcal {A}}}} (T)} \mathbf{y}=\mathbf{0}\).

  3. This result assumes that \(\mathbf{x}^{j,+}\) exists, which happens only if \(\Vert g(\mathbf{x}) \Vert _0 < s\), see Remark 4.11.

  4. The data was acquired using Matlab’s built-in functions, see www.mathworks.com/help/datafeed/retrieve-bloomberg-historical-data.html for details.

References

  1. Baldassarre, L., Bhan, N., Cevher, V., Kyrillidis, A., Satpathi, S.: Group-sparse model selection: hardness and relaxations. IEEE Trans. Inf. Theory 62(11), 6508–6534 (2016)

    Article  MathSciNet  Google Scholar 

  2. Baraniuk, R.G., Cevher, V., Duarte, M.F., Hegde, C.: Model-based compressive sensing. IEEE Trans. Inf. Theory 56(4), 1982–2001 (2010)

    Article  MathSciNet  Google Scholar 

  3. Beck, A.: Introduction to Nonlinear Optimization: Theory, Algorithms, and Applications with MATLAB. MOS-SIAM Series on Optimization. Society for Industrial and Applied Mathematics, Philadelphia (2014)

    Book  Google Scholar 

  4. Beck, A., Eldar, Y.C.: Sparsity constrained nonlinear optimization: optimality conditions and algorithms. SIAM J. Optim. 23(3), 1480–1509 (2013)

    Article  MathSciNet  Google Scholar 

  5. Beck, A., Hallak, N.: Proximal mapping for symmetric penalty and sparsity. SIAM J. Optim. 28, 496–527 (2018)

    Article  MathSciNet  Google Scholar 

  6. Beck, A., Hallak, N.: On the minimization over sparse symmetric sets: projections, optimality conditions, and algorithms. Math. Oper. Res. 41(1), 196–223 (2016)

    Article  MathSciNet  Google Scholar 

  7. Beck, A., Vaisbourd, Y.: The sparse principal component analysis problem: optimality conditions and algorithms. J. Optim. Theory Appl. 170, 119–143 (2016)

    Article  MathSciNet  Google Scholar 

  8. Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont (1999)

    MATH  Google Scholar 

  9. Blumensath, T., Davies, M.E.: Iterative hard thresholding for compressed sensing. Appl. Comput. Harmon. Anal. 27(3), 265–274 (2009)

    Article  MathSciNet  Google Scholar 

  10. Blumensath, T., Davies, M.E., Mike, E.: Sampling theorems for signals from the union of finite-dimensional linear subspaces. IEEE Trans. Inf. Theory 55(4), 1872–1882 (2009)

    Article  MathSciNet  Google Scholar 

  11. Bolte, J., Sabach, S., Teboulle, M.: Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Math. Program. 146(1), 459–494 (2014)

    Article  MathSciNet  Google Scholar 

  12. Bomze, I.M., Budinich, M., Pardalos, P.M., Pelillo, M.: The maximum clique problem. In: Du, D.Z., Pardalos, P. (eds.) Handbook of Combinatorial Optimization, pp. 1–74. Springer, Boston (1999)

    Google Scholar 

  13. Davenport, M.A., Duarte, M.F., Eldar, Y.C., Kutyniok, G.: Introduction to compressed sensing. Preprint, pp. 1–68 (2011)

  14. Duarte, M.F., Cevher, V., Baraniuk, R.G.: Model-based compressive sensing for signal ensembles. In: Communication, Control, and Computing, 2009. Allerton 2009. 47th Annual Allerton Conference on, pp. 244–250. IEEE (2009)

  15. Duarte, M.F., Eldar, Y.C.: Structured compressed sensing: from theory to applications. IEEE Trans. Signal Process. 59(9), 4053–4085 (2011)

    Article  MathSciNet  Google Scholar 

  16. Elad, M.: Sparse and Redundant Representations: from Theory to Applications in Signal and Image Processing. Springer, Berlin (2010)

    Book  Google Scholar 

  17. Eldar, Y.C., Kuppinger, P., Bolcskei, H.: Block-sparse signals: uncertainty relations and efficient recovery. IEEE Trans. Signal Process. 58(6), 3042–3054 (2010)

    Article  MathSciNet  Google Scholar 

  18. Eldar, Y.C., Mishali, M.: Robust recovery of signals from a structured union of subspaces. IEEE Trans. Inf. Theory 55(11), 5302–5316 (2009)

    Article  MathSciNet  Google Scholar 

  19. Jain, P., Rao, N., Dhillon, I.S.: Structured sparse regression via greedy hard thresholding. In: Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems 29, pp. 1516–1524. Curran Associates Inc., New York (2016)

    Google Scholar 

  20. Jenatton, R., Audibert, J., Bach, F.: Structured variable selection with sparsity-inducing norms. J. Mach. Learn. Res. 12(Oct), 2777–2824 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Kochenberger, G., Hao, J., Glover, F., Lewis, M., Lü, Z., Wang, H., Wang, Y.: The unconstrained binary quadratic programming problem: a survey. J. Comb. Optim. 28(1), 58–81 (2014)

    Article  MathSciNet  Google Scholar 

  22. Kroese, D.P., Rubinstein, R.Y.: Simulation and the Monte Carlo Method. Wiley, New York (2008)

    MATH  Google Scholar 

  23. Meier, L., Van De Geer, S., Bühlmann, P.: The group lasso for logistic regression. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 70(1), 53–71 (2008)

    Article  MathSciNet  Google Scholar 

  24. Moreau, J.-J.: Proximité et dualité dans un espace hilbertien. Bull. Soc. Math. France 93, 273–299 (1965)

    Article  MathSciNet  Google Scholar 

  25. Nardi, Y., Rinaldo, A.: On the asymptotic properties of the group lasso estimator for linear models. Electron. J. Stat. 2, 605–633 (2008)

    Article  MathSciNet  Google Scholar 

  26. Prigent, J.L.: Portfolio Optimization and Performance Analysis. CRC Press, Boca Raton (2007)

    Book  Google Scholar 

  27. Sra, S., Nowozin, S., Wright, S.J.: Optimization for Machine Learning. Mit Press, Cambridge (2012)

    Google Scholar 

  28. Stojnic, M., Parvaresh, F., Hassibi, B.: On the reconstruction of block-sparse signals with an optimal number of measurements. IEEE Trans. Signal Process. 57(8), 3075–3085 (2009)

    Article  MathSciNet  Google Scholar 

  29. Tropp, J.A., Wright, S.J.: Computational methods for sparse solution of linear inverse problems. Proc. IEEE 98(6), 948–958 (2010)

    Article  Google Scholar 

  30. Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 68(1), 49–67 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Beck.

Additional information

The research of the first author was partially supported by the Israel Science Foundation Grant 1821/16.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beck, A., Hallak, N. Optimization problems involving group sparsity terms. Math. Program. 178, 39–67 (2019). https://doi.org/10.1007/s10107-018-1277-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-018-1277-1

Mathematics Subject Classification

Navigation