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Abstract

Influence maximization problems aim to identify key players in (social) networks and are
typically motivated from viral marketing. In this work, we introduce and study the Generalized
Least Cost Influence Problem (GLCIP) that generalizes many previously considered problem
variants and allows to overcome some of their limitations. A formulation that is based on the
concept of activation functions is proposed together with strengthening inequalities. Exact and
heuristic solution methods are developed and compared for the new problem. Our computational
results also show that our approaches outperform the state-of-the-art on relevant, special cases
of the GLCIP.

Keywords: Influence maximization · Mixed-integer programming · Social network analysis

1 Introduction

An increased interest in studying and solving optimization problems related to the propagation of
influence in social networks can be observed recently; see, e.g, [5, 16] and the references therein.
Many of these problems are concerned with the identification of key players in a social network
that are crucial for the process of influence propagation. Consider, for instance, a company that
performs a promotion strategy for a product on a social network. A somewhat natural assumption
thereby is that customers who could be convinced about the product will exert influence on their
connections, thus, increasing the probability that the latter will be convinced as well. In that
setting, a crucial point is to decide which users shall be convinced initially (e.g., via discounts,
free products, or monetary incentives) that will trigger the propagation process. Typical goals are
either to convince a certain fraction of all users with minimum budget, or to maximize the number
of convinced users while respecting a given budget constraint. Besides (viral) marketing, similar
influence propagation models have applications in, e.g., Epidemiology [7]. A common technique
to model the propagation process is based on the linear threshold model initially proposed by
Granovetter [9], in which individuals in a social network get active (e.g., adopt an information or a
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product) if the sum of influences received from their active neighbors reaches a predefined threshold,
i.e., its hurdle. Alternatively, individuals can be targeted to act as seeds of the propagation process
in which case they are activated initially. Recently, this concept has been generalized through the
consideration of partial incentives (e.g., discounts) given to individuals that allow to reduce their
hurdle [12]. Hence, individuals can also get active by a combination of influence received from their
neighbors and incentives.

Overview and main contributions. In this article, we introduce and study a new optimiza-
tion problem in the domain of influence propagation to which we refer to as the Generalized Least
Cost Influence Problem (GLCIP). Thereby, we assume that the given social network is static (i.e.,
does not change over time) and that the propagation process occurs in a finite number of (time)
steps. As we will show in Section 2, the GLCIP contains previously considered problems as special
cases and provides a unifying framework for several problems that have been studied separately
so far. Besides, our new problem allows to overcome certain limitations of previous models that
might prohibit their application in real world. In particular, we introduce the concept of activation
functions which are used to decide whether an individual gets active or not, see Definition 1. These
activation functions generalize previously considered so-called threshold functions by incorporat-
ing partial node incentives. In Section 3, we propose a novel Integer Linear Programming (ILP)
formulation for the GLCIP as well as strengthening inequalities. An alternative ILP formulation
that generalizes previously proposed formulations for a particular class of activation functions is
proposed in Section 4. Details of the developed solution methods based on row and column gen-
eration are given in Section 5. We also show that our new formulation enables the consideration
of arbitrary (e.g., non-linear) activation functions. Finally, in Section 6 we perform an extensive
computational study also including previously considered special cases of the GLCIP, and show
that our approach outperforms existing methods.

Problem definition. The GLCIP is defined on a directed graph G = (V,A) whose node set V
represents the individuals of a considered (social) network, and whose arc set A models established
relations between them. The strength of influence a node i ∈ V exerts on j ∈ V is indicated by
value dij > 0, which is associated to each arc (i, j) ∈ A. Hurdles hi > 0 define the thresholds
that need to be reached through neighboring influence and incentives in order to activate node
i ∈ V . Potential incentives are defined by sets Pi ⊂ [0,∞] together with costs wip ≥ 0 for offering
incentive p ∈ Pi to node i ∈ V . Parameter α, 0 ≤ α ≤ 1, defines the minimum fraction of nodes
that need to be activated. A feasible solution S = (V S , NS , pS) to the GLCIP consists of a set
of activated nodes V S ⊂ V such that |V S | ≥ dα|V |e and, for each active node i ∈ V S , a set of
influencing neighbors NSi ⊆ Ni = {j ∈ V | (j, i) ∈ A} and an incentive pSi ∈ Pi (possibly equal to
zero) such that i is activated by node set NSi together with incentive pSi . Let U ⊆ Ni be the set
of active neighbors of node i, p ∈ Pi is the incentive given to node i, and fi : 2Ni × Pi → R+ is
its activation function; see, Definition 1 for a formal definition. Then, a previously inactive node
i ∈ V gets active in the current step of the propagation process if and only if fi(U, p) ≥ hi, i.e., if
the influence received from its neighbors and a potential incentive reaches its hurdle. The objective
of the GLCIP is to find a solution that minimizes the total costs

∑
i∈V S wipSi

for paid incentives.

Observe that above activation functions are a natural extension of threshold functions gi : 2Ni →
R+ that are extensively discussed by Kempe et al. [16]. These threshold functions are monotone,
map the empty set to zero, and consider the subset of previously activated neighbors only. Note
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that Kempe et al. [16] focus on the case in which all individual influences as well as each node’s
hurdle are between zero and one, i.e., 0 ≤ dij ≤ 1 for all (i, j) ∈ A, and 0 ≤ hi ≤ 1 for all
i ∈ V , and for which 0 ≤ gi(U) ≤ 1 holds for each U ⊆ Ni. Based on these assumptions, they
point out two particularly relevant cases of a general threshold model, namely, the linear and the
submodular threshold model. While in the linear case the total influence of subset U is simply
defined by the sum of individual influences, i.e., gi(U) = min(1,

∑
j∈U dji), the submodular one

allows to account for diminishing influence of additional nodes. Formally, for each node j ∈ Ni and
two subsets U ⊆ U ′ ⊆ Ni \ {j}, the associated submodular threshold function for node i ∈ V must
satisfy gi(U ∪ {j}) − gi(U) ≥ gi(U

′ ∪ {j}) − gi(U ′). While both models have been used to derive
approximation results (see, Kempe et al. [14, 16]), only the linear threshold model has received
significant attention from a computational viewpoint; see, e.g., [4, 12, 13] and Section 2 for more
details.

Notation and assumptions. Besides using Ni = {j ∈ V | (j, i) ∈ A} to denote the node set
that may directly influence node i ∈ V , we denote its power set by Ni = 2Ni . Without loss of
generality (see Proposition 1), a strict total ordering is defined on the set of potential incentives Pi

for each node i ∈ V . To simplify notation, each Pi includes a special element 0 (i.e., no incentive
is given and no cost is incurred), and all the remaining incentives p ∈ Pi \ {0} satisfy p > 0 and
wip > 0. There exists at least one element p ∈ Pi that can activate node i ∈ V without additional
influence from neighboring nodes, i.e., such that fi(∅, p) ≥ hi holds. If an instance does not contain
such an incentive for some node i, we add an artificial incentive p = ∞ with wip = ∞ without
changing the optimal solution value (if the resulting optimal costs are equal to infinity, the original
instance is infeasible). We also observe that it is sufficient to consider at most one incentive
such that fi(∅, p) ≥ hi for each node i. In a preprocessing step, we first compute the cheapest
incentive p that is sufficient to activate a node without receiving influence from its neighbors, i.e.,
p = argminp′∈Pi

{wip′ | fi(∅, p′) ≥ hi}, and then remove all possibly existing incentives p′′ 6= p with
wip′′ ≥ wip. Finally, we assume that an active node remains active throughout the propagation
process and that, for a given node i ∈ V , set U ∈ Ni and incentive p ∈ Pi, the propagation function
fi(U, p) can be evaluated in polynomial time.

Definition 1 formally defines the concept of an activation function, while particular classes of
such functions that will be relevant for the remainder of this article are introduced in Definitions 2
and 3.

Definition 1 (Activation Function). A monotone function fi : Ni × Pi → R+ defined for i ∈ V is
an activation function if it satisfies fi(∅, 0) = 0. Function fi is monotone if U ⊂ U ′ ∈ Ni implies
that fi(U, p) ≤ fi(U ′, p), ∀p ∈ Pi, and p ≤ p′ ∈ Pi implies that fi(U, p) ≤ fi(U, p′), ∀U ∈ Ni.

Definition 2 (Influence-Monotone Activation Function). An activation function fi : Ni×Pi → R+

of node i ∈ V is called influence-monotone if fi(U ∪{j}, p) ≥ fi(U ∪{k}, p) holds for each incentive
p ∈ Pi, each set U ∈ Ni, and every pair of nodes j 6= k ∈ Ni \ U such that dji ≥ dki.

Definition 3 (Additively Separable Activation Function). An activation function fi : Ni×Pi → R+

of node i ∈ V is called additively separable if there exists a threshold function gi : Ni → R+ such
that fi(U, p) = gi(U) + p holds for all U ∈ Ni and p ∈ Pi. An additively separable activation
function is called additively separable and linear if its embedded threshold function is linear w.r.t.
to the influence values dji of neighbors j ∈ Ni.
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Proposition 1 shows that the strict ordering of incentives together with the required mono-
tonicity of activation functions allows us to assume without loss of generality that p < p′ implies
wip < wip′ .

Proposition 1. Let fi : Ni × Pi → R+ be an activation function of node i ∈ V . Then, we may
assume without loss of generality that higher incentives induce higher costs, i.e., wip < wip′ holds
for each p, p′ ∈ Pi such that p < p′.

Proof. Let p, p′ ∈ Pi be two incentives that do not satisfy the condition of the proposition, i.e.,
p < p′ and wip ≥ wip′ and let S be an arbitrary solution giving incentive pSi = p to node i. Since
fi is monotone, a solution S ′ in which p is replaced by p′ activates at least the same number of
nodes, and is at most as expensive as S by assumption. Thus, if S is feasible then S ′ is feasible
as well, and its objective value is at most the one of S. Consequently, incentive p can be removed
from Pi. Repeating this procedure for every pair of incentives that does not satisfy the conditions
of the proposition, the result follows.

Several steps of our solution method will require the computation of the cheapest incentive
that activates a particular node for a fixed set of influencing (active) neighbors. Proposition 2
states that this can be performed efficiently if the associated activation function can be evaluated
efficiently. The validity of the statement follows from exploiting the required strict total ordering
of the elements of Pi and by applying, e.g., binary search.

Proposition 2. Consider a node i ∈ V and an arbitrary activation function fi : Ni × Pi → R+.
For each U ⊆ Ni, the cheapest incentive pi(U) ∈ Pi required to activate node i if all nodes from U
are active, i.e., pi(U) = argminp∈Pi

{wip | fi(U, p) ≥ hi}, can be computed in at most O(log(|Pi|))
steps. Thereby, each step requires the evalution of function fi.

Definition 4 formally introduces the concept of propagation graphs.

Definition 4 (Induced Propagation Graph). Let S = (V S , NS , pS) be a solution to the GLCIP.
Subgraph G′ = (V S , A′) of G is called the propagation graph induced by S if and only if G′ satisfies
the following conditions: (i) A′ = {(j, i) ∈ A | {i, j} ⊆ V S , j ∈ NSi } includes all arcs on which
influence is exerted, and (ii) G′ is acyclic, i.e., contains no directed cycle.

The last condition of Definition 4 follows from the temporal aspect of the activation process
and is important to forbid activating nodes by cycles that are not triggered through incentives.
We also observe that (symmetric) solutions may exist in which offered incentives coincide (thus
having identical objective values), but which differ with respect to the induced propagation graph.
Besides such symmetric solutions that differ with respect to active nodes, there also exist solutions
in which only the influencing sets (and thus the arc sets of their respective induced propagation
graphs) differ. As detailed in Theorem 1, one can, however, find an induced propagation graph
with maximal set V S in polynomial time in case all offered incentives are fixed.

Theorem 1. Let pi ∈ Pi,∀i ∈ V , be the incentives associated to each node in an GLCIP instance.
Then, a solution S = (V S , NS , p) with maximal set V S can be computed in polynomial time.

Proof. Algorithm 1 computes a solution with maximal set V S in polynomial time. It starts with an
empty solution and triggers propagation from all seed nodes activated solely by incentives exerting
influence to all not yet activated neighbors. If one of these neighbors gets activated, propagation
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Algorithm 1: Computation of solution with maximal node set for fixed incentives pi,∀i ∈ V .

1 V S = ∅, NSi = ∅,∀i ∈ V // start with empty solution

2 Q = {i ∈ V : fi(∅, pi) ≥ hi} // initialize set with seed nodes

3 while Q 6= ∅ do
4 select i ∈ Q and remove from Q
5 V S = V S ∪ {i}
6 foreach (i, j) ∈ A : j /∈ V S do
7 NSj = NSj ∪ {i}
8 if fj(N

S
j , pj) ≥ hj then Q = Q ∪ {j}

9 return S = (V S , NS , p)

continues until no more nodes can be activated. At each iteration, we activate all nodes i for
which the activation function fi is not less than hurdle hi. Since activating a node cannot prevent
another node from becoming activated, the final set V S is maximal. As to the time complexity, we
observe that, for each arc (i, j) ∈ A we evaluate function fj at most once, when node i is activated
and removed from Q. Cycles cannot occur since no influence is exerted to already activated nodes.
Thus, the algorithm requires O(|A|) evaluations of activation functions fi, i.e., it runs in polynomial
time for fixed incentives p.

2 Literature review

Domingos and Richardson [6, 20] were among the first who considered network effects in an influence
maximization problem, where a small set of influential users (i.e., a target set) shall be targeted
initially to trigger a cascade of adoptions. A probabilistic model (Markov random field) is used for
the interactions between customers and heuristic solution methods are proposed. Building upon
the results by Domingos and Richardson [6], Kempe et al. [14] introduce a discrete optimization
problem that they call the influence maximization problem. The goal is to identify an initially active
node set of size k that maximizes the (expected) number of finally activated nodes. This problem
and some closely related variants are also called Target Set Selection Problem (TSSP). Kempe et al.
[14] consider two basic diffusion models: (i) a linear threshold model based on uniformly distributed
thresholds, and (ii) a probabilistic independent cascade model. They show that the problem is NP-
hard and that a simple greedy heuristic adding the element with highest marginal gain in each
step yields an approximation ratio of 1 − 1/e − ε under certain conditions. They also show that
it is NP-hard to approximate the problem within a factor of |V |1−ε when using general threshold
functions. Further approximation results for special cases and the decreasing cascade model which
generalizes the independent cascade model, are introduced in [15, 16].

Chen [4] considers a variant of the TSSP which seeks for a target set of minimum size such that
at least a given fraction of nodes will be activated. In contrast to Kempe et al. [14], deterministic
thresholds are given for each node and the influence of each neighbor is equal to one. Chen [4]
shows that it is NP-hard to approximate this problem within a polylogarithmic factor and proposes
an exact polynomial time algorithm for the case when the input graph is an undirected tree. Ben-
Zwi et al. [2] generalize the latter result by proposing an exact algorithm for graphs with bounded
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treewidth ω that has a runtime of |V |O(ω). Ackerman et al. [1] were among the first who propose an
ILP formulation for the TSSP. Their formulation uses arc and node design variables and completes
the input graph by non-edges (a technique that is typically applied in ordering problems). A cycle-
free propagation graph is then ensured through triangle elimination constraints. We observe that
the variant of the TSSP studied in [1, 2, 4] is a special case of the GLCIP with additively separable
activation functions, Pi = {0, hi}, and wihi

= 1 for all i ∈ V . Raghavan and Zhang [19] introduce
the Weighted Target Set Selection Problem (WTSSP) on undirected graphs which generalizes the
TSSP by introducing (node-dependent) costs for initially activating nodes. To obtain the WTSSP
as a special case of the GLCIP, we set the incentive costs for activating a node to the node-dependent
costs and introduce two oppositely directed arcs (with influence equal to one) for each undirected
edge. A polynomial time algorithm as well as a tight and compact ILP formulation for the WTSSP
on trees is given. The main idea here is to split each edge by introducing a dummy node and
consider four variables for each original edge that indicate exerted influence (in addition to classical
node and arc design variables). Raghavan and Zhang [19] show that this extended formulation
is tight if the input graph is a tree, while the LP relaxation of an analogous one based on usual
node and arc design variables has fractional extreme points. Subsequently, this new formulation is
extended to the case of general graphs (in which case the LP relaxation may produce a fractional
solution) by adding cycle elimination constraints. Note that the strength of their formulation is
(also) based on the fact that at least one ingoing arc needs to be selected for each dummy node.
Thus, one cannot extend this idea (in a straightforward manner) for directed graphs while still
ensuring that the solution does not contain cycles.

Another closely related problem is the Least Cost Influence Problem (LCIP) which generalizes
the TSSP by introducing partial incentives that reduce a node’s hurdle and enabling node acti-
vations by combining incentives with influence from neighbors. In contrast to the (W)TSSP, the
strength of influence may differ among neighbors of a node in the LCIP. The LCIP which aims to
minimize the sum of offered incentives while activating at least a predefined number of nodes is
introduced by Günneç [12] and further investigated in [11, 13]. It is a special case of the GLCIP in
which every incentive p ∈ [0, hi] with costs wip = p can be paid to node i and fi(U, p) = p+

∑
j∈U dji

holds for all U ∈ Ni and p ∈ Pi. Günneç et al. [13] propose a time-indexed formulation, show that
the problem can be solved in polynomial time if the input graph is a tree and all neighbors of a
node exert identical influence on it. Moreover, they prove that the LCIP is NP-hard in general and
in further special cases (including the case of tree graphs with unequal influence). Subsequently,
they focus on the case of equal influence from each node’s neighbor. A main observation is that
the number of influencing neighbors gi needed to activate node i without additional incentives can
be precomputed. Based on this, a sophisticated ILP formulation with three variables per arc indi-
cating full, partial and no influence is derived. For each node at most gi − 1 neighbors may exert
their full influence, while at most one may exert partial influence. An ILP formulation based on
this idea that uses cycle elimination constraints is proposed which has a tight linear programming
(LP) relaxation if the input graph is a tree. The requirement that the needed number of influencing
nodes does not depend on the set of chosen nodes makes it unlikely, however, that their formulation
can be (easily) extended to the case of unequal influence.

Wu and Küçükyavuz [22] study two-stage stochastic optimization problems in which the second-
stage objective function is submodular, and propose an exact method based on delayed constraint
generation. A computational study is performed on stochastic variants of the influence maximiza-
tion problem that are based on the independent cascade and linear threshold models. Moreover,
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several new problems aiming to identify key players in social networks, variants of influence max-
imization problems, and heuristic algorithms for solving them have been proposed recently, see,
e.g., Borgatti [3], Kimura et al. [17].

We conclude that none of the more sophisticated formulations proposed for the WTSSP [19]
and the LCIP [13] can be re-used with slight adaptations for the GLCIP with additively separable
and linear activation functions, and that the case of general activation functions has not been
considered yet in the operations research community. On the contrary, the above mentioned time-
indexed formulation for the LCIP, as well as the formulation by Ackerman et al. [1] for the TSSP,
can be extended in a straightforward manner to the GLCIP with additively separable and linear
activation functions. The GLCIP is NP-hard as it contains the NP-hard LCIP [13] as a special
case.

3 Set covering formulation

In this section, we propose a set covering formulation for the GLCIP with arbitrary activation
functions. To the best of our knowledge, this is the first ILP formulation of that kind, since all
previous formulations are restricted to special cases of the GLCIP and to additively separable and
linear threshold functions. Our set covering ILP formulation is based on introducing one variable
for each minimal influencing set for each node, a concept that is formally defined in Definition 5.
We further show in Theorem 2 that it suffices to restrict the attention to these minimal influencing
sets, instead of considering all subsets of neighbors of some node.

Definition 5 (Minimal Influencing Set). Let U ⊆ Ni be a set of active neighbors of node i ∈ V , such
that there exists an incentive p ∈ Pi which suffices to activate it, i.e., fi(U, p) ≥ hi. Furthermore,
let p′ = min{p̃ ∈ Pi | fi(U, p̃) ≥ hi} be the minimum incentive (possibly equal to zero) required to
achieve that activation. Then, U is a minimal influencing set for node i ∈ V if and only if there
does not exist a set U ′ ⊂ U such that fi(U

′, p′) ≥ hi, i.e., node i cannot be activated by a proper
subset of these neighbors with the same incentive. For each node i ∈ V , let Λi ⊆ Ni denote the set
of all minimal influencing subsets.

Theorem 2. There exists an optimal solution S = (V S , NS , pS) such that every active node i ∈ V S
is influenced by a minimal influencing set NSi ∈ Λi.

Proof. Consider a node u ∈ V S which is not influenced by a minimal influencing set in solution S,
i.e., NSu /∈ Λu. Then, there exists a subset U ⊂ NSu such that fu(U, pSu ) ≥ hu and U ∈ Λu. Clearly,
T = (V T , NT , pT ) such that V T = V S , pT = pS , NTi = NSi , ∀i ∈ V T \ {u}, and NTu = U , is a
solution with the same objective value as S in which u is influenced by a minimal influencing set.
The results follows by repeating this argument for every node that is not activated by a minimal
influencing set.

Formulation (1), to which we will refer to as (COV), uses the following three sets of variables:
(i) node variables xi ∈ {0, 1} for all i ∈ V that indicate whether node i is activated; (ii) arc variables
zij ∈ {0, 1} for all (i, j) ∈ A that indicate arcs on which influence is exerted; and (iii) influencing
subset variables λUi ∈ {0, 1} for all i ∈ V and U ∈ Λi that indicate whether a minimal influencing
set U is used (together with an appropriate incentive) in the activation of node i. In the following,
we use pUi = argminp∈Pi

{fi(U, p) ≥ hi} to denote the (unique) minimum incentive to activate node
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i when influenced by set U and use costs wU
i = wipUi

to denote the associated costs; cf. Proposition 2

for the efficient computation of pUi .

(COV) min
∑
i∈V

∑
U∈Λi

wU
i λ

U
i (1a)

s.t.
∑
U∈Λi

λUi = xi ∀i ∈ V (1b)

∑
U∈Λj :i∈U

λUj = zij ∀(i, j) ∈ A (1c)

∑
(i,j)∈C

zij ≤
∑

i∈V (C)\{k}

xi ∀k ∈ V (C),∀ cycles C ⊆ A (1d)

zij ≤ xi ∀(i, j) ∈ A s.t. (j, i) /∈ A (1e)∑
i∈V

xi ≥ dα|V |e (1f)

xi ∈ {0, 1} ∀i ∈ V (1g)

zij ∈ {0, 1} ∀(i, j) ∈ A (1h)

λUi ≥ 0 ∀i ∈ V, ∀U ∈ Λi. (1i)

The objective function (1a) minimizes the cost occurring for offered incentives. Recall that for each
U ∈ Λi, the costs wU

i are constant and that wU
i = 0 if set U is sufficient to activate node i without

additional incentive. Propagation constraints (1b) state that exactly one influencing set needs to be
selected for each activated node. Equations (1c) ensure that all arcs on which influence is exerted are
chosen as well. Generalized cycle-elimination constraints (1d) where V (C) = {i ∈ V | (i, j) ∈ C}
ensure that the subgraph induced by the set of arcs on which influence is exerted is acyclic; cf.
Definition 4. Linking constraints (1e) ensure that influence can only be exerted on arc (i, j) ∈ A if
node i is active. Notice that the latter condition is enforced by constraints (1d) for all arcs (i, j) ∈ A
such that (j, i) ∈ A. Coverage constraint (1f) accounts for the minimum fraction of nodes that need
to be activated. Observe that only lower bounds are imposed for influencing subset variables in
(1i). They will, however, become binary automatically due to the other constraints. Further note
that we refrain from eliminating node and arc variables using equations (1b) and (1c) to avoid the
need for developing problem specific branching rules.

3.1 Generalized propagation constraints

In this section, we propose strengthening inequalities for (COV) and show that they dominate
generalized cycle elimination constraints (1d). Their validity is based on the observation that for
every set of nodes X ⊆ V containing an active node k, at least one of the following two conditions
must hold:

(i) at least one node j ∈ X is activated via a minimal influencing set U ∈ Λj (together with
incentive pUj ) that does not contain nodes from X, i.e., U ∩X = ∅,

(ii) at least one node j ∈ X receives incentive p∅j , i.e., is activated without receiving influence
from neighboring nodes.
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If none of the two conditions holds, the subgraph induced by the set of chosen arc variables induces
a cycle inside X due to linking constraints (1c). These observations are captured by the generalized
propagation constraints:∑

j∈X

∑
U∈Λj :U∩X=∅

λUj ≥ xk ∀k ∈ X,∀X ⊆ V (2)

Note that variables λ∅j corresponding to activation without external influence are included in the
sum on the left-hand side, and observe that generalized propagation constraints correspond to
propagation constraints (1b) rewritten in greater than or equal form if X is a singleton, i.e., X =
{k}.

Figure 1 gives an illustration of these constraints. The leftmost part of the figure shows a subset
of nodes X = {i, j, k} such that hi = 2, hj = hk = 1, and fl(U, p) = |U | + p and Pl = {0, hl},
∀l ∈ X. The remaining three figures show possible alternative solutions; in all figures, influence is
exerted on all bold arcs. Figure (b) shows a possible solution in which no incentives are used for
nodes in X; despite this, the activation of node k satisfies condition (i) since node j is activated
via a set U of nodes (λUj = 1) that do not intersect with X (i.e., U ∩ X = ∅.) Similarly, Figure

(c) shows a possible solution in which node j receives (full) incentive (λ∅j = 1), thus allowing the
activation of both i and k. Finally, Figure (d) shows an infeasible solution in which the activation
for node k does not satisfy condition (i) nor condition (ii); in this case, the induced propagation
graph contains a cycle.

One intuitive reason why they can strengthen the LP relaxation of formulation (COV) if |X| ≥ 2
is the absence of variables whose associated minimal influencing sets intersect with X on the left-
hand side. Further observe that the right-hand side of inequalities (2) can be improved to one if at
least one node from X needs to be activated, i.e., in case |X| > b(1− α)|V |c. In this case only one
inequality per set X ⊆ V is considered. Proposition 3 reveals dominance between some particular
generalized propagation constraints.

X
i

j

k

(a)

X
i

j

k

(b)

X
i

j

k

(c)

X

E

i

j

k

(d)

Figure 1: Illustration of generalized propagation constraints (2).

Proposition 3. Consider node k ∈ V and node sets X and Y such that X ⊂ Y ⊆ V and k ∈ X.
Assume that the subgraph induced by Y does not contain arcs from nodes in Y to nodes in X. Then,
the generalized propagation constraint associated with node set X dominates the one associated with
node set Y .

Proof. The result follows from the following chain of inequalities:∑
j∈Y

∑
U∈Λj :U∩Y =∅

λUj ≥
∑
j∈X

∑
U∈Λj :U∩Y =∅

λUj =
∑
j∈X

∑
U∈Λj :U∩X=∅

λUj ≥ xk.
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Thereby, the equation holds since (Y \X) ∩ (∪i∈XNi) = ∅ (by assumption) and hence U ∩ Y = ∅
iff U ∩X = ∅ for U ∈ Λj such that j ∈ X.

An immediate consequence of Proposition 3 is that we only need to consider generalized prop-
agation constraints such that there exists a path in X from every node in X to node k chosen on
the right-hand side of the inequality.

Theorem 3. Generalized propagation constraints (2) dominate generalized cycle elimination con-
straints (1d).

Proof. Consider a cycle C ⊆ A with node set V (C) and a fixed node k ∈ V (C). Then, the associated
generalized propagation constraint together with equations (1b) and (1c) implies that:

xk ≤
∑

i∈V (C)

∑
U∈Λi:U∩V (C)=∅

λUi ≤
∑

i∈V (C)

∑
U∈Λi:@j∈U :(j,i)∈C

λUi =

=
∑

i∈V (C)

∑
U∈Λi

λUi −
∑

i∈V (C)

∑
U∈Λi:∃j∈U :(j,i)∈C

λUi =
∑

i∈V (C)

xi −
∑

(i,j)∈C

zij .

Thereby, the second inequality holds since the set of influencing subset variables on the right hand
side is a superset of the one on the left hand side. The theorem follows from rearranging the terms
of the outer inequality.

This result suggests to heuristically separate constraints (2) by searching for violated cycle
elimination constraints. This and further separation heuristics will be detailed in Section 5.

3.2 Pricing subproblem

The number of minimal influencing sets may grow exponentially with the indegree of each node.
We will therefore use column generation to dynamically generate minimal influencing set variables
for instances in which the large number of such variables prohibits simply including all of them
explicitly in the (initial) model. Observe that (COV) remains valid when rewriting equations (1b)
in ≥ form, and rewriting (1c) in ≤ form. Then, by replacing all ≤ constraints by ≥ inequalities and
by arranging all variables on their left hand side, we obtain dual variables µi ≥ 0,∀i ∈ V , πij ≥
0,∀(i, j) ∈ A, and φXi ≥ 0, ∀X ⊆ V, i ∈ X, associated to constraints (1b), (1c), and (2), respectively.
For node i ∈ V and influencing set U , we will also use ΦU

i = {(X, k) | X ⊆ V \U, i, k ∈ X} to denote
all pairs (X, k) for which the dual variable of the generalized propagation constraint associated to
node set X and node k needs to be considered to calculate the reduced costs of variables λUi . Then,
the pricing subproblem associated to node i ∈ V , can be formally stated as

U∗ = argminU∈Λi
{wU

i − µi +
∑
j∈U

πji −
∑

(X,k)∈ΦU
i

φXk }. (3)

As will be detailed in Section 5.3, the pricing subproblem for node i ∈ V is equivalent to the NP-
hard knapsack problem [8] (in its minimization form) for additively separable and linear activation
functions in case (a) we do not consider generalized propagation constraints, and (b) we further
assume that at most one non-zero incentive exists. Thus, Theorem 4 follows.

Theorem 4. The pricing subproblem (3) associated to node i ∈ V is NP-hard.

A dynamic program for activation functions of the form fi(U, p) =
(∑

j∈U dji

)Γ
+ p, i ∈ V ,

U ∈ Λi, p ∈ Pi, Γ ∈ R+, will be given in Section 5.3.
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4 Arc formulation

Alternative formulations that model the propagation with arc variables have been proposed for sev-
eral related problems, see, e.g., Ackerman et al. [1], Günneç et al. [13]. Their validity is based upon
the fact that they ensure a directed acyclic propagation graph, cf. Definition 4. Formulation (4),
to which we will refer to as (ARC), generalizes similar arc formulations from the literature to the
special case of the GLCIP in which all activation functions are additively separable and linear.
We use this formulation for the computational comparison in Section 6 and for the generation of
the initial set of variables for model (COV), cf. Section 5.5. As above, node variables xi ∈ {0, 1},
∀i ∈ V , indicate whether or not a node i is activated and arc variables zij ∈ {0, 1}, ∀(i, j) ∈ A,
indicate on which arcs influence is exerted. In addition, variables xip ∈ {0, 1}, ∀i ∈ V , ∀p ∈ Pi,
indicate the incentive received by a node.

(ARC) min
∑
i∈V

∑
p∈Pi

wipxip (4a)

s.t.
∑
p∈Pi

pxip +
∑

(j,i)∈A

djizji ≥ hixi ∀i ∈ V (4b)

∑
p∈Pi

xip = xi ∀i ∈ V (4c)

∑
(i,j)∈C

zij ≤
∑

i∈V (C)\{k}

xi ∀k ∈ V (C), ∀ cycles C ⊆ A (4d)

zij ≤ xi ∀(i, j) ∈ A s.t. (j, i) /∈ A (4e)∑
i∈V

xi ≥ dα|V |e (4f)

xip ∈ {0, 1} ∀i ∈ V,∀p ∈ Pi (4g)

xi ∈ {0, 1} ∀i ∈ V (4h)

zij ∈ {0, 1} ∀(i, j) ∈ A (4i)

Objective function (4a) minimizes the sum of costs for selected incentives. Note that non-linear
incentive cost functions can be used since one variable exists for each possible incentive. Propagation
constraints (4b) compare the sum of chosen incentives and the influence coming from neighbors on
ingoing arcs to a node’s hurdle. Constraints (4c) ensure that exactly one incentive is given to each
activated node. Generalized cycle elimination constraints (4d), forcing constraints (4e), and the
coverage constraint (4f) are identical to previously discussed inequalities, cf. Section 3.

5 Algorithmic framework

This section first details our algorithms for the dynamic separation of violated generalized cycle
elimination constraints (Section 5.1) and generalized propagation constraints (Section 5.2). Sec-
tion 5.3 describes how we solve the pricing subproblem for minimal influencing set variables, while
Section 5.4 introduces the initial and primal heuristics used in our implementation. Finally, Sec-
tion 5.5 details our heuristic solution approach based on column generation. Throughout this
section, let x̄j , ∀j ∈ V , z̄ij , ∀(i, j) ∈ A, and λ̄Ui , ∀i ∈ V , ∀U ∈ Λi, denote the current variable values
of node, arc, and minimal influencing set variables, respectively.
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5.1 Separation of generalized cycle elimination constraints

We adapt the shortest path algorithm in Grötschel et al. [10] for the separation of classical cycle
elimination cuts by using weights wij := x̄i − z̄ij ≥ 0 for all (i, j) ∈ A. From each node k ∈ V
we compute shortest paths to all neighbors Nk. If the total weight of a shortest path from k to
j ∈ Nk together with arc (j, k) (forming a cycle) is less than x̄k, then we have found a violated
generalized cycle elimination constraint (1d). Except for comparing LP relaxation bounds, we skip
the separation in case (x̄, z̄) is fractional for two reasons: (i) while a large number of inequalities (1d)
is often violated, adding them to the model rarely improves the LP bound; (ii) the dominance result
in Theorem 3 suggests to focus on generalized propagation constraints, see Section 5.2. To cut off
infeasible integer solutions, we search for cycles in the support graph defined by x̄ and z̄ with
breadth-first search.

5.2 Separation of generalized propagation constraints

We first state an ILP whose solution corresponds to a maximally violated generalized propagation
constraint (2) in case the objective value is negative. Formulation (5) uses variables vi ∈ {0, 1},
∀i ∈ V , that indicate membership of nodes to set X and uUi ∈ {0, 1}, ∀i ∈ V , ∀U ∈ Λi, that are
equal to one iff node i ∈ X and U ∩X = ∅, in which case variable λUi is part of the left-hand side
of inequality (2). Variable yi ∈ {0, 1}, ∀i ∈ V , indicates whether node i is on the right-hand side
of a generalized propagation constraint. Finally, variable r ∈ {0, 1} decides whether the lifting to
one on the right-hand side is applied or not. Observe that it is sufficient to consider variables vi
for nodes i ∈ V such that x̄i > 0 and variables uUi for sets U ∈ Λi, i ∈ V , such that λ̄Ui > 0. We
assume that the remaining variables are fixed to zero in order to simplify notation.

min
∑
i∈V

∑
U∈Λi

λ̄Uj u
U
i − x̄iyi

− r (5a)

∑
i∈V

vi ≥ 2 + (b(1− α)|V |c − 2)r (5b)∑
i∈V

yi + r = 1 (5c)

yi ≤ vi ∀i ∈ V (5d)

vi ≤
∑
j∈U

vj + uUi ∀i ∈ V, ∀U ∈ Λi (5e)

vi, yi ∈ {0, 1} ∀i ∈ V (5f)

uUi ∈ {0, 1} ∀i ∈ V, ∀U ∈ Λi (5g)

r ∈ {0, 1}. (5h)

The objective function (5a) maximizes the constraint violation, and each solution with a negative
value corresponds to a violated generalized propagation constraint (2). Inequalities (5b) force a
minimum size of two for set X (since equalities (1b) cover the case of |X| = 1) or size b(1−α)|V |c
if the lifting is applied. Equalities (5c) together with (5d) decide for the node or the lifting on
the right-hand side of the inequality. Finally, forcing constraints (5e) ensure that all variables uUi
corresponding to relevant minimal influencing sets (i.e., i ∈ X and U ∩X = ∅) are set to one.
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To separate inequalities (2) heuristically, we propose three different methods detailed in the
following: (i) a heuristic based on finding cycles, (ii) a greedy set extension heuristic, and (iii) a
greedy set reduction heuristic.

The dominance result in Theorem 3 suggests a heuristic based on the exact separation of
generalized cycle elimination constraints, see Section 5.1: For each found cycle C we check the
violation of the generalized propagation constraint (2) with X = V (C). For the right-hand side
we choose node k := argmaxj∈X{x̄j}. The greedy set extension heuristic is based on Proposition 3

and starts from X = {k} for every node k ∈ V with x̄k > 0 and λ̄∅k < x̄k: We iteratively build
a candidate list L := {j ∈ V \ X : δ+(j) ∩ δ−(X) 6= ∅} and extend X by adding the node j ∈ L
which leads to the smallest left-hand side of inequality (2). At each iteration we check whether
inequality (2) for set X and node k is violated, in which case we add it to the model. Finally, the
idea of the greedy set reduction heuristic is to consider very large sets X because of two reasons: (i)
inequalities (2) tend to be sparse for large sets X since there are in general not many set variables
corresponding to influence from outside X, and (ii) sets X with cardinality |X| ≥ b(1−α)|V |c allow
the lifting to 1 on the right-hand side. We start with set X = V and iteratively remove the node i
with largest value

∑
U∈Λi:U∩X=∅ λ̄

U
i as long as |X| ≥ b(1 − α)|V |c. In each iteration we check for

each node j ∈ X if its removal would lead to a violated propagation constraint, in which case we
add it to the model.

Similar to generalized cycle elimination constraints, in the integral case we search for a cycle
C in the support graph defined by x̄ and z̄ with breadth-first search and add inequality (2) for
X = V (C) and an arbitrary node k ∈ V (C).

5.3 Solving the pricing subproblem

For the additively separable and linear case, the relation between the pricing subproblem without
generalized propagation constraints (2) and the knapsack problem stated in Section 3.2 implies
the existence of a pseudo-polynomial solution algorithm for the pricing subproblem if all influence
weights are integral. Algorithm 2 describes a corresponding dynamic program that considers the
set Φ∅i of separated generalized propagation constraints (2) and more general activation functions of

the form fi(U, p) =
(∑

j∈U dji

)Γ
+p, i ∈ V , U ∈ Λi, p ∈ Pi, that will be used in our computational

experiments. It considers set {k1, k2, . . . , k|Ni|} of all neighbors from i, ordered arbitrarily (here
by increasing πkji/dkji), and computes the minimal reduced costs cj(d,Φ) among all subsets U ⊆
{k1, k2, . . . , kj} of the first j neighbors, 1 ≤ j ≤ |Ni|, for all sets Φ ⊆ Φ∅i corresponding to generalized
propagation constraints whose dual variable values need to be considered if i is influenced by U ,
i.e., Φ = {(X, k) ∈ Φ∅i | X ∩ U = ∅}. Algorithm 2 also uses ŵi(d) = minp∈Pi{wip | dΓ + p ≥ hi} to
denote the cheapest incentive to activate node i when the sum of neighboring influences is equal
to d. Its validity follows from the fact that a set U ⊆ {k1, k2, . . . , kj}, 1 ≤ j ≤ |Ni|, cannot
yield an optimal solution (after considering the remaining neighbors kj+1, . . . , k|Ni|) if there exists

a set U ′ ⊆ {k1, k2, . . . , kj} such that
∑

j∈U dji =
∑

j∈U ′ dji, ΦU
i = ΦU ′

i , and wU
i +

∑
j∈U πji −∑

(X,k)∈ΦU
i
φUk > wU ′

i +
∑

j∈U ′ πji −
∑

(X,k)∈ΦU′
i
φU
′

k .

Finally, observe that Algorithm 2 boils down to the classic and well known dynamic program
(presented as forward recursion) for the knapsack problem if no generalized propagation constraints
need to be considered, i.e., if Φ∅i = ∅. In this case only the most efficient partial solution is stored
and extended for each relevant subset of neighbors and sum of their influence, respectively.
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Algorithm 2: Dynamic program for solving the pricing subproblem.

1 // Assumptions: neighbors Ni are ordered (arbitrarily) {k1, k2, . . . , k|Ni|}
2 // cj(d,Φ) =∞ if (d,Φ) /∈ Lj

3 L0 = {(0,Φ∅i )} // initialization (no influence from neighbors)

4 c0(0,Φ∅i ) = ŵi(0)− µi −
∑

(X,k)∈Φ∅i
φXk // initial reduced costs

5 for j ∈ {1, . . . , |Ni|} do
6 forall (d,Φ) ∈ Lj−1 do
7 cj(d,Φ) = min{cj(d,Φ), cj−1(d,Φ)} // no influence from kj
8 Lj = Lj ∪ {(d,Φ)}
9 Φ′ = {(X, k) ∈ Φ : j /∈ X} // relevant sets after adding kj

10

cj(d+ dkji,Φ
′) = min{cj(d+ dkji,Φ

′), cj−1(d,Φ)+

+
∑

(X,k)∈Φ\Φ′
φXk + πji + ŵi(d+ dji)− ŵ(d)}

11 Lj = Lj ∪ {(d+ dkji,Φ
′)}

12 if cj(d+ dkji,Φ
′) < 0 then subset with negative reduced cost found

5.4 Initial and primal heuristics

We use three simple greedy construction heuristics to obtain feasible solutions (i) to get an initial
solution and primal bound, (ii) to warm-start column generation with an initial set of set variables,
and (iii) to improve primal bounds throughout the solution process by exploiting LP information.
The heuristics MinIncentive and MinInfluence have been proposed by Günneç et al. [13] and
are (slightly) adapted to also deal with unequal influences, discrete sets of incentives, general
activation functions, and arbitrary lower bounds on the number of nodes to activate. Common
to all greedy construction heuristics described here is the following procedure: We start with an
empty solution; at each iteration we activate a not yet active node by paying the minimum available
incentive to reach its hurdle, taking into account the current influence coming from already active
neighbors. After activating the chosen node, we continue propagation by exerting its influence to
all inactive neighbors and iteratively continue propagation from all activated nodes, i.e., a version
of Algorithm 1 is applied in which the propagation graph from the previous iteration is considered
as starting solution. The heuristics only differ in the greedy criterion to select the next node to
activate:

• MinIncentive: The node with minimal incentive to activate it is chosen.

• MinInfluence: The node i ∈ V with minimal average influence over all neighbors Ni is chosen;
the MinIncentive greedy value for a node is used instead if it is lower than the average influence
in the current iteration.

• MaxActivation: The MinIncentive greedy value divided by the number of neighbors which
would be activated in the next propagation step, is used.

An LP solution is taken into account by reducing the MinIncentive greedy value by the incentive
given to the node in the LP solution. Ties are broken by selecting the node with maximal number of
non-active neighbors on outgoing arcs. All heuristics are applied sequentially and the best solution
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found is kept. Additionally, all minimal influencing set variables are added whose corresponding
sets are contained in such a solution and which have not been included in the model yet.

5.5 Price-cut-and-branch

Next, we propose a heuristic algorithm based on column generation that allows to tackle instances
for which one cannot simply enumerate all minimal influencing set variables and explicitly include
them in the initial model. Our heuristic first applies a column and cut generation procedure
intended to obtain tight primal and dual bounds before switching to a branch-and-cut phase whose
sole purpose is to further improve the primal bound. In the first phase the LP relaxation of
model (COV) is solved by column generation together with separation of generalized propagation
constraints (2). The initial set of variables is defined by variables corresponding to (i) empty
influencing sets, (ii) minimal influencing sets used in a solution found by any of the three greedy
heuristics detailed in Section 5.4, and (iii) minimal influencing sets generated from the LP solution
of model (ARC) without generalized cycle elimination constraints which can usually be solved in
comparably short computation time. For each node j ∈ V with x̄j > 0 sets Uj are generated as
follows. We sort all arcs (i, j) ∈ δ−(j) with z̄ij > 0 by descending LP value, iteratively take arcs
in the given order, and build a set of influencing neighbors until either there is no arc left in the
list or we obtain an influencing set without need for additional incentives. After reducing it to a
minimal influencing set U (if necessary), we add it to Uj and set λ̄Uj := mini∈U z̄ij . Then, we reduce

the LP values of all arcs which are involved in set U by λ̄Uj . We repeat this process of determining

influencing sets until
∑

U∈Uj λ̄
U
j ≥ 1 is satisfied. Note that throughout this generation, we always

ensure
∑

U∈Uj :i∈U λ̄
U
j ≤ z̄ij , ∀(i, j) ∈ A.

At each pricing iteration we run all greedy heuristics guided by the current LP solution of
the restricted master problem to potentially obtain new incumbent solutions, and generate new
columns corresponding to minimal influencing sets in the solutions. If no further columns with
negative reduced costs exist, we perform a fixed number of cut separation rounds and then return
to pricing. This sequence is repeated until no further relevant columns and violated inequalities
are found. In this way, we obtain both a lower and an upper bound to the optimal solution value.
Based on the set of columns and cuts found in the first phase we start a classical branch-and-
cut algorithm without adding further columns and generalized propagation constraints (2) to the
model. The only purpose of this phase is to improve the primal bound.

6 Computational study

In this section we describe the computational environment, report detailed experimental results,
and finally discuss the outcome. Each experiment has been performed on a single core of an Intel
Xeon E5-2670v2 machine with 2.5 GHz. A time limit of 7 200 seconds and a memory limit of 8 GB
has been set. The algorithms are implemented in C++ and IBM ILOG CPLEX 12.7.1 is used as
branch-and-cut framework and LP solver. Unless otherwise stated, CPLEX parameters are set to
their defaults.

Benchmark instances and activation functions. Instance set SW has been generated in
the following way: First, we create five directed small-world graphs [21] for each node-set size
|V | ∈ {50, 75, 100}, average node degree k ∈ {4, 8, 12, 16}, and rewiring probability β ∈ {0.1, 0.3}.

15



Influence values dij on arcs (i, j) ∈ A are distributed uniformly random in {1, . . . , 10}. Let Di =∑
j∈Ni

dji be the total amount of influence possibly exerted on node i from its neighbors. Then,
hi = max{1,min{ζi, Di}} rounded to the next integer, where ζi ∼ N(0.7Di, Di/|Ni|) is a normally-
distributed random variable. The minimal fraction of nodes to activate is set to α ∈ {0.1, 0.5, 1}.
For each node i ∈ V we use activation function fi(U, p) =

(∑
j∈U dji

)Γ
+ p. For Γ = 1, fi is

additively separable and linear. Values Γ > 1 model, e.g., the situation of peer pressure where
additional influence has an over-proportional effect. On the contrary, values Γ < 1 lead to a
submodular function and model the situation of diminishing marginal influences, cf. Leskovec et al.
[18]. Here, we consider Γ ∈ {0.9, 1, 1.1}. The discrete set of incentives is based on the maximal
hurdle ĥ = maxi∈V hi and is defined as Pi = {0, 0.25ĥ, 0.5ĥ, 0.75ĥ, ĥ} for all i ∈ V . The costs for one
particular incentive is not necessarily proportional to the incentive value. Thus, assuming economies
of scale, we define wip := p0.9. Instance set GRZ has been created in the same way as the instances
from Günneç et al. [13]. Thus, these instances enable a comparison of our solution methods to
their approach for the special case of the GLCIP with additively separable and linear activation
functions, α = 1, equal influences for all incoming arcs of a node, and continuous incentives (i.e.,
Pi = [0, hi]) for which wip = p, ∀i ∈ V , ∀p ∈ Pi, holds.

6.1 Algorithms and settings

The following algorithms (and variants thereof) are considered in our study:

G: A re-implementation of the state-of-the-art approach from Günneç et al. [13] for the special
case of α = 1, equal influence values for all neighbors Ni of node i ∈ V , additively separable
and linear activation functions, and continuous incentives Pi = [0, hi] with wip = p, ∀i ∈ V ,
∀p ∈ Pi. Preliminary experiments showed that a parametrization which differs from Günneç
et al. [13] is beneficial, see below. We use our primal heuristics and we statically include in the
initial model the generalized cycle elimination constraints (1d) for all cycles up to length four,
while separation of the remaining inequalities is only done in the integral case, cf. Section 5.1.

A: This branch-and-cut algorithm is based on model (ARC), see Section 4, and can only be applied
for additively separable and linear activation functions. Generalized cycle elimination con-
straints (1d) for all cycles up to length four are added a priori to the model, while separation
of the remaining inequalities is only done in the integral case, cf. Section 5.1.

C: An exact method based on model (COV) which first enumerates all set variables, adds them to
the initial model, and then performs a branch-and-cut. Inequalities (2) are separated only in
the integer case.

P : The price-cut-and-branch heuristic described in Section 5.5.

Further variants of algorithms C and P are obtained by including (i) heuristic separation (variants
C+ and P+) or (ii) heuristic and exact separation (variants C+

e and P+
e ) of generalized propagation

constraints (2). All algorithms use the heuristics described in Section 5.4.

Separation of generalized propagation constraints. We set a limit of 100 violated inequal-
ities per iteration, avoiding duplicates by a hash table. To accelerate the separation methods, in
the beginning we restrict set X to a maximum of five nodes and in case of the greedy set reduction

16



heuristic to a minimum of |V | − 5 nodes. Inequalities (2) based on small and large sets tend to be
sparse and seem to be beneficial for cut convergence. If less than 50 violated inequalities are found
in some iteration, the value limiting the cardinality of set X is doubled. Algorithms C+

e and P+
e

apply the exact ILP-based separation if less than 50 cuts are found by the separation heuristics in
the same iteration. We use the populate method of CPLEX to increase the number of solutions
found; to save time we stop if the incumbent has an objective value less than -0.2. We stop the cut
separation if, in the last five iterations, the relative LP bound increase was less than 0.1 percent.
In case of the branch-and-cut approaches we then continue with branching. When this situation
arises in the first phase of PCB we either return to the pricing loop, or we continue with the second
phase in case no relevant columns have been found and more than 90% of the time limit has been
reached.

Price-cut-and-branch. We limit to five the number of columns to be added to the model per
node i ∈ V per pricing iteration. If less than 500 columns in total are added in some iteration,
we increase this limit by a factor of 10. In the beginning of each pricing phase, e.g., after the cut
separation rounds, the limit is reset to five again. We perform three cut separation rounds after
each pricing phase. If after five consecutive pricing phases a generalized propagation constraint is
not binding in the optimal LP solution it is removed again from the model. In the branch-and-cut
phase we focus on finding better primal bounds by setting the MIP emphasis parameter in CPLEX
to feasibility.

6.2 Computational results

LP relaxation bounds. Table 1 compares average LP relaxation bounds (v(M)/v((COV )+
e )

and average LP gaps (UB − v(M))/UB to the best known primal bound UB , in percent, for
additively separable and linear activation functions, i.e., Γ = 1, smaller instances from set SW, and
different values of k, α, and β. Thereby, v(M), where M ∈ {(ARC), (COV ), (COV )+, (COV )+

e },
is the LP relaxation value of formulation M where (COV )+, (COV )+

e denote the variants of
(COV ) augmented by heuristic and exact separation of generalized propagation constraints (2),
respectively. We observe that formulation (ARC) yields extremely weak bounds (often equal to
zero) and is clearly dominated by (COV ). The relevance of generalized propagation constraints (2)
can be clearly seen from the significantly better LP relaxation bounds obtained in variants (COV )+

and (COV )+
e . A comparison between the latter two also reveals that our heuristic cut separation

routines work quite well in many cases, though there is potential for further improvements. The
final, non-negligible gaps of (COV )+

e also indicate that the identification of further valid inequalities
is a relevant topic for future research. The results from Table 1 show that the gaps (and thus the
complexity of the instances) increase with increasing average node degree k. We remark, however,
that this comparison might be influenced from the side effect that changing the average node degree
(for a fixed number of nodes) also changes the number of arcs in the underlying graph. Higher
values of α mostly lead to smaller LP gaps, which is partly due to the right-hand side lifting of
inequalities (2) which can be applied more often in these cases.

Results for the general case. Figure 2 summarizes optimality gaps and CPU times observed
for different values of Γ (i.e., including also non-linear activation functions) and all considered algo-
rithms except G (which is only applicable in the special case discussed in the next paragraph). We
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Table 1: Comparison of LP relaxation bounds on instance set SW for Γ = 1. Each row contains
average values over five instances. Some LP relaxations could not be computed within 100 000
seconds (shown in parentheses next to gap value). Column #opt denotes the number of known
optimal primal bounds.

avg. LP bound [%] avg. LP gap [%] #opt
|V |-k β α (ARC) (COV ) (COV )+ (COV )+

e (ARC) (COV ) (COV )+ (COV )+
e

50-4 0.1 0.1 0.0 5.5 98.1 100.0 100.0 95.5 22.4 21.1 5
0.5 0.0 16.4 90.7 100.0 100.0 83.9 11.5 2.9 5
1.0 0.9 32.4 93.6 100.0 99.1 70.0 10.8 4.5 5

0.3 0.1 0.0 11.6 97.9 100.0 100.0 90.6 15.5 14.2 5
0.5 0.0 21.5 82.8 100.0 100.0 83.1 32.9 19.7 5
1.0 1.6 34.3 87.1 100.0 98.4 67.7 18.1 5.9 5

50-8 0.1 0.1 0.0 0.3 99.1 100.0 100.0 99.9 51.6 51.2 3
0.5 0.0 0.7 81.2 100.0 100.0 99.5 43.9 29.9 (4) 1
1.0 0.0 1.7 71.7 100.0 100.0 98.4 35.5 10.3 (4) 1

0.3 0.1 0.0 2.2 98.2 100.0 100.0 99.0 55.0 54.2 1
0.5 0.0 4.7 84.2 100.0 100.0 97.9 61.0 53.7 (2) 0
1.0 0.0 5.6 67.2 100.0 100.0 96.2 53.2 30.6 (2) 0

75-4 0.1 0.1 0.0 6.5 92.4 100.0 100.0 94.3 18.0 11.2 5
0.5 0.0 17.4 83.6 100.0 100.0 84.1 22.9 8.3 5
1.0 0.6 38.7 90.4 100.0 99.5 61.9 10.9 1.4 5

0.3 0.1 0.0 20.2 94.3 100.0 100.0 84.4 28.7 24.8 5
0.5 0.0 30.6 73.6 100.0 100.0 77.6 45.6 26.5 5
1.0 2.9 45.8 81.8 100.0 97.3 56.1 21.5 4.1 5

observe that the required CPU times and resulting gaps (and thus the complexity for the consid-
ered methods) increase with increasing value of Γ. We also observe that, despite the fact that the
exact methods based on initially enumerating all variables from (COV ) perform surprisingly well,
the heuristic variants P+ and P+

e are more reliable in the sense that the observed optimality gaps
on the most challenging instances are much smaller than those of the exact methods. Concerning
the different variants of C, we observe that generalized propagation constraints (2) deteriorate the
performance for Γ = 0.9, but significantly improves the obtained results for the more difficult cases
of Γ ∈ {1, 1.1}. Variants C+

e and C+ with and without exact separation overall perform very sim-
ilarly. Slight advantages can be observed for variant C+

e which seems to benefit from its stronger
dual bounds. Similarly, P+

e slightly outperforms its counterpart P+ with heuristic cut separation.
The branch-and-cut algorithm A based on model (ARC) is not only restricted to the case of addi-
tively separable and linear activation functions, but is also significantly outperformed by the other
methods proposed in this article for that case. Overall, the results given in Figure 2 indicate that
C+

e and P+
e are the two most promising variants and we will therefore focus on them in the more

fine-grained results given in Figure 3 that compare the distribution of final optimality gaps by
numbers of nodes and average node degrees. These results clearly confirm the conjecture that the
average node degree is a major factor of the complexity of an instance. On the contrary, it seems
that the impact of an increasing number of nodes is not too large as long as the total number of arcs
remains constant (e.g., instances with |V | = 100 and k = 4 are easier than those with |V | = 50 and
k = 8), thus suggesting a reasonable scalability of our approaches for sparse graphs. These results
also show that the heuristic, column-generation based algorithm P+

e consistently outperforms the
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Figure 2: Cumulative relative numbers of instances for which the resulting optimality gap (the CPU-
time of, respectively) is within a certain value. Results for instance set SW and Γ ∈ {0.9, 1, 1.1}.

exact method C+
e if the average node degree is larger than four. Finally, the detailed results given

in the appendix in Tables 3 to 5 suggest that instances with higher values of α are harder to solve
to optimality, even though the dual bounds are better in these cases.

Results for special case considered in Günneç et al. [13]. Table 2 summarizes our results
for the special case of the GLCIP with additively separable and linear activation functions, equal
influence from all neighbors, α = 1, and continuous incentives whose costs are equal to the corre-
sponding hurdle reduction. Results for C+

e and P+
e are not reported, since the exact separation of

propagation inequalities is not competitive because of the large graph sizes. We first observe that
this case seems significantly easier to solve. The maximum size of instances that can be solved to
proven optimality is orders of magnitude larger than for the general case, and the optimality gaps
are comparably small. We also conclude that our exact and heuristic algorithms with heuristic
cut separation, i.e., C+ and P+, clearly outperform the previous state-of-the-art approach G from
Günneç et al. [13] in most cases, despite the fact that they are not specialized or tuned to this
particular case.
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Figure 3: Distribution of optimality gaps for different average node degrees k ∈ {4, 8, 12, 16} and
numbers of nodes |V | for instances from set SW.

Table 2: Computational results on instance set GRZ. Dashes indicate no available gaps or reached
time limits.

avg. gap in % avg. time in sec.
|V |-k G A C C+ P+ G A C C+ P+

1000-4 0.0 0.0 0.0 0.0 0.0 6 169 1 1 7
10000-4 0.2 1.9 0.0 0.0 0.0 - - 53 52 773
50000-4 0.4 3.0 0.0 0.0 0.0 - - 5630 6929 6857

100000-4 0.2 3.3 2.8 0.1 0.1 - - - - 7144
5000-8 6.4 6.8 5.2 2.1 2.0 - - - - -

2500-16 12.9 100.0 - - 53.2 - - - - -

7 Conclusions

We have introduced and studied a new optimization problem motivated from viral marketing in
social networks that generalizes many previously considered problem variants. An ILP formulation
with an exponential number of variables that allows to consider arbitrary activation functions, as
well as strengthening valid inequalities, exact and heuristic algorithms based on this formulation
have been introduced. Computational results show that our approaches significantly outperform
(extensions of) existing algorithms on special cases of the general problem. Promising directions for
future work include the development of an improved branch-price-and-cut algorithm, by studying
the integration of stabilization techniques, improving the proposed heuristic cut separation routines,
and identifying further valid inequalities.
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A Detailed Results

Table 3: Results on SW instances for Γ = 0.9. Note that P is a heuristic. Dashes indicate no
available gaps / set variables or reached time limits.

avg. gap [%] avg. time [s] avg. # set variables
|V |-k β α C C+ C+

e P+ P+
e C C+ C+

e P+ P+
e C P+ P+

e
50-4 0.1 0.1 0.0 0.0 0.0 21.4 17.9 0 0 3 0 2 883 315 319

0.5 0.0 0.0 0.0 11.6 6.3 1 2 26 1 27 883 344 353
1.0 0.0 0.0 0.0 1.1 0.2 20 1 2 1 1 883 340 343

0.3 0.1 0.0 0.0 0.0 17.3 16.0 0 1 10 0 3 1383 327 333
0.5 0.0 0.0 0.0 12.1 7.8 2 7 44 2 15 1383 374 393
1.0 0.0 0.0 0.0 3.3 1.1 86 7 21 21 9 1383 384 396

50-8 0.1 0.1 0.0 0.0 0.0 35.2 33.2 17 64 1007 3 435 17932 1303 1425
0.5 0.0 0.0 2.3 19.2 12.5 80 2076 3879 57 6560 17932 1525 1839
1.0 22.5 7.8 2.2 7.2 1.5 - 7171 4105 - 3700 17932 1901 2182

0.3 0.1 0.0 0.0 0.0 34.9 30.0 27 117 1005 6 388 39809 1502 1712
0.5 0.0 15.9 20.5 27.4 21.9 2116 6692 - 565 4852 39809 1827 2074
1.0 22.0 25.3 20.2 13.1 9.1 - - 6249 - 7191 39809 2280 2471

75-4 0.1 0.1 0.0 0.0 0.0 22.1 16.8 1 1 4 0 3 1357 491 493
0.5 0.0 0.0 0.0 6.3 3.8 1 1 11 1 30 1357 509 532
1.0 0.0 0.0 0.0 0.9 0.3 236 3 2 1 6 1357 514 533

0.3 0.1 0.0 0.0 0.0 15.1 12.3 1 2 17 1 19 1808 515 528
0.5 0.0 0.0 0.0 13.6 7.9 4 37 168 6 65 1808 546 594
1.0 0.0 0.0 0.0 2.2 0.3 306 14 14 7 14 1808 553 575

75-8 0.1 0.1 0.0 0.0 7.9 35.0 32.1 45 767 3870 16 5330 29557 2140 2459
0.5 0.0 12.6 13.1 16.8 10.9 1351 - 6890 332 6887 29557 2558 2839
1.0 30.7 31.4 26.0 10.4 4.1 - - - - - 29557 3354 3761

0.3 0.1 0.0 0.0 4.7 32.7 28.2 66 544 5078 25 3575 52163 2453 2760
0.5 13.8 32.8 29.9 29.2 25.6 - - - 6192 - 52163 2596 2977
1.0 32.4 32.4 30.0 20.1 12.5 - - - - - 52163 3870 4285

75-12 0.1 0.1 17.9 49.9 50.0 41.9 42.1 6852 - - 479 7160 527510 7437 10050
0.5 32.9 45.4 43.5 30.9 31.1 - - - - - 527510 12136 12888
1.0 40.7 39.4 39.2 19.7 12.4 - - - - - 310536 13207 13870

0.3 0.1 40.0 61.5 61.6 32.3 35.1 - - - 1314 - 1464607 11300 13214
0.5 52.8 58.0 57.9 38.0 36.4 - - - - - 1464607 12864 13837
1.0 52.0 50.7 50.6 25.7 22.8 - - - - - 1464607 12227 12960

100-4 0.1 0.1 0.0 0.0 0.0 13.5 9.8 1 2 10 1 4 1826 627 630
0.5 0.0 0.0 0.0 6.6 3.6 3 8 42 2 85 1826 668 689
1.0 0.0 0.0 0.0 0.9 0.0 1310 11 12 13 10 1826 747 745

0.3 0.1 0.0 0.0 0.0 13.0 10.4 1 1 9 0 4 2597 645 651
0.5 0.0 0.0 0.0 10.4 6.1 11 73 456 5 71 2597 752 792
1.0 1.0 0.0 0.0 1.8 0.6 4444 165 47 419 55 2597 795 807

100-8 0.1 0.1 0.0 0.7 7.2 27.4 22.2 83 3992 5294 33 6599 38820 2874 3359
0.5 4.2 23.7 28.2 16.6 13.4 5314 - - 3307 7182 38820 3274 3848
1.0 30.3 34.2 32.2 12.6 3.9 - - - - - 38820 4403 4523

0.3 0.1 0.0 1.4 10.5 27.7 23.5 130 2761 6181 75 6718 73397 3537 4228
0.5 15.1 34.6 36.9 25.4 22.8 - - - 6194 - 73397 3872 4559
1.0 26.2 27.6 27.1 17.3 10.9 - - - - - 73397 5553 6172

100-12 0.1 0.1 36.0 53.7 52.6 42.6 45.2 - - - 2917 - 684855 9829 12588
0.5 34.6 44.7 42.3 33.5 30.7 - - - - - 684855 15312 16452
1.0 38.9 38.0 41.5 24.3 18.8 - - - - - 125694 15455 17800

0.3 0.1 38.9 47.7 47.7 35.9 35.1 - - - 4200 - 1308151 15225 17345
0.5 42.3 46.2 46.1 35.9 35.2 - - - - - 1308151 16804 17835
1.0 37.0 37.6 37.6 26.4 25.9 - - - - - 1032888 14349 15369

100-16 0.1 0.1 - - - 43.4 41.0 - - - - - - 33666 34631
0.5 - - - 33.8 33.6 - - - - - - 38008 38738
1.0 - - - 28.7 27.2 - - - - - - 16420 18538

0.3 0.1 - - - 42.6 42.3 - - - - - - 39312 39597
0.5 - - - 35.6 35.6 - - - - - - 34741 35136
1.0 - - - 26.0 25.5 - - - - - - 13215 13009
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Table 4: Results on SW instances for Γ = 1. Note that P is a heuristic. Dashes indicate no
available gaps / set variables or reached time limits.

avg. gap [%] avg. time [s] avg. # set variables
|V |-k β α A C C+ C+

e P+ P+
e A C C+ C+

e P+ P+
e C P+ P+

e
50-4 0.1 0.1 10.0 0.0 0.0 0.0 22.9 21.1 1444 2 1 3 0 2 783 248 249

0.5 10.0 0.0 0.0 0.0 10.8 2.9 1832 70 5 5 1 11 783 259 256
1.0 17.3 0.0 0.0 0.0 10.1 4.5 2973 99 2 2 0 1 783 303 303

0.3 0.1 0.0 0.0 0.0 0.0 15.4 14.2 1 0 0 1 0 2 1171 263 261
0.5 0.0 0.0 0.0 0.0 33.0 19.7 1087 1040 92 274 5 29 1171 312 317
1.0 5.8 0.0 0.0 0.0 20.0 5.9 2585 945 19 29 21 8 1171 355 358

50-8 0.1 0.1 83.6 98.2 17.3 25.9 53.0 52.4 - - 5103 4928 3807 299 15655 719 749
0.5 89.6 99.2 45.0 41.8 46.3 34.4 - - 6571 5872 6820 5812 15655 1511 1657
1.0 90.6 97.8 66.0 25.7 39.4 12.5 - - - 5894 - 6348 15655 1476 1816

0.3 0.1 62.9 89.5 28.9 39.5 55.1 54.3 - - 7083 7123 1329 280 35360 862 990
0.5 90.8 96.3 74.5 66.2 63.2 59.8 - - - - - - 35360 1859 2013
1.0 85.1 95.2 67.5 61.6 61.3 40.4 - - - - - - 35360 1973 2165

75-4 0.1 0.1 10.0 0.0 0.0 0.0 23.1 23.6 1454 13 1 6 1 8 1192 414 416
0.5 20.0 0.0 0.0 0.0 22.8 8.3 4887 294 27 133 5 144 1192 405 420
1.0 21.6 0.0 0.0 0.0 7.2 1.4 5679 1350 5 5 2 2 1192 474 450

0.3 0.1 0.0 0.0 0.0 0.0 29.3 24.8 2 1 2 11 0 16 1574 423 425
0.5 8.2 0.0 0.0 0.0 42.4 26.2 2717 1158 348 1038 23 457 1574 468 496
1.0 22.2 5.6 0.0 0.0 20.5 4.0 5988 1618 697 57 758 102 1574 504 530

75-8 0.1 0.1 93.2 99.7 67.4 70.9 62.4 62.0 - - - - - 6640 25397 1099 1299
0.5 95.4 99.0 78.1 65.3 62.0 45.3 - - - - - - 25397 2415 2794
1.0 95.6 96.6 80.8 65.4 58.7 30.0 - - - - - - 25397 2337 2947

0.3 0.1 89.7 94.1 65.2 69.5 59.0 57.6 - - - - 5345 6159 45887 1330 1749
0.5 96.3 97.6 86.4 85.6 71.0 68.5 - - - - - - 45887 3209 2993
1.0 94.3 97.9 82.5 70.5 62.1 40.2 - - - - - - 45887 3395 3189

75-12 0.1 0.1 100.0 100.0 84.5 84.4 71.4 71.4 - - - - - - 469196 2158 2568
0.5 100.0 100.0 93.2 94.2 81.9 70.5 - - - - - - 469196 5284 12487
1.0 100.0 100.0 94.1 93.9 83.6 79.3 - - - - - - 469196 6050 8356

0.3 0.1 100.0 100.0 87.4 87.4 73.5 73.3 - - - - - - 1342667 2836 6163
0.5 100.0 100.0 98.4 97.5 90.1 85.1 - - - - - - 1342667 5362 11652
1.0 100.0 100.0 98.2 98.2 91.0 86.2 - - - - - - 1342667 7115 10240

100-4 0.1 0.1 0.0 0.0 0.0 0.0 25.8 20.8 277 3 6 9 1 47 1620 542 543
0.5 44.6 0.0 0.0 0.0 34.0 5.3 - 703 281 266 12 380 1620 523 542
1.0 57.5 3.7 0.0 0.0 12.8 0.6 - 3301 66 13 61 27 1620 629 629

0.3 0.1 0.0 0.0 0.0 0.0 37.0 32.3 13 3 6 208 2 126 2271 557 565
0.5 26.3 4.4 5.7 5.1 50.9 27.1 5904 2062 3277 3460 1346 1537 2271 645 682
1.0 50.1 8.9 0.0 0.0 20.9 3.9 - 5160 1835 229 1535 361 2271 726 744

100-8 0.1 0.1 86.0 93.6 71.7 74.9 63.8 62.0 - - - - - 6998 33917 1645 1914
0.5 93.8 98.1 88.2 80.9 60.4 34.6 - - - - - 7067 33917 3094 3806
1.0 93.3 96.5 90.5 86.8 67.5 29.2 - - - - - - 33917 3076 3941

0.3 0.1 97.1 100.0 77.2 81.2 64.5 64.1 - - - - - 7172 65758 1808 2236
0.5 99.1 100.0 92.8 93.9 84.0 75.4 - - - - - - 65758 4796 4515
1.0 98.4 98.8 93.0 89.5 81.0 55.9 - - - - - - 65758 5730 4720

100-12 0.1 0.1 100.0 100.0 87.4 87.7 77.1 76.8 - - - - - - 616486 3569 5238
0.5 100.0 100.0 93.9 94.6 85.9 78.7 - - - - - - 616486 5254 11268
1.0 100.0 100.0 94.0 94.2 85.9 86.0 - - - - - - 616486 5664 5701

0.3 0.1 100.0 100.0 100.0 100.0 78.1 77.9 - - - - - - 1192315 3919 9691
0.5 100.0 100.0 100.0 100.0 93.2 90.7 - - - - - - 1192315 4920 12642
1.0 100.0 100.0 99.5 100.0 93.8 93.9 - - - - - - 1192315 7213 9452

100-16 0.1 0.1 100.0 - - - 79.8 79.1 - - - - - - - 3710 5465
0.5 100.0 - - - 91.3 89.5 - - - - - - - 6574 17380
1.0 100.0 - - - 92.2 91.0 - - - - - - - 9082 8144

0.3 0.1 100.0 - - - 80.7 81.4 - - - - - - - 7084 14643
0.5 100.0 - - - 94.5 95.0 - - - - - - - 7404 36543
1.0 100.0 - - - 94.8 95.0 - - - - - - - 10003 10543
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Table 5: Results on SW instances for Γ = 1.1. Note that P is a heuristic. Dashes indicate no
available gaps / set variables or reached time limits.

avg. gap [%] avg. time [s] avg. # set variables
|V |-k β α C C+ C+

e P+ P+
e C C+ C+

e P+ P+
e C P+ P+

e
50-4 0.1 0.1 20.0 0.0 0.0 0.0 0.0 1507 0 0 0 0 664 187 195

0.5 8.3 0.0 0.0 0.0 0.0 1730 0 2 0 0 664 215 215
1.0 8.3 0.0 0.0 0.0 0.0 1497 0 0 0 0 664 224 216

0.3 0.1 0.0 0.0 0.0 0.0 0.0 123 0 0 0 0 920 210 208
0.5 10.0 0.0 0.0 11.1 0.0 3547 5 4 4 4 920 202 203
1.0 13.0 0.0 0.0 12.9 3.6 3360 2 5 1 6 920 236 242

50-8 0.1 0.1 100.0 16.5 20.8 33.9 33.2 - 3411 4530 5833 6890 10958 406 454
0.5 100.0 34.8 25.8 20.3 7.1 - 5997 5235 4328 4202 10958 764 1283
1.0 100.0 30.9 30.5 31.7 6.9 - 4711 4649 6757 3937 10958 687 1252

0.3 0.1 100.0 38.7 33.7 43.5 43.5 - 6071 5469 4614 5904 22739 484 509
0.5 100.0 69.0 61.6 44.1 16.8 - - - - 5666 22739 924 2053
1.0 100.0 72.9 72.5 38.0 12.5 - - - - 5782 22739 927 2098

75-4 0.1 0.1 40.0 0.0 0.0 0.0 0.0 4289 0 0 0 0 1007 307 313
0.5 60.0 0.0 0.0 0.0 0.0 5349 0 1 0 0 1007 303 287
1.0 0.0 0.0 0.0 0.0 0.0 1996 0 0 0 0 1007 328 330

0.3 0.1 20.0 0.0 0.0 7.8 7.0 1550 2 34 4 3 1282 372 370
0.5 32.2 0.0 0.0 19.0 4.7 4487 162 488 1442 249 1282 360 377
1.0 30.6 0.0 0.0 16.2 4.6 3291 150 88 2880 678 1282 356 371

75-8 0.1 0.1 100.0 52.6 54.0 39.2 36.8 - - - - - 17310 718 713
0.5 100.0 66.9 48.7 27.9 11.8 - - - - 6205 17310 860 1737
1.0 100.0 63.3 54.6 26.0 11.2 - - - - 6530 17310 923 1741

0.3 0.1 100.0 53.4 59.1 36.0 34.0 - - - 6947 6555 29829 784 968
0.5 100.0 74.2 77.8 40.0 29.4 - - - - 6057 29829 1641 2375
1.0 100.0 76.5 76.1 42.3 30.3 - - - - 6190 29829 1489 2548

75-12 0.1 0.1 100.0 79.9 79.3 60.5 63.1 - - - - - 269538 1749 1773
0.5 100.0 85.5 85.2 65.8 64.0 - - - - - 269538 4493 4924
1.0 100.0 84.9 82.2 63.6 59.3 - - - - - 269538 3794 4215

0.3 0.1 100.0 81.4 81.1 68.9 70.3 - - - - - 711655 2362 2714
0.5 100.0 88.9 87.8 76.7 75.9 - - - - - 711655 5164 5624
1.0 100.0 89.5 89.6 74.8 75.3 - - - - - 711655 5267 4838

100-4 0.1 0.1 80.0 0.0 0.0 0.0 0.0 5760 0 1 0 0 1363 405 428
0.5 80.0 0.0 0.0 9.3 0.0 5772 5 7 2 22 1363 388 382
1.0 80.0 0.0 0.0 9.8 0.0 5761 2 6 1 2 1363 472 470

0.3 0.1 100.0 0.0 0.0 16.7 14.7 - 18 224 1345 1055 1839 471 473
0.5 100.0 0.0 0.0 29.9 0.0 - 84 176 2943 116 1839 473 518
1.0 86.7 0.0 0.0 16.2 3.3 - 81 110 2573 2838 1839 510 527

100-8 0.1 0.1 100.0 65.6 66.2 40.8 40.0 - - - - - 23428 1044 1050
0.5 100.0 58.3 47.8 36.4 11.7 - 7117 - - 5237 23428 1372 1796
1.0 100.0 73.5 64.6 35.8 19.2 - - - - 5644 23428 1228 1818

0.3 0.1 100.0 72.6 79.8 49.7 51.6 - - - - - 43209 1561 1580
0.5 100.0 85.1 83.5 60.7 45.5 - - - - - 43209 2522 2751
1.0 100.0 89.9 85.8 55.1 48.8 - - - - - 43209 2566 2708

100-12 0.1 0.1 100.0 82.7 82.3 64.1 65.1 - - - - - 362885 1765 2155
0.5 100.0 84.6 83.5 66.8 68.7 - - - - - 362885 4449 4393
1.0 100.0 83.6 85.2 68.7 66.4 - - - - - 362885 4273 4027

0.3 0.1 100.0 87.3 87.3 73.7 73.6 - - - - - 1184188 2442 3201
0.5 100.0 93.6 93.3 80.7 81.3 - - - - - 1184188 4251 4665
1.0 100.0 93.3 92.2 80.9 81.3 - - - - - 1184188 4495 4131

100-16 0.1 0.1 100.0 100.0 100.0 72.5 73.8 - - - - - 1476060 2393 2586
0.5 100.0 100.0 100.0 79.1 76.9 - - - - - 1476060 6008 6632
1.0 100.0 100.0 100.0 78.4 78.0 - - - - - 1476060 6275 5977

0.3 0.1 - - - 77.2 77.8 - - - - - - 2395 4294
0.5 - - - 86.1 85.6 - - - - - - 6894 7795
1.0 - - - 85.9 86.1 - - - - - - 6876 6712
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