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Abstract

We generalize the reduction mechanism for linear programming problems and semidefinite program-

ming problems from [BPZ15] in two ways (1) relaxing the requirement of affineness, and (2) extending

to fractional optimization problems.

As applications we provide several new LP-hardness and SDP-hardness results, e.g., for the SparsestCut

problem, the BalancedSeparator problem, the MaxCut problem and the Matching problem on 3-regular

graphs. We also provide a new, very strong Lasserre integrality gap for the IndependentSet problem,

which is strictly greater than the best known LP approximation, showing that the Lasserre hierarchy does

not always provide the tightest SDP relaxation.

1 Introduction

Linear and semidefinite programs are the main components in the design of many practical algorithms and

therefore understanding their expressive power is a fundamental problem. The complexity of these programs

is measured by the number of constraints, ignoring all other aspects affecting the running time of an actual

algorithm, in particular, these measures are independent of the P vs. NP question. We call a problem LP-hard

if it does not admit an LP formulation with a polynomial number of constraints, and we define SDP-hardness

similarly.

Recently, motivated by Yannakakis’s influential work [Yan88,Yan91], a plethora of strong lower bounds

have been established for many important optimization problems, such as e.g., the Matching problem [Rot14]

or the TravelingSalesman problem [FMP+12,FMP+15,LRS14]. In [BPZ15], the authors introduced a reduc-

tion mechanism providing inapproximability results for large classes of problems. However, the reductions

were required to be affine, and hence failed for e.g., the VertexCover problem, where intermediate Sher-

ali–Adams reductions were employed in [BFPS15] due to this shortcoming.

In this work we extend the reduction mechanism of [BPZ15] in two ways, establishing several new hard-

ness results both in the LP and SDP setting; both are special cases arising from reinterpreting LPs and SDPs

as proof systems (see Section 2.2). First, by including additional ‘computation’ in the reduction, we allow

non-affine relations between problems, eliminating the need for Sherali–Adams reductions in [BFPS15]. Sec-

ond, we extend the framework to fractional optimization problems (such as e.g., SparsestCut) where ratios

of linear functions have to be optimized. Here typically one optimizes the numerator and denominator at the

same time, and that is what we incorporate in our framework.
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Related Work

The immediate precursor to this work is [BPZ15] (generalizing [Pas12, BFPS12]), introducing a reduction

mechanism. Base hard problems are the Matching problem [Rot14], as well as constraint satisfaction prob-

lems [CLRS13,LRS14] based on hierarchy hardness results, such as e.g., [Sch08] and [CMM09].

Contribution

Generalized LP/SDP reductions. We generalize the reduction mechanism in [BPZ15] by modeling addi-

tional computation, i.e., using extra LP or SDP constraints. Put differently, we allow for more complicated

reduction maps as long as these maps themselves have a small LP/SDP formulation. As a consequence,

we can relax the affineness requirement and enable a weak form of gap-amplification and boosting. This

overcomes a major limitation of the approach in [BPZ15], yielding significantly stronger reductions at a

small cost.

Fractional LP/SDP optimization. Second, we present a fractional LP/SDP framework and reduction mech-

anism, where the objective functions are ratios of functions from a low dimensional space, such as for the

SparsestCut problem. For these problems the standard LP/SDP framework is meaningless as the ratios

span a high dimensional affine space. The fractional framework models the usual way of solving fractional

optimization problems, enabling us to establish strong statements about LP or SDP complexity.

Direct non-linear hardness reductions. We demonstrate the power of our generalized reduction by estab-

lishing new LP-hardness and SDP-hardness for several problems of interest, i.e., these problems can-

not be solved by LPs/SDPs of polynomial size; see Table 1. We establish various hardness results for

the SparsestCut and BalancedSeparator problems even when one of the underlying graph has bounded

treewidth. We redo the reductions to intermediate CSP problems used for optimal inapproximability re-

sults for the VertexCover problem over simple graphs and Q-regular hypergraphs in [BFPS15], eliminating

Sherali–Adams reductions. We also show the first explicit SDP-hardness for the MaxCut problem, inap-

proximability within a factor of 15/16 + ε, which is stronger than the algorithmic hardness of 16/17 + ε.

Finally, we prove a new, strong Lasserre integrality gap of n1−γ after O(nγ) rounds for the IndependentSet

problem for any sufficiently small γ > 0. It not only significantly strengthens and complements the best-

known integrality gap results so far ([Tul09] and [AT11, AT13]; see also [LT03, ST99]), but also shows

the suboptimality of Lasserre relaxations for the IndependentSet problem together with [BFPS15].

Small uniform LPs for bounded treewidth problems. Finally, we introduce a new technique in Section 10 to

derive small uniform linear programs for problems over graphs of bounded treewidth. Here the same

linear program is used for all bounded treewidth instances of the same size, independent of the actual tree

decompositions, whereas the linear program in [KKT15] work for a single input instance only (with fewer

inequalities than our linear program).

Outline

We start by recalling and refining the linear programming framework in Section 2, including the optimization

problems we shall consider. We develop a general theory in Section 2.2 leading easily to both a generalized

reduction mechanism in Section 3 and an extension to fractional optimization in Section 4. The remaining

chapters contain mostly applications to various problems. Exceptions are Section 8, establishing a Lasserre

integrality gap for the IndependentSet problem, and Section 10 providing a small linear program for bounded

treewidth problems.
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Problem Factor Source Paradigm Remark

MaxCut 15
16 + ε Max-3-XOR/0 SDP

SparsestCut(n), tw(supply) = O(1) 2 − ε MaxCut LP opt. [CLRS13]

SparsestCut(n), tw(supply) = O(1) 16
15 − ε MaxCut SDP

BalancedSeparator(n, d), tw(demand) = O(1) ω(1) UniqueGames LP

IndependentSet ω(n1−ε) Max-k-CSP
Lasserre

O(nε) rounds

Matching, 3-regular 1 + ε/n2 Matching LP

1F-CSP
ω(1) UniqueGames LP

[BFPS15]

w/o SAQ- 6=-CSP

Table 1: Inapproximability of optimization problems. tw denotes treewidth.

2 Preliminaries

Here we recall the linear programming and semidefinte programming framework from [BPZ15], as well as

the optimization problems we shall consider later, paying particular attention to base hard problems. Sec-

tion 2.2 is a new technical foundation for the framework, presenting the underlying theory in a unified simple

way, from which the extensions in Sections 3 and 4 readily follow. We start by recalling the notion of tree

decompositions and treewidth of a graph.

Definition 2.1 (Tree width). A tree decomposition of a graph G is a tree T together with a vertex set of G
called bag Bt ⊆ V(G) for every node t of T, satisfying the following conditions: (1) V(G) =

⋃
t∈V(T) Bt,

(2) For every adjacent vertices u, v of G there is a bag Bt containing both u and v, and (3) For all nodes

t1, t2, t of T with t lying between t1 and t2 (i.e., t is on the unique path connecting t1 and t2) we have

Bt1
∩ Bt2 ⊆ Bt. The width of the tree decomposition is maxt∈V(T) |Bt| − 1: one less than the maximum bag

size. The treewidth tw(G) of G is the minimum width of its tree decompositions.

We will use χ(·) for indicator functions: i.e., χ(X) = 1 if the statement X is true, and χ(X) = 0
otherwise. We will denote random variables using bold face, e.g. x. Let Sr denote the set of symmetric r × r
real matrices, and let Sr

+ denote the set of positive semidefinite r × r real matrices.

2.1 Optimization Problems

Definition 2.2 (Optimization problem). An optimization problem is a tuple P = (S , I, val) consisting of a

set S of feasible solutions, a set I of instances, and a real-valued objective called measure val : I×S → R.

We shall write valI(s) for the objective value of a feasible solution s ∈ S for an instance I ∈ I.

The SparsestCut problem is defined over a graph with two kinds of edges: supply and demand edges.

The objective is to find a cut that minimizes the ratio of the capacity of cut supply edges to the total demand

separated. For a weight function f : E(Kn) → R≥0, we define the graph [n] f := ([n], E f ) where E f :=
{(i, j) | i, j ∈ [n], f (i, j) > 0}. We study the SparsestCut problem with bounded-treewidth supply graph.

Definition 2.3 (SparsestCut(n, k)). Let n be a positive integer. The minimization problem SparsestCut(n, k)
consists of

instances a pair (d, c) of a nonnegative demand d : E(Kn) → R≥0 and a capacity c : E(Kn) → R≥0 such

that tw([n]c) ≤ k;

feasible solutions all subsets s of [n];

3



measure ratio of separated capacity and separated demand:

vald,c(s) =
∑i∈s,j/∈s c(i, j)

∑i∈s,j/∈s d(i, j)

for capacity c, demand d, and set s.

The BalancedSeparator problem is similar to the SparsestCut problem and is also defined over a graph

with supply and demand edges. However it restricts the solutions to cuts that are balanced, i.e., which

separate a large proportion of the demand. Note that in this case we define the BalancedSeparator problem

on n vertices for a fixed demand function d, unlike in the case of SparsestCut where the demand function d
was part of the instances. This is because in the framework of [BPZ15] the solutions should be independent

of the instances. We formalize this below.

Definition 2.4 (BalancedSeparator(n, d)). Let n be a positive integer, and d : [n]× [n] → R≥0 a nonnegative

function called demand function. Let D denote the total demand ∑i,j∈[n] d(i, j). The minimization problem

BalancedSeparator(n, d) consists of

instances nonnegative capacity function c : E(Kn) → R≥0 on the edges of the complete graph Kn;

feasible solutions all subsets s of [n] such that ∑i∈s,j/∈s d(i, j) is at least D/4;

measure capacity of cut supply edges: valc(s) := ∑i∈s,j/∈s c(i, j) for a capacity function c and set s.

Recall that an independent set I of a graph G is a subset of pairwise non-adjacent vertices I ⊆ V(G).
The IndependentSet problem on a graph G asks for an independent set of G of maximum size. We formally

define it as an optimization problem below.

Definition 2.5 (IndependentSet(G)). Given a graph G, the maximization problem IndependentSet(G) con-

sists of

instances all induced subgraphs H of G;

feasible solutions all independent subsets I of G;

measure valH(I) = |I ∩ V(H)|.

Recall that a subset X of V(G) for a graph G is a vertex cover if every edge of G has at least one end

point in X. The VertexCover problem on a graph G asks for a vertex cover of G of minimum size. We give

a formal definition below.

Definition 2.6 (VertexCover(G)). Given a graph G, the minimization problem VertexCover(G) consists of

instances all induced subgraphs H of G;

feasible solutions all vertex covers X of G;

measure valH(X) = |X ∩ V(H)|.

The MaxCut problem on a graph G asks for a vertex set of G cutting a maximum number of edges. Given

a vertex set X ⊆ V(G), let δG(X) := {{u, v} ∈ E(G) | u ∈ X, v /∈ X} denote the set of edges of G with

one end point in X and the other end point outside X.

Definition 2.7 (MaxCut(G)). Given a graph G, the maximization problem MaxCut(G) consists of

4



instances all induced subgraph H of G;

feasible solutions all vertex subsets X ⊆ V(G);

measure valH(X) = |E(H) ∩ δG(X)|.

Constraint satisfaction problems (CSPs for short) are inherently related to inapproximability results, and

form a basic collection of inapproximable problems. There are many variants of CSPs, but the general

structure is as follows:

Definition 2.8 (Constraint Satisfaction Problems). A constraint satisfaction problem, in short CSP, is an

optimization problem on a fixed set {x1, . . . , xn} of variables with values in a fixed set [q] consisting of

instances formal weighted sums I = ∑i wiCi(xj1 , . . . , xjki
) of some clauses Ci : [q]ki → {0, 1} with

weights wi ≥ 0.

feasible solutions all mappings s : {x1, . . . , xn} → [q], called assignments to variables

measure weighted fraction of satisfied clauses:

valI (s) :=
∑i wiCi(s(xj1 ), . . . , s(xjki

))

∑i wi

A CSP can be either a maximization problem or a minimization problem. For specific CSPs there are

restrictions on permitted clauses, and later we will define CSPs by specifying only these restrictions. For

example Max-k-CSP is the problem where only clauses with at most k free variables are allowed (i.e., ki ≤ k
in the definition above). The problem Max-k-XOR is the problem with clauses of the form x1 + · · ·+ xk = b
where the xi are distinct variables, b ∈ {0, 1}, and the addition is modulo 2. We shall use the subproblem

Max-k-XOR/0, where the clauses have the form x1 + · · ·+ xk = 0.

Given a k-ary predicate P, let Max-k-CSP(P) denote the CSP where all clauses arise via a change of

variables from P, i.e., every clause have the form P(xi1 , . . . , xik
) with i1, . . . , ik being pairwisely distinct. For

example, Max-k-XOR/0 = Max-k-CSP(x1 + · · ·+ xk = 0).
Another specific example of a CSP we will make use of is the UniqueGames problem. The UniqueGames

problem asks for a labeling of the vertices of a graph that maximizes the number (or weighted sum) of edges

where the labels of the endpoints match. We formalize it restricted to regular bipartite graphs.

Definition 2.9 (UniqueGames∆(n, q)). Let n, q and ∆ be positive integer parameters. The maximization

problem UniqueGames∆(n, q) consists of

instances All edge-weighted ∆-regular bipartite graphs (G, w) (i.e., a graph G with a collection {wu,v}{u,v}∈E(G)

of real numbers) with partite sets {0} × [n] and {1} × [n] with every edge {i, j} labeled with a per-

mutation πi,j : [q] → [q] such that πi,j = π−1
j,i .

feasible solutions All functions s : {0, 1} × [n] → [q] called labelings of the vertices.

measure The weighted fraction of correctly labeled edges, i.e., edges {i, j} with s(i) = πi,j(s(j)):

val(G,w)(s) :=

∑ {i,j}∈E(G)
s(i)=πi,j(s(j))

w(i, j)

∑{i,j}∈E(G) w(i, j)
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The Matching problem asks for a matching in a graph H of maximal size. The restriction to matchings

and subgraphs (which corresponds to 0/1 weights in the objective of the matching problem) below serves the

purpose to obtain a base hard problem, with which we can work more easily later.

Definition 2.10 (Matching(G)). The maximum matching problem Matching(G) over a graph G is defined

as the maximization problem:

instances all subgraphs H of G

feasible solutions all perfect matchings S on G.

measure the size of induced matching valG(S) := |S ∩ E(H)| with S ∈ S , and H a subgraph of G.

We will also write Matchingk(G) to indicate that the maximum vertex degree is at most k.

2.1.1 Uniform problems

Here we present so called uniform versions of some of the optimization problems discussed so far, where

the class of instances is typically much larger, e.g., the class of all instances of a given size. Non-uniform

optimization problems typically consider weighted versions of a specific instance or all induced subgraphs

of a given graph. For establishing lower bounds, non-uniform optimization problems give stronger bounds:

‘even if we consider a specific graph, then there is no small LP/SDP’. In the case of upper bounds, i.e., when

we provide formulations, uniform optimization problems provide stronger statements: ‘even if we consider

all graphs simultaneously, then there exists a small LP/SDP’.

We will later show in Section 10 that over graphs of bounded tree-width there exists a small LP that

solves the uniform version of optimization problems. We start by defining the uniform version of MaxCut.

Recall that for a graph G and a subset X of V(G), we define δG(X) := {{u, v} ∈ E(G) | u ∈ X, v /∈ X}
to be the set of crossing edges.

Definition 2.11 (MaxCut(n)). For a positive integer n, the maximization problem MaxCut(n) consists of

instances all graphs G with V(G) ⊆ [n];

feasible solutions all subsets X of [n];

measure valG(X) = |δG(X)|.

With IndependentSet and VertexCover we face the difficulty that the solutions are instance dependent.

Hence we enlarge the feasible solutions to include all possible vertex sets, and in the objective function

penalize the violation of requirements.

Definition 2.12 (IndependentSet(n)). For a positive integer n, the maximization problem IndependentSet(n)

consists of

instances all graphs G with V(G) ⊆ [n];

feasible solutions all subsets X of [n];

measure the number of vertices of G in X penalized by the number of edges of G inside X:

valG(X) = |X ∩ V(G)| − |E(G[X])| . (1)

Recall that VertexCover asks for a minimal size vertex set X of a graph G such that every edge of G has

at least one of its endpoints in X.

6



Definition 2.13. For a positive integer n the minimization problem VertexCover consists of

instances all graphs G with V(G) ⊆ [n]

feasible solutions all subsets X ⊆ V(G)

measure the number of vertices of G in X penalized by the number of uncovered edges:

valG(X) := |X ∩ V(G)|+ |E(G \ X)| . (2)

2.2 Nonnegativity problems: Extended formulations as proof system

In this section we introduce an abstract view of formulation complexity, where the main idea is to reduce

all statements to the core question about the complexity of deriving nonnegativity for a class of nonnegative

functions. This abstract view will allow us to easily introduce future versions of reductions and optimization

problems with automatic availability of Yannakakis’s Factorization Theorem and the reduction mechanism.

Definition 2.14. A nonnegativity problem P = (S , I, val) consists of a set I of instances, a set S of feasible

solutions and a nonnegative evaluation val : I×S → R≥0.

As before, we shall write valI (s) instead of val(I , s). The aim is to study the complexity of proving non-

negativity of the functions valI . Therefore we define the notion of proof as a linear program or a semidefinite

program.

Definition 2.15. Let P = (S , I, val) be a nonnegativity problem. An LP proof of nonnegativity of P
consists of a linear program Ax ≤ b with x ∈ Rr for some r and the following realizations:

Feasible solutions as vectors xs ∈ Rr for every s ∈ S satisfying

Axs ≤ b for all s ∈ S , (3)

i.e., the system Ax ≤ b is a relaxation (superset) of conv (xs | s ∈ S).

Instances as affine functions wI : Rr → R for all I ∈ I
S satisfying

wI(xs) = valI(s) for all s ∈ S , (4)

i.e., the linearization wI of valI is required to be exact on all xs with s ∈ S .

Proof We require that the wI are nonnegative on the solution set of the LP:

wI(x) ≥ 0 whenever Ax ≤ b, I ∈ I. (5)

The size of the formulation is the number of inequalities in Ax ≤ b. Finally, LP proof complexity fcLP(P)
of P is the minimal size of all its LP proofs.

The notion of an SDP proof is defined similarly.

Definition 2.16. Let P = (S , I, val) be a nonnegativity problem. An SDP proof of nonnegativity of P
consists of a semidefinite program {X ∈ Sr

+ | A(X) = b} (i.e., a linear map A : Sr → Rk together with a

vector b ∈ Rk) and the following realizations:

Feasible solutions as vectors Xs ∈ Sr
+ for all s ∈ S satisfying

A(Xs) = b (6)

7



Instances as nonnegative affine functions wI : Sr → R for all I ∈ I satisfying

wI(X
s) = valI (s) for all s ∈ S . (7)

Proof We require nonnegativity on the feasible region of the SDP:

wI(X) ≥ 0 whenever A(X) = b, X ∈ S
r
+, I ∈ I. (8)

The size of the formulation is the dimension parameter r. Finally, the SDP proof complexity fcSDP(P) of P
is the minimal size of all its SDP proofs.

2.2.1 Slack matrix and proof complexity

We introduce the slack matrix of a nonnegativity problem as a main tool to study proof complexity, gener-

alizing the approach from the polyhedral world. The main result is a version of Yannakakis’s Factorization

Theorem formulating proof complexity in the language of linear algebra as a combinatorial property of the

slack matrix.

Definition 2.17. The slack matrix of a nonnegativity problem P = (S , I, val) is the I×S matrix MP with

entries the values of the function valI

MP(I , s) := valI (s). (9)

We will use the standard notions of nonnegative rank and semidefinite rank.

Definition 2.18 ([BPZ15]). Let M be a nonnegative matrix.

nonnegative factorization A nonnegative factorization of M of size r is a decomposition M = ∑
r
i=1 Mi of

M as a sum of r nonnegative matrices Mi of rank 1. The nonnegative rank rk+ M is the minimum r
for which M has a nonnegative factorization of size r.

psd factorization A positive semi-definite (psd) factorization of M of size r is a decomposition M(I , s) =
Tr[AIBs] of M where the AI and Bs are positive semi-definite (psd) r × r matrices. The psd rank

rkpsd M is the minimum r for which M has a psd factorization of size r.

We define variants ignoring factors of the form a1:

LP factorization An LP factorization of M of size r is a decomposition M = ∑
r
i=1 Mi + u1 of M as a

sum of r nonnegative matrices Mi of rank 1 and possibly an additional nonnegative rank-1 u1 with all

columns being equal. The LP rank rkLP M is the minimum r for which M has an LP factorization of

size r.

SDP factorization An SDP factorization of M of size r is a decomposition M(I , s) = Tr[AIBs] + uI
of M where the AI and Bs are positive semi-definite (psd) r × r matrices, and uI is a nonnegative

number. The SDP rank rkSDP M is the minimum r for which M has an SDP factorization of size r.

Remark 2.19. The difference between LP rank and nonnegative rank (see Definition 2.18) is solely by mea-

suring the size of a factorization: for LP rank factors with equal columns do not contribute to the size. This

causes a difference of at most 1 between the two ranks. The motivation for the LP rank is that it captures

exactly the LP formulation complexity of an optimization problem, in particular for approximation problems

(see [BPZ15] for an in-depth discussion). Similar remarks apply to the relation of SDP rank, psd rank, and

SDP formulation complexity.
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Theorem 2.20. For every nonnegativity problem P with slack matrix MP we have

fcLP(P) = rkLP MP , (10)

fcSDP(P) = rkSDP MP , (11)

Proof. The proof is an extension of the usual proofs of Yannakakis’s Factorization Theorem, e.g., that in

[BPZ15]. We provide the proof only for the LP case, as the proof for the SDP case is similar.

First we prove rkLP MP ≤ fcLP(P). Let Ax ≤ b be an LP proof for P of size fcLP(P) with realization

xs for s ∈ S and affine functions wI for I ∈ I. By Farkas’s lemma, there are nonnegative matrices uI
and nonnegative numbers γI with wI(x) = uI · (b − Ax) + γI . Substituting x by xs, we obtain an LP

factorization of size fcLP(P):

MP (I , s) = valI(s) = wI(xs) = uI · (b − Axs) + γI .

Conversely, to show fcLP(P) ≤ rkLP(P), we choose an LP factorization of MP of size r = rkLP(P)

MP(I , s) = uIxs + γI

where the uI and xs are nonnegative matrices of size 1× r and r× 1, respectively, and the γI are nonnegative

numbers. Now P has the following LP proof: The linear program is x ≥ 0 for x ∈ Rr×1. A feasible solution

s is represented by the vector xs. An instance I is represented by

wI(x) := uIx + γI .

To check the proof, note that by nonnegativity of uI and γI , we have wI(x) ≥ 0 for all x ≥ 0. Clearly,

wI(xs) = MP (I , s) = valI (s), completing the proof.

2.2.2 Reduction between nonnegativity problems

Definition 2.21 (Reduction). Let P1 = (S1, I1, valP1) and P2 = (S2, I2, valP2) be nonnegativity prob-

lems.

A reduction from P1 to P2 consists of

1. two mappings: ∗ : I1 → I2 and ∗ : S1 → S2 translating instances and feasible solutions indepen-

dently;

2. two nonnegative I1 ×S1 matrices M1, M2

satisfying

valP1
I1
(s1) = valP2

I∗
1
(s∗1) · M1(I1, s1) + M2(I1, s1). (12)

The matrices M1 and M2 encode additional arguments in the nonnegativity proof of P1, besides using

nonnegativity ofP2. Therefore in applications they should have low complexity, to provide a strong reduction.

The following theorem relates the proof complexity of problems in a reduction.

Theorem 2.22. Let P1 and P2 be nonnegativity problems with a reduction from P1 to P2. Then

fcLP(P1) ≤ rkLP M2 + rkLP M1 + rk+ M1 · fcLP(P2), (13)

fcSDP(P1) ≤ rkSDP M2 + rkSDP M1 + rkpsd M1 · fcSDP(P2), (14)

where M1 and M2 are the matrices in the reduction as in Definition 2.21.
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Proof. We prove the claim only for the LP rank, as the proof for the SDP rank is similar. We apply the Fac-

torization Theorem (Theorem 2.20). Let MP1
and MP2

denote the slack matrices of P1 and P2, respectively.

Then Eq. (12) can be written as

MP1
= (FIMP2

FS ) ◦ M1 + M2, (15)

where ◦ denotes the Hadamard product (entrywise product), and FI and FS are the I1 × I2 and S2 × S1

matrices encoding the two maps ∗, respectively:

FI(I1, I2) :=

{
1 if I2 = I∗

1 ,

0 if I2 6= I∗
1 ;

FS (S2, S1) :=

{
1 if S2 = S∗

1 ,

0 if S2 6= S∗
1 .

(16)

Let MP2
= M̃P2

+ a1 with rkLP MP2
= rk+ M̃P2

. This enables us to further simplify Eq. (15):

MP1
=
(

FIM̃P2
FS
)
◦ M1 + diag(FIa) · M1 + M2, (17)

where diag(x) stands for the square diagonal matrix with the entries of x in the diagonal. Now the claim

follows from Theorem 2.20, the well-known identities rk+(A ◦ B) ≤ rk+ A · rk+ B, rk+ ABC ≤ rk+ B,

and the obvious rkLP(A + B) ≤ rkLP A + rkLP B together with rkLP(AB) ≤ rkLP B.

2.3 LP and SDP formulations

Here we recall the notion of linear programming and semi-definite programming complexity of optimiza-

tion problems from [BPZ15]. The key idea to modeling approximations of an optimization problem P =
(S , I, val) is to represent the approximation gap by two functions C, S : I → R, the completeness guarantee

and soundness guarantee, respectively, and the task is to differentiate problems with OPT (I) ≤ S(I) and

OPT (I) ≥ C(I), as in the algorithmic setting.

The guarantees C and S will often be of the form C = αg and S = βg for some constants α and β and an

easy-to-compute function g. Then we shall write fcLP(P , α, β) instead of the more precise fcLP(P , αg, βg).

Definition 2.23 (LP formulation of an optimization problem). Let P = (S , I, val) be an optimization

problem, and C, S be real-valued functions on I, called completeness guarantee and soundness guarantee,

respectively. If P is a maximization problem, then let IS := {I ∈ I | max valI ≤ S(I)} denote the set of

instances, for which the soundness guarantee S is an upper bound on the maximum. If P is a minimization

problem, then let IS := {I ∈ I | min valI ≥ S(I)} denote the set of instances, for which the soundness

guarantee S is a lower bound on the minimum.

A (C, S)-approximate LP formulation of P consists of a linear program Ax ≤ b with x ∈ Rr for some

r and the following realizations:

Feasible solutions as vectors xs ∈ Rr for every s ∈ S satisfying

Axs ≤ b for all s ∈ S , (18)

i.e., the system Ax ≤ b is a relaxation of conv (xs | s ∈ S).

Instances as affine functions wI : Rr → R for all I ∈ I
S satisfying

wI(xs) = valI(s) for all s ∈ S , (19)

i.e., the linearization wI of valI is required to be exact on all xs with s ∈ S .

10



Achieving (C, S) approximation guarantee by requiring

max {wI(x) | Ax ≤ b} ≤ C(I) for all I ∈ I
S, (20)

if P is a maximization problem (and min {wI(x) | Ax ≤ b} ≥ C(I) if P is a minimization problem).

The size of the formulation is the number of inequalities in Ax ≤ b. Finally, the (C, S)-approximate LP

formulation complexity fcLP(P , C, S) of P is the minimal size of all its LP formulations.

The definition of SDP formulations is similar.

Definition 2.24 (SDP formulation of an optimization problem). As in Definition 2.23, let P = (S , I, val)
be an optimization problem and C, S be real-valued functions on I, the completeness guarantee and sound-

ness guarantee. Let IS := {I ∈ I |max valI ≤ S(I)} if P is a maximization problem, and let IS :=
{I ∈ I |min valI ≥ S(I)} if P is a minimization problem.

A (C, S)-approximate SDP formulation of P consists of a linear map A : Sr → Rk and a vector b ∈ Rk

(i.e., a semidefinite program {X ∈ Sr
+ | A(X) = b}) together with the following realizations of P :

Feasible solutions as vectors Xs ∈ Sr
+ for all s ∈ S satisfying

A(Xs) = b (21)

i.e., the SDP A(X) = b, X ∈ Sr
+ is a relaxation of conv (Xs | s ∈ S).

Instances as affine functions wI : Sr → R for all I ∈ I
S satisfying

wI(X
s) = valI (s) for all s ∈ S , (22)

i.e., the linearization wI of valI is exact on the Xs with s ∈ S .

Achieving (C, S) approximation guarantee by requiring

max {wI(X) | A(Xs) = b, Xs ∈ S
r
+} ≤ C(I) for all I ∈ I

S, (23)

if P is a maximization problem, and the analogous inequality if P is a minimization problem.

The size of the formulation is the dimension parameter r. Now the (C, S)-approximate SDP formulation

complexity fcSDP(P , C, S) of the problem P is the minimal size of all its SDP formulations.

2.3.1 Slack matrix and formulation complexity

The (C, S)-approximate complexity of a maximization problem P = (S , I, val) is the complexity of proofs

of valI ≤ C(I) for instances with max valI ≤ S(I), and similarly for minimization problems. Formally,

the proof complexity of the nonnegativity problem PC,S = (S , IS, C − val) equals the (C, S)-approximate

complexity of P both in the LP and SDP world, as obvious from the definitions:

fcLP(P , C, S) = fcLP(PC,S), fcSDP(P , C, S) = fcSDP(PC,S). (24)

Thus the theory of nonnegativity problems from Section 2.2 immediately applies, which we formulate now

explicitly for optimization problems. The material here already appeared in [BPZ15] without using nonneg-

ativity problems and a significantly weaker reduction mechanism.

The main technical tool for establishing lower bounds on the formulation complexity of a problem is its

slack matrix and its factorizations (decompositions). We start by recalling the definition of the slack matrix

for optimization problems.

11



Definition 2.25. Let P = (S , I, val) be an optimization problem with completeness guarantee C and sound-

ness guarantee S. The (C, S)-approximate slack matrix MP ,C,S is the nonnegative IS ×S matrix with entries

MP ,C,S(I , s) := τ · (C(I)− valI (s)), (25)

where τ = +1 if P is a maximization problem, and τ = −1 if P is a minimization problem.

Finally, we are ready to recall the factorization theorem, equating LP rank and SDP rank with LP formu-

lation complexity and SDP formulation complexity, respectively. The notion of LP and SDP rank is recalled

in Definition 2.18.

Theorem 2.26 (Factorization theorem, [BPZ15]). Let P = (S , I, val) be an optimization problem with

completeness guarantee C and soundness guarantee S. Then

fcLP(P , C, S) = rkLP MP ,C,S, (26)

fcSDP(P , C, S) = rkSDP MP ,C,S, (27)

where MP ,C,S is the (C, S)-approximate slack matrix of P .

Now Theorem 3.2 follows as a special case of Theorem 2.22.

2.3.2 Lasserre or SoS hierarchy

The Lasserre hierarchy, also called the Sum-of-Squares (SoS) hierarchy, is a series of SDP formulations of

an optimization problem, relying on a set of base functions. The base functions are usually chosen so that the

objectives valI of instances are low-degree polynomials of the base functions. For brevity, we recall only the

optimal bound obtained by the SDP formulation, using the notion of pseudoexpectation, which is essentially

a feasible point of the SDP. We follow the definition of [LRST14, Page 3].

Definition 2.27 (Lasserre/SoS hierarchy).

Pseudoexpectation Let { f1, . . . , fℓ} be real-valued functions with common domain S . A pseudoexpecta-

tion functional Ẽ of level d over { f1, . . . , fℓ} is a real-valued function with domain the vector space

V of real-valued functions F with domain S , which are polynomials in f1, . . . , fℓ of degree at most d.

A pseudoexpectation Ẽ is required to satisfy

Linearity For all F1, F2 ∈ V
Ẽ(F1 + F2) = Ẽ(F1) + Ẽ(F2), (28)

and for all r ∈ R and F ∈ V
Ẽ(rF) = r Ẽ(F) (29)

Positivity Ẽ(F2) ≥ 0 for all F ∈ V with degree at most d/2 (so that F2 ∈ V)

Normalization Ẽ(1) = 1 for the constant function 1.

Lasserre or SoS value Given an optimization problem P = (S , I, val) and base functions f1, . . . , fℓ de-

fined on S , the degree d SoS value or round d Lasserre value of an instance I ∈ I is

SoSd(I) := max
Ẽ : deg Ẽ≤2d

Ẽ(valI). (30)
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Note that the base functions fi might satisfy non-trivial polynomial relations, and therefore the vector

space V need not be isomorphic to the vector space of formal low-degree polynomials in the fi. For example,

if the fi are all 0/1-valued, which is a common case, then f 2
i and fi are the same elements of V. We would

also like to mention that the degree or level d is not used consistently in the literature, some papers use 2d
instead of our d. This results in a constant factor difference in the level, which is usually not significant.

For CSPs we shall use the usual set of base functions Xxi=α, the indicators that a variable xi is assigned

the value α. For graph problems, the solution set S usually consists of vertex sets or edge sets. Therefore

the common choice of base functions are the indicators Xv that a vertex or edge v lies in a solution. This

has been used for UniqueGames in [SK10] establishing an ω(1) integrality gap for an approximate Lasserre

hierarchy after a constant number of rounds.

2.4 Base hard problems

In this section we will recall the LP-hardness of the problems that will serve as the starting point in our

later reductions. We start with the LP-hardness of the Matching problem with an inapproximability gap of

1 − ε/n:

Theorem 2.28 ([BP15a], c.f., [Rot14]). Let n ∈ N and 0 ≤ ε < 1.

fcLP

(
Matching(K2n),

⌊ |V(H)|
2

⌋
+

1 − ε

2
, OPT (H)

)
= 2Θ(n), (31)

where H is the placeholder for the instance, and the constant factor in the exponent depends on ε.

The following integrality gap was shown in [CLRS13] using the MaxCut Sherali-Adams integrality gap

instances of [CMM09].

Theorem 2.29 ([CLRS13, Theorem 3.2]). For any ε > 0 there are infinitely many n such that

fcLP

(
MaxCut(n), 1 − ε,

1

2
+

ε

6

)
≥ nΩ(log n/ log log n)

We now recall the Lasserre integrality gap result for approximating Max-k-CSP from [BCV+12]. See

also [BOGH+06,AAT05,STT07,Sch08,Tul09] for related results.

Theorem 2.30 ([BCV+12, Theorem 4.2]). For q ≥ 2, ε, κ > 0 and δ ≥ 3/2 and large enough n depending

on ε, κ, δ and q, for every k, β satisfying k ≤ n1/2 and
(
6qk ln q

)
/ε2 ≤ β ≤ n(1−κ)(δ−1)/

(
108(δ−1)k2δ+0.75

)

there is a k-ary predicate P : [q]k → {0, 1} and a Max-k-CSP(P) instance I on alphabet [q] with n variables

and m = βn constraints such that OPT (I) ≤ O
(

1+ε
qk

)
, but the

nη
16 round Lasserre relaxation for I admits

a perfect solution with parameter η = 1
/(

108(βk2δ+0.75)
1

δ−1

)
. In other words, SoSηn/16(I) = 1.

The following LP-hardness for UniqueGames was shown in [LRS14] (based on [CLRS13,CMM09]):

Theorem 2.31 ([LRS14, Corollary 7.7]). For every q ≥ 2, δ > 0 and k ≥ 1 there exists a constant c > 0
such that for all n ≥ 1

fcLP

(
UniqueGames(n, q), 1 − δ,

1

q
+ δ

)
≥ cnk

In other words there is no polynomial sized linear program that approximates UniqueGames within a factor

of 1/q.
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3 Reductions with distortion

We now introduce a generalization of the affine reduction mechanism for LPs and SDPs as introduced in

[BPZ15], answering an open question posed both in [BPZ15,BFPS15], leading to many new reductions that

were impossible in the affine framework.

Definition 3.1 (Reduction). Let P1 = (S1, I1, val) and P2 = (S2, I2, val) be optimization problems with

guarantees C1, S1 and C2, S2, respectively. Let τ1 = +1 if P1 is a maximization problem, and τ1 = −1 if

P1 is a minimization problem. Similarly, let τ2 = ±1 depending on whether P2 is a maximization problem

or a minimization problem.

A reduction from P1 to P2 respecting the guarantees consists of

1. two mappings: ∗ : I1 → I2 and ∗ : S1 → S2 translating instances and feasible solutions indepen-

dently;

2. two nonnegative I1 ×S1 matrices M1, M2

subject to the conditions

τ1 [C1(I1)− valI1
(s1)] = τ2

[
C2(I∗

1 )− valI∗
1
(s∗1)

]
M1(I1, s1) + M2(I1, s1) (32-complete)

τ2 OPT (I∗
1 ) ≤ τ2S2(I∗

1 ) if τ1 OPT (I1) ≤ τ1S1(I1). (32-sound)

The matrices M1 and M2 provide extra freedom to add additional (valid) inequalities during the reduc-

tion. In fact, we might think of them as modeling more complex reductions. These matrices should have

low computational overhead, which in our framework means LP or SDP rank, as will be obvious from the

following special case of Theorem 2.22, see Section 2.3 for details.

Theorem 3.2. Let P1 and P2 be optimization problems with a reduction from P1 to P2 respecting the

completeness guarantees C1, C2 and soundness guarantees S1, S2 of P1 and P2, respectively. Then

fcLP(P1, C1, S1) ≤ rkLP M2 + rkLP M1 + rk+ M1 · fcLP(P2, C2, S2), (33)

fcSDP(P1, C1, S1) ≤ rkSDP M2 + rkSDP M1 + rkpsd M1 · fcSDP(P2, C2, S2), (34)

where M1 and M2 are the matrices in the reduction as in Definition 3.1.

The corresponding multiplicative inapproximability factors can be obtained as usual, by taking the ratio

of soundness and completeness.

4 Fractional optimization problems

A fractional optimization problem is an optimization problem where the objectives have the form of a fraction

valI = valn
I / vald

I , such as for SparsestCut. In this case the affine space of the objective functions valI
of instances is typically not low dimensional, immediately ruling out small linear and semidefinite formula-

tions. Nevertheless, there are examples of efficient linear programming based algorithms for such problems,

however here the linear programs are used to find an optimal value of a linear combination of valn
I and vald

I
(see e.g., [GTW13]). To be able to analyze the size of LPs or SDPs for such problems we refine the notion

of formulation complexity from [BPZ15] to incorporate these types of linear programs, which reduces to the

original definition with the choice of valn
I = valI and vald

I = 1.

We now provide the formal definitions of linear programming and semidefinite formulations for fractional

optimization problems. The idea is again that the complexity is essentially the proof complexity of valI ≤
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C(I) for instances with valI ≤ S(I). Formally, given a fractional optimization problem P = (S , I, val)
with guarantees C, S, we study the nonnegativity problem PC,S = (S , IS × {0, 1}, val∗) with val∗(I ,0) =

C(I) vald
I − valn

I (encoding valI ≤ C(I)) and val∗(I ,1) = vald
I . The addition of vald to the objective

functions is for the technical reason to ensure that the objectives span the same affine space as the valn
I

and vald
I , i.e., to capture the affineness of these functions. This is not expected to significantly affect the

complexity of the resulting problem, as the vald
I in interesting applications are usually a positive linear

combination of a small number of nonnegative functions.

As a special case of Section 2.2 we obtain the following setup for fractional optimization problems. Note

that when P is a fractional optimization problem with vald = 1, then P is an optimization problem and

Definitions 4.1 and 4.2 are equivalent to Definitions 2.23 and 2.24, as we will see now.

Definition 4.1 (LP formulation of a fractional optimization problem). Let P = (S , I, val) be a fractional

optimization problem and let C, S be two real valued functions on I called completeness guarantee and

soundness guarantee respectively. Let IS := {I ∈ I | max valI ≤ S(I)} when P is a maximization

problem and I
S := {I ∈ I | min valI ≥ S(I)} if P is a minimization problem.

A (C, S)-approximate LP formulation for the problem P consists of a linear program Ax ≤ b with

x ∈ Rr for some r and the following realizations:

Feasible solutions as vectors xs ∈ Rr for every s ∈ S satisfying

Axs ≤ b for all s ∈ S ,

i.e., Ax ≤ b is a relaxation of conv (xs | s ∈ S).

Instances as a pair of affine functions wn
I , wd

I : Rr → R for all I ∈ I
S satisfying

wn
I(xs) = valn

I (s)

wd
I(xs) = vald

I (s)

for every s ∈ S . In other words the linearizations wn
I , wd

I are required to be exact on all xs for s ∈ S .

Achieving (C, S) approximation guarantee requiring the following for every I ∈ I
S

Ax ≤ b ⇒
{

wd
I(x) ≥ 0

wn
I(x) ≤ C(I)wd

I(x)

if P is a maximization problem and

Ax ≤ b ⇒
{

wd
I(x) ≥ 0

wn
I(x) ≥ C(I)wd

I(x)

if P is a minimization problem. In other words we can derive the nonnegativity of wd
I and the approx-

imation guarantee C(I) from the set of inequalities in Ax ≤ b.

The size of the formulation is the number of inequalities in Ax ≤ b. Finally, the (C, S)-approximate LP

formulation complexity fcLP (P , C, S) of P is the minimal size of all its LP formulations.

SDP formulations for fractional optimization problems are defined similarly.
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Definition 4.2 (SDP formulation of fractional optimization problem). Let P = (S , I, val) be a fractional

optimization problem and let C, S : I → R≥0 be the completeness guarantee and the soundness guarantee

respectively. Let IS := {I ∈ I | max valI ≤ S(I)} when P is a maximization problem and I
S := {I ∈

I | min valI ≥ S(I)} if P is a minimization problem.

A (C, S)-approximate SDP formulation of P consists of a linear map A : Sr → Rk together with a vector

b ∈ Rk (i.e., a semidefinite program {X ∈ Sr
+ | A(X) = b}) and the following realizations of P :

Feasible solutions as vectors Xs ∈ Sr
+ for every s ∈ S satisfying

A(Xs) = b for every s ∈ S ,

i.e. A(X) = b, X ∈ Sr
+ is a relaxation of conv (Xs | s ∈ S).

Instances as a pair of affine functions wn
I , wd

I : Sr → R≥0 for every I ∈ I
S satisfying

wn
I(X

s) = valn
I(s)

wd
I(X

s) = vald
I(s)

for every s ∈ S . In other words the linearizations wn
I , wd

I are required to be exact on all Xs for s ∈ S .

Achieving (C, S) approximation guarantee requiring the following for every I ∈ I
S

A(X) = b ⇒
{

wd
I(X) ≥ 0

wn
I(X) ≤ C(I)wd

I(X)

if P is a maximization problem and

A(X) = b ⇒
{

wd
I(X) ≥ 0

wn
I(X) ≤ C(I)wd

I(X)

if P is a minimization problem.

The size of the formulation is given by the dimension r. The (C, S)-approximate SDP formulation complexity

fcSDP(P , C, S) of the problem P is the minimal size of all its SDP formulations.

The slack matrix for fractional problems plays the same role as for non-fractional problems, with the

twist that we factorize the denominator and numerator separately. This allows us to overcome the high

dimensionality of the space spanned by the actual ratios.

Definition 4.3. Let P = (S , I, val) be a fractional optimization problem with completeness guarantee C
and soundness guarantee S. The (C, S)-approximate slack matrix MP ,C,S is the nonnegative 2IS ×S matrix

of the form

MP ,C,S =

[
M

(d)
P ,C,S

M
(n)
P ,C,S

]

where M
(d)
P ,C,S, M

(n)
P ,C,S are nonnegative I

S ×S matrices with entries

M
(d)
P ,C,S(I , s) := vald

I (s)

M
(n)
P ,C,S(I , s) := τ

(
C(I) vald

I(s)− valn
I (s)

)

where τ = +1 if P is a maximization problem and τ = −1 if P is a minimization problem.
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We are now ready to obtain the factorization theorem for the class of fractional optimization problems,

as a special case of Theorem 2.20:

Theorem 4.4 (Factorization theorem for fractional optimization problems). Let P = (S , I, val) be a frac-

tional optimization problem with completeness guarantee C and soundness guarantee S. Then

fcLP(P , C, S) = rkLP M(P ,C,S),

fcSDP(P , C, S) = rkSDP M(P ,C,S)

where M(P ,C,S) is the (C, S)-approximate slack matrix of P .

Now Theorem 4.6 arises as a special case of Theorem 2.22.

4.1 Reduction between fractional problems

Reductions for fractional optimization problems are completely analogous to the non-fractional case:

Definition 4.5 (Reduction). Let P1 = (S1, I1, val) and P2 = (S2, I2, val) be fractional optimization

problems with guarantees C1, S1 and C2, S2, respectively. Let τ1 = +1 if P1 is a maximization problem,

and τ1 = −1 if P1 is a minimization problem. Similarly, let τ2 = ±1 depending on whether P2 is a

maximization problem or a minimization problem.

A reduction from P1 to P2 respecting the guarantees consists of

1. two mappings: ∗ : I1 → I2 and ∗ : S1 → S2 translating instances and feasible solutions indepen-

dently;

2. four nonnegative I1 × S1 matrices M
(n)
1 , M

(d)
1 , M

(n)
2 , M

(d)
2

subject to the conditions

τ1

[
C1(I1) vald

I1
(s1)− valn

I1
(s1)

]
= τ2

[
C2(I∗

1 ) vald
I∗

1
(s∗1)− valn

I∗
1
(s∗1)

]
M

(n)
1 (I1, s1) + M

(n)
2 (I1, s1)

(35-complete)

vald
I1
(s1) = vald

I∗
1
(s∗1) · M

(d)
1 (I1, s1) + M

(d)
2 (I1, s1) (35-denominator)

τ2 OPT (I∗
1 ) ≤ τ2S2(I∗

1 ) if τ1 OPT (I1) ≤ τ1S1(I1). (35-sound)

As the vald are supposed to have a small proof, the matrices M
(d)
1 and M

(d)
2 are not supposed to signif-

icantly influence the strength of the reduction even with the trivial choice M
(d)
1 = 0 and M

(d)
2 (I1, s1) =

vald
I1
(s1). However, as in the non-fractional case, the complexity of M

(n)
1 and M

(n)
2 could have a major

influence on the strength of the reduction. The reduction theorem is a special case of Theorem 2.22, see

Section 4:

Theorem 4.6. Let P1 and P2 be optimization problems with a reduction from P1 to P2 Then

fcLP(P1, C1, S1) ≤ rkLP

[
M

(n)
2

M
(d)
2

]
+ rkLP

[
M

(n)
1

M
(d)
1

]
+ rk+

[
M

(n)
1

M
(d)
1

]
· fcLP(P2, C2, S2), (36)

fcSDP(P1, C1, S1) ≤ rkSDP

[
M

(n)
2

M
(d)
2

]
+ rkSDP

[
M

(n)
1

M
(d)
1

]
+ rkpsd

[
M

(n)
1

M
(d)
1

]
· fcSDP(P2, C2, S2), (37)

where M
(n)
1 , M

(d)
1 , M

(n)
2 , and M

(d)
2 are the matrices in the reduction as in Definition 4.5.
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5 A simple example: Matching over 3-regular graphs has no small LPs

We now show that the Matching problem even over 3-regular graphs does not admit a small LP formulation.

This has been an open question of various researchers, given that the Matching problem admits polynomial-

size LPs for many classes of sparse graphs, like bounded treewidth, planar (and bounded genus) graphs

[Bar93,Ger91,KKT15]. We also show that for graphs of bounded degree 3, the Matching problem does not

admit fully-polynomial size relaxation schemes, the linear programming equivalent of FPTAS, see [BP15b,

BP15a] for details on these schemes.

Theorem 5.1. Let n ∈ N and 0 ≤ ε < 1. There exists a 3-regular graph D2n with 2n(2n − 1) vertices, so

that

fcLP

(
Matching(D2n),

⌊ |V(H)|
2

⌋
+

1 − ε

2
, OPT (H)

)
= 2Ω(

√
|V(D2n)|), (38)

where H is the placeholder for an instance, and the constant factor in the exponent depends on ε. In particular,

Matching(D2n) is LP-hard with an inapproximability factor of 1 − ε/ |V(D2n)|.

Proof. As usual, the inapproximability factor simply arises as the smallest factor OPT (H)
/
(⌊|V(H)| /2⌋+ (1 − ε)/2)

of the soundness and completeness guarantees.

The proof is a simple application of the reduction framework. In fact, it suffices to use the affine frame-

work of [BPZ15]. We will reduce from the perfect matching problem Matching(K2n) as given in Defini-

tion 2.10.

We first construct our target graph D2n as follows, see Figure 1:

1. For every vertex v of K2n we consider a cycle Cv of length 2n − 1. We denote the vertices of Cv by

[v, u], where v, u ∈ V and v 6= u.

2. The graph D2n is the disjoint union of the Cv for v ∈ V together with the following additional edges:

an edge ([v, u], [u, v]) for every (u, v) ∈ E.

Thus D2n has a total of 2n(2n − 1) vertices. This completes the definition of the graph D2n, which is

Figure 1: The graph D2n for n = 2 in the reduction to 3-regular Matching.

obviously 3-regular. (There is some ambiguity regarding the order of vertices in the cycles Cv, but this does

not affect the argument below.) Now we define the reduction from Matching(K2n) to Matching(D2n).
We first map the instances. Let H be a subgraph of K2n. Its image H∗ under the reduction is the union

of the Cv for v ∈ H together with the edges ([u, v], [v, u]) for {u, v} ∈ E(H).
Now let M be a perfect matching in K2n. We define M∗ by naturally extending it to a perfect matching

in D2n. For every edge e = {u, v} ∈ M in the matching, the edges ([u, v], [v, u]) ∈ D2n form a matching

containing exactly one vertex from every cycle Cv. We choose M to be the unique extension of this matching

to a perfect matching by adding edges from the cycles Cv.
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We obviously have the following relationship between the objective values:

valD2n
H∗ (M∗) = |M∗ ∩ E(H∗)| = |V(H)| · (n − 1) + |M ∩ V(H)|

= |V(H)| · (n − 1) + valK2n
H (M),

(39)

providing immediately the completeness of the reduction:
⌊ |V(H)|

2

⌋
+

1 − ε

2
− valK2n

H (M) =

⌊ |V(H)| · (2n − 1)

2

⌋
+

1 − ε

2
− valD2n

H∗ (M∗)

=

⌊ |V(H∗)|
2

⌋
+

1 − ε

2
− valD2n

H∗ (M∗).
(40)

The soundness of the reduction is immediate, as the soundness guarantee is the optimal value.

It is an interesting open problem, whether there exists a family of bounded-degree graphs Gn on n vertices

so that the lower bound in Theorem 5.1 can be strengthened to 2Ω(n).

6 BalancedSeparator and SparsestCut

The SparsestCut problem is a high-profile problem that received considerable attention in the past. It is

known that SparsestCut with general demands can be approximated within a factor of O(
√

log n log log n)

[ALN08] and that the standard SDP has an integrality gap of (log n)Ω(1) [CKN09]. The BalancedSeparator

problem is a related problem which often arises in connection to the SparsestCut problem (see Definition 2.4).

The main result of this section will be to show that the SparsestCut and BalancedSeparator problems cannot

be approximated well by small LPs and SDPs by using the new reduction mechanism from Section 4.1. In

the case of the SparsestCut problem our result holds even if the supply graph has bounded treewidth, with the

lower bound matching the upper bound in [GTW13] in the LP case. The results are unconditional LP/SDP

analogues to [CKK+06], however for a different regime. In the case of the BalancedSeparator problem our

result holds even if the demand graph has bounded treewidth.

The SparsestCut problem is a fractional optimization problem: we extend Definition 2.3 via

valn
I (s) := ∑

i∈s,j/∈s

c(i, j), vald
I(s) := ∑

i∈s,j/∈s

d(i, j) (41)

for any vertex set s and any instance I with capacity c and demand d.

Theorem 6.1 (LP/SDP hardness for SparsestCut, tw(supply) = O(1)). For any ε ∈ (0, 1) there are ηLP >

0 and ηSDP > 0 such that for every large enough n the following hold

fcLP (SparsestCut(n, 2), ηLP(1 + ε), ηLP (2 − ε)) ≥ nΩ(log n/ log log n),

fcSDP

(
SparsestCut(n, 2), ηSDP

(
1 +

4ε

5

)
, ηSDP

(
16

15
− ε

))
≥ nΩ(log n/ log log n).

In other words SparsestCut(n, 2) is LP-hard with an inapproximability factor of 2 − ε, and SDP-hard with

an inapproximability factor of 16
15 − O(ε).

A complementary reduction proves the hardness of approximating BalancedSeparator where the demand

graph has constant treewidth. Note that we only have an inapproximability result for LPs in this case since

the reduction is from UniqueGames for which we do not yet know of any SDP hardness result.

Theorem 6.2 (LP-hardness for BalancedSeparator). For any constant c1 ≥ 1 there is another constant

c2 ≥ 1 such that for all n there is a demand function d : E(Kn) → R≥0 satisfying tw([n]d) ≤ c2 so that

BalancedSeparator(n, d) is LP-hard with an inapproximability factor of c1.
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6.1 SparsestCut with bounded treewidth supply graph

In this section we show that the SparsestCut problem over supply graphs with treewidth 2 cannot be approx-

imated up to a factor of 2 by any polyonomial sized LP and up to a factor of 16
15 by any polynomial sized SDP,

i.e., Theorem 6.1.

We use the reduction from [GTW13], reducing MaxCut to SparsestCut. Given an instance I of MaxCut(n)
we first construct the instance I∗ on vertex set V = {u, v} ∪ [n] where u and v are two special vertices. Let

us denote the degree of a vertex i in I by deg(i) and let m := 1
2 ∑

n
i=1 deg(i) be the total number of edges

in I . We define the capacity function c : V × V → R≥0 as

c(i, j) :=

{
deg(i)

m if j = u, i 6= v or j = v, i 6= u

0 otherwise.

Note that the supply graph has treewidth at most 2 being a copy of K2,n. The demand function d : V × V →
R≥0 is defined as

d(i, j) :=

{
2
m if {i, j} ∈ E(I)
0 otherwise.

We map a solution s to MaxCut(n) to the cut s∗ := s ∪ {u} of SparsestCut(n + 2, 2).
We remind the reader of the powering operation from [GTW13] to handle the case of unbalanced and non

u-v cuts. It successively adds for every edge of I∗ a copy of itself, scaling both the capacities and demands

by the capacity of the edge. After l rounds, we obtain an instance I∗
l on a fixed set of O(N2l) vertices, and

similarly the cuts s∗ extend naturally to cuts s∗l on these vertices, independent of the instance I . We provide

a formal definition of the powering operation below, for any general instance I1 and general solution s1 of

SparsestCut.

Definition 6.3 (Powering instances). The instances of SparsestCut(N1) are G1 := KN1
with capacity func-

tion c1 and demand function d1. Let u and v be two distinguished vertices of G1. We construct a sequence

{Gl}l of graphs with distinguished vertices u and v recursively as follows. The graph Gl is obtained by re-

placing every edge {x, y} of G1 by a copy of Gl−1. Let us denote by ({x, y}, w) the copy of vertex w of Gl−1.

We identify the vertices ({x, y}, u) and ({x, y}, v) with x and y. There are two ways to do so for every edge

and we can pick either, arbitrarily. Obviously, Gl has Nl := ∑
l−1
i=1 (

N
2 )

i
(N − 2) + 2 many vertices. Given

a base instance I1 of SparsestCut(N1) we will construct a sequence of instances {Il}l of SparsestCut(Nl)
recursively as follows. Let the capacity and demand function of Il−1 be cl−1 and dl−1 respectively. The

capacity of edges not in Gl will be 0. Any edge e of Gl has the unique form {({x, y}, p), ({x, y}, q)} for

an edge {x, y} of G1 and an edge {p, q} of Gl−1. We define cl(e) := cl−1(p, q) · c1(x, y). If e is not the

edge {x, y} then let dl(e) := dl−1(p, q) · c1(x, y). The edge {x, y} takes the demand from G1 in addition,

therefore we define dl(x, y) := dl−1(u, v) · c1(x, y) + d1(x, y).

We recall here the following easy observation that relates the treewidth of the supply graph of I1 to the

treewidth of the supply graph of Il.

Lemma 6.4 ([GTW13, Observation 4.4]). If the treewidth of the supply graph of I1 is at most k, then the

treewidth of the supply graph of Il is also at most k.

Corresponding to powering instances, we can also recursively construct solutions to SparsestCut(Nl)
starting from a solution s1 of SparsestCut(N1).
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Definition 6.5 (Powering solutions separating u and v). Given a base solution s1 of SparsestCut(N1) we

construct a solution sl for SparsestCut(Nl) recursively as follows. The solution sl coincides with s1 on the

vertices of G1. On the copy of Gl−1 for an edge {x, y} of G1 we define sl as follows. If s1(x) = s1(y) then

let sl(({x, y}, z)) := s1(x) = s1(y) for all vertex z of Gl−1, so as sl cuts no edges in the copy of Gl−1. If

s1(x) 6= s1(y) then we define sl so that the edges it cuts in the {x, y}-copy of Gl−1 are exactly the copies

of edges cut by sl−1 in Gl−1. More precisely, let ({x, y}, u) be identified with x and ({x, y}, v) with y. If

s1(x) = sl−1(u) then we let sl({x, y}, z) := sl−1(z), otherwise we let sl({x, y}, z) := −sl−1(z).

We now define the actual reduction. We construct a sequence of instances {I∗
1 , I∗

2 , . . . , I∗
l } where I∗

l
is obtained as in Definition 6.3 by applying the powering operation to the base instance I∗

1 = I∗ and where

N1 := n + 2, c1 := c and d1 := d. Note that by Lemma 6.4, the treewidth of the supply graph of I∗
l is at

most 2. We also construct a sequence of solutions {s∗1 , . . . , s∗l } where s∗l is obtained as in Definition 6.5 by

applying the powering operation to the base solution s∗1 = s∗. The final reduction maps the instance I and

solution s of MaxCut(n) to the instance I∗
l and solution s∗l of SparsestCut(Nl , 2) respectively. Completeness

and soundness follows from [GTW13].

Lemma 6.6 (Completeness, [GTW13, Claim 4.2]). Let I be an instance and s be a solution of MaxCut(n),
and let their image be the instance I∗

l and solution s∗l of SparsestCut(Nl , 2), respectively. Then the following

holds

valn
I∗

l
(s∗l ) = 1, vald

I∗
l
(s∗l ) = l valI (s).

Lemma 6.7 (Soundness, [GTW13, Lemmas 4.3 and 4.7]). Let I be an instance of MaxCut(n) and let I∗
l be

the instance of SparsestCut(Nl , 2) it is mapped to. Then the instance I∗
l has the following lower bound on

its optimum (the number of edges of I scales the MaxCut value between 0 and 1).

OPT (I∗
l ) ≥

1

1 + (l − 1)OPT (I) / |E(I)| .

Using the reduction framework of Section 4.1 we now prove the main theorem of this section about the

LP and SDP inapproximability of SparsestCut.

Proof of Theorem 6.1. This is a simple application of Lemmas 6.6 and 6.7 using Theorem 4.6 with matrices

M
(n)
1 (I1, s1) := C1(I1), M

(n)
2 (I1, s1) := 0, M

(d)
1 (I1, s1) := 0, M

(d)
2 (I1, s1) := 1. Hardness of the base

problem MaxCut is provided by Theorems 2.29 and 7.1, and leads to ηLP = 5ε
3−ε and ηSDP = 3ε

1−4ε .

6.2 BalancedSeparator with bounded-treewidth demand graph

In this section we show that the BalancedSeparator problem cannot be approximated within any constant

factor with small LPs even when the demand graph has constant treewidth:

Theorem 6.8 (LP-hardness for BalancedSeparator). (Theorem 6.2 restated) For any constant c1 ≥ 1 there

is another constant c2 ≥ 1 such that for all n there is a demand function d : E(Kn) → R≥0 satisfying

tw([n]d) ≤ c2 so that BalancedSeparator(n, d) is LP-hard with an inapproximability factor of c1.

We will reduce the UniqueGames(n, q) problem to the BalancedSeparator(2q n, d) problem for a fixed

demand function d to be defined below. We reuse the reduction from [KV15, Section 11.1]. A bijection

π : [q] → [q] acts on strings {−1, 1}q in the natural way, i.e., π(x)i := xπ(i). For any parameter p ∈ [0, 1],
we denote by x ∈p {−1, 1}q a random string where each coordinate xi of x is −1 with probability p and

1 with probability 1 − p. For a string x ∈ {−1, 1}q we define x+ := |{i | xi = 1}| and x− := |{i |
xi = −1}|. For a pair of strings x, y ∈ {−1, 1}q we denote by xy the string in {−1, 1}q formed by the
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coordinate-wise product of x and y, i.e., (xy)i := xiyi for i ∈ [n]. We are now ready to proceed with the

reduction.

Given an instance I = I(w, π) of UniqueGames(n, q)we construct the instance I∗ of BalancedSeparator(2q n,

d). Let ε be a parameter to be chosen later. The vertex set V of I∗ is defined as V := {(x, i) | i ∈ [n], x ∈ {−1, 1}q}
so that |V| = 2qn. Let W := ∑{i,j}∈E(Kn) w(i, j) denote the total weight of the UniqueGames(n, q) instance

I . For every i, j ∈ [n] and x, y ∈ {−1, 1}q there is an undirected edge {(x, i), (y, j)} in I∗ of capacity

c((x, i), (y, j)) which is defined as

c ((x, i), (y, j)) :=
w(i, j)ε(

πi,j(x)y)−(1 − ε)(
πi,j(x)y)

+

2qW
.

The demand function d ((x, i), (y, j)) is defined for an unordered pair of vertices {(x, i), (y, j)} as

d ((x, i), (y, j)) :=

{
1

22q−1n
if i = j

0 otherwise

so that the total demand D is 1. Note that the demand graph [2qn]d is a disjoint of union of cliques of size 2q

and so tw([2qn]d) = 2q − 1 = O(1). Given a solution s of UniqueGames(n, q) we map it to the solution

s∗ of BalancedSeparator(2q n, d) defined as s∗ :=
{
(x, i) | xs(i) = 1

}
. Note that the total demand cut by

s∗ is 1
2 = D

2 >
D
4 since for every solution s(i) ∈ [q] there are exactly 2q−1 strings in {−1, 1}q that have

their s(i)th bit set to 1 and 2q−1 strings have their s(i)th bit set to −1. Thus s∗ is a valid solution to the

BalancedSeparator(2q n, d) problem and moreover is independent of the instance I∗. We are now ready to

show that this reduction satisfies completeness.

Lemma 6.9 (Completeness). Let I and s be an instance and a solution respectively of UniqueGames(n, q).
Let I∗ and s∗ be the instance and solution of BalancedSeparator(2q n, d) obtained from the reduction. Then

1

2
− valI∗(s∗) =

(
1

2
− ε

)
valI (s)

Proof. Let us sample a random edge (i, j) from the UniqueGames(n, q) instance I with probabilities pro-

portional to w(i, j) (i.e., P [i = i, j = j] = w(i, j)/W), and independently sample x ∈1/2 {−1, 1}q and

z ∈ε {−1, 1}q . Let y := πi,j(x)z.

The claim follows by computing the probability of xs(i) = ys(j) in two different ways.

On the one hand, for a fixed edge (i, j) of I , depending on whether the edge is correctly labelled, we

have

P

[
xs(i) = ys(j)

∣∣∣ i = i, j = j, s(i) = πi,j(s(j))
]
= P

[
zs(j) = 1

∣∣∣ i = i, j = j, s(i) = πi,j(s(j))
]
= 1 − ε,

(42)

P

[
xs(i) = ys(j)

∣∣∣ i = i, j = j, s(i) 6= πi,j(s(j))
]
= P

[
xs(i) = ys(j)

∣∣∣ i = i, j = j, s(i) 6= πi,j(s(j))
]
=

1

2
.

(43)

Note that in the latter case xs(i) and ys(j) are independent uniform binary variables. Hence

P

[
s(i) = πi,j(s(j)), xs(i) = ys(j)

]
= (1 − ε) valI(s), (44)

P

[
s(i) 6= πi,j(s(j)), xs(i) = ys(j)

]
= P

[
xs(i) = ys(j)

∣∣∣ i = i, j = j, s(i) 6= πi,j(s(j))
]

(45)

=
1 − valI (s)

2
, (46)
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leading to

P

[
xs(i) = ys(j)

]
=

1

2
+

(
1

2
− ε

)
valI(s). (47)

On the other hand, note that ((x, i), (y, j)) is a random edge from I∗ with distribution given by the

weights c ((x, i), (y, j)), (i.e., P [x = x, i = i, y = y, j = j] = c((x, i), (y, j))). Recall that the cut s∗ cuts

an edge ((x, i), (y, j)) if and only if xs(i) 6= ys(j). It follows that

P

[
xs(i) = ys(j)

]
= 1 − valI∗(s∗). (48)

The claim now follows from Eqs. (47) and (48).

Soundness of the reduction from UniqueGames to BalancedSeparator is a reformulation of [KV15, The-

orem 11.2] without PCP verifiers:

Lemma 6.10 (Soundness). (Theorem 11.2 [KV15]) For every t ∈
(

1
2 , 1
)

there exists a constant bt > 0
such that the following holds. Let ε > 0 be sufficiently small and let I = I(w, π) be an instance of

UniqueGames(n, q) and let I∗ be the instance of BalancedSeparator(2q n, d) as defined in Section 6.2. If

OPT (I) < 2−O(1/ε2) then OPT (I∗) > btε
t.

We are now ready to prove the main theorem of this section: that no polynomial sized linear program

can approximate the BalancedSeparator problem up to a constant factor.

Theorem 6.11. For every q ≥ 2, δ > 0, t ∈
(

1
2 , 1
)

and k ≥ 1 there exists a constant c > 0 and a demand

function d : E(Kn) → R≥0 for every large enough n, such that tw([n]d) = 2q − 1 and

fcLP

(
BalancedSeparator(2q n, d), δ + (log q)−1/2, (log q)−t/2

)
≥ cnk.

Proof. This statement follows immediately with Lemmas 6.9 and 6.10, together with Theorem 3.2 and Theo-

rem 2.31 with C1 = 1− δ, S1 = 1
q + δ, C2 = δ+ (log q)−1/2 and S2 = (log q)−t/2

. Note that the matrices

as in Theorem 3.2 are chosen as

M1(I , s) =
2

1 − 2ε
, M2(I , s) =

1 + ε

1 − 2ε
δ

with ε = (log q)−1/2
. Since M1 and M2 are constant nonnegative matrices rkLP M1 = rkLP M2 = 1.

Finally, we can prove Theorem 6.2 via choosing the right parameters in Theorem 6.11.

Proof of Theorem 6.2. Straightforward from Theorem 6.11 by choosing t = 3
4 , δ = (log q)−1/2

and q =

2(2c1)
8

so that the treewidth of the demand graph is bounded by c2 = 2q − 1 = 22(2c1)
8

− 1.

7 SDP hardness of MaxCut

We now show that MaxCut cannot be approximated via small SDPs within a factor of 15/16 + ε. As approxi-

mation guarantees for an instance graph H, we shall use C(H) = α |E(H)| and S(H) = β |E(H)| for some

constants α and β, and for brevity we will only write α and β.

Theorem 7.1. For any δ, ε > 0 there are infinitely many n such that there is a graph G with n vertices and

fcSDP

(
MaxCut(G),

4

5
− ε,

3

4
+ δ

)
= nΩ(log n/ log log n). (49)
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Proof. Recall [Sch08, Theorem 4.5] applied to the predicate P = (x1 + x2 + x3 = 0) (mod 2): For any

γ, δ > 0, and large enough m, there is an instance I of Max-3-XOR/0 on m variables with OPT (I) ≤ 1/2+
δ but having a Lasserre solution after Ω(m1−γ) rounds satisfying all the clauses. By [LRS14, Theorem 6.4],

we obtain that for any δ, ε > 0 for infinitely many m

fcSDP

(
Max-3-XOR/0, 1 − ε,

1

2
+ δ

)
= mΩ(log m/ log log m). (50)

We reuse the reduction from Max-3-XOR/0 to MaxCut in [TSSW00, Lemma 4.2]. Let x1, . . . , xm be the

variables for Max-3-XOR/0. For every possible clause C = (xi + xj + xk = 0), we shall use the gadget

graph HC from [TSSW00, Figure 4.1], reproduced in Figure 2. We shall use the graph G, which is the union

of all the gadgets H(C) for all possible clauses. The vertices 0 and x1, . . . , xm are shared by the gadgets, the

other vertices are unique to each gadget.

0

xi

xj

xk

Figure 2: The gadget HC for the clause C = (xi + xj + xk = 0) in the reduction from Max-3-XOR/0 to MaxCut. Solid vertices

are shared by gadgets, the empty ones are local to the gadget.

A Max-3-XOR/0 instance I = {C1, . . . , Cl} is mapped to the union GI =
⋃

i H(Ci) of the gadgets of

the clauses Ci in I , which is an induced subgraph of G.

A feasible solution, i.e., an assignment s : {x1, . . . , xm} → {0, 1} is mapped to a vertex set s∗ satisfying

the following conditions: (1) xi ∈ s∗ if and only if s(xi) = 1, (2) 0 /∈ s∗, and (3) on every gadget H(C) the

set s∗ cuts the maximal number of edges subject to the previous two conditions. It is easy to see that s∗ cuts

16 out of the 20 edges of every H(C) if s satisfies C, and it cuts 14 edges if s does not satisfy C. Therefore

val
MaxCut(G)
GI

(s∗) =
14 + 2 valMax-3-XOR/0

I (s)

20
, (51)

which by rearranging provides the completeness of the reduction:

1 − ε − valMax-3-XOR/0
I (s) = 10

[
4

5
− ε

10
− val

MaxCut(G)
GI

(s∗)
]

. (52)

It also follows from the construction that val
MaxCut(G)
GI

achieves its maximum on a vertex set of the form

s∗: given a vertex set X of G, if 0 /∈ X then let let s(xi) = 1 if xi ∈ X, and s(xi) = 0 otherwise. If

xi ∈ X then we do it the other way around: s(xi) = 1 if and only if xi /∈ X. This definition makes s∗

on the vertices 0, x1, . . . , xm either agree with X (if 0 /∈ X) or to be complement of X (if 0 ∈ X). Then

val
MaxCut(G)
GI

(s∗) ≥ val
MaxCut(G)
GI

(X) by construction. This means

max val
MaxCut(G)
GI

=
14 + 2 max valMax-3-XOR/0

I
20

. (53)
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Thus if max valMax-3-XOR/0
I ≤ 1/2 + δ then max val

MaxCut(G)
GI

≤ 3/4 + δ/10. Therefore we obtain a

reduction with guarantees CMaxCut(G) = 4/5 − ε/10, SMaxCut(G) = 3/4 + δ/10, CMax-3-XOR/0 = 1 − ε,

SMax-3-XOR/0 = 1/2 + δ, proving

fcSDP

(
MaxCut(G),

4

5
− ε

10
,

3

4
+

δ

10

)
≥ fcSDP

(
Max-3-XOR/0, 1 − ε,

1

2
+ δ

)

= mΩ(log m/ log log m) = nΩ(log n/ log log n),

(54)

where n = O(m3) is the number of vertices of G.

8 Lasserre relaxation is suboptimal for IndependentSet(G)

Applying reductions within Lasserre hierarchy formulations, we will now derive a new lower bound on the

Lasserre integrality gap for the IndependentSet problem, establishing that the Lasserre hierarchy is subopti-

mal: there exists a linear-sized LP formulation for the IndependentSet problem with approximation guarantee

2
√

n, whereas there exists a family of graphs with Lasserre integrality gap n1−γ after Ω(nγ) rounds for ar-

bitrary small γ. While this is expected assuming P vs. NP, our result is unconditional. It also complements

previous integrality gaps, like n/2O(
√

log n log log n) for 2Θ(
√

log n log log n) rounds in [Tul09], and others in

[AT11], e.g., Θ(
√

n) rounds of Lasserre are required for deriving the exact optimum.

For IndependentSet(G), the base functions of the Lasserre hierarchy are the indicator functions Yv that

a vertex v is contained in a feasible solution (which is an independent set), i.e., Yv(I) := χ(v ∈ I).

Theorem 8.1. For any small enough γ > 0 there are infinitely many n, such that there is a graph G with n
vertices with the largest independent set of G having size α(G) = O(nγ) but there is a Ω(nγ)-round Lasserre

solution of size Θ(n), i.e., the integrality gap is n1−γ. However fcLP(IndependentSet(G), 2
√

n) ≤ 3n + 1.

Proof. The statement fcLP(IndependentSet(G), 2
√

n) ≤ 3n + 1 is [BFPS15, Lemma 5.2]. For the integral-

ity gap construction, we apply Theorem 2.30 with the following choice of parameters. We shall use N for the

number of variables, as n will be the number of vertices of G. The parameters q and ε are fixed to arbitrary

values. The parameter κ is chosen close to 1, and δ is chosen to be a large constant; the exact values will be

determined later. The number of variables N will vary, but will be large enough depending on the parameters

already chosen. The parameters β and k are chosen so that the required lower and upper bounds on β are

approximately the same:

k :=

⌊
(1 − κ)(δ − 1) log N − Θ(δ log log N)

log q

⌋

=
(1 − κ)(δ − 1) log N − Θ(δ log log N)

log q
= Θ(log N)

(55)

β :=
1

N

⌈
6Nqk ln q

ε2

⌉
= qk+o(1) = N(1−κ)(δ−1)−Θ(δ log log N/ log N). (56)

Thus β ≥ (6qk ln q)/ε2, and for large enough N, we also have

β ≤ N(1−κ)(δ−1)/(108(δ−1)k2δ+0.75).

(The role of the term Θ(δ log log N) in k is ensuring this upper bound. Rounding ensures that k and βN
are integers.) By the theorem, there is a k-CSP I on N variables x1, . . . , xN and clauses C1, . . . , Cm coming
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from a predicate P such that OPT (I) = O((1 + ε)/qk) and there is a pseudoexpectation ẼI of degree at

least ηN/16 with ẼI (valI) = 1. Here

m := βN = N(1−κ±o(1))(δ−1), (57)

ηN/16 = Nκ±o(1). (58)

Let a denote the number of satisfying partial assignments of P. A uniformly random assignment satisfies

an a/qk fraction of the clauses in expectation, therefore a/qk ≤ OPT (I) = O((1 + ε)/qk), i.e., a =
Θ(1 + ε).

Let G be the conflict graph of I , i.e., the vertices of G are pairs (i, s) with i ∈ [m] and s a satisfying partial

assignment s of clause Ci with domain the set of free variables of Ci. Two pairs (i, s) and (j, t) assignments

are adjacent as vertices of G if and only if the partial assignments s and t conflict, i.e., s(xj) 6= t(xj) for

some variable xj on which both s and t are defined. Thus G has

n := am = N(1−κ)(δ−1)±o(1) (59)

vertices.

Given an assignment t : {x1, . . . , xN} → [q] we define the independent set t∗ of G as the set of partial

assignments s compatible with t. (Obviously, t∗ is really an independent set.) This provides a mapping ∗ from

the set of assignments of the x1, . . . , xN to the set of independent set of G. Clearly, valG(t
∗) = m valI(t),

as t∗ contains one vertex per clause satisfied by t. It is easy to see that every independent set I of G is a

subset of some t∗, and hence

OPT (G) = m OPT (I) = mO((1 + ε)/qk) = O(N) = O(n1/[(1−κ)(δ−1)±o(1)]). (60)

We define a pseudoexpectation ẼG of degree ηN/16k for G as a composition of ∗ and the pseudoexpec-

tation ẼI of the CSP instance I :

ẼG(F) := ẼI (F ◦ ∗). (61)

Recall that Xxj=b is the indicator that b is assigned to the variable xj, and Y(i,s) is the indicator that (i, s)

is part of the independent set. Note that for s ∈ V(G), we have Y(i,s) ◦ ∗ = ∏xj∈dom s Xxj=s(xj) is of

degree at most k, and therefore deg(F ◦ ∗) ≤ k deg F, showing that ẼG is well-defined. Clearly ẼG is a

pseudo-expectation, as so is ẼI .

Now, letting s ∼ Ci denote that s is a satisfying partial assignment for Ci:

valG ◦∗ = ∑
(i,s)∈V(G)

Y(i,s) ◦ ∗ = ∑
i∈[m]

∑
s∼Ci

∏
xj∈dom s

Xxj=s(xj) = ∑
i∈[m]

Ci = m valI , (62)

and hence

ẼG(valG) = m · ẼI (valI ) = m = n/a = Θ(n), (63)

showing SoSηN/16k(G) ≥ m. The number of rounds is

ηN/16k = n[κ±o(1)]/[(1−κ)(δ−1)±o(1)]. (64)

From Equations (60), (63) and (64) the theorem follows with an appropriate choice of κ and δ depending on

γ.
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9 From Sherali–Adams reductions to general LP reductions

There are several reductions between Sherali–Adams solutions of problems in the literature. Most of these

reductions do not make essential use of the Sherali–Adams hierarchy. The reduction mechanism introduced

in Section 3 allows us to directly execute them in the linear programming framework. As an example, we

extend the Sherali–Adams reductions from UniqueGames to various kinds of CSPs from [BFPS15] to the

general LP case. These CSPs are used in [BFPS15] as intermediate problems for reducing to non-uniform

VertexCover and Q-VertexCover, hence composing the reductions here with the ones in [BFPS15] yield direct

reductions from UniqueGames to VertexCover and Q-VertexCover.

9.1 Reducing UniqueGames to 1F-CSP

We demonstrate the generalization to LP reductions by transforming the Sherali–Adams reduction from

UniqueGames to 1F-CSP in [BFPS15].

Definition 9.1. A one-free bit CSP (1F-CSP for short) is a CSP where every clause has exactly two satisfying

assignments over its free variables.

Theorem 9.2. With small numbers η, ε, δ > 0 positive integers t, q, ∆ as in [BFPS15, Lemma 3.4], we have

for any 0 < ζ < 1 and n large enough

fcLP(UniqueGames∆(n, q), 1 − ζ, δ)− n∆tqt+1 ≤ fcLP(1F-CSP, (1 − ε)(1 − ζt), η) (65)

Proof. Let V = {0, 1} × [n] denote the common set of vertices of all the instances of UniqueGames∆(n, q).
The variables of 1F-CSP are chosen to be all the 〈v, z〉 for v ∈ V and z ∈ {−1,+1}[q]. (Here 〈v, z〉 stands

for the pair of v and z.) Given a UniqueGames∆(n, q) instance (G, w, π), we define an instance (G, w, π)∗

of 1F-CSP as follows.

Let v be any vertex of G, and let u1, . . . , ut be vertices adjacent to v (allowing the same vertex to appear

multiple times). Furthermore, let x ∈ {−1,+1}[q] and let S be a subset of [q] of size (1− ε)q. We introduce

the clause C(v, u1, . . . , ut, x, S) as follows, which is an approximate test for the edges {v, u1}, . . . , {v, ut}
to be correctly labelled.

C(v, u1, . . . , ut, x, S) := ∃b ∈ {−1,+1} ∀i ∈ [t] ∀z ∈ {−1,+1}[q]
{
〈ui, z〉 = b if πv,ui

(z) ↾ S = x ↾ S,

〈ui, z〉 = −b if πv,ui
(z) ↾ S = −x ↾ S.

(66)

We will define a probability distribution on clauses, and the weight of a clause will be its probability.

First we define a probability distribution µ1 on edges of G proportional to the weights. More precisely,

we define a distribution on pairs of adjacent vertices (v, u):

P [{v, u} = {v, u}] :=
w(v, u)

∑i,j w(i, j)
, (67)

therefore for the objective of UniqueGames∆(n, q) we obtain

val
UniqueGames∆(n,q)
(G,w,π)

(s) = E [s(v) = πv,u(s(u))] (68)

Let µv
1 denote the marginal of v in the distribution µ1, and µ

u|v
1 denote the conditional distribution of u given

v = v.
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Now we define a distribution µt on vertices v, u1, . . . , ut such that v has the marginal distribution µv
1,

and given v = v, the vertices u1, . . . , ut are chosen mutually independently, each with the conditional

distribution µ
u|v
1 . Thereby every pair (v, ui) has marginal distribution µ1.

Finally, x ∈ {−1,+1}[q] and S ⊆ [q] are chosen randomly and independently of each other and the

vertices v, u1, . . . , ut, subject to the restriction |S| = (1 − ε)q on the size of S. This finishes the definition

of the distribution of clauses, in particular,

val1F-CSP
(G,w,π)∗(p) = E [C(v, u1, . . . , ut, x, S)[p]] (69)

for all evaluation p.

Feasible solutions are translated via

s∗(〈v, z〉) := zs(v). (70)

Soundness of the reduction, i.e., (32-sound) follows from [BFPS15, Lemma 3.4].

Completeness, i.e., (32-complete), easily follows from an extension of the argument in [BFPS15, Lemma 3.5].

The main estimation comes from the fact that the clause C(v, u1, . . . , ut, x, S) is satisfied if the edges {v, u1},

. . . , {v, ut} are all correctly labeled and the label s(v) of v lies in S:

C(v, u1, . . . , ut, x, S)[s∗] ≥ χ[s(v) = πv,ui
(s(ui)), ∀i ∈ [t]; s(v) ∈ S]. (71)

Let us fix the vertices v, u1, . . . , uk and take expectation over x and S:

Ex,S [C(v, u1, . . . , ut, x, S)[s∗]] ≥ (1 − ε)χ[s(v) = πv,ui
(s(ui)), ∀i ∈ [t]]

≥ (1 − ε)

(

∑
i∈[t]

χ[s(v) = πv,ui
(s(ui))]− t + 1

)
.

(72)

We build a nonnegative matrix M out of the difference of the two sides of the inequality. The difference

depends only partly on s: namely, only on the values of s on the vertices v, u1, . . . , ut. Therefore we also

build a smaller variant M̃ of M making this dependence explicit, which will be the key to establish low

LP-rank later:

M̃v,u1,...,ut((G, w, π), s ↾ {v, u1, . . . , ut}) = Mv,u1,...,ut((G, w, π), s)

:= Ex,S [C(v, u1, . . . , ut, x, S)[s∗]]− (1 − ε)

(

∑
i∈[t]

χ[s(v) = πv,ui
(s(ui))]− t + 1

)

≥ 0.

(73)

Taking expectation provides

val1F-CSP
(G,w,π)∗(s

∗) = E [C(v, u1, . . . , ut, x, S)[s∗]]

= (1 − ε)

(

∑
i∈[t]

P [s(v) = πv,ui
(s(ui))]− t + 1

)
+ E [Mv,u1,...,ut((G, w, π), s)]

= (1 − ε)(t val
UniqueGames(n,q)
(G,w,π)

(s)− t + 1) + E [Mv,u1,...,ut((G, w, π), s)] ,

(74)

and hence after rearranging we obtain, no matter what ζ is

1 − ζ − val
UniqueGames(n,q)
(G,w,π)

(s) =
(1 − ε)(1 − ζt) − val1F-CSP

(G,w,π)∗(s
∗) + E [Mv,u1,...,ut((G, w, π), s)]

t(1 − ε)
. (75)
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(Note that Equation (75) is not affine due to the last term in the numerator.)

Here the last term in the numerator is the matrix M2 in the reduction Definition 3.1 (up to the constant

factor of the denominator). We show that it has low LP rank:

E [Mv,u1,...,ut((G, w, π), s)]

= ∑
v,u1,...,ut

f : {v,u1,...,ut}→[q]

(
P [v = v, u1 = u1, . . . , ut = ut] M̃v,u1,...,ut((G, w, π), f )

)

· χ( f = s ↾ {v, u1, . . . , ut}), (76)

i.e., the expectation can be written as the sum of at most n∆tqt+1 nonnegative rank-1 factors. Therefore the

claim follows from Theorem 3.2.

9.2 Reducing UniqueGames to Q- 6=-CSP

Definition 9.3. A not equal CSP (Q- 6=-CSP for short) is a CSP with value set ZQ, the additive group of

integers modulo Q, where every clause has the form
∧k

i=1 xi 6= ai for some constants ai.

Theorem 9.4. With small numbers η, ε, δ > 0 positive integers t, q, ∆ as in [BFPS15, Lemma 3.4], we have

for any 0 < ζ < 1 and n large enough

fcLP(UniqueGames∆(n, q), 1 − ζ, δ)− n∆tqt+1 ≤ fcLP(Q- 6=-CSP, (1 − ε)(1 − 1/q)(1 − ζt), η) (77)

Proof. The proof is similar to that of Theorem 9.2, with the value set {−1,+1} consistently replaced with

ZQ. Let V = {0, 1}× [n] again denote the common set of vertices of all the instances of UniqueGames(n, q).

The variables of Q- 6=-CSP are chosen to be all the 〈v, z〉 for v ∈ V and z ∈ Z
[q]
Q .

To simplify the argument, we now introduce additional hard constraints, i.e., which have to be satisfied

by any assignment. This can be done without loss of generality as these hard constraints can be eliminated by

using only one variable from every coset of ZQ1 and substituting out the other variables. The resulting CSP

will be still a not equal CSP, however this would break the natural symmetry of the structure. Let 1 ∈ Z
[q]
Q

denote the element with all coordinates 1. We introduce the hard constraints

〈v, z + λ1〉 = 〈v, z〉+ λ (λ ∈ ZQ). (78)

Given a UniqueGames∆(n, q) instance (G, w, π), we now define an instance (G, w, π)∗ of Q- 6=-CSP

as follows. Let v be any vertex of G, and let u1, . . . , ut be vertices adjacent to v (allowing the same vertex to

appear multiple times). Furthermore, let x ∈ Z
[q]
Q and let S be a subset of [q] of size (1 − ε)q. We introduce

the clause C(v, u1, . . . , ut, x, S) as follows, which is once more an approximate test for the edges {v, u1},

. . . , {v, ut} to be correctly labeled.

C(v, u1, . . . , ut, x, S) := ∀i ∈ [t]∀z ∈ Z
[q]
Q

〈ui, z〉 6= 0 if πv,ui
(z) ↾ S = x ↾ S.

(79)

The weight of a clause is defined as its probability using the same distribution on vertices v, u1, . . . , ut as

in Theorem 9.2, and randomly and independently chosen x ∈ Z
[q]
Q and S ⊆ [q] with |S| = ε[q]. This is the

analogue of the distribution in Theorem 9.2, in particular,

val
UniqueGames∆(n,q)
(G,w,π)

(s) = E [s(v) = πv,ui
(s(ui))] (i ∈ [t]), (80)

val1F-CSP
(G,w,π)∗[p] = E [C(v, u1, . . . , ut, x, S)[p]] . (81)
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Feasible solutions are translated via

s∗(〈v, z〉) := zs(v), (82)

which clearly satisfy the hard constraints (78).

The reduction is sound by [BFPS15, Lemma 6.9]. For completeness, we follow a similar approach to

[BFPS15, Lemma 6.10] and of Theorem 9.2. The starting point is that given a labeling s of (G, w, π) a

clause C(v, u1, . . . , ut, x, S) is satisfied if the edges {v, u1}, . . . , {v, ut} are correctly labeled, s(v) ∈ S, and

xs(v) 6= 0:

C(v, u1, . . . , ut, x, S)[s∗] ≥ χ[s(v) = πv,ui
(s(ui)), ∀i ∈ [t]; xs(v) 6= 0; s(v) ∈ S]. (83)

Fixing the vertices v, u1, . . . , uk and taking expectation over x and S yields:

Ex,S [C(v, u1, . . . , ut, x, S)[s∗]] ≥ (1 − ε)(1 − 1/q)χ[s(v) = πv,ui
(s(ui)), ∀i ∈ [t]], (84)

where the term (1 − 1/q) arises as the probability of xs(v) 6= 0. The rest of the proof is identical to that of

Theorem 9.2, with 1 − ε replaced with (1 − ε)(1 − 1/q).

10 A small uniform LP over graphs with bounded treewidth

Complementing the results from before, we now present a Sherali–Adams like uniform LP formulation that

solves Matching, IndependentSet, and VertexCover over graphs of bounded treewidth. The linear program

has size roughly O(nk), where n is the number of vertices and k is the upper bound on treewidth. Here

uniform means that the same linear program is used for all graphs of bounded treewidth with the same

number of vertices, in particular, the graph and weighting are encoded solely in the objective function we

optimize. This complements recent work [KKT15], which provides a linear program of linear size for a

fixed graph for weighted versions of problems expressible in monadic second order logic. Our approach is

also in some sense complementary to [BM15] where small approximate LP formulations are obtained for

problems where the intersection graph of the constraints has bounded treewidth; here the underlying graph

of the problem is of bounded treewidth.

Bounded treewidth graphs are of interest, as many NP-hard problems can be solved in polynomial time

when restricting to graphs of bounded treewidth. The celebrated Courcelle’s Theorem [Cou90] states that any

graph property definable by a monadic second order formula can be decided for bounded treewidth graphs in

time linear in the size of the graph (but not necessarily polynomial in the treewidth or the size of the formula).

The usual approach to problems for graphs of bounded treewidth is to use dynamic programming to select

and patch together the best partial solutions defined on small portions of the graph. Here we model this in

a linear program, with the unique feature that it does not depend on any actual tree decomposition. We call

problems admissible which have the necessary additional structure, treating partial solutions and restrictions

in an abstract way.

Definition 10.1 (Admissible problems). Let n and k be positive integers. Let P = (S ,Gn,k, val) be an

optimization problem with instances the set Gn,k of all graphs G with V(G) ⊆ [n] and tw(G) ≤ k. The

problem P is admissible if

1. Partial feasible solutions. There is a set S ⊆ S of partial feasible solutions and a restriction operation

↾ mapping any partial solution s and a vertex set X ⊆ [n] to a partial solution s ↾ X. We assume the

identity (s ↾ X) ↾ Y = s ↾ Y for all vertex sets X, Y ⊆ V(G) with Y ⊆ X and partial solutions

s ∈ S. Let SX := {s ↾ X | s ∈ S} denote the set of restriction of all feasible solutions to X.
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2. Locality. The measure valG(s) depends only on G and s ↾ V(G) for a graph G ∈ Gn,k and a solution

s ∈ S .

3. Gluing. For any cover V(G) = V1 ∪ · · · ∪ Vl satisfying E[G] = E[V1]∪ · · · ∪ E[Vl] and any feasible

solutions σ1 ∈ SV1
, . . . , σl ∈ SVl

satisfying

σi ↾ Vi ∩ Vj = σj ↾ Vi ∩ Vj for all i 6= j, (85)

there is a unique feasible solution s with s ↾ Vi = σi for all i.

4. Decomposition. Let T be an arbitrary tree decomposition of a graph G with tw(G) ≤ k with bags Bv

at nodes v ∈ T. Let t ∈ V(T) be an arbitrary node of T. Let T1, . . . , Tm be the components of T \ t
and ti ∈ V(Ti) be the unique node ti in T connected to t. Clearly, every Ti is a tree decomposition of

an induced subgraph Gi = G[
⋃

p∈Ti
Bp] of G. Moreover, Bt ∩ V(Gi) = Bt ∩ Bti

.

We require the existence of a (not necessarily nonnegative) function corrG,T,t such that for all feasible

solution s
valG(s) = corrG,T,t(s ↾ Bt) +∑

i

valGi
(s). (86)

The decomposition property forms the basis of the mentioned dynamic approach, which together with the

gluing property allows the solutions to be built up from the best compatible pieces. The role of the locality

property is to ensure that the value function is independent of irrelevant parts of the feasible solutions. In

particular, (86) generalizes for the optima, when the restriction σ of the solution to Bt is fixed, this is also the

basis of the dynamic programming approach mentioned earlier:

Lemma 10.2. For any admissible problem P , with the assumption and notation of the decomposition prop-

erty we have for any σ ∈ SBt

OPT
s : s↾Bt=σ

(valG(s)) = corrG,T,t(σ) +∑
i

OPT
s : s↾Bti

∩Bt=σ↾Bti
∩Bt

(valGi
(s)) . (87)

Proof. For simplicity, we prove this only for maximization problems, as the proof for minimization problems

is similar. By (86), the left-hand side is clearly less than or equal to the right-hand side. To show equality let

si := arg maxs : s↾Bt∩Bti
=σ↾Bt∩Bti

valGi
(s)

be maximizers. We apply the gluing property for the si ↾ V(Gi) and σ.

First we check that the conditions for the property are satisfied. By the properties of a tree decomposition,

we have V(G) = Bt ∪
⋃

i V(Gi) and E[V(G)] = E[Bt] ∪
⋃

i E[V(Gi)]. Moreover, Bt ∩ V(Gi) = Bt ∩ Bti
,

and hence si ↾ (Bt ∩ V(Gi)) = σ ↾ (Bt ∩ V(Gi)). Again by the properties of tree decomposition, for i 6= j,
it holds V(Gi) ∩ V(Gj) ⊆ Bt, and hence

si ↾ (V(Gi) ∩ V(Gj)) = si ↾ (Bt ∩ (V(Gi)) ∩ V(Gj))

= σ ↾ (Bt ∩ V(Gi)) ∩ V(Gj) = σ ↾ (V(Gi) ∩ V(Gj)).
(88)

In particular, si ↾ (V(Gi) ∩ V(Gj)) = sj ↾ (V(Gi) ∩ V(Gj)).
Therefore by the gluing property, there is a unique feasible solution s with s ↾ Bt = σ and s ↾ V(Gi) =

si ↾ V(Gi) for all i. Clearly, valG(s) is equal to the right-hand side.

We are ready to state the main result of this section, the existence of a small linear programming formu-

lation for bounded treewidth graph problems:
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Theorem 10.3 (Uniform local LP formulation). Let P = (S ,Gn,k, val) be an admissible optimization prob-

lem. Then it has the following linear programming formulation, which does not depend on any tree decom-

position of the instance graphs, and has size

fcLP(P) ≤ ∑
X⊆V(G),|X|<k

|SX| . (89)

The guarantees are C(G) = S(G) = OPT (G). Let V0 be the real vector space with coordinates indexed

by the X, σ for X ⊆ V(G), σ ∈ SX with |X| < k.

Feasible solutions A feasible solution s ∈ S is represented by the vectors xs in V0 with coordinates xs
X,σ :=

χ(s ↾ X = σ).

Domain The domain of the linear program is the affine space V spanned by all the xs.

Inequalities The LP has the inequalities x ≥ 0.

Instances An instance G is represented by the unique affine function wG : V → R satisfying wG(xs) =
valG(s).

One can eliminate the use of the affine subspace V, by using some coordinates for V as variables for the

linear program.

Remark 10.4 (Relation to the Sherali–Adams hierarchy). The linear program above is inspired by the Sherali-

Adams hierarchy [SA90] as well as the generalized extended formulations model in [BPZ15]. The LP is the

standard (k− 1)-round Sherali–Adams hierarchy when P arises from a CSP: the solution set S is simply the

set of all subsets of V(G), and one chooses s ↾ X = s ∩ X. The inequalities of the LP are the linearization

of the following functions, in exactly the same way as for the Sherali–Adams hierarchy:

χ(s ↾ X = σ) := ∏
i∈σ

xi ∏
i∈X\σ

(1 − xi).

For non-CSPs the local functions take on different meanings that are incompatible with the Sherali-Adams

perspective.

With this we are ready to prove the main theorem of this section.

Proof of Theorem 10.3. We shall prove that there is a nonnegative factorization of the slack matrix of P

τ[OPT (G)− valG(s)] = ∑
X⊆V(G),|X|<k

σ∈SX

αG,X,σ · χ(s ↾ X = σ), (90)

where τ = 1 if P is a maximization problem, and τ = −1 if it is a minimization problem.

From this, one can define the function wG as:

wG(x) := OPT (G)− τ−1 ∑
X⊆V(G),|X|<k

σ∈SX

αG,X,σ · xX,σ, (91)

such that it is immediate that wG is affine, wG(xs) = valG(s) for all s ∈ S , and that τ[OPT (G)−wG(x)] ≥
0 for all x ∈ V satisfying the LP inequalities x ≥ 0. The uniqueness of the wG follow from V being the

affine span of the points xs, where wG has a prescribed value.

To show (90), let us use the setup for the decomposition property: Let t be a node of T, and let t1, . . . ,

tm be the neighbors of t, and Ti be the component of T \ t containing ti. Let Bx denote the bag of a node x
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of T. Let Gi := G[
⋃

p∈Ti
Bp] be the induced subgraph of G for which Ti is a tree decomposition (with bags

inherited from T).

We shall inductively define nonnegative numbers αG,X,σ,A for G ∈ Gn,k, X ⊆ V(G), σ ∈ SX, and

A ⊆ Bt satisfying

τ

[
OPT

s′ : s′↾A=s↾A

(
valG(s

′)
)
− valG(s)

]
= ∑

X⊆V(G),σ∈SX

αG,X,σ,A · χ(s ↾ X = σ). (92)

This will prove the claimed (90) with the choice αG,X,σ := αG,X,σ,Bt . The help variable A is only for the

induction.

To proceed with the induction, we take the difference of Eqs. (86) and (87) with the choice σ := s ↾ Bt:

τ

[
OPT

s′ : s′↾Bt=σ

(
valG(s

′)
)
− valG(s)

]
= ∑

i

τ

[
OPT

s′ : s′↾Bti
∩Bt=σ↾Bti

∩Bt

(
valGi

(s′)
)
− valGi

(s)

]
. (93)

Now we use the induction hypothesis on the Gi with tree decomposition Ti to obtain

τ

[
OPT

s′ : s′↾Bt=σ

(
valG(s

′)
)
− valG(s)

]
= ∑

i
∑

X⊆V(G)
|X|<k
σ∈SX

αGi,X,σ,Bti
∩Bt χ(s ↾ X = σ). (94)

Hence (90) follows with the following choice of the αG,X,σ,A, which are clearly nonnegative:

αG,X,σ,A :=





∑
i

αGi,X,σ,Bti
∩Bt if X 6= Bt

∑
i

αGi,X,σ,Bti
∩Bt

+ τ

[
OPT

s′ : s′↾A=σ↾A

(
valG(s

′)
)
− OPT

s′ : s′↾Bt=σ

(
valG(s

′)
)]

if X = Bt.
(95)

We now demonstrate the use of Theorem 10.3.

Example 10.5 (VertexCover, IndependentSet, and CSPs such as e.g., MaxCut, UniqueGames). For the prob-

lems MaxCut, IndependentSet, and VertexCover, the set of feasible solutions S is the set of all subsets of S .

We need no further partial solutions (i.e., S := S), and we choose the restriction to be simply the intersection

s ↾ B := s ∩ B.

It is easily seen that this makes IndependentSet and VertexCover admissible problems, providing an LP of

size O(nk−1) for graphs with treewidth at most k. As an example, we check the decomposition property for

IndependentSet. Using the same notation as in the decomposition property,

valG(s)− ∑
i

valGi
(s) = |s| −∑

i

{
|s ∩ V(Gi)| − |E(Gi[s ∩ V(Gi)])|

}

= |s ∩ Bt| −∑
i

{
|s ∩ Bt ∩ V(Gi)| − |E(Gi[s ∩ Bt ∩ V(Gi)])|

}
,

(96)

as any vertex v /∈ Bt is a vertex of exactly one of the Gi, and similarly for edges with at least one end point

not in Bt. Therefore the decomposition property is satisfied with the choice

corrG,T,t(σ) := |σ ∩ Bt| − ∑
i

{
|σ ∩ Bt ∩ V(Gi)| − |E(Gi[σ ∩ Bt ∩ V(Gi)])|

}
. (97)

For UniqueGames(n, q), the feasible solutions are all functions [n] → [q]. Partial solutions are functions

X → [q] defined on some subset X ⊆ [n]. Restriction s ↾ X is the usual restriction of s to the subset

dom(s) ∩ X. This obviously makes MaxCut and UniqueGames(n, q) admissible. The size of the LP is

O(n2(k−1)) for MaxCut, and O((qn2)k−1) for UniqueGames(n, q).
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The Matching problem requires that the restriction operator preserves more local information to ensure

that partial solutions are incompatible when they contain a different edge at the same vertex.

Example 10.6 (Matching). The Matching problem has feasible solutions all perfect matchings. The partial

solutions are all matchings, not necessarily perfect. The restriction s ↾ X of a matching s to a vertex set X is

defined as the set of all edges in s incident to some vertex of X:

s ↾ X := {{u, v} ∈ s | u ∈ B ∨ v ∈ B} .

Now s ↾ X can contain edges with only one end point in X. Again, this makes Matching an admissible

problem, providing an LP of size O(nk) (the number of edges with at most k edges). Here we check the

gluing property. Let V(G) = V1 ∪ · · · ∪ Vl be a covering (we do not need E[V(G)] = E[V(G1)] ∪ · · · ∪
E[V(Gl)]), and let σi be a (partial) matching covering Vi with every edge in σi incident to some vertex in

Vi (i.e., σi ∈ SVi
) for i ∈ [l]. Let us assume σi ↾ Vi ∩ Vj = σj ↾ Vi ∩ Vj, i.e., every vertex v ∈ Vi ∩ Vj is

matched to the same vertex by σi and σj for i 6= j. It readily follows that the union s :=
⋃

i σi is a matching.

Actually, it is a perfect matching as V(G) = V1 ∪ · · · ∪ Vl ensures that it covers every vertex. Obviously,

s ↾ Vi = σi and s is the unique perfect matching with this property.
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