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differentiability on the boundary
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Abstract

In this paper we consider the minimization of a continuous function
that is potentially not differentiable or not twice differentiable on the
boundary of the feasible region. By exploiting an interior point technique,
we present first- and second-order optimality conditions for this problem
that reduces to classical ones when the derivative on the boundary is
available. For this type of problems, existing necessary conditions often
rely on the notion of subdifferential or become non-trivially weaker than
the KKT condition in the (twice-)differentiable counterpart problems. In
contrast, this paper presents a new set of first- and second-order necessary
conditions that are derived without the use of subdifferential and reduces
to exactly the KKT condition when (twice-)differentiability holds. As
a result, these conditions are stronger than some existing ones consid-
ered for the discussed minimization problem when only non-negativity
constraints are present. To solve for these optimality conditions in the
special but important case of linearly constrained problems, we present
two novel interior trust-region point algorithms and show that their worst-
case computational efficiency in achieving the potentially stronger opti-
mality conditions match the best known complexity bounds. Since this
work considers a more general problem than the literature, our results
also indicate that best known complexity bounds hold for a wider class of
nonlinear programming problems.
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1 Introduction

In this paper we are interested in the problem

Minimize f(x),
subject to Ax = b, x ≥ 0,

(1)

where A ∈ R
m×n and f : Rn

+ → R is a continuous function on R
n
+ := {x ∈ R

n |
x ≥ 0} and smooth on R

n
++ := {x ∈ R

n | x > 0}. As a special case of (1), the
following formulation has been popularly studied:

Minimize H(x) + λ
∑n

i=1 ϕ(x
p
i ),

subject to x ≥ 0,
(2)

where H is smooth, ϕ is convex, λ > 0 and 0 < p < 1. A common use of (2)
(or its immediate reformulations) is the problem of high-dimensional learning
under the assumption of sparsity. In such a problem, few data observations are
acquired for the task of recovering a high-dimension signal. Such a task is often
done by minimizing an in-sample statistical loss (a.k.a., fidelity) function H(x)
that represents the in-sample error plus a regularization function λ

∑n
i=1 ϕ(x

p
i ),

which penalizes non-zero variables to induce sparsity. Theoretical and numerical
studies on the efficacies of this type of models are presented in [45, 41, 28, 29,
30, 31, 43, 52, 53]. Particularly, it is shown by [41, 43, 53, 31, 29, 52] that to
achieve a sound recovery quality, global optimality to (1) is not necessary, but
some local minima or even stationary points can successfully recover the high-
dimensional signal with high probability. In specific, [41] shows that solutions
satisfying a second-order necessary condition in linear regression penalized by
certain nonconvex ϕ(xp

i ) have very desirable statistical properties. [38] presented
a recent application of (2) in designing neural networks for deep learning, for
which ϕ(xp

i ) = |x| or ϕ(xp
i ) = ‖x‖2 and H is a nonconvex loss function.

Despite various successful and seminal applications, (2) remains a non-
trivial problem to solve due to the usual absence of differentiability or twice-
differentiability and the frequent presence of nonconvexity. As an example, if
p < 1, the function

∑n
i=1 x

p
i is not even directionally differentiable in Gâteaux

sense when xi = 0 for any i. Similarly, when p < 2, the objective function is
not twice differentiable. Meanwhile, in the training of a neural network, H is
usually smooth but nonconvex, as in the case of [38]. [53] discussed some other
cases where H is nonconvex.

To establish first-/second-order necessary optimality conditions for local
minimality, different variants of the KKT condition have been discussed when
differentiability is potentially absent. In such a case, optimality conditions
based on the notion of subdifferential are studied by [25, 48, 1, 39]. Weaker
optimality conditions without the use of subdifferential have been discussed by
[11, 13, 12, 42]. Interested readers are referred to [10] for an excellent review
on the optimality conditions. In particular, [13] considers the so-called scaled
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first-order optimality condition for (2):

xi
∂H(x)

∂xi
+ λpϕ′(xp

i )x
p
i = 0, ∀i = 1, . . . , n. (3)

This condition is evidently weaker than the conditions by [25, 48, 1, 39], in that
(3) always holds at the origin regardless of the objective function. According to
[10], similar issues apply to the optimality conditions in [11, 12, 42]. In contrast,
our presented optimality condition does not rely on any form of subdifferential
and is equivalent to the canonical version of the KKT condition when f is
smooth. Therefore, the presented optimality condition is tighter than [11, 13,
12, 42].

Our research is also motivated by the need of characterizing approximations
to the “exact” necessary condition, since it is generally impossible to solve (1) ex-
actly, even only for KKT solutions. As a result, the “exact” first- or second-order
necessary conditions must be perturbed to properly characterize the actual so-
lution obtained through an algorithm. Furthermore, it is desirable to establish
a connection between the optimality condition and its ε perturbed version (ap-
proximation with inaccuracy measured by ε) in order for the complexity results
to be meaningful. Approximate KKT-like conditions in solving nonconvex and
nonsmooth optimization have been proposed by [13, 12, 25, 10]. In view of this
gap in the literature, this paper presents a set of perturbed (first- and second-
order) necessary optimality conditions that are originally defined in terms of a
limit of perturbed stationary points. Compare to [25, 10], our perturbed nec-
essary conditions are free from the use of subdifferential, and are stronger than
[13, 12].

To compute solutions satisfying our proposed perturbed necessary condi-
tions, we develop a first- and second-order interior trust-region point (ITRP)
algorithms. Both algorithms work in a general setting that allows for irregular-
ities of the objective function unaddressed in the literature. In particular, the
first-order ITRP allows f to be not even directionally differentiable. The result-
ing computational complexity, O(ε−2) in achieving an ε-perturbed first-order
stationary point (where ε > 0), coincides with the best known complexity for
solving smooth nonconvex problems using only first-order information and as-
suming the absence of matrix inversion. The second-order ITRP then applies to
a class of problems where second-order derivative may not exist. The resulting
complexity, O(ε−3/2) and O(ε−3) in achieving an ε-perturbed first-order and
second-order stationary point, respectively, equals the best-known complexity
for twice continuously differentiable functions. The corresponding ε-perturbed
necessary optimality conditions are in stronger forms than those discussed in
[13, 12, 25, 10]. We further show that, at the same rate of complexity, the same
type of ε-perturbed scaled optimality condition as in [13] can be achieved for
a more general set of optimization problems by our second-order ITRP. For a
comprehensive analysis of the ITRP, we further considered the case where f is
a quadratic function and present an alternative analysis for the same result in
[55]. In such a special case, the ITRP is substantially accelerated and achieves
both the first- and second-order conditions at a rate of O(ε−1).
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In contrast, in the literature, for smooth unconstrained optimization, when
only first-order information is accessible and no matrix inversion is involved,
the algorithms with best known complexity bounds take at most O(ε−2) iter-
ations to achieve a first-order stationary point up to a tolerance ε. It is the
case of the steepest descent [46], trust region methods [36] and the nonlinear
stepsize control algorithms [35, 49], for instance. When second-order deriva-
tives are used, the best known complexity is reduced to O(ε−3/2) for first-order
stationarity and, to find a second-order stationary point perturbed by ε, the
best known complexity is O(ε−3). See [35, 49, 16, 27, 18, 24, 47, 44]. A dif-
ferent line of reasoning appeared recently in [17, 2], where the second-order
information is iteratively approximated by the first-order one. In this case, the
complexity bound of O(ε−7/4) can be achieved for first-order stationarity. We
do not pursue this last type of results. The best complexity bounds known
are the same if constraints are considered [20, 21] or in some nonsmooth cases
[11, 13, 12, 19, 34]. Our algorithms will achieve the best known complexity
bounds of O(ε−2), O(ε−3/2) and O(ε−3), depending on the use of second-order
information. To our knowledge, our problem of discussion is more general than
most existing developments in the literature.

The rest of the paper is organized in the following way. Section 2 articulates
our optimality condition and Section 3 presents our algorithm and complexity
analyses. Finally, Section 4 concludes the paper.

Notation. Given n ≥ 1, Rn
+ is the non-negative orthant in R

n. We denote
by R

n
++ ⊂ R

n
+ the subset of vectors with all coordinates positive. Given x ∈ R

n,
we denote diag(x) the diagonal matrix defined by x. When it is clear from
confusion, we call X = diag(x). The vectors e1, . . . , en is the canonical basis
of R

n and e ∈ R
n is the vector of ones. The identity matrix of appropriate

dimention will be denoted I. Given a symmetric matrix A, we denote by A � 0
when A is positive semidefinite. The gradient vector and hessian matrix of a
function f : Rn → R at x ∈ R

n is denoted, respectively, by ∇f(x) and ∇2f(x).
We use ‖ · ‖ and ‖ · ‖∞ to represent the ℓ2- and ℓ∞-norms, respectively. The
smallest integer greater than or equal to x ∈ R is denoted by ⌈x⌉.

2 Optimality condition

Let us consider, for simplicity, a special case of (1) with only bound constraints

x ≥ 0 and let us assume that for each i = 1, . . . , n, the partial derivative ∂f(x)
∂xi

is not defined when xi = 0. A so-called scaled first-order optimality condition

holds at a local minimizer x∗, given by x∗
i
∂f(x∗)
∂xi

= 0, i = 1, . . . , n, where the
product is taken to be zero when the derivative does not exist. See [26].

A point x > 0 with |xi
∂f(x)
∂xi

| ≤ ε for all i = 1, . . . , n, is called an ε-scaled

first-order point. See [13]. In [12], it was proved that if a sequence {xk} ⊂ R
n

is such that xk → x∗ and xk is an εk-scaled first-order point for all k with
some εk → 0+, then x∗ is a scaled first-order point. Combining both results,
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the situation is the one described in Figure 1. Algorithms thus proceed to find
ε-scaled first-order points, with some small ε > 0 as in [13, 12, 42].

Limits of

ε-scaled

points (ε → 0+)

Local

minimizers

Scaled first-order points

Figure 1: Local minimizers and limits of ε-scaled first-order points, ε → 0+,
are scaled first-order points. Since a scaled first-order point can be seen as a
weak necessary optimality condition, this gives little theoretical justification for
considering an ε-scaled first-order point, ε > 0, as an approximate solution.

A first issue with this approach is that there is no analogous of the con-
dition ∇f(x) ≥ 0, present in the canonical KKT conditions when derivatives
exist everywhere. This is overcome in [13, 12, 42] by considering the particular

objective function (2), where ∂f(x)
∂xi

→ +∞ when xi → 0, or considering an op-
timality condition based on the computation of subdifferentials [10]. A second
issue is the fact that there is no measure of strength of the scaled first-order
optimality condition, since, for instance, it always holds at x = 0, regardless of
the objective function. Finally, a third issue is the lack of relation between local
minimizers and limits of ε-scaled first-order points, as suggested by Figure 1. A
similar criticism apply to the scaled second-order condition considered in [13],
and other first-order optimality conditions considered for this class of problems.
See [10] and references therein.

We will overcome these issues by defining first- and second-order optimality
conditions that coincide with the canonical first- and second-order KKT condi-
tions under usual smoothness assumptions, in a much more general framework.
The optimality condition is defined in such a way that it naturally suggest an ε
perturbed first- and second-order criterion suitable for the complexity analysis.
We also show that, in the case of linear constraints, our first-order (second-order)
optimality condition can be satisfied by the computation of ε-scaled first-order
(second-order, respectively) points, as long as a suitable non-negativity criterion
associated with the gradient of the objective function is fulfilled.
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2.1 Necessary Optimality Conditions Based on Limits of

Perturbations

This section presents optimality conditions for a much more general problem
than (1). Specifically, we consider the problem:

Minimize f(x),
subject to h(x) = 0, c(x) ≥ 0,

(4)

where, f : Rn → R, h : Rn → R
m and c : Rn → R

p. Defining C◦ := {x | c(x) >
0} and C := {x | c(x) ≥ 0}, f , h and c are assumed to be continuous on C and
differentiable on C◦. For the second-order optimality condition, we assume also
second-order differentiability on C◦. For any local solution x∗ of (4), assume
that there exists a sequence {zk} with zk → x∗ and zk ∈ C◦∩{x | h(x) = 0} for
all k, which is typically necessary for the application of interior point methods.
Also assume that for any point x ∈ C◦∩{x | h(x) = 0}, the rank of {∇hi(y)}mi=1

is constant for all y in a neighborhood of x.
Note that derivatives of objective function and constraints may not exist

when some ci(x) = 0. Note also that we do not assume any constraint qualifi-
cation on the whole feasible set.

Theorem 1. Under the assumptions described above, let x∗ be a local solution
of (4). Then, there exists a sequence of approximate solutions {xk} ⊂ R

n and
sequences of approximate Lagrange multipliers {λk} ⊂ R

m, {sk} ⊂ R
p
+ such

that:

i) c(xk) > 0, h(xk) = 0 for all k and xk → x∗,

ii) ∇f(xk) +
∑m

i=1 λ
k
i∇hi(x

k)−∑p
i=1 s

k
i∇ci(x

k) → 0,

iii) ci(x
k)ski → 0 for all i = 1, . . . , p.

If, in addition, f , h, and c are twice differentiable on C◦, then, there exist
sequences {θk} ⊂ R

p
+ and {δk} ⊂ R+, δk → 0+ such that

iv) d⊤(∇2f(xk)+
∑m

i=1 λ
k
i ∇2hi(x

k)−
∑p

i=1 s
k
i∇2ci(x

k)+
∑p

i=1 θ
k
i ∇ci(x

k)∇ci(x
k)⊤+

δkI)d ≥ 0, for all d ∈ R
n with ∇hi(x

k)⊤d = 0, i = 1, . . . ,m.

v) ci(x
k)2θki → 0+ for all i = 1, . . . , p.

Proof. Let us take δ > 0 small enough such that the problem

Minimize f(x) +
1

4
‖x− x∗‖4, s.t. c(x) ≥ 0, h(x) = 0, ‖x− x∗‖2 ≤ δ, (5)

has x∗ as its unique global solution.

6



Let us consider the application of the classical interior penalty method [32]
to problem (5) in the following sense: given a sequence {µk} ⊂ R+, µk > 0 with
µk → 0+, consider for every k the problem:

Minimize ϕk(x) := f(x) + 1
4‖x− x∗‖4 − µk

∑m
i=1 log(ci(x)),

subject to c(x) > 0, h(x) = 0, ‖x− x∗‖2 ≤ δ.
(6)

It is well known that a global solution xk exists for all k and that cluster
points of {xk} are global solutions of (5), see [32]. By the last constraint of (6),
{xk} is bounded, which implies that xk → x∗ and thus i) holds.

For k large enough, xk is a local solution of

Minimize ϕk(x) := f(x) +
1

4
‖x− x∗‖4 − µk

m
∑

i=1

log(ci(x)), s.t. h(x) = 0.

Since the constraints h(x) = 0 satisfy a constraint qualification, there exist
Lagrange multipliers λk ∈ R

m such that

0 =∇ϕk(x
k) +

m
∑

i=1

λk
i ∇hi(x

k)

=∇f(xk) + ‖xk − x∗‖2(xk − x∗) +
m
∑

i=1

λk
i∇hi(x

k)−
p
∑

i=1

µk

ci(xk)
∇ci(x

k),

which gives ii) and iii) for ski := µk

ci(xk)
, i = 1, . . . , p.

The second-order differentiability assumption and the constant rank condi-
tion around xk is enough to ensure that (see [9]):

0 ≤ d⊤(∇2ϕ(xk) +
m
∑

i=1

λk
i∇2hi(x

k))d

= d⊤
(

∇2f(xk) +

m
∑

i=1

λk
i∇2hi(x

k)−
p
∑

i=1

ski∇2ci(x
k)

+

p
∑

i=1

µk

ci(xk)2
∇ci(x

k)∇ci(x
k)⊤ + 2(xk − x∗)(xk − x∗)⊤ + ‖xk − x∗‖2I

)

d,

for all d ∈ R
n such that ∇hi(x

k)⊤d = 0, i = 1, . . . ,m.
The result follows defining θki := µk

ci(xk)2 for all i = 1, . . . , p, and δk ≥ 0 as

the largest eigenvalue of 2(xk − x∗)(xk − x∗)⊤ + ‖xk − x∗‖2I for all k, which
converges to zero. �
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The optimality conditions immediately suggests definitions for ε-perturbed
first- and second-order stationary points:

Definition 1. Given ε > 0, a point x ∈ R
n is called an ε-KKT point for

problem (4) when there exist approximate Lagrange multipliers λ ∈ R
m and

s ∈ R
p
+ with:

(i) h(x) = 0, c(x) > 0,

(ii) ‖∇f(x) +
∑m

i=1 λi∇hi(x)−
∑p

i=1 si∇ci(x)‖∞ ≤ ε,

(iii) |ci(x)si| ≤ ε for all i = 1, . . . , p.

Definition 2. Given ε > 0, a point x ∈ R
n is called an ε-KKT2 point for

problem (4) when there exist approximate Lagrange multipliers λ ∈ R
m and

s ∈ R
p
+ and a parameter θ ∈ R

p
+ with:

(i) h(x) = 0, c(x) > 0,

(ii) ‖∇f(x) +
∑m

i=1 λi∇hi(x)−
∑p

i=1 si∇ci(x)‖∞ ≤ ε,

(iii) |ci(x)si| ≤ ε for all i = 1, . . . , p,

(iv) d⊤
(

∇2f(x) +
∑m

i=1 λi∇2hi(x) −
∑p

i=1 si∇2ci(x) +
∑p

i=1 θi∇ci(x)∇ci(x)
⊤ + εI

)

d ≥
0, for all d ∈ R

n with ∇hi(x)
⊤d = 0, i = 1, . . . ,m,

(v) |ci(x)2θi| ≤ ε for all i = 1, . . . , p.

Note that our first- and second-order optimality conditions given by The-
orem 1 can be equivalently stated as, for all ε > 0, there exist ε-KKT and,
respectively, ε-KKT2 points, arbitrarily close to x∗.

The first-order optimality condition is the generalization of the ones from
[3, 8] to non-differentiable problems. In the smooth case, it implies the canonical
first-order KKT conditions under weak constraint qualifications (see [5, 6, 7]),
in particular, under linear constraints. The second-order optimality condition
is the generalization of the one from [4, 37] to the non-differentiable case and
it implies the canonical second-order KKT conditions defined in terms of the
critical subspace under weak constraint qualifications, in particular, under linear
constraints. When the constraints are smooth, a formulation of the optimality
condition in terms of perturbed critical directions is presented in [15]. We note
that the results from [37] can also be generalized without assuming smoothness
on the boundary of C. In particular, without proving feasibility of the sequence
{xk}, the constant rank assumption can be dropped.
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2.2 Sufficient Conditions for ε-Perturbed Stationary Points

Let us now focus on a special case of (4), where we assume h(x) := Ax − b

and c(x) := x. This section then presents sufficient conditions for ε-KKT and
ε-KKT2 points as per Definitions 1 and 2.

Proposition 1. Given ε > 0, a sufficient condition for a point x ∈ R
n to be

an ε-KKT point for problem (1) is the existence of λ ∈ R
m such that:

(a) Ax = b, x > 0,

(b) ∇f(x) +A
⊤λ ≥ −ε,

(c) ‖X(∇f(x) +A
⊤λ)‖∞ ≤ ε.

Proof. Define s := max{0,∇f(x)+A
⊤λ} in Definition 1 and the claimed result

follows from an easy calculation. �

Proposition 2. Given ε > 0, a sufficient condition for a point x ∈ R
n to be

an ε-KKT2 point for problem (1) is the existence of λ ∈ R
m such that:

(a) Ax = b, x > 0,

(b) ∇f(x) +A
⊤λ ≥ −ε,

(c) ‖X(∇f(x) +A
⊤λ)‖∞ ≤ ε,

(d) d⊤(X∇2f(x)X + εI)d ≥ 0 for all d such that AXd = 0.

Proof. The claimed satisfaction of (i)-(iii) in Definition 2 follow immediately
from Proposition 1. The following shows (iv) and (v). For all ε′ > 0 it holds
that d⊤(X∇2f(x)X+(ε+ε′)I)d > 0 for all d 6= 0 such that AXd = 0. It is well
know that, in this case, there is some ρ > 0 such that X∇2f(x)X + (ε+ ε′)I +
ρXA

⊤
AX is positive definite (see, for instance, [37, Proposition 2.1]). Since

X−1 is positive definite, we have ∇2f(x) +
∑m

i=1
ε+ε′

x2
i
eie

T

i + ρA⊤
A is positive

definite, where ei is the i-th canonical vector. Taking the limit ε′ → 0+ and
restricting to d with Ad = 0 we have d⊤(∇2f(x) +

∑m
i=1

ε
x2
i
eie

T

i )d ≥ 0 for all d

with Ad = 0 and the result follows defining θi :=
ε
x2
i
, i = 1, . . . , n. �

3 Interior Trust-Region Point Algorithms and

Computational Complexity for ε-Perturbed Sta-

tionary Points

We once again focus on (1) and present two interior trust-region point (ITRP)
algorithms that are theoretically ensured to generate ε-perturbed stationary
points. Both algorithms belong to the class of fully polynomial time approx-
imation schemes. Let Ω := {x | Ax = b, x ≥ 0} denote the feasible set and
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Ω◦ := {x | Ax = b, x > 0} its interior. Assume that the feasible region is
bounded and has a non-empty interior. For any given positive µ ≤ 1, we con-
sider the potential function

φ(x) := f(x)− µ

n
∑

i=1

log(xi). (7)

Note that the gradient of the potential function at x > 0 is

∇φ(x) = ∇f(x) − µX−1e.

Then the ITRP algorithms are summarized in Algorithm 1, where we have a spe-
cific initialization rule; we elect to initialize the algorithm with an approximate
analytic center x0 ∈ Ω◦ that satisfies

−
n
∑

i=1

log(xi) ≥ −
n
∑

i=1

log(x0
i )−O(1), (8)

for all x := (xi) ∈ Ω◦ for some problem-independent constant O(1). Such an
initial solution is efficiently computable.

Meanwhile, we choose to terminate the algorithm when the per-iteration
improvement on the potential function is smaller than a certain threshold to be
specified soon afterwards. Constants µ and β will also be defined later on.

Algorithm 1 Pseudo-code of the interior trust-region point (ITRP) algorithm

Step 1. Given ε ∈ (0, 1] and choose x0 ∈ Ω◦ to be an approximate analytic
center of the feasible region. Let t := 0.

Step 2. Solve the following problem

min

{

∇φ(xt)⊤Xtd first-order ITRP

∇φ(xt)⊤Xtd+
1
2d

⊤Xt∇2f(xt)Xtd second-order ITRP
(9)

s.t. AXtd = 0, ‖d‖ ≤ β; (10)

where Xt = diag(xt). Denote by dt the solution.

Step 3. Update xt+1 := xt +Xtd
t.

Step 4. Algorithm terminates if stopping criterion is satisfied. Otherwise, let
t := t+ 1 and go to Step 2.

In Algorithm 1, the per-iteration subproblem (9)-(10) can be chosen from the
first-order or the second-order mode depending on the target of the optimiza-
tion, that is, to achieve an ε-perturbed first- or second-order stationary point,
respectively. Also, the second-order mode yields a perturbed first-order station-
ary point at a faster complexity rate. In both modes, the resulting per-iteration
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problem (9)-(10) are easily solvable. Specifically, in the case of first-order ITRP,
Problem (9)-(10) admits a closed form solution that does not involve any Hes-
sian information, nor matrix inversion. Therefore, in this case the ITRP belongs
to the class of first-order algorithms. In contrast, in the second-order ITRP, the
subproblem can be solved using a bisection scheme as per [55, 54] with a “log-log”
(quadratic) rate of complexity.

In the following, we will show that both modes of the ITRP entails the best
rate of worst-case iteration complexity known for a stricter class of nonlinear
optimization problems. We will make use of the following lemma, which is well
known in the literature of interior-point algorithms (e.g., [40]):

Lemma 1. Let x > 0 and ‖X−1d‖ ≤ β < 1. Then

−
n
∑

i=1

ln(xi + di) +

n
∑

i=1

ln(xi) ≤ −e⊤X−1d+
β2

2(1− β)
.

3.1 Complexity Analysis for the First-Order ITRP Algo-

rithm

This subsection presents the complexity analysis for the first-order ITRP with
a general assumption that f is potentially not (directionally) differentiable. In
the following, we first present our assumptions in Section 3.1.1. Section 3.1.2
then presents the promised complexity analyses.

3.1.1 Assumptions for the first-order ITRP

Our complexity analysis herein relies on the following set of assumptions.

Assumption 3:

(a) Function f(x) is differentiable for all x ∈ Ω◦. In addition, there exists
γ ≥ 1 such that for all x ∈ Ω◦ and d ∈ {d : ‖d‖ ≤ r, X(e + d) ∈ Ω} for
some r < 1,

f (X(e+ d)) ≤ f(x) + 〈X∇f(x), d〉+ γ

2
‖d‖2.

(b) The feasible region is bounded with max{‖x‖∞ : x ∈ Ω} ≤ R, for some
R ≥ 1.

(c) The objective function is bounded from below in the feasible set, that is,
there exists L ∈ R with f(x) ≥ L for all x ∈ Ω◦.

Remark 1. Assumption 3.(a) subsumes the following special but important
cases:

11



1. For all x, x+ ∈ Ω, it holds that f (x+) ≤ f(x)+ 〈∇f(x), x+ −x〉+ β̂
2 ‖x+−

x‖2 for some β̂ > 0. Such an inequality implies Assumption 3.(a) with

γ := β̂R2.

2. Function f := f1 + f2 is a composite function, with f1 being continuously
differentiable and f2(x) :=

∑n
i=1 x

p
i for any p : 0 < p < 1. To see this, we

may observe that f2 (X(d+ e)) =
∑n

i=1 x
p
i (di + 1)p for any d = (di) ∈ R

n

and any x = (xi) ∈ Ω. Also, f2(X(d + e)) is continuously differentiable
in d and the largest eigenvalue of its Hessian in d is upper bounded by
Rpp(p−1)
(1−β)2−p . It is worth noticing that f2 is not differentiable when xi = 0 for
any i.

Remark 2. Assumption 3.(b) can be easily generalized to the assumption that
the level sets of f are bounded, that is, given x0 ∈ Ω◦, there exists R ≥ 1 such
that sup{‖x‖∞ : f(x) ≤ f(x0), x ∈ Ω◦} ≤ R.

3.1.2 Complexity estimate for the first-order ITRP

We are now ready to present our complexity analysis. We elect to terminate

the algorithm whenever φ(xt+1)− φ(xt) > − ε2

2γ+4ε and output the solution xt.

Theorem 2. Suppose that Assumption 3 holds. Denote by f∗ the global minimal
value of the objective function f on Ω. Consider Algorithm 1 with first-order
ITRP per-iteration problem. For any ε ∈ (0, min{r, 1}], let µ := ε, β :=

(γ + 2µ)−1 µ, and t∗ :=

⌈

(f(x0)−f∗+O(1)−ε)(2γ+4ε)

ε2

⌉

, the algorithm terminates

before the t∗-th iteration at a 2ε-KKT point, more precisely, at a feasible solution
x̂ that satisfies ∇f(x̂) + A

⊤ŷ > 0 and ‖diag(x̂)
(

∇f(x̂) +A
⊤ŷ
)

‖∞ ≤ 2ε for

some ŷ. Otherwise, it holds that f(xt∗)− f∗ ≤ ε.

Proof. Step 1. In this step, we would like to show that xt ∈ Ω◦ for all t ≥ 1.
To this end, we notice that, if xt−1 ∈ Ω◦, it holds that xt

i = xt−1
i + xt−1

i dt−1
i =

xt−1
i (1 + dt−1

i ) > 0 for any i = 1, ..., n, where the last inequality is because
‖dt−1‖ ≤ β < 1 imposed as a constraint in (10). Also, if xt−1 ∈ Ω◦, it holds
that Axt = A(xt−1 +Xt−1d

t−1) = b+AXt−1d
t−1 = b, where the last identity

is based on constraint (10). Our proof for Step 1 completes by noticing that
x0 ∈ Ω◦.

Step 2. In this step, we would like to show that either of the following holds
at iteration k:

φ(xt+1)− φ(xt) ≤ − ε2

2γ + 4ε
, (11)

or ‖Xt∇f(xt)−µe+XtA
⊤yt‖∞ < 2ε and ∇f(xt)+A

⊤yt > 0 for some yt ∈ R
m.

To this end, we first notice that subproblem (9)-(10) can be solved globally,
whose first-order optimality condition yields that

Xt∇f(xt)− µe+XtA
⊤yt + λtdt = 0, (12)

12



for some Lagrange multipliers yt ∈ R
m and λt ∈ R. From the inequality in

Assumption 3.(a), since xt ∈ Ω◦ and dt : ‖dt‖ ≤ β = (γ +2µ)−1µ < ε ≤ 1 from
the result in Step 1, it holds that

f
(

Xt(e + dt)
)

≤ f(xt) + 〈Xt∇f(xt), dt〉+ γ

2
‖dt‖2. (13)

Combined with Lemma 1, it implies that

φ(xt+1)− φ(xt) ≤〈∇f(xt), Xtd
t〉+ γ

2
‖dt‖2 − µe⊤X−1

t d+ µβ2 (14)

=〈∇φ(xt), Xtd
t〉+ γ

2
‖dt‖2 + µβ2. (15)

Thus,

φ(xt+1)−φ(xt) ≤ 〈XtA
⊤yt−λdt, dt〉+γ

2
‖dt‖2+µβ2 = 〈−λtdt, dt〉+γ

2
‖dt‖2+µβ2.

(16)
Case 1: If ‖dt‖ < β, then λt = 0 and Xt∇f(xt) + XtA

⊤yt = µe. Since
µ := ε > 0, it therefore holds that ∇f(xt) +A

⊤yt > 0 and that ‖Xt∇f(xt) +
XtA

⊤yt‖∞ ≤ ε.
Case 2: Consider the case where ‖dt‖ = β. Let p(x, y) := X∇f(x)− µe+

XA⊤y. (Again, X := diag(x).) From (12), it therefore holds that ‖p(xt, yt)‖ =
λt‖dt‖ = λtβ. Combined with (16), it yields that

φ(xt+1)− φ(xt) ≤ −λtβ2 +
γ

2
‖dt‖2 + µβ2 = −β‖p(xt, yt)‖+

(γ

2
+ µ

)

β2.

(17)

Case 2.1: Under Case 2, if ‖p(xt, yt)‖ ≥ µ, then

φ(xt+1)− φ(xt) ≤ −βµ+
(γ

2
+ µ

)

β2. (18)

Since µ := ε and β := (γ + 2µ)−1 µ, we have that

φ(xt+1)− φ(xt) ≤ − ε2

2γ + 4ε
. (19)

Case 2.2: Under Case 2, if ‖p(xt, yt)‖ < µ, then

‖Xt∇f(xt)− µe+XtA
⊤yt‖∞ ≤ ‖Xt∇f(xt)− µe+XtA

⊤yt‖ < µ, (20)

therefore, Xt∇f(xt) + XtA
⊤yt > 0 =⇒ ∇f(xt) + A

⊤yt > 0. Meanwhile,
‖Xt∇f(xt) +XtA

⊤yt‖∞ < 2µ = 2ε for given µ := ε. Summarizing the above
cases, we know that Case 1, Case 2.1, and Case 2.2 are mutually exclusive. Thus
we have the desired result in Step 2.

Step 3. We would like to summarize the above steps to obtain the claimed
results in this theorem. We first observe that, because the elected initial solution
x0 satisfies that

−
n
∑

i=1

log(xt
i) ≥ −

n
∑

i=1

log(x0
i )−O(1),

13



we have that, if (19) holds for all t ≤ t′, it holds that

f(xt′)− f(x0) ≤ − t′ε2

2γ + 4ε
+O(1). (21)

It therefore holds that f(xt′)− f∗ ≤
[

f(x0)− f∗]− t′ε2

2γ+4ε +O(1).

Recall that the algorithm terminates whenever φ(xt+1) − φ(xt) > − ε2

2γ+4ε

for some t. Therefore, at iteration t∗ =
(f(x0)−f∗+O(1)−ε)(2γ+4ε)

ε2 , it holds either
that the algorithm has terminated before iteration k∗ at a feasible solution x̂ that
satisfies that ∇f(x̂)+A

⊤ŷ > 0 and ‖diag(x̂)∇f(x̂)+X̂A⊤ŷ‖∞ ≤ ε. Otherwise,
it holds that f(xk∗

)− f∗ ≤ ε. �

Remark 3. The first-order ITRP solves a constrained problem with potential
non-differentiability at an iteration complexity of O(1/ε2). For this types of
problems, such a rate is best known to the literature. It is also worth empha-
sizing that the per-iteration problem admits a closed-form solution.

3.2 Complexity Analysis for the Second-Order ITRP Al-

gorithm

This subsection presents the complexity analysis for the second-order ITRP with
three different sets of regularities on f : (i) f is potentially not twice differen-
tiable; (ii) f is potentially not differentiable; and (iii) f is a quadratic function.
The resulting complexity estimates as well as the characteristics of the final
solution output from the ITRP vary according to the changes of assumptions.
In the following, we first present our assumptions in Section 3.2.1. Section 3.2.2
then presents the promised complexity analyses.

3.2.1 Assumptions for the second-order ITRP

The analysis on the second-order ITRP relies on the following assumptions.
Assumption 4: Function f(x) is twice differentiable for all x ∈ Ω◦. For all
x ∈ Ω◦ and d, d′ ∈ {d : ‖d‖ ≤ r, X(e + d) ∈ Ω◦}, for some r < 1 and η ≥ 1, it
holds that

‖X∇2f (X(e+ d))−X∇2f (X(e+ d′)) ‖ ≤ η‖d− d′‖; and

∇f (X(e+ d))−∇f(x) ≤ 〈X∇f(x), d〉+ 1

2
d⊤X∇2f (x)Xd+

η

3
‖d‖3. (22)

Assumption 5: Function f(x) is twice differentiable for all x ∈ Ω◦. For all
x ∈ Ω◦ and d, d′ ∈ {d : ‖d‖ ≤ r, X(e + d) ∈ Ω◦}, for some r < 1 and η ≥ 1, it
holds that

‖X∇2f (X(e+ d))X −X∇2f (X(e+ d′)X) ‖ ≤ η‖d− d′‖; and

∇f (X(e+ d))−∇f(x) ≤ 〈X∇f(x), d〉+ 1

2
d⊤X∇2f (x)Xd+

η

3
‖d‖3. (23)
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Remark 4. Assumption 4 and Assumption 5 subsume some special but impor-
tant cases:

1. For all x, x+ ∈ Ω, it holds that f(x) is twice differentiable and

‖∇2f(x)−∇2f(x+)‖ ≤ η̂‖x− x+‖, (24)

for some η̂ > 0. Such an inequality implies both Assumptions 4 and
Assumption 5 with η := η̂R3. These are immediate from the observation
that

‖X∇2f(x)X −X∇2f(x+)X‖ ≤ ‖X‖2η̂‖x− x+‖ ≤ ‖X‖3η̂‖d‖, (25)

‖X∇2f(x)−X∇2f(x+)‖ ≤ ‖X‖η̂‖x− x+‖ ≤ ‖X‖2η̂‖d‖, (26)

as well as the direct implication of (24) in the form of

∇f (X(e+ d)) −∇f(x) ≤〈X∇f(x), d〉+ 1

2
d⊤X∇2f (x)Xd+

η̂

3
‖Xd‖3

≤〈X∇f(x), d〉+ 1

2
d⊤X∇2f (x)Xd+

R3η̂

3
‖d‖3.

2. Let function f := f1 + f2 be a composite function, with f1 being twice
continuously differentiable. If f2(x) :=

∑n
i=1 x

p
i for some p : p > 0 then

for any d = (di) ∈ R
n : ‖d‖ ≤ r < 1, we immediately have

∂2f2 (X(d+ e))

∂x2
i

= p(p− 1)xp−2
i (di + 1)p−2;

xi ·
∂2f2 (X(d+ e))

∂x2
i

= p(p− 1)xp−1
i (di + 1)p−2;

(xi)
2 · ∂

2f2 (X(d+ e))

∂x2
i

= p(p− 1)xp
i (di + 1)p−2.

Then, it is easily verifiable that:

• if p : 1 < p < 2, Assumption 4 holds, but f(x) is not twice differen-
tiable for x ∈ {xi = 0, for some i}.

• if p : 0 < p < 1, Assumption 5 holds, but f(x) is not differentiable
for x ∈ {xi = 0, for some i}.

Remark 5. Assumption 5 subsumes Assumption 4: It is evident that Assump-
tion 4 implies Assumption 5, while the reverse does not hold telling from the
second special case in Remark 4.

Assumption 6: f is a quadratic function, that is, η = 0.
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3.2.2 Complexity estimates for the second-order ITRP

This section presents the complexity estimates for the second-order ITRP under
three different sets of assumptions. Theorem 3 first considers the case when f
is potentially not twice differentiable and shows that the desired ε-perturbed
first- and second-order stationary point can be achieved with a rate of O(ε−3/2)
and O(ε−3), respectively. Then, Theorem 4 generalizes to the case where f is
potentially not (directionally) differentiable and shows that the same set of effi-
ciency rates can be achieved in generating a weaker version of the ε-perturbed
first- and second-order stationary point. Such a version of approximate neces-
sary conditions is also studied by [13]. Finally, Theorem 5 presents a special
case where f is a quadratic function. In such a case, the second-order ITRP is
especially efficient and achieves the ε-perturbed first- and second-order station-
ary point both at rate of O(ε−1). Theorem 5 presents an alternative proof for
the same result presented in [55]. We should note that the termination criteria
for the above three cases are slightly different.

For our first case, we consider the algorithm under Assumptions 4 and 6.
We elect to terminate the second-order ITRP whenever the following criteria
hold:

φ(xt+1)− φ(xt) > −
√
ε3

200η2R3/2
,

φ(xt+2)− φ(xt+1) > −
√
ε3

200η2R3/2
.

At termination, the algorithm outputs solution xt+1.

Theorem 3. Suppose that Assumptions 3.(b), 3.(c) and 4 hold. Denote by f∗

the global minimal value of the objective function f on Ω. Consider Algorithm 1
with second-order ITRP per-iteration problem. For any ε ∈

(

0, min
{

10η2r2, 1
2

}]

,

let µ := ε
5ηR , β := µ1/2η−1/2/

√
2, and t∗ :=

⌈

400η2R3/2(f(x0)−f∗+O(1)−ε)(2η+4ε)√
ε3

+ 1

⌉

.

The algorithm terminates before the t∗-th iteration at an ε-KKT and
√
ε-KKT2

point, more precisely, at a feasible solution x̂ that satisfies, for some ŷ ∈ R
m,

that

x̂ > 0, ∇f(x̂) +A
⊤ŷ > −ε,

‖diag(x̂)(∇f(x̂) +A
⊤ŷ)‖∞ ≤ ε,

d⊤
(

diag(x̂)∇2f(x̂)diag(x̂) +
√
εI
)

d ≥ 0, ∀d : Adiag(x̂)d = 0.

Otherwise, it holds that f(xt∗)− f∗ ≤ ε.

Proof. Step 1. Following Step 1 of the proof for Theorem 2, it is straightforward
that xt ∈ Ω◦ for all t ≥ 1.

Step 2. We would like to show that if φ(xt+1) − φ(xt) > −
√

2ηµ3

24η then

∇2f(xt)Xtd
t −A

⊤yt +∇f(xt) > 0 and 0 ≤ xi(∇f(xt)+∇2f(xt)dt −A⊤yt)i ≤
2µ, ∀i, for β := µ1/2η−1/2/

√
2 and some yt ∈ R

m.
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To this end, combine Assumption 4 with both ‖dt‖ ≤ β = µ1/2η−1/2/
√
2 ≤ r

and Lemma 1. It therefore holds that

φ(xt+1)− φ(xt)

≤ ∇f(xt)⊤Xtd
t +

1

2
(dt)⊤Xt∇2f(xt)Xtd

t +
η

3
‖dt‖3 − µe⊤X−1

t dt + µβ2

= ∇φ(xt)⊤Xtd
t +

1

2
(dt)⊤Xt∇2f(xt)Xtd

t +
η

3
‖dt‖3 + µβ2

≤ ∇φ(xt)⊤Xtd
t +

1

2
(dt)⊤Xt∇2f(xt)Xtd

t +
(η

3
β + µ

)

β2. (27)

Then, the necessary and sufficient global optimality conditions of the trust-
region subproblem, besides the feasibility of dt, are

(Xt∇2f(xt)Xt + λtI)dt −XtA
⊤yt = −Xt∇φ(xt);

(Xt∇2f(xt)Xt + λtI)AXt � 0, λt ≥ 0, λt(β − ‖dt‖) = 0;
(28)

for Lagrange multipliers yt ∈ R
m and λt ∈ R, see [51, 50, 33]. Here, (Xt∇2f(xt)Xt+

λtI)AXt � 0 means

d⊤(Xt∇2f(xt)Xt + λtI)d ≥ 0, ∀d ∈ {d : AXtd = 0}.
If ‖d′‖ = β, let vector

p(xt, yt) = Xt∇2f(xt)Xtd
t −XtA

⊤yt +Xt∇φ(xt).

Then from (28), we have
λtdt = −p(xt, yt). (29)

Thus,

∇φ(xt)⊤Xtd
t +

1

2
(dt)⊤Xt∇2f(xt)Xtd

t

=
1

2
∇φ(xt)⊤Xtd

t +
1

2
(dt)⊤(Xt∇φ(xt) +Xt∇2f(xt)Xtd

t)

=
1

2
(∇φ(xt)⊤Xt −A⊤yt)⊤dt +

1

2
(dt)⊤(Xt∇φ(xt) +Xt∇2f(xt)Xtd

t −A⊤y)

=− 1

2
(dt)⊤(Xt∇2f(xt)Xt + λtI)dt +

1

2
(dt)⊤p(xt, yt)

≤1

2
(dt)⊤p(xt, yt) = −1

2
λt‖dt‖2, (30)

where (30) is immediately due to (29).
As an immediate result, combined with (27), it holds that

φ(xt+1)− φ(xt) ≤ −1

2
λt‖dt‖2 +

(η

3
β + µ

)

β2 (31)

=− 1

2
λt‖dt‖2 +

(η

3
µ1/2η−1/2/

√
2 + µ

)

µη−1/2 (32)

=− 1

2
λt‖dt‖2 +

(

√

2ηµ3

12η
+

µ2

2η

)

. (33)
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Recall that η ≥ 1 and ε ≤ 1
2 ≤ 5ηR2

2 =⇒ µ ≤ η
8 =⇒

√
2ηµ3

12η + µ2

2η ≤ 5
√

2ηµ3

24η .

If φ(xt+1) − φ(xt) > −
√

2ηµ3

24η , then −
√

2ηµ3

24η < − 1
2λ

t‖dt‖2 +
(

η
3β + µ

)

β2 =⇒
1
2λ

t‖dt‖2 <

√
2ηµ3

4η . We might consider the following two cases.

Case 1. If ‖dt‖ < β, it then holds that λt = 0. As a result, condition (28)
yields that

Xt∇2f(xt)Xtd
t −XtA

⊤yt +Xt∇φ(xt) = 0; (Xt∇2f(xt)Xt)AXt � 0. (34)

Thus, it holds that

‖Xt∇2f(xt)Xtd
t −XtA

⊤yt +Xt∇f(xt)‖∞ = µ < 2µ, (35)

and

∇2f(xt)Xtd
t −A

⊤yt +∇f(xt) > 0. (36)

Case 2. If ‖dt‖ = β, then ‖p(xt, yt)‖ = λtβ. Thus
√

2ηµ3

4η
>

1

2
λt‖dt‖2 =

1

2
λtβ2 =

1

2
β‖p(xt, yt)‖ =

√
2ηµ

4
‖p(xt, yt)‖,

which means that ‖p(xt, yt)‖ < µ, that is,

µ >‖Xt∇2f(xt)Xtd
t −XtA

⊤yt +Xt∇φ(xt)‖∞
=‖(Xt∇2f(xt)Xtd

t −XtA
⊤yt +Xt∇f(xt))− µe‖∞,

which implies
∇2f(xt)Xtd

t −A
⊤yt +∇f(xt) > 0,

and
0 ≤ xi(∇f(xt) +∇2f(xt)dt −A⊤yt)i ≤ 2µ, ∀i.

Combining Cases 1 and 2, we have the desired result in Step 2.
Step 3. We would like to show that once it holds that

∇2f(xt)Xtd
t −A

⊤yt +∇f(xt) > 0;

and 0 ≤ xi(∇f(xt) +∇2f(xt)dt −A⊤yt)i ≤ 2µ, ∀i. (37)

then, it simultaneously holds that, for some ŷ ∈ R
m:

∇f(xt+1)−A
⊤ŷ > −µ

2

|xt+1
i (∇f(xt+1)−A⊤ŷ)i| ≤ 4µ+ µR, ∀i.

(38)

To that end, notice that, since xt, xt+1 ∈ Ω◦, from mean value theorem, it
holds that, for some τ ∈ [0, 1],

∇f(xt+1)−∇f(xt)

=∇2f(τ(xt+1 − xt) + xt)(xt+1 − xt) = ∇2f(τ(xt+1 − xt) + xt)Xtd
t, (39)
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and thus

‖∇f(xt+1)−∇f(xt)−∇2f(xt)Xtd
t‖

=‖
(

∇2f(xt)−∇2f(τ(xt+1 − xt) + xt)
)

Xtd
t‖

=‖
(

∇2f(Xte)−∇2f(Xt(τd
t + e))

)

Xt‖‖dt‖
≤ητ‖dt‖2 ≤ η‖dt‖2 ≤ ηβ2, (40)

where the last line is due to Assumption 4.(a), combined with ‖d‖ ≤ β < r and
xt, xt+1 ∈ Ω◦, which will be useful soon afterwards.

Similarly, we also have

‖Xt∇f(xt+1)−Xt∇f(xt)−Xt∇2f(xt)Xtd
t‖

=‖Xt

(

∇2f(xt)−∇2f(τ(xt+1 − xt) + xt)
)

Xtd
t‖

≤η‖Xt‖‖dt‖2 ≤ ηR‖dt‖2 ≤ ηRβ2, (41)

Combining (37) with (40), we have that

∇f(xt+1)−A
⊤yt

≥∇2f(xt)Xtd
t −A

⊤yt +∇f(xt)− ‖∇f(xt+1)−∇f(xt)−∇2f(xt)Xtd
t‖∞

≥− ηβ2 = −µ

2
.

Meanwhile, combining (37) with (41), it obtains that

|xt+1
i (∇f(xt+1)−A⊤yt)i|

≤|(1 + dti)x
t
i(∇f(xt) +∇2f(xt)dt −A⊤yt)i|

+ |1 + dti| · ‖Xt∇f(xt+1)−Xt∇f(xt)−Xt∇2f(xt)Xtd
t‖∞

≤(1 + β)(2µ+ ηR)β2 ≤ (1 + β)

(

2µ+
µR

2

)

≤ 4µ+ µR.

The last line is due to |1 + dti| ≤ (1 + β) ≤ 2.

Step 4. We would like to show that, if φ(xt+2)− φ(xt+1) > −
√

2ηµ3

24η , then

(Xt+1∇2f(xt+1)Xt+1 +
√
2µηI)AXt+1

� 0. To this end, we invoke (29) (where
we let t := t+1), (57) (where we let t := t+1), and (28) (where we let t := t+1).
The combination of the three results in

(

Xt+1∇2f(xt+1)Xt+1 +
‖p(xt+1, yt+1)‖

β
I

)

AXt+1

� 0. (42)

Further observe that from Step 2, it holds that, if φ(xt+2)−φ(xt+1) > −
√

2ηµ3

24η ,

then ‖p(xt+1,yt+1)‖
β ≤ µ

β =
√
2µη. Combined with (63), we have the claimed

result in this step.
Step 5. This step summarizes the above steps and prove the claimed results

of the theorem.
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We recall here x0 is the approximate analytic center that satisfies

−
n
∑

i=1

log(xt
i) ≥ −

n
∑

i=1

log(x0
i )−O(1), (43)

where O(1) is a constant.

We know that at iteration t∗ :=
400η2R3/2(f(x0)−f∗+O(1)−ε)(2η+4ε)√

ε3
+1, where

O(1) is the same number as in (52) if the termination criteria of simultaneously
satisfying

φ(xt+1)− φ(xt) > −
√
ε3

200η2R3/2
> −

√

2ηµ3

24η
= −

√
10ε3

600η2R3/2
,

φ(xt+2)− φ(xt+1) > −
√
ε3

200η2R3/2
,

have never been satisfied, then, we obtain a reduction in the potential function:

φ(xt∗)− φ(x0) ≤ −
√
ε3(t∗ − 1)

400η2R3/2
= −f(x0) + f∗ −O(1) + ε. (44)

Then combined with (52), it holds that

f(xt∗)− f(x0)−O(1) ≤−
√
ε3(t∗ − 1)

400η2R3/2
= −f(x0) + f∗ −O(1) + ε

=⇒ f(xt∗)− f∗ ≤ ε. (45)

Otherwise, the algorithm terminates before t∗ and achieves a solution that
satisfies

∇f(xt+1)−A
⊤ŷ > −µ

2
> −ε,

|xt+1
i (∇f(xt+1)−A⊤ŷ)i| ≤ 4µ+ µR ≤ ε, ∀i,

(46)

according to Step 2. Furthermore, from Step 4, the satisfaction of the termina-
tion criteria also implies

(

Xt+1∇2f(xt+1)Xt+1 +
√

2µηI
)

AXt+1

� 0

=⇒
(

Xt+1∇2f(xt+1)Xt+1 +
√
εI
)

AXt+1
� 0,

thus immediately leads to the desired result. �

Consider the same algorithm procedure as in the second-order ITRP. If the
regularity on f is relaxed from Assumption 4 to Assumption 5, then we may still
obtain an approximate KKT condition. Nonetheless, such an approximation is
in a critically weaker form. Specifically, we have the following theorem. In this
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case, we have a slightly different termination criterion: we elect to terminate
the second-order ITRP whenever the following criteria hold:

φ(xt+1)− φ(xt) > −
√
ε3

200η2
,

φ(xt+2)− φ(xt+1) > −
√
ε3

200η2
.

Once the algorithm terminates, it outputs xt+2 as our final solution.

Theorem 4. Suppose that Assumptions 3.(b) and 3.(c) and 5 hold. Denote by
f∗ the global minimal value of the objective function f on Ω. Consider Algorithm
1 with second-order ITRP per-iteration problem. For any ε ∈

(

0, min
{

10η2r2, 1
2

}]

,

let µ := ε
5η , β := µ1/2η−1/2/

√
2, and t∗ :=

⌈

400η2(f(x0)−f∗+O(1)−ε)(2η+4ε)√
ε3

+ 1

⌉

.

The algorithm terminates before the t∗-th iteration at a feasible solution x̂ that
satisfies that

x̂ > 0, ‖diag(x̂)(∇f(x̂) +A
⊤ŷ)‖∞ ≤ ε,

d⊤
(

diag(x̂)∇2f(x̂)diag(x̂) +
√
εI
)

d ≥ 0, ∀d : Adiag(x̂)d = 0.
(47)

Otherwise, it holds that f(xt∗)− f∗ ≤ ε.

Proof. Step 1. Following Step 1 of the proof for Theorem 2, it is straightforward
that xt ∈ Ω◦ for all t ≥ 1.

Step 2. Following Step 2 of the proof for Theorem 3, it is also evident that,

if φ(xt+1)−φ(xt) > −
√

2ηµ3

24η then 0 ≤ xi(∇f(xt)+∇2f(xt)dt−A⊤yt)i ≤ 2µ, ∀i,
for β := µ1/2η−1/2/

√
2.

Step 3. We would like to show that once it holds that

0 ≤ xi(∇f(xt) +∇2f(xt)dt −A⊤yt)i ≤ 2µ, ∀i. (48)

then, it holds that, for some ŷ ∈ R
m:

|xt+1
i (∇f(xt+1)−A⊤ŷ)i| ≤ 5µ, ∀i. (49)

To that end, notice that, since xt, xt+1 ∈ Ω◦, from mean value theorem, it
holds that, for some τ ∈ [0, 1],

∇f(xt+1)−∇f(xt) = ∇2f(τ(xt+1 − xt) + xt)(xt+1 − xt)

=∇2f(τ(xt+1 − xt) + xt)Xtd
t,

and thus

‖Xt∇f(xt+1)−Xt∇f(xt)−Xt∇2f(xt)Xtd
t‖

=‖Xt

(

∇2f(xt)−∇2f(τ(xt+1 − xt) + xt)
)

Xtd
t‖

=‖Xt

(

∇2f(Xte)−∇2f(Xt(τd
t + e))

)

Xt‖‖dt‖
≤ητ‖dt‖2 ≤ η‖dt‖2 ≤ ηβ2, (50)
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where the last line is due to Assumption 5, combined with ‖d‖ ≤ β < r and
xt, xt+1 ∈ Ω◦, which will be useful soon afterwards.

Combining (37) with (50), we have that

∇f(xt+1)−A
⊤yt

≥∇2f(xt)Xtd
t −A

⊤yt +∇f(xt)− ‖∇f(xt+1)−∇f(xt)−∇2f(xt)Xtd
t‖∞

≥− ηβ2 = −µ

2
.

Meanwhile, combining (48) with (50), it obtains that

|xt+1
i (∇f(xt+1)−A⊤yt)i|

≤|(1 + dti)x
t
i(∇f(xt) +∇2f(xt)dt −A⊤yt)i|

+ |1 + dti| · ‖Xt∇f(xt+1)−Xt∇f(xt)−Xt∇2f(xt)Xtd
t‖∞

≤(1 + β)(2µ+ η)β2 ≤ (1 + β)
(

2µ+
µ

2

)

≤ 5µ.

The last line is due to |1 + dti| ≤ (1 + β) ≤ 2.

Step 4. We would like to show that, if φ(xt+2)− φ(xt+1) > −
√

2ηµ3

24η , then

(Xt+1∇2f(xt+1)Xt+1 +
√
2µηI)AXt+1

� 0. To this end, we invoke (29) (where
we let t := t+1), (57) (where we let t := t+1), and (28) (where we let t := t+1).
The combination of the three results in

(

Xt+1∇2f(xt+1)Xt+1 +
‖p(xt+1, yt+1)‖

β
I

)

AXt+1

� 0. (51)

Further observe that from Step 2, it holds that, if φ(xt+2)−φ(xt+1) > −
√

2ηµ3

24η ,

then ‖p(xt+1,yt+1)‖
β ≤ µ

β =
√
2µη. Combined with (63), we have the claimed

result in this step.
Step 5. This step summarizes the above steps and prove the claimed results

of the theorem.
We recall here x0 is the approximate analytic center that satisfies

−
n
∑

i=1

log(xt
i) ≥ −

n
∑

i=1

log(x0
i )−O(1), (52)

where O(1) is a constant.

We know that at iteration t∗ =
400η2(f(x0)−f∗+O(1)−ε)(2η+4ε)√

ε3
+ 1, where

O(1) is the same number as in (52) if the termination criteria of simultaneously
satisfying

φ(xt+1)− φ(xt) > −
√
ε3

200η2
> −

√

2ηµ3

24η
= −

√
10ε3

600η2
,

φ(xt+2)− φ(xt+1) > −
√
ε3

200η2
,
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have never been satisfied. Then, we obtain a reduction in the potential function:

φ(xt∗)− φ(x0) ≤ −
√
ε3(t∗ − 1)

400η2
= −f(x0) + f∗ −O(1) + ε. (53)

Then combined with (52), it holds that

f(xt∗)− f(x0)−O(1) ≤−
√
ε3(t∗ − 1)

400η2
= −f(x0) + f∗ −O(1) + ε

=⇒f(xt∗)− f∗ ≤ ε.

Otherwise, the algorithm terminates before t∗ and achieves a solution that
satisfies

|xt+1
i (∇f(xt+1)−A⊤ŷ)i| ≤ 5µ ≤ ε, ∀i, (54)

according to Step 2. Furthermore, from Step 4, the satisfaction of the termina-
tion criteria also implies

(

Xt+1∇2f(xt+1)Xt+1 +
√

2µηI
)

AXt+1

� 0

=⇒
(

Xt+1∇2f(xt+1)Xt+1 +
√
εI
)

AXt+1
� 0,

thus immediately leads to the desired result. �

Remark 6. We observe that even though (47) is a weaker condition than the
desired one in this paper, it still applies to application problems such as the
non-Lipschitz problem formulation of sparse optimization discussed by [13], who
provide a different algorithm with the same complexity for a special case that
satisfies all our assumptions.

We now consider a special case where substantially faster iteration complex-
ity can be achieved. Such a result is, in fact, first presented by [55] for achiev-
ing an approximate first-order KKT point for linearly constrained nonconvex
quadratic program. The complexity in the approximation to the second-order
necessary condition has not been explicitly stated, though a closer look at the
results therein may find it an immediate result from the paper. In the follow-
ing, we provide an alternative proof for the complexity analysis, which results
in some new insights in solving this type of problem. We elect to terminate the
second-order ITRP whenever the following criteria hold:

φ(xt+1)− φ(xt) > − ε

32
,

φ(xt+2)− φ(xt+1) > − ε

32
.

Once the algorithm terminates, it outputs xt+2 as our final solution.

Theorem 5. Suppose that Assumptions 3.(b), 3.(c) and 6 hold. Denote by f∗

the global minimal value of the objective function f on Ω. Consider Algorithm 1
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with second-order ITRP per-iteration problem. For any ε ∈
(

0, min
{

10η2r2, 1
2

}]

,

let µ := ε
4 , β := 1/4, and t∗ :=

⌈

64(f(x0)−f∗+O(1)−ε)+1
ǫ

⌉

, the algorithm termi-

nates before the t∗-th iteration at an ε-KKT2 point, more precisely, at a feasible
solution x̂ that satisfies that

x̂ > 0, ∇f(x̂)−A
⊤ŷ > 0; ‖diag(x̂)(∇f(x̂) +A

⊤ŷ)‖∞ ≤ ε,

d⊤
(

diag(x̂)∇2f(x̂)diag(x̂) + εI
)

d ≥ 0, ∀d : Adiag(x̂)d = 0.
(55)

Otherwise, it holds that f(xt∗)− f∗ ≤ ε.

Proof. Step 1. Following Step 1 of the proof for Theorem 2, it is straightforward
that xt ∈ Ω◦ for all t ≥ 1.

Step 2. We would like to show that if φ(xt+1) − φ(xt) > − µ
16 then 0 ≤

xi(∇f(xt) +∇2f(xt)dt −A⊤yt)i ≤ 2µ, ∀i, for β := 1/4.
Following Step 2 of the proof for Theorem 3, while noticing that η = 0, we

can show that it is also evident that,

φ(xt+1)− φ(xt) ≤ −1

2
λt‖dt‖2 + µβ2. (56)

Case 1. If ‖dt‖ < β, it then holds that λt = 0. As a result, condition (28)
yields that

Xt∇2f(xt)Xtd
t −XtA

⊤yt +Xt∇φ(xt) = 0; (Xt∇2f(xt)Xt)AXt � 0. (57)

Thus, it holds that

‖Xt∇2f(xt)Xtd
t −XtA

⊤yt +Xt∇f(xt)‖∞ = µ < 2µ, (58)

and

∇2f(xt)Xtd
t −A

⊤yt +∇f(xt) > 0. (59)

Case 2. If ‖dt‖ = β, then ‖p(xt, yt)‖ = λtβ. Combined with µβ2 = µ
16 , it

holds that

µ

8
>

1

2
λt‖dt‖2 =

1

2
λtβ2 =

1

2
β‖p(xt, yt)‖ =

1

8
‖p(xt, yt)‖.

which means that ‖p(xt, yt)‖ < µ, that is,

µ >‖Xt∇2f(xt)Xtd
t −XtA

⊤yt +Xt∇φ(xt)‖∞
=‖(Xt∇2f(xt)Xtd

t −XtA
⊤yt +Xt∇f(xt))− µe‖∞,

which implies
∇2f(xt)Xtd

t −A
⊤yt +∇f(xt) > 0,

and
0 ≤ xi(∇f(xt) +∇2f(xt)dt −A⊤yt)i ≤ 2µ, ∀i.
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Combining Cases 1 and 2, we have the desired result in Step 2.
Step 3. We would like to show that once it holds that

∇2f(xt)Xtd
t −A

⊤yt +∇f(xt) > 0;

and 0 ≤ xi(∇f(xt) +∇2f(xt)dt −A⊤yt)i ≤ 2µ, ∀i, (60)

then, it simultaneously holds that, for some ŷ ∈ R
m:

∇f(xt+1)−A
⊤ŷ > 0,

|xt+1
i (∇f(xt+1)−A⊤ŷ)i| ≤ µ, ∀i.

(61)

To that end, notice that, due to Assumption 7,

∇f(xt+1)−∇f(xt) = ∇2f(xt)Xtd
t. (62)

Combining (60) with (62), we have that

∇f(xt+1)−A
⊤yt = ∇2f(xt)Xtd

t −A
⊤yt +∇f(xt) > 0.

Meanwhile, combining (60) with (62), it obtains that

|xt+1
i (∇f(xt+1)−A⊤yt)i|

≤|(1 + dti)x
t
i(∇f(xt) +∇2f(xt)dt −A⊤yt)i|

≤2µ(1 + β)β2 ≤ µ.

The last line is due to |1 + dti| ≤ (1 + β) ≤ 2.
Step 4. We would like to show that, if φ(xt+2) − φ(xt+1) > − µ

16 , then
(Xt+1∇2f(xt+1)Xt+1 + 4µI)AXt+1

� 0. To this end, we invoke (29) (where we
let t := t+ 1), (57) (where we let t := t+ 1), and (28) (where we let t := t+ 1).
The combination of the three results gives

(

Xt+1∇2f(xt+1)Xt+1 +
‖p(xt+1, yt+1)‖

β
I

)

AXt+1

� 0. (63)

Further observe that from Step 2, it holds that, if φ(xt+2) − φ(xt+1) > − µ
16 ,

then ‖p(xt+1,yt+1)‖
β ≤ µ

β = 4µ. Combined with (63), we have the claimed result
in this step. The rest of the proof is straightforward following Step 5 of the

proof for Theorem 3, while we let µ := ε
4 and t∗ := 64(f(x0)−f∗+O(1)−ε)+1

ǫ . �

Remark 7. We notice the substantial improvement in the iteration complexity:
If f is quadratic, the complexity in achieving an ε-perturbed first-order and
second-order stationary point is both O(ε−1), while for the same algorithm to
solve a more general problem, our complexity estimates are O(ε−3/2) and O(ε−3)
for the first-order and second-order stationary points, respectively. The cause of
this gap, to our understanding, is whether the cubic error term is present in the
Taylor expansion-like inequalities (22) and (23), or namely, whether η = 0 holds.
Note that when the p-th order derivative is used to find a first-order stationary
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point with a more general set of convex constraints, the best known iteration
complexity is O(ε−(p+1)/p) [14, 23] (but with a costly per-iteration complexity).
The quadratic case here discussed is compatible with this result as a limiting
case p → +∞.

Remark 8. In all three cases of discussion above, the per-iteration problem of
the second-order ITRP admits a bisection scheme as per [55, 54] with a “log-log”
(quadratic) rate of complexity.

4 Conclusion

In this paper we consider the minimization of a continuous function that is po-
tentially not differentiable or not twice-differentiable on the boundary of the
feasible region. To characterize computable stationary points, we present suit-
able first- and second-order optimality conditions for this problem that general-
izes to classical ones when the derivative on the boundary is available, through
the use of an interior point technique. As a result, such an optimality condi-
tion is stronger than the existing conditions commonly used in the literature.
We further develop new interior trust-region point algorithms and present their
worst-case complexity estimates to solve the special but important case with
linear constraints. Even with a weaker regularity on the objective function, the
presented algorithms are theoretically guaranteed to yield a stronger optimality
condition at the same best known complexity rates in the literature for first- and
second-order stationarity using first- and second-order derivatives. We believe
that this approach can be generalized for non-linear constraints and for infea-
sible initialization. Also, solving a higher-order subproblem, we believe this
approach can yield iteration complexity results for finding q-th order stationary
points, extending the results from [22].
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