
ar
X

iv
:1

50
7.

06
61

6v
4

 [
cs

.D
S]

 1
5

N
ov

 2
01

7

Noname manuscript No.
(will be inserted by the editor)

Robust Monotone Submodular Function

Maximization

James B. Orlin · Andreas S. Schulz ·

Rajan Udwani

Abstract We consider a robust formulation, introduced by Krause et al.
(2008), of the classical cardinality constrained monotone submodular func-
tion maximization problem, and give the first constant factor approximation
results. The robustness considered is w.r.t. adversarial removal of up to τ el-
ements from the chosen set. For the fundamental case of τ = 1, we give a
deterministic (1 − 1/e) − 1/Θ(m) approximation algorithm, where m is an
input parameter and number of queries scale as O(nm+1). In the process, we
develop a deterministic (1− 1/e)− 1/Θ(m) approximate greedy algorithm for
bi-objective maximization of (two) monotone submodular functions. Gener-
alizing the ideas and using a result from Chekuri et al. (2010), we show a
randomized (1 − 1/e) − ǫ approximation for constant τ and ǫ ≤ 1

Ω̃(τ)
, mak-

ing O(n1/ǫ3) queries. Further, for τ ≪
√
k, we give a fast and practical 0.387

algorithm. Finally, we also give a black box result result for the much more
general setting of robust maximization subject to an Independence System.

1 Introduction

A set function f : 2N → R on the ground set N is called submodular if,

f(A+ a)− f(A) ≤ f(B + a)− f(B) for all B ⊆ A ⊆ N and a ∈ N \A.

The function is monotone if f(B) ≤ f(A) for all B ⊆ A. We also impose
f(∅) = 0, which combined with monotonicity implies non-negativity. Opti-
mization problems with submodular objective functions have received a lot
of interest due to several applications where instances of these problems arise
naturally. However, unlike the (unconstrained) minimization of submodular
functions, for which polytime algorithms exist [20,27], even the simplest max-
imization versions are NP-hard [11–13, 31]. In fact, they encompass several
fundamental hard problems, such as max-cut, max-k-coverage, max-dicut and
variations of max-SAT and max-welfare.

{jorlin,schulz,rudwani@mit.edu}

http://arxiv.org/abs/1507.06616v4

2 James B. Orlin et al.

A long line of beautiful work has culminated in fast and tight approxi-
mation algorithms for many settings of the problem. As an example, for un-
constrained maximization of non-monotone submodular functions, Feige et al.
in [13], provided an algorithm with approximation ratio of 0.4 and showed
an inapproximability threshold of 1/2 in the value-oracle model. Extensions
by Gharan and Vondrák [16] and subsequently by Feldman et al. [15] led to
further improvement of the guarantee (roughly 0.41 and 0.42, respectively).
Finally, Buchbinder et al. in [8] gave a tight randomized 1/2 approximation
algorithm, and this was recently derandomized [7].

Here we are interested in the problem of maximizing a monotone submodu-
lar function subject to a cardinality constraint, written as: P1 := max

A⊆N,|A|≤k
f(A).

The problem has been well studied and instances of P1 arise in several impor-
tant applications, two of them being:

Sensor Placement [19, 21–23]: Given a large number of locations N , we
would like to place up to k sensors at certain locations so as to maximize the
coverage. Many commonly used coverage functions measure the cumulative
information gathered in some form, and are thus monotone (more sensors is
better) and submodular (decreasing marginal benefit of adding a new sensor).

However, as highlighted in [22], it is important to ask what happens if some
sensors were to fail. Will the remaining sensors have good coverage regardless
of which sensors failed, or is a small crucial subset responsible for most of the
coverage?

Feature Selection [17,22,24,29]: In many machine learning models, adding a
new feature to an existing set of features always improves the modeling power
(monotonicity) and the marginal benefit of adding a new feature decreases as
we consider larger sets (submodularity). Given a large set of features, we would
like to select a small subset such that, we reduce the problem dimensionality
while retaining most of the information.

However, as discussed in [17, 22], in situations where the nature of un-
derlying data is uncertain, leading to non-stationary feature distributions, it
is important to not have too much dependence on a few features. Taking a
concrete example from [17], in document classification, features may take not
standard values due to small sample effects or in fact, the test and training
data may come from different distributions. In other cases, a feature may even
be deleted at some point, due to input sensors failures for example. Thus,
similar questions arise here too and we would like to have an ‘evenly spread’
dependence on the set of chosen features. With such issues in mind, consider
the following robust variant of the problem, introduced in [22],

P2 := max
A⊆N,|A|≤k

min
Z⊆A,|Z|≤τ

f(A− Z).

Note that the parameter τ controls the degree of robustness of the chosen
set since the larger τ is, the larger the size of subset Z that can be adversarially
removed from the chosen set A. For τ = 0, P2 reduces to the P1. Since
this formulation optimizes the worst case scenario, a natural variation is to

Robust Monotone Submodular Function Maximization 3

optimize the average case failure scenario [18]. However, this is not suitable for
some applications. For instance, we may have no prior on the failure/deletion
mechanism and furthermore, in critical applications, such as sensor placement
for outbreak detection [22,23], we want protection against the worst case. This
form of worst case analysis has been of great interest in operations research
and beyond, under the umbrella of robust optimization (e.g., [2–5]). The idea
is to formulate the uncertainty in model parameters through a deterministic
uncertainty set. While much work in this area assumes that the uncertainty
set is a connected, if not convex set, the uncertainty set in P2, when τ = 1 for
instance, is the disconnected set of canonical unit vectors ei ∈ R

N (1 at entry
i, 0 otherwise).

Previous work on P1 and P2. The first rigorous analysis of P1 was by Nemhauser
et al. [25, 26] in the late 70’s, where they showed that the greedy algorithm
gives a guarantee of (1− 1/e) and that this is best possible in the value-oracle
model. Later, Feige [12] showed that this is also the best possible under stan-
dard complexity assumptions (through the special case of Max-k-cover). On
the algorithmic side, Badanidiyuru and Vondrák [1] recently gave a faster al-
gorithm for P1 that improved the quadratic query complexity of the classical
greedy algorithm to nearly linear complexity, by trading off on the approxima-
tion guarantee. However, the optimality (w.r.t. approximation guarantee) of
the greedy algorithm is rather coincidental, and for many complex settings of
the problem (monotone or not), the greedy algorithm tends to be sub-optimal
(there are exceptions, like [28]). An approach first explored by Calinescu et
al. [9], that has been very effective, is to perform optimization on the multi-
linear extension of the submodular function, followed by clever rounding to
get a solution to the original problem. Based on this framework, tremendous
progress has been made over the last decade for both monotone and non-
monotone versions with various kinds of constraints [9,10,14,30–32]. In fact, a
general framework for establishing hardness of many of these variants [11,31],
also relies intricately on properties of this relaxation.

Moving on to P2, as we will see, the well known greedy algorithm and also
the above mentioned continuous greedy approach for τ = 0, can be arbitrarily
bad even for τ = 1. In fact, many natural approaches do not have a constant
factor guarantee for τ ≥ 1. The paper by Krause et al. [22], which formally
introduced the problem, actually gives a bi-criterion approximation to the
much more general and inapproximable problem: max

A⊆N,|A|≤k
min

i∈{1,2,...,m}
fi(A),

where fi(.) is monotone submodular for every i. Their algorithm, which is
based on the greedy algorithm for P1, when specialized to P2, guarantees
optimality by allowing sets up to size k(1+Θ(log(τk logn))) and has runtime
exponential in τ . To the best of our knowledge, no stronger/constant factor
approximation results were known for P2 prior to our work.

Our contributions: We work in the value oracle model and give constant factor
guarantees for P2 with combinatorial, ‘greedy like’ algorithms. To ease presen-

tation, we will usually ignore factors of the form
(

1− O(1)
k

)

in the approxima-

4 James B. Orlin et al.

tion guarantees and thus, most of the results presented here are asymptotic
in k. Our initial focus is on a restricted case, where we construct relatively
simple algorithms and get insights that generalize. For this special case, we
give a (1− 1/e) algorithm for τ = o(k).

In the non-restricted setting, we first focus on generalizing results for τ = 1,
for which we propose a fast and practical 0.5547 approximation and later an
asymptotically (1 − 1/e) − 1/Θ(m) algorithm (with runtime exponential in
m, which is an input parameter). This relies on developing a new (1− 1/e)−
1/Θ(m) approximate greedy algorithm for the bi-objective maximization of
monotone submodular functions subject to cardinality constraint, of which the
problem of maximizing the minimum of two arbitrary monotone submodular
functions is a special case. We conjecture that the greedy algorithm can be
generalized to work for multi-objective maximization of a fixed number of
monotone submodular functions. There has been previous work on the multi-
objective problem for a constant number of monotone submodular functions
and a randomized (1 − 1/e) − ǫ algorithm for (a much more general version
of) this problem was given in [10]. It uses the continuous greedy algorithm
from [32], along with an innovative dependent rounding scheme called swap
rounding, and we use this algorithm as a subroutine to get a randomized
(1−1/e)−ǫ approximation for the robust problem when τ is constant, however

the runtime scales as O(n1/ǫ3). Finally, for τ = o
(

√

k
c(k)

)

, we give a fast

0.387
(

1 − 1
Θ(c(k))

)

algorithm where c(k)
k→∞−−−−→ ∞ is an input parameter that

governs the trade off between how large τ can be and how fast the guarantee
converges to 0.387.

In the more general case, where we wish to find a robust set A in an
independence system, we extend some of the ideas from the cardinality case
into an enumerative procedure that yields an α/(τ + 1) approximation using
an α approximation algorithm for τ = 0 as a subroutine. However, the runtime
scales as nτ+1.

The outline for the rest of the paper is as follows: In Section 2, we introduce
some notation and see how several natural ideas fail to give any approximation
guarantees. In Section 3, we start with a special case and slowly build up to an
algorithm with asymptotic guarantee (1−1/e)− ǫ for constant τ , covering the
other results in the process. Finally, in Section 4, we extend some of the ideas
to more general constraints. Section 5 concludes with some open questions.

2 Preliminaries

2.1 Definitions

We denote an instance of P2 on ground set N with cardinality constraint
parameter k and robustness parameter τ by (k,N, τ). Subsequently, we use
OPT (k,N, τ) to denote an optimal set for the instance (k,N, τ). For any given
set A, we call a subset Zτ a minimizer if f(A − Zτ) = min

B⊆A;|B|=τ
f(A − B).

Robust Monotone Submodular Function Maximization 5

Also, let Zτ (A) be the set of minimizers of A. When τ = 1, we often use
the letter z for minimizers and when τ is otherwise clear from the context and
fixed during the discussion we use the shorthand Z,Z(.). Based on this we also
introduce a key function gτ (A) = f(A−Zτ). Again, we simply use g(.), when
τ is clear from context. We generally refer to singleton sets without braces {}
and use +,− and ∪, \ interchangeably. Also, define the marginal increase in
value due to a set X , when added to the set A as f(X |A) = f(A∪X)− f(A).
Similarly, g(X |A) = g(A ∪X)− g(A).

Let β(η, α) = eα−1
eα−η ∈ [0, 1] for η ∈ [0, 1], α ≥ 0. Note that β(0, 1) =

(1 − 1/e). This function appears naturally in our analysis and will be useful
for expressing approximation guarantees of the algorithms. Next, recall the
widely popular greedy algorithm for P1:

Algorithm 1 Greedy Algorithm
1: Initialize A = ∅
2: while |A| < k do A = A+ argmax

x∈N−A
f(x|A)

3: Output: A

Let k = n in the above and denote the i-th element added by ai. Us-
ing this we index the elements in N in the order they were added, so N =
{a1, a2, . . . , an}.

Also, recall the following theorem:

Lemma 1 (Nemhauser, Wolsey [25, 26]) For all α ≥ 0, greedy algorithm
terminated after αk steps yields a set A with f(A) ≥ β(0, α)f(OPT (k,N, 0)).

For the sake of completeness, we include the proof in Appendix A.1.
In addition, the following lemma, which compares the optimal value of

(k,N, τ) with (k − τ,N, 0) will be very useful:

Lemma 2 For instances (k,N, τ), we have:

gτ (OPT (k,N, τ)) ≤ f(OPT (k − τ,N −X, 0)) ≤ f(OPT (k − τ,N, 0)),

for all X ⊆ N, |X | ≤ τ .

Proof We focus on the first inequality since the second follows by defini-
tion. Let x =

∣

∣X ∩ OPT (k,N, τ)
∣

∣ ≤ τ , then note that gτ (OPT (k,N, τ)) ≤
gτ−x(OPT (k,N, τ)−X), since the RHS represents the value of some subset of
OPT (k,N, τ) of size k − τ , which upper bounds the LHS by definition. Now,
gτ−x(OPT (k,N, τ) − X) ≤ gτ−x(OPT (k − x,N − X, τ − x)) by definition.
Finally, note that gτ−x(OPT (k−x,N−X, τ −x)) ≤ f(OPT (k− τ,N−X, 0))
since the LHS represents the value of a set of size k− x− (τ − x) = k− τ that
does not include any element in X , giving us the desired. ⊓⊔
Finally, it is natural to expect that we cannot approximate P2 better than P1
(which is approximable up to a factor of β(0, 1)) and this is indeed true, as
stated below. The proof is included in Appendix A.2.

Lemma 3 There exists no polytime algorithm with approximation ratio greater
than (1 − 1/e) for P2 unless P = NP . For the value oracle model, we have
the same threshold, but for algorithms that make only a polynomial number of
queries.

6 James B. Orlin et al.

2.2 Negative Results

The example below demonstrates why the greedy algorithm that does well
for instances of P1, fails for P2. However, the weakness will also indicate a
property which will guide us towards better guarantees later.

Example: Consider a ground set N of size 2k such that f(a1) = 1, f(ai) = 0,
∀ 2 ≤ i ≤ k and f(aj) =

1
k , ∀j ≥ k+1. Also, for all j ≥ k+1, let f(aj |X) = 1

k
if X ∩ {a1, aj} = ∅ and 0 otherwise. Consider the set S = {ak+1, · · · , a2k}
and let the set picked by the greedy algorithm (with arbitrary tie-breaking)
be A = {a1, · · · , ak}. Then we have that f(A− a1) = 0 and f(S− aj) = 1− 1

k
for every aj ∈ S. The insight here is that greedy may select a set where only
the first few elements contribute most of the value in the set, which makes it
non-robust. However, as we discuss more formally later, such a concentration
of value implies that only the first two elements, {a1, a2}, are critical and
protecting against removal of those suffices for best possible guarantees.

In fact, many natural variations fail to give an approximation ratio better
than 1/(k − 1). Indeed, a guarantee of this order, i.e. 1/(k − τ), is achievable
for any τ by the following näıve algorithm: Pick the k largest value elements.
It is also important to examine if the function g is super/sub-modular, since
that would make existing techniques useful. It turns out not. However, it is
monotonic. Despite this, it is interesting to examine a natural variant of the
greedy algorithm, where we greedily pick w.r.t g, but that variant can also be
arbitrarily bad if we pick just one element at each iteration.

3 Main Results

Before we start, remember that the focus of these results is on asymptotic
performance guarantee (for large k). In some cases, the results can be improved
for small k but we generally ignore these details.

Additionally, in every algorithm that uses the greedy algorithm (Algorithm
1) as a subroutine, especially the fast and practical algorithms 2 ,4 and 7, we
can replace the greedy addition rule of adding x = argmaxx∈S1 f(x|S2) for
some S1, S2, by the more efficient thresholding rule in [1], where, given a
threshold w, we add a new element x ∈ S1 if f(x|S2) ≥ w. This improves the
query/run time to O(nǫ log

n
ǫ), at the cost of a factor of (1−ǫ) in the guarantee.

3.1 Special case of “copies”

We first consider a special case, which will serve two purposes. First, it will
simplify things and the insights gained for this case will generalize well. Sec-
ondly, since this case may arise in practical scenarios, it is worthwhile to discuss
the special algorithms as they are much simpler than the general algorithms
discussed later.

Robust Monotone Submodular Function Maximization 7

Given an element x ∈ N , we call another element x′ a copy of element x
if,

f(x′) = f(x) and f(x′|x) = 0.

This implies f(x|x′) = f({x, x′})− f(x′) = f(x)+ f(x′|x)− f(x′) = 0. In fact,
more generally, f(x′|A) = f(x|A) for every A ⊆ N , since f(A + {x, x′}) =
f(A + x) = f(A + x′). This is a useful case for robust sensor placement, if
we were allowed to place/replicate multiple sensors at certain locations that
are critical for coverage. Assume that each element in N has τ copies. In the
next section we discuss algorithms for this special case when τ = 1. This will
help build a foundation, even though the results therein are superseded by the
result for τ = o(k).

3.1.1 Algorithms for τ = 1 in presence of “copies”

Let a′i denote the copy of element ai. As briefly indicated previously, we would
like to make our set robust to removal of critical elements. In the presence
of copies, adding a copy of these elements achieves that. So as a first step,
consider a set that includes a copy of each element, and so is unaffected by
single element removal. One way to do this is to run the greedy algorithm
for k/2 iterations and then add a copy of each of the k/2 elements. Then,

it follows from Lemma 1 that g(S) = f(S) ≥ β(0, k/2
k−1)f(OPT (k − 1, N, 0))

and then from Lemma 2 we have, g(S) ≥ (1− 1√
e
) g(OPT (k,N, 1)), where we

use the fact that β(0, k/2
k−1) > β(0, 0.5) = (1 − 1√

e
). Hence, we have ≈ 0.393-

approximation and the bound is tight. We can certainly improve upon this,
one way to do better is to think about whether we really need to copy all k/2
elements. It turns out that copying just a1 and a2 is enough! Intuitively, if
the greedy set has value nicely spread out, we could get away without copying
anything but nevertheless, in such a case copying just two elements does not
affect the value much. Otherwise, as in the example from Section 2, if greedy
concentrates its value on the first few elements, then copying them is enough.

Before we state and prove this formally, consider the below corollary:

Corollary 4 Let A be the final set obtained by running the greedy algorithm
for l steps on an initial set S. Then we have,

f(A−S|S) ≥ β
(

0,
l

k

)

f(OPT (k,N, 0)|S) ≥ β
(

0,
l

k

)(

f
(

OPT (k,N, 0)
)

−f(S)
)

Proof Follows from Lemma 1, since f(.|S) is monotone submodular for any
fixed set S and union of greedy on f(.|S) with S is the same as doing greedy
on f(.) starting with S. ⊓⊔

Suppose A, referred to as the greedy set, is the output of Algorithm 1. We
now state and prove a simple yet key lemma, which will allow us to quantify

how the ratio f(A)
f(OPT (k,N,0)) improves over (1 − 1/e), as a function of how

concentrated the value of the greedy set is on the first few elements.

8 James B. Orlin et al.

Lemma 5 Starting with initial set S, run l iterations of the greedy algorithm
and let A be the output (so |A| = l+ |S|). Then given f(S) ≥ cf(A) for some
c ≤ 1 (high concentration of value on S implies large c), we have,

f(A) ≥ β
(

c,
l

k

)

f(OPT (k,N, 0)), for all k ≥ 1

In a typical application of this lemma, we will have S be the first s = |S| ele-
ments of the greedy algorithm on ∅ and c = sη for some η ≤ 1/s. Additionally,
|A| can be greater than k.

Proof Denote f(OPT (k,N, 0)) by OPT and with the sets A,S as defined

above, let δ = f(A)
OPT , which implies f(S) ≥ cδOPT (by assumption). Also,

since we allow |A| to be larger than k, assume δ ≤ 1 (otherwise statement is
true by default).

Now from Corollary 4 we have, f(A) = f(S) + f(A − S|S) ≥ f(S) +
β(0, l

k)(OPT − f(S)) and thus,

δOPT ≥ (1− β(0, l
k))× cδf(OPT) + β(0, l

k)f(OPT) [substitution]

δ(1 − c(1− β(0, l
k))) ≥ β(0, l

k)

δ(1 − c 1
el/k

) ≥ el/k−1
el/k

δ ≥ el/k−1
el/k−c

= β
(

c, l
k

)

=⇒ f(A) ≥ β
(

c, l
k

)

f(OPT (k,N, 0)). ⊓⊔

Let us understand the above lemma with a quick example. Consider the greedy
set of the first k elements A = {a1, . . . , ak} and let f(OPT (k,N, 0)) = 1.

Now, clearly f(a1) ≥ f(A)
k . So using the lemma with S = {a1} and c = 1/k

gives us simply that f(A) ≥ β
(

1
k ,

k−1
k

)

≈ (1 − 1/e), as expected. Next, if

f(a1) ≥ f(A)/2, then we have that f(A) ≥ β
(

1
2 ,

k−1
k

)

≈ 0.77, asymptotically

much better than (1−1/e) ≈ 0.63. Similarly, if f({a1, a2}) ≥ f(A)/2 we again

have f(A) ≥ β
(

1
2 ,

k−2
k

)

≈ 0.77. Additionally, we could compare the value

f(A) to f(OPT (k − 1, N, 0)) instead, and then replacing k by k − 1 in the

denominator, we have f(A) ≥ β
(

1
2 ,

k−2
k−1

)

f(OPT (k − 1, N, 0)).

Now, consider the algorithm that copies the first two elements and thus out-
puts: {a1, a′1, a2, a′2, a3, . . . , ak−2}. Call this the 2-Copy algorithm. Using the
above lemma, we show that this algorithm gives us the best possible guaran-
tee asymptotically, aligning with the intuitive argument we presented earlier.
Preceding the actual analysis, we show an elementary lemma that we will use
frequently.

Lemma 6 For 0 ≤ η ≤ 1
3 and arbitrary α, argmin

η
(1− η)β(3η, α) = 0.

Robust Monotone Submodular Function Maximization 9

Proof

(1− η)β(3η, α) =
1

3
(3− 3η)

eα − 1

eα − 3η
=

1

3
(eα − 1)

(

1 +
3− eα

eα − 3η

)

≥ 1

3
(eα − 1)

(

1 +
3− eα

eα

)

= (1 − 1/eα) = β(0, α)

Theorem 7 For the case with copies, 2-Copy is β
(

0, k−5
k−1

) k→∞−−−−→ (1 − 1/e)
approximate.

Proof First, denote the output as A = {a1, a′1, a2, a′2, a3, . . . , ak−2} and notice
that f(A) = f({a1, a2, . . . , ak−2}). As a warm-up, using Lemma 1 we get,

f(A) ≥ β
(

0,
k − 2

k − 1

)

f(OPT (k − 1, N, 0)) ≥ β
(

0,
k − 2

k − 1

)

g(OPT (k,N, 1)),(1)

where the second inequality follows from Lemma 2.
Let z be a minimizer of A. We can assume that z 6∈ {a1, a′1, a2, a′2} since all

of these have 0 marginal. Now let f(z|A− z) = ηf(A). We have due to greedy
additions and submodularity, f(a3|{a1, a2}) ≥ f(z|{a1, a2}) ≥ f(z|A − z)
and similarly, f({a1, a2}) ≥ 2f(z|A − z). This implies that f({a1, a2, a3}) ≥
3ηf(A), which relates the value removed by a minimizer z to the value concen-
trated on the first 3 elements {a1, a2, a3}. The higher the value removed, the
higher the concentration and closer the value of f(A) to f(OPT (k− 1, N, 0)).
More formally, with S = {a1, a′1, a2, a′2, a3}, k replaced by k− 1, l = k− 5 and
c = 3η (η ≤ 1/3), we have from Lemma 5,

f(A) ≥ β
(

3η,
k − 5

k − 1

)

f(OPT (k − 1, N, 0)) ≥ β
(

3η,
k − 5

k − 1

)

g(OPT (k,N, 1)).

Which implies that g(A) = (1 − η)f(A) ≥ (1 − η)β(3η, k−5
k−1)g(OPT (k,N, 1)).

Applying Lemma 6 with α = k−5
k−1 finishes the proof. As an example, for k ≥ 55

the value of the ratio is ≥ 0.6. Additionally, we can use more precise bounds
of the greedy algorithm for small k to get better guarantees in that regime.
⊓⊔

The result also implies that for large k, if the output set A, of Algorithm 1 (the
greedy algorithm), has a minimizer ai with i ≥ 3, then g(A) = f(A − ai) ≥
(1 − 1/e)g(OPT (k,N, 1)), i.e. the greedy algorithm is (1 − 1/e) approximate
for the robust problem in this situation. This is because, for such an instance
we can assume that the set contains copies of a1, a2 without changing anything
and then Theorem 7 applies.

Moreover, if instead of just the first two, we copy the first i elements for
i ≥ 3, we get the same guarantee but with worse asymptotics, so copying more
than first two does not result in a gain. On the other hand, copying just one
element, a1, gives a tight guarantee of 0.5 (proof omitted).

Since (1−1/e) is the best possible guarantee achievable asymptotically, we
now shift focus to case of τ > 1 but ≪ k, and generalize the above ideas to
get an asymptotically (1− 1/e) approximate algorithm in presence of copies.

10 James B. Orlin et al.

3.1.2 (1− 1/e) Algorithms for τ = o(k) in the presence of “copies”

Assume we have τ copies available for each ai ∈ N . As we did for τ = 1, we
would like to determine a small critical set of elements, copy them (possibly
many times) and then add the rest of the elements greedily to get a set of
size k. In order to understand how large the critical set should be, recall that
in the proof of Theorem 7, we relied on the fact that f({a1, a2}) is at least
twice as much as the value removed by the minimizer, and then we could
use Lemma 5 to get the desired ratio. To get a similar concentration result
on the first few elements for larger τ , we start with an initial set of size 2τ
and in particular, we can start with A2τ = {a1, a2, . . . , a2τ}. Additionally,
similar to the 2-Copy algorithm, we also want the set to be unaffected by
removal of up to τ elements from A2τ . We do this by adding τ copies of
each element in A2τ . More concretely, consider the algorithm that greedily
picks the set Ak−2τ2 = {a1, a2, . . . , ak−2τ2}, and copies each element in A2τ =
{a1, a2, . . . , a2τ} ⊆ Ak−2τ2 , τ times. Denote the set of copies by C(A2τ) and
we have |C(A2τ)| = 2τ2. To summarize, the algorithm outputs the set

A = A2τ ∪C(A2τ) ∪ {a2τ+1, . . . , ak−2τ2}.

Observe that when τ = 1, this coincides with the 2-Copy algorithm.

We next show that this algorithm is β(0, k−2τ2−3τ
k−τ)

k→∞−−−−→ (1 − 1/e) ap-
proximate.

Proof We can assume that Z ∩ (A2τ ∪ C(A2τ)) = ∅ or alternatively Z ⊆
Ak−2τ2 − A2τ , since there are τ + 1 copies of every element (counting the
element itself) and Z cannot remove all. Recall that in the analysis of the
2-Copy algorithm, we showed f({a1, a2, a3}) ≥ 3f(z|A − z) and then used
Lemmas 5 and 6 to get the desired. Analogously, here we would like to show
and f(A3τ) ≥ 3f(Z|A− Z) and do the same.

Next, index elements in Z from 1 to τ , with the mapping π : {1, . . . , τ} →
{2τ + 1, . . . , k − 2τ2}, such that π(i) > π(j) for i > j and aπ(i) is the i-th
element in Z. Then with Ai = {a1, . . . , ai} for all i, we have by submodularity,
the following set of inequalities,

f(aπ(i)|Aπ(i)−1) = f(aπ(i)|A− {aπ(i), . . . , ak−2τ2})
≥ f(aπ(i)|A− {aπ(i), aπ(i+1), . . . , aπ(τ)}) ∀i

=⇒
τ
∑

i=1

f(aπ(i)|Aπ(i)−1) ≥ f(Z|A− Z) (2)

where the RHS in (2) is by definition.
Note that π(i) > 2τ , and for arbitrary i ∈ {1, . . . , τ} = [τ], j ∈ {1, . . . , 2τ} =

[2τ], due to greedy iterations we have that f(aπ(i)|Aπ(i)−1) ≤ f(aj |Aj−1). So
consider any injective mapping from i ∈ [τ] to 2 distinct elements i1, i2 ∈ [2τ],
for instance i1 = i, i2 = i+ τ . We rewrite the previous inequality as,

2f(aπ(i)|Aπ(i)−1) ≤ f(ai1 |Ai1−1) + f(ai2 |Ai2−1)

Robust Monotone Submodular Function Maximization 11

Summing over all i, along with (2) above gives,

2f(Z|A− Z) ≤ f(A2τ) (3)

where the RHS is by injective nature of mapping and definition of f(.|.).
In fact, we have π(i) ≥ 2τ+i and thus, f(aπ(i)|Aπ(i)−1) ≤ f(a2τ+i|A2τ+i−1).

From this, we have for the set A3τ −A2τ = {a2τ+1, . . . , a3τ} that,

f(Z|A− Z) ≤ f(A3τ −A2τ |A2τ) (4)

(3) and (4) combined give us,

f(A3τ) ≥ 3f(Z|A− Z)

We have from Lemma 2 that f(OPT (k − τ,N, 0)) ≥ g(OPT (k,N, τ)) and
combined with using Lemma 5, with k replaced by k − τ , S = A3τ ∪ C(A2τ),
s = 3 and l = k − |S| = k − 2τ2 − 3τ and f(Z|A− Z) = ηf(A) gives us,

f(A) ≥ β
(

3η,
k − 2τ2 − 3τ

k − τ

)

g(OPT (k,N, τ)).

Thus g(A) = (1 − η)f(A) ≥ β
(

0, k−2τ2−3τ
k−τ

)

g(OPT (k,N, τ)), follows using

Lemma 6. ⊓⊔
Note that while we could ignore the asymptotic factors in approximation

guarantee for τ = 1, here we cannot, and this is where the upper bound on
τ comes in. Recall that we compare the value g(OPT (k,N, τ)), which is the
f(.) value of a set of size k − τ , to the f(.) value of a set of size k − Θ(τ2)
(since the Θ(τ2) elements added as copies do not contribute any real value).

Now k−Θ(τ2)
k converges to 1 only for τ ≪

√
k and it is this degradation that

creates the threshold of o(
√
k).

However, it turns out that we don’t need to add τ copies of each element
in A2τ . Intuitively, the first few elements in A2τ are more important and for
those we should add τ copies, but the later elements are not as important and
we can add fewer copies. In fact, we can geometrically decrease the number
of copies we add from τ , to 1, over the course of the 2τ elements, resulting
in a total of Θ(τ log τ) copies. The resulting approximation ratio converges to
(1− 1/e) for τ = o(k).

More concretely, consider the following algorithm,

Algorithm 2 (1− 1/e) Algorithm for copies when τ = o(k)

1: Initialize A = A2τ , i = 1
2: while i ≤ ⌈log 2τ⌉ do
3: A = A ∪

(

⌈τ/2i−1⌉ copies for each of {a2i−1, . . . , a2i+1−2} ∩A2τ
)

; i = i+ 1

4: while |A| < k do A = A+ argmax
x∈N−A

f(x|A)
5: Output: A

Essentially, we start with the set A2τ , add τ copies each for {a1, a2}, τ/2
copies for each of {a3, . . . , a6}, τ/4 copies for each of {a7, . . . , a14} and so on,
finally adding the rest of the k −Θ(τ log τ) elements greedily. Notice that we

12 James B. Orlin et al.

could get the best possible guarantee with a minimizer oblivious algorithm
i.e., the output is independent of the minimizer at any stage of the algorithm.

Theorem 8 Algorithm 2 is β
(

0, k−Θ(τ log τ)
k−τ

)

k→∞−−−−→ (1 − 1/e) approximate

for τ = o(k).

Proof The basic outline of the analysis is similar to that of the previous one
for τ = o(

√
k), so we focus only on the differences here.

Let A1 denote the subset of A obtained in the final greedy phase (step 4 in
Algorithm 2). Note that if Z∩A2τ = ∅, then we have (3) and (4) as before and
thus f(A3τ) ≥ 3f(Z|A−Z). By applying Lemma 5 with l = k−Θ(τ log τ) this
time, we get the desired. However, unlike the previous analysis, here Z ∩ A2τ

need not be empty since we have less than τ copies for many elements. We
would like to show that f(A2τ − Z) ≥ 2f(Z|A − Z) regardless. Let m =
⌈log 2τ⌉ − 1 and in fact, for ease of presentation we assume that τ = 2m. Also
let Bi = {a2i−1, . . . , a2i+1−2}∩A2τ i.e., the elements for which we add τ/2i−1

copies in the algorithm and let Ci denote the set of copies of these elements.
Note that |Bi| = 2i and |Ci| = 2τ ≥ 2|Bi| for all i ≤ m, for i = m + 1,
Bm+1 = {a2τ−1, a2τ} and |Cm+1| = 2. We can assume that for every element
in A2τ included in minimizer Z, all copies of the element are also present in

Z, hence Z removes at most ⌊ τ
1+τ/2i−1 ⌋ = ⌊ |Bi|

2
τ

τ+2i−1 ⌋ ≤ |Bi|/2− 1 elements

from Bi, ∀i ≤ m. So we assume w.l.o.g. |Z ∩B1| = 0.
Let us first examine the case where Z ⊂ Bi ∪ Ci for some 2 ≤ i ≤ m (the

case of i = m+1 follows rather easily). Notice that
∑i−1

j=1 |Bj | = 2(|Bi|/2−1),

then from the observation above we have 2|Z∩Bi| ≤ 2
∑i−1

j=1 |Bj |. This implies

that we can injectively map any |Bi|/2− 1 = 2i−1 − 1 elements in Bi, to two
distinct elements with lower indices in ∪i−1

j=1Bj . Then, just as we showed in (4),
we have an injective mapping from every element in Z ∩ A2τ to two distinct
elements in ∪i−1

j=1Bj , and this gives us f(∪i−1
j=1Bj) ≥ 2f(Z|A−Z) which further

implies f(A2τ) ≥ f(∪i−1
j=1Bj) + f(Z| ∪i−1

j=1 Bj) ≥ 3f(Z|A − Z) and applying
Lemmas 5 and 6 completes the case.

For the general case, let xj = |Z∩Bj |, ∀j ∈ {2, . . . ,m+1} (with xm+1 ≤ 2)
and let xm+2 = |Z ∩A1|. From |Z| = τ and the fact that Z contains all copies

of every element in |Z∩A2τ |, we have
∑m+1

j=2 xj(1+
τ

2j−1)+xm+2 ≤ τ . Observe
that to show the existence of the desired injective mapping, it suffices to show,

2xi ≤ | ∪i−1
j=1 Bj − Z| −

i−1
∑

j=1

2xj

= | ∪i−1
j=1 Bj | −

i−1
∑

j=1

3xj , ∀i ∈ {2, . . . ,m+ 2} (5)

Consider the polytope given by X = (x2, . . . , xm+2) and constraints 0 ≤
xj ≤ ⌊ |Bi|

2
τ

τ+2i−1 ⌋ ∀j and
∑m+1

j=1 xj(1 +
τ

2j−1) + xm+2 ≤ τ . Then the extreme
points correspond exactly to the special cases we considered so far i.e. (i)Z ∩

Robust Monotone Submodular Function Maximization 13

A2τ = ∅ and (ii) Z ⊂ Bi ∩ Ci, and we showed that the conditions (5) are
satisfied for these cases. This implies the (linear) conditions (5) are satisfied
for every point in the polytope and that completes the proof. ⊓⊔

3.2 Algorithms in the possible absence of “copies”

To recap, thus far we chose a set of elements greedily and treated a suitably
large subset of the initial few elements as ‘critical’ and added ‘enough’ copies
of these elements to ensure that we keep a copy of each critical element in the
set, even after adversarial removal. We aim to follow a similar scheme even
in the absence of copies. In the general case however, we need to figure out
a new way to ensure that our set is robust to removal of the first few critical
elements chosen greedily. We first discuss how to approach this for τ = 1.

3.2.1 Algorithms for τ = 1 in the possible absence of “copies”

We start by discussing how one could construct a greedy set that is robust
to the removal of a1. In the case of copies, we would simply add a copy a′1
of a1, to accomplish this. Here, one approach would be to pick a1 and then
pick the rest of the elements greedily while ignoring a1. Note that this would
add a copy of a1, if it were available, and if not it will permit the selection
of elements which have small marginal on any set containing a1, but possibly
large marginal value in the absence of a1. Such an element need not be selected
by the standard Algorithm 1 that doesn’t ignore a1. Formally,

Algorithm 3 0.387 Algorithm
1: Initialize A = {a1}
2: while |A| < k do A = A+ argmax

x∈N−A
f(x|A− {a1})

3: Output: A

This simple algorithm is in fact, asymptotically 0.387 approximate and the
bound is tight (proof in Appendix A.3). However, a possible issue with the
algorithm is that it is oblivious to the minimizers of the set at any iteration. It
ignores a1 throughout, even if a1 stops being the minimizer after a few itera-
tions. Thus, if after every iteration, we check the minimizer and stop ignoring
a1 once it is not a minimizer (i.e. proceed with standard greedy iterations af-
ter such a point), we achieve a performance guarantee of 0.5 (proof omitted).
Note that this matches the guarantee obtained by copying just a1, in presence
of copies, and so in this sense, we can build a set that is robust to removal of
a1 in the general setting.

As we saw for the case of copies, in order to get even better guarantees,
we need to look at the set of the first two elements, {a1, a2}. A direct gen-
eralization of line 2 in Algorithm 3, to a rule that ignores both a1 and a2,
i.e. argmax

x∈N−A
f(x|A− {a1, a2}), can be shown to have a performance bound less

than 0.5. In fact, many natural rules that were tried resulted in upper bounds

14 James B. Orlin et al.

≤ 0.5. Algorithm 4 avoids looking at both elements simultaneously and in-
stead ignores a1 until its marginal becomes sufficiently small and then does
the same for a2, if required.

Algorithm 4 0.5547−Ω(1/k) Algorithm

1: Initialize A = {a1, a2}
Phase 1:

2: while |A| < k and f(a1|A− a1) >
f(A)
3

do A = A+ argmax
x∈N−A

f(x|A− a1)

Phase 2:
3: while |A| < k and f(a2|A− a2) >

f(A)
3

do A = A+ argmax
x∈N−A

f(x|A− a2)

Phase 3:

4: while |A| < k do A = A+ argmax
x∈N−A

f(x|A)

5: Output:A

The algorithm is asymptotically 0.5547-approximate (as an example, guar-
antee > 0.5 for k ≥ 50) and note that it’s minimizer oblivious and only uses
greedy as subroutine, which makes it fast and easy to implement (recall that
greedy can be replaced by thresholding). The analysis is presented in Appendix
A.4.

Next, recall that we want to make the final set robust to removal of either
one of the two elements {a1, a2}. In order to improve upon the guarantee of
Algorithm 4, which deals with the two elements one at a time, first ignoring
a1 and then a2 if required, we devise a way to add new elements while paying
attention to both a1 and a2 simultaneously. To this end, consider the following
addition rule,

argmax
|S|≤m;S⊆N−A

g(S|A) = argmax
|S|≤m;S⊆N−A

[

min
{

f(S +A− a1), f(S +A− a2)
}

−

min
{

f(A− a1), f(A− a2)
}]

,

i.e. greedily adding m tuples but w.r.t. to the g(.) function now instead of
f(.), while z ∈ {a1, a2}, for suitable m ≥ 1. We need to resort to m-tuples
instead of singletons because, for m = 1 we cannot guarantee improvements
at each iteration, as there need not be any element that adds marginal value
on both a1 and a2. However, for larger m we can show improving guarantees.
More concretely, consider an instance where f(a1) = f(a2) = 1, a1 has a
copy a′1 and additionally both a1 and a2 have ‘partial’ copies, f(aji) =

1
k and

f(aji |ai) = 0 for j ∈ {1, . . . , k}, i ∈ {1, 2}. Also, let there be a set G of k − 2

garbage elements with f(G) = 0. Finally, let f({a1, a2}) = 2 and f(aji |X) = 1
k

if ai 6∈ X (and also a′1 6∈ X for i = 1). Running the algorithm with: (i)
m = 1 outputs {a1, a2} ∪ G in the worst case, with (ii) m = 2 outputs aj1, a

j
2

on step j of Phase 1 and thus, ‘partially’ copies both a1 and a2. Instead, if
we run the algorithm with (iii) m = 3, the algorithm picks up a′1 and then
copies a2 almost completely with {a12, . . . , ak−3

2 }. In fact, we will show that
while {a1, a2} are minimizers, adding m-tuples in this manner allows us to
guarantee that at each step we increase g(A) by m−1

m
1
k times the difference

from optimal. Thus, when m is large enough that m−1
m ≈ 1, we effectively add

Robust Monotone Submodular Function Maximization 15

value at the ‘greedy’ rate of 1
k times the difference from optimal (ref. Lemma

1). However, this is while z ∈ {a1, a2}, so we need to address the case when
{a1, a2} are not minimizers. One approach would be to follow along the lines
of Algorithm 4 by adding singletons greedily w.r.t. f (similar to Phase 3) once
the minimizer falls out of {a1, a2}. This is what we do in the algorithm below,
recall that Z(A) is the set of minimizers of set A.

Algorithm 5 A (1− 1/e)− 1/Θ(m) Algorithm for τ = 1

input: m

1: Initialize A = {a1, a2}
Phase 1:

2: while |A| < k and Z(A) ⊆ {a1, a2} do
3: l = min{m, k − |A|}
4: A = A ∪ argmax

|S|=l;S⊆N−A
g(S|A)

Phase 2:
5: while |A| < k do A = A+ argmax

x∈N−A
f(x|A)

6: Output:A

Before analyzing the approximation guarantee of Algorithm 5, we first need
to show that in Phase 1, at each step we greedily add anm-tuple with marginal
value m−1

k times the difference from optimal. We do this by showing a more
general property below,

Lemma 9 Given two monotone submodular functions, f1, f2 on ground set
N . If there exists a set S of size k, such that fi(S) ≥ Vi, ∀i, then for every m
(2 ≤ m ≤ k), there exists a set X ⊆ S with size m, such that,

fi(X) ≥ m− 1

k
Vi, ∀i.

Proof First, we show that it suffices to prove this statement for two mod-
ular functions h1, h2. Note that we can reduce our ground set to S. Now,
consider an arbitrary indexing of elements in S = {s1, . . . , sk} and let Sj =
{s1, . . . , sj}, ∀j ∈ [k]. Consider modular functions such that value of element
sj is hi(sj) := fi(sj |Sj−1). Note that hi(S) = fi(S) and additionally, by sub-
modularity, we have that hi(X) is a lower bound on fi(X) i.e. for every set
X ⊆ S, fi(X) =

∑

j:sj∈X fi(sj |X ∩ Sj−1) ≥ hi(X). Also, we can assume

w.l.o.g. that hi(S) = 1, ∀i and so it suffices to show that hi(X) ≥ m−1
k , ∀i.

We proceed by induction on m. For the base case of m = 2, we can pick
elements e1, e2 ∈ S such that hi(ei) ≥ 1

k for i ∈ {1, 2}, and we are done. Now
assume that the property holds for m ≤ p and we show it for m = p + 1 by
contradiction. Consider an arbitrary set X0 of size p, such that hi(X0) ≥ p−1

k .
Such a set exists by assumption, and note that if for some i, say i = 1,
h1(X0) ≥ p

k , we are done, since we can add an element e ∈ S to X0 such

that h2(e +X0) ≥ p
k . So we assume that p−1

k ≤ hi(X0) <
p
k , ∀i to set up the

contradiction.
Now, consider the reduced ground set S −X0. Then we have that hi(S −

X0) > 1 − p
k , ∀i and since |S −X0| = k − p, we have for the reduced ground

16 James B. Orlin et al.

set S −X0, that there exists a set X1 of size p such that hi(X1) ≥ p−1
k−phi(S −

X0) > p−1
k , by the induction assumption. Using our second assumption (for

contradiction), we have that hi(X1) <
p
k . We repeat this until |S−∪jXj | ≤ p.

Let X ′ = S − ∪jXj , then since hi(S) = 1 ∀i, we have 0 < |X ′| = p′ ≤ p

and hi(X
′) > p′

k ∀i. Now using the induction assumption for m = p + 1 − p′

and ground set S − X ′, we have a set Y with |Y | = p + 1 − p′, such that

hi(X
′ ∪ Y) ≥ hi(X

′) + p−p′

k−p′
(1− hi(X

′)) > p
k , ∀i, yielding a contradiction. ⊓⊔

Based on this lemma, consider the below generalized greedy algorithm,

Algorithm 6 Generalized Greedy Algorithm
input: m, V1, V2

1: Initialize A = ∅
2: while |A| < k do
3: m = min{m, k − |A|}

4: Find
{

X| fi(X|A) ≥ m−1
k

[Vi − fi(A)], X ⊆ N − A, |X| = m
}

by enumeration

5: A = A ∪X
6: Output:A

Theorem 10 If there exists a set S, |S| = k, such that fi(S) ≥ Vi, then
Algorithm 6 finds a set A, |A| = l ≤ k, such that,

fi(A) ≥
(

β
(

0,
l

k

)

− 1/Θ(m)
)

Vi,

by making O(nm+1) queries.

Proof The analysis closely follows that of Lemma 1 in [25, 26] and Appendix
A.1. Let Aj be the set of size m × j after iteration j, then using Lemma 9
for monotone submodular functions f ′

i(.) = fi(.|Aj) with V ′
i = Vi − fi(Aj)

we have that ∃X, |X | ≤ m, such that fi(X |Aj) ≥ m−1
k [Vi − fi(Aj)]. Hence,

fi(Aj+1) ≥ fi(Aj)+
m−1
k [Vi−fi(Aj)]. Now similar to what is shown in [25,26],

this gives us that after l iterations,

fi(Al) ≥
(

1−
(

1− m− 1

k

)l)

Vi = β
(

0,
ml

k

)

(1− 1/Θ(m))Vi

=
(

β
(

0,
ml

k

)

− 1/Θ(m)
)

Vi.⊓⊔

Thus, Algorithm 6 gives a deterministic (1 − 1/e) − 1/Θ(m) approximation
for bi-objective maximization of monotone submodular functions subject to
cardinality constraints. We define this problem more generally and formally in
Section 3.2.3, but for now, note that the problem of maximizing the minimum
of two monotone submodular functions is a special case of the above, where
we don’t need to input Vi, and hence for Algorithm 5, we have that while in

Robust Monotone Submodular Function Maximization 17

Phase 1, after l iterations,

g(A) = min{f(A− a1), f(A− a2)}

≥
(

β
(

0,
l

k

)

− 1/Θ(m)
)

min{f(OPT (k,N, 1)− a1), f(OPT (k,N, 1)− a2)}

≥
(

β
(

0,
l

k

)

− 1/Θ(m)
)

g(OPT (k,N, 1)) (6)

Note that for Algorithm 6, Lemma 5 applies, albeit with the additive
−1/Θ(m) term. We now present the analysis of Algorithm 5.

Theorem 11 Given m ≥ 2, Algorithm 5 is β(0, k−2m−2
k) − 1/Θ(m)

k→∞−−−−→
(1− 1/e)− 1/Θ(m) approximate, and makes O(nm+1) queries.

Proof Let A0 = {a1, a2}. Consider the function g0(S) = mini∈{1,2}{f(S −
ai)} and let z be a minimizer of output set A as usual and define z0(S) =
argmini∈{1,2}{f(S−ai)}. Note that if z0(S) ∈ Z(S) then g0(S) = g(S). Also,
with the standard definition of marginal, note that for any set S ∩ A0 = ∅,
g0(S|X) ≥ mini∈{1,2}{f(S|X− ai)} ≥ f(S|X). Let U be the set added during
Phase 1 and similarly W during Phase 2. Also, let U = {u1, . . . , up}, where
each ui is a set of size m and similarly W = {w1, . . . , wr}, where each wi is
a singleton. Let OPT = g(OPT (k,N, 1)) and note that if r = 0 i.e., Phase
2 doesn’t occur, we have that z ∈ A0 and using (6), g(A) ≥

[

β(0, k−2
k−1) −

1/Θ(m)
]

OPT . So assume r > 0 and also p ≥ 2, since the case p = 1 will be
easy to handle later. Now, let f(z|A− z) = ηf(A), and so g(A) = (1− η)f(A).
Using analysis similar to Lemma 5, we will focus on showing that,

f(A) ≥
[

β
(

3η,
k − 2m

k − 1

)

− 1/Θ(m)
]

OPT (7)

Lemma 6 then gives g(A) ≥
[

β(0, k−2m
k−1)− 1/Θ(m)

]

OPT .

During the rest of the proof, we sometimes ignore the 1/Θ(m) term with the
understanding that it is present by default. To show (7), let ai = z0(A0 ∪ U).
Then, observe that,

f(A) = g0(A0 ∪ (U − up)) + g0(up|A0 ∪ (U − up))

+f(ai|(A0 ∪ U)− ai) + f(W |A0 ∪ U) (8)

For the first term in (8), we have

g0(A0 ∪ (U − up)) = g0(A0 ∪ u1) + g0({u2, . . . , up−1}|A0 ∪ u1).

Then, due to the greedy nature of Phase 1, we have using Theorem 10 (ignoring
1/Θ(m) term),

g0({u2, . . . , up−1}|A0 ∪ u1) ≥ β
(

0,
mp− 2m

k − 1

)

(OPT − g0(A0 ∪ u1)) (9)

18 James B. Orlin et al.

As usual, the k in the denominator was replaced by k− 1 because we compare
the value to a set of size k − 1 (OPT = f(OPT (k,N, 1) − z)). Similarly, for
the last term in (8), we have,

f(W |A0 ∪ U) ≥ β
(

0,
r

k − 1

)

(OPT − f(A0 ∪ U)) (10)

Now we make some substitutions, let ∆ = g0(A0∪u1)+g0(up|A0∪(U−up))+

f(ai|(A0∪U)−ai), αp = (m−1)(p−2)
k−1 , αr = r

k−1 . Then using k = mp+ r+2 we

get, αp+αr =
k−2m
k−1 −1/Θ(m). Also, f(A0∪U) = ∆+g0({u2, . . . , up−1}|A0∪

u1). This gives us,

f(A) = ∆+ g0({u2, . . . , up−1}|A0 ∪ u1) + f(W |A0 ∪ U)

(a)

≥ ∆+ g0({u2, . . . , up−1}|A0 ∪ u1) + β(0, αr)[OPT − f(A0 ∪ U)]

≥ ∆+ (1− β(0, αr))g
0({u2, . . . , up−1}|A0 ∪ u1) + β(0, αr)(OPT −∆)

(b)

≥ ∆+ (1/eαr)β(0, αp)(OPT − g0(A0 ∪ u1)) + β(0, αr)(OPT −∆)

≥ ∆+ (β(0, αr) + β(0, αp)/e
αr)[OPT −∆]

= ∆+
[

β
(

0,
k − 2m

k − 1

)

− 1/Θ(m)
]

[OPT −∆]

where the last equality holds asymptotically, (a) comes from (10) and (b) from
(9). Assume for the time being, that for any x, 3f(x|A−x) ≤ ∆, which implies
that ∆ ≥ 3ηf(A). Armed with these inequalities, the same simple algebra as
in the proof of Lemma 5, gives us (7). More concretely, ignoring the 1/Θ(m)
term, we have,

f(A) ≥ ∆+ β
(

0,
k − 2m

k − 1

)

[OPT −∆]

≥ 3ηf(A)
(

1− β
(

0,
k − 2m

k − 1

))

+ β
(

0,
k − 2m

k − 1

)

OPT

(1 − 3ηe−
k−2m
k−1)f(A) ≥ (1 − e−

k−2m
k−1)OPT

=⇒ f(A) ≥ β
(

3η,
k − 2m

k − 1

)

OPT

To finish the proof, we need to show 3f(x|A−x) ≤ ∆. We break this down
by first showing in two steps that for all x, 2f(x|A − x) ≤ g0(A0 ∪ u1) =
f(a2) + g0(u1|A0), followed by proving that f(x|A − x) ≤ g0(up|A0 ∪ (U −
up)) + f(ai|(A0 ∪ U)− ai).

Step 1 : for all x, f(x|A − x) ≤ f(a2). To see this for x 6= a1, note that
f(x|A− x) ≤ f(x|A0 − x) and further, f(x|A0 − x) ≤ f(a2|a1) ≤ f(a2), where
the first inequality is because a2 adds maximum marginal value to a1. For
x = a1, since Phase 1 ends, we have that f(a1|A − a1) ≤ f(a1|a2 + U) ≤
f(y|(A0 ∪U)− y) for some y not in A0 and then we have f(y|(A0 ∪U)− y) ≤
f(a2).

Robust Monotone Submodular Function Maximization 19

Step 2 : f(x|A − x) ≤ g0(u1|A0). For x 6∈ A0, we have that f(x|A − x) ≤
f(x|A0) ≤ g0(x|A0) ≤ g0(u1|A0). For x ∈ A0, from the fact that A0 ∪U has a
minimizer y 6∈ A0, we have that f(x|A− x) ≤ f(x|(A0 ∪ U)− x) ≤ f(y|(A0 ∪
U)− y) and further f(y|(A0 ∪ U)− y) ≤ f(y|A0) ≤ g0(y|A0) ≤ g0(u1|A0).

Finally, we show that f(x|A−x) ≤ g0(up|A0∪(U−up))+f(ai|(A0∪U)−ai),
for all x. Let aj = z0(A0 ∪ (U − up)) and observe that,

g0(A0 ∪ U)− g0(A0 ∪ (U − up)) + f(ai|(A0 ∪ U)− ai)

= f((A0 ∪ U)− ai)− f((A0 − aj) ∪ (U − up)) + f(ai|(A0 ∪ U)− ai)

= f(A0 ∪ U)− f((A0 − aj) ∪ (U − up))

≥ f(aj|(A0 − aj) ∪ (U − up))

Now, before adding up, we have that g
0(.) = g(.) and in fact, aj is a minimizer

of A0 ∪ (U − up), so clearly, for all x ∈ A0 ∪ (U − up), the desired is true.
For x ∈ up, it is true since f(up|A0 ∪ (U − up)) ≤ g0(up|A0 ∪ (U − up)). For
x ∈ W , we have that f(x|A−x) ≤ f(x|A0∪ (U −up)) ≤ g0(x|A0∪ (U −up)) ≤
g0(up|A0 ∪ (U − up))), and we are done.

The case p = 1 can be dealt with same as above, except that now ∆ =
g0(A0 ∪ u1) + f(ai|(A0 ∪ u1)− ai) + f(w1|A0 ∪ u1) = f(A0 ∪ u1 ∪w1). ⊓⊔

Before discussing a similar result for constant τ ≥ 1, we first describe a fast
0.387 approximation for τ = o(

√
k), which we will use when showing a (1 −

1/e)− ǫ approximation for fixed τ .

3.2.2 0.387 Algorithm for τ ≪
√
k in the possible absence of “copies”

One can recast the first algorithm in Section 3.1.2, which greedily chooses
{a1, . . . , ak−2τ2} elements and adds τ copies for each of the first 2τ elements. as
greedily choosing 2τ elements, ignoring them and choosing another 2τ greedily
(which will be copies of the first 2τ) and repeating this τ times in total, leading
to a set which contains A2τ and τ − 1 copies of each element in A2τ . Then,
ignoring this set, we greedily add till we have k elements in total. Thus, the
algorithm essentially uses the greedy algorithm as a sub-routine τ + 1 times.
Based on this idea, we now propose an algorithm for τ = o(

√
k), which can

also be viewed as an extension of the 0.387 algorithm for τ = 1. To be more

precise, it achieves an asymptotic guarantee of 0.387 for τ = o(
√

k
c(k)), where

c(k) is an input parameter that governs the trade off between how fast the
guarantee approaches 0.387 as k increases and how large τ can be for the

guarantee to still hold. In fact, the guarantee is 0.387
(

1 − 1
Θ(c(k))

)

with c(k)

being a function monotonically increasing in k and approaching ∞ as k → ∞.

The factor also degrades proportionally to 1− τ2c(k)
k , as τ approaches

√

k
c(k) .

20 James B. Orlin et al.

Algorithm 7 Algorithm for τ = o
(√

k
c(k)

)

1: Initialize τ ′ = c(k)τ2, A0 = A1 = X = ∅.
2: while |A0| < τ ′ do
3: while |X| < τ ′/τ do X = X + argmax

x∈N−(A0∪X)
f(x|X)

4: A0 = A0 ∪X; X = ∅

5: while |A1| < k − τ ′ do A1 = A1 + argmax
x∈N−(A0∪A1)

f(x|A1)

6: Output: A0 ∪A1

Theorem 12 Algorithm 7 has an approximation ratio of e−1
2e−1+ e−1

c(k)

= e−1
2e−1

(

1−
1

Θ(c(k))

) k→∞−−−−→ 0.387 for τ = o
(

√

k
c(k)

)

.

Proof Let A = A0 ∪A1 be the output with A0, A1 as in the algorithm. Define
Z0 = A0 ∩Z and Z1 = Z −Z0 = A1 ∩Z. Let OPT (k− τ,N −Z0, 0) = A′

0 ∪X
where A′

0 = OPT (k − τ,N − Z0, 0) ∩A0 and X ∩ A′
0 = ∅. Now note that,

f(A0 − Z0) + f(OPT (k − τ,N −A0, 0)) ≥ f(A′
0) + f(X)

≥ f(OPT (k − τ,N − Z0, 0))

≥ g(OPT (k,N, τ)) [∵ Lemma 2]

Which implies,

f(A0 − Z0) ≥ g(OPT (k,N, τ))− f(OPT (k − τ,N −A0, 0)) (11)

In addition,

f(A1) ≥ β
(

0,
k − τ ′

k − τ

)

f(OPT (k − τ,N −A0, 0)) (12)

Next, index disjoint subsets of A0 based on the loop during which they were
added. So the subset added during loop i is denoted byAi

0, where i ∈ {1, . . . , τ}.
So the last subset consisting of τc(k) elements is Aτ

0 .
Now, if Z0 includes at least one element from each Ai

0 then Z1 = ∅ and for
this case we have from (11) and (12) above,

f(A− Z) ≥ max{f(A0 − Z0), f(A1)}
≥ max{g(OPT (k,N, τ))− f(OPT (k − τ,N −A0, 0)),

β
(

0,
k − τ ′

k − τ

)

f(OPT (k − τ,N −A0, 0))}

≥
β
(

0, k−τ ′

k−τ

)

1 + β
(

0, k−τ ′

k−τ

)g(OPT (k,N, τ))

k→∞−−−−→ e− 1

2e− 1
g(OPT (k,N, τ))

Robust Monotone Submodular Function Maximization 21

Next, suppose that |Z1| > 0, then there is some Aj
0 such that Aj

0 ∩ Z = ∅.
Further let f(Z1|A−Z) = ηf(A1), then since |Aj

0| ≥ c(k)|Z1|, similar to (3), we

have due to greedy iterations and submodularity, f(Aj
0) ≥ c(k)f(Z1|A−Z) =

c(k)ηf(A1). Also note that,

f(A− Z) ≥ f(A1 − Z1) ≥ f(A1)− f(Z1|A− Z) ≥ (1− η)f(A1) (13)

Moreover, let A′
1 be the set of first τ elements of A1. Then, due to greedy

iterations we have f(A′
1) ≥ f(Z1|A1 − Z1) ≥ ηf(A1). Thus, from Lemma 5,

with N replaced by N − A0, k replaced by k − τ , S = A′
1 with c = η and

l = k − |S| = k − τ ′ − τ , we have,

f(A1) ≥ β(η,
k − τ ′ − τ

k − τ
)f(OPT (k − τ,N −A0, 0)) (14)

From (11), (13) and (14),

f(A− Z) ≥ max{f(A0 − Z0), (1 − η)f(A1), f(A
j
0)}

≥ max{f(A0 − Z0), (1 − η)f(A1), c(k)ηf(A1)}
(a)

≥ max{g(OPT (k,N, τ))− f(OPT (k − τ,N −A0, 0)),

c(k)

1 + c(k)
β(

1

1 + c(k)
,
k − τ ′ − τ

k − τ
)f(OPT (k − τ,N −A0, 0))}

≥
c(k)

1+c(k)β
(

1
1+c(k) ,

k−τ ′−τ
k−τ

)

1 + c(k)
1+c(k)β

(

1
1+c(k) ,

k−τ ′−τ
k−τ

)g(OPT (k,N, τ))

k→∞−−−−→ e− 1

2e− 1
g(OPT (k,N, τ))

where (a) follows by substituting η = 1
1+c(k) . ⊓⊔

3.2.3 (1− 1/e)− ǫ algorithm for constant τ

In Section 3.2.1, inspired by the 2-Copy algorithm, we derived a (1 − 1/e) −
1/Θ(m) approximation for the general case, using a phase wise approach. In
the first phase, while the minimizers are restricted to the set A0 = {a1, a2},
we build a set robust to removal of either of these elements by deriving and
using an algorithm for bi-objective maximization of monotone submodular
functions. In the second and final phase, we filled in the rest of the set with
standard greedy iterations (like Algorithm 1).

This phase wise approach however, doesn’t generalize well for τ > 1 since
we can have a minimizer that intersects with the initial set but is not a subset
of the initial set, unlike for τ = 1 where a minimizer z is either in {a1, a2}
or not. Instead, an alternative approach comes from reinterpreting the result
from τ = 1, where, we want to build a set that has a large value on both
f1(.) = f(.|a1) and f2(.) = f(.|a2) simultaneously, to deal with the scenarios
when either of these elements is a minimizer. Also, we can capture the notion of

22 James B. Orlin et al.

continuing greedily w.r.t. f(.) once the set becomes robust to removal of either
of a1 or a2, by considering a third function f3(.) = f(.|{a1, a2}). Thus, instead
of separate phases, we can think about a single multi-objective problem over
three monotone submodular functions f1, f2, f3, and try to add a set A1 to
A0 = {a1, a2}, such that fi(A1) ≥ (1 − 1/e)fi(OPT (k,N, 1)), ∀i. To see why
this serves our purposes, consider the scenario where a2 is a minimizer for the
final set A,

g(A) = f(A1 +A0 − a2) = f1(A1) + f(a1)

≥ f(a1) + (1− 1/e)(f(OPT (k,N, 1))− f(a1))

≥ (1− 1/e)g(OPT (k,N, 1)).

Generalizing this for larger τ , we start with the set A0 obtained by running
Algorithm 7 with τ ′ = 3τ2, implying |A0| = 3τ2. Now, consider the monotone
submodular functions fi(.) = f(.|Yi) for every possible subset Yi (|Yi| ≥ 3τ2 −
τ) of A0 and denote the set of functions by L (|L| = 2Θ̃(τ), large but constant).

Assuming there exists a set S of size k − 3τ2, such that fi(S) ≥ (1 −
Θ(1k))

[

g(OPT (k,N, τ))−f(Yi)
]

, we would like to solve an instance of a multi-
objective submodular maximization problem (made more precise later) to find
a set A1 of size k−3τ2 such that fi(A1) ≥ β(0, 1)(1−Θ(1k))

[

g(OPT (k,N, τ))−
f(Yi)

]

. We know that OPT (k,N, τ) is a set such that, fi(OPT (k,N, τ)) ≥
f(OPT (k,N, τ)) − f(Yi) ≥ g(OPT (k,N, τ)) − f(Yi), however it is a set of
size k. So before we can puzzle out how to find set A1, we need the proof of
existence of set S.

Lemma 13 Given a constant number of monotone submodular functions L =
{fi, . . . , fl} and values V = {Vi, . . . , Vl} and a set S′ of size k, such that
fi(S

′) ≥ Vi, ∀i. There exists a set S of size k − p such that,

fi(S) ≥
(

1− l

k − (p+ l− 1)

)p

Vi =
(

1−Θ(1/k)
)

Vi

for constant l, p ≪ k.

Proof This is clearly true for l = 1 since ∃S ⊂ S′, |S| = k − p, such that,
f(S) ≥ k−p

k f(S′). More generally, we show that ∃S1 ⊂ S′, |S1| = k − 1,

such that fi(S1) ≥ k−2l
k−l fi(S

′). Then we can reapply this on S1 to get S2 ⊂
S1, |S2| = k−2 and fi(S2) ≥ k−2l−1

k−l−1 fi(S1). Repeating this p times over all, we

get Sp ⊂ S′, |Sp| = k− p and fi(Sp) ≥ Πp−1
j=0

k−j−2l
k−j−l Vi ≥

(

k−p−2l+1
k−p−l+1

)p
Vi, which

gives the desired. So, it remains to show the claimed lower bound on fi(S1).
Let S′ = {s′1, . . . , s′k} and let S′

j = {s′1, . . . , s′j}. Similar to the argument in
Lemma 9, it suffices to show this for modular functions hi where hi(S

′) = 1
and hi(s

′
j) = fi(s

′
j |S′

j−1), ∀i. W.l.o.g., assume that S′ is indexed such that

h1(s
′
j) ≤ h1(s

′
j+1). Consider the set S′

1+⌈ l−1
l k⌉ of the 1 + ⌈ l−1

l k⌉ smallest

elements elements w.r.t. h1. There are at most (k−⌈ l−1
l k⌉)(l− 1) ≤ ⌈ l−1

l k⌉ <
|S′

1+⌈ l−1
l k⌉| distinct elements which are in the top (k−⌈ l−1

l k⌉) = ⌊k
l ⌋ for some

Robust Monotone Submodular Function Maximization 23

function hi, i ≥ 2. Hence ∃j0 ≤ 1 + ⌈ l−1
l k⌉ such that s′j0 is one of the ⌈ l−1

l k⌉
smallest elements for each function hi, i ≥ 2. This implies that if we remove
s′j0 , we have hi(S

′ − s′j0) ≥ 1− 1
⌊ k

l ⌋
≥ k−2l

k−l , ∀i. ⊓⊔

Now that we know that set S of size k− 3τ2 satisfying the desired inequalities
exists, we need an algorithm to find a set A1 that (1− 1/e)-approximates the
value of S for each fi. While Algorithm 6 only works for up to two functions,
as mentioned in the beginning, a randomized (1 − 1/e − ǫ) algorithm for a
more general problem was given in [10] and we use it here.

Lemma 14 (Chekuri, Vondrák, Zenklusen [10]) Given constant number
of monotone submodular functions L = {fi, . . . , fl} and values V = {Vi, . . . , Vl}.
If there exists a set S (|S| ≤ k) with fi(S) ≥ Vi, ∀i, there is a polynomial time
algorithm which finds a set X of size ≤ k such that fi(X) ≥ (1−1/e−ǫ)Vi, ∀i,
with constant probability, for a constant ǫ ≤ 1

log l , making O(n1/ǫ3) queries. If
a set S with the value lower bounds given by V doesn’t exist, then the algorithm
gives a certificate of non-existence.

Denote the algorithm by A and let the set output be A(V ,L), for inputs V ,L
as described above. To ease notation, from here on we generally ignore the ǫ
term.

A final hurdle in using the above is that we need to input the values
Vi = g(OPT (k,N, τ)) − f(Yi) and hence, we need an estimate of OPT =
g(OPT (k,N, τ)). We can overestimate OPT as long as the problem remains
feasible. However, underestimating OPT results in a loss in guarantee. Using
Algorithm 7, we can quickly find lower and upper bounds lb, ub such that
lb ≤ OPT ≤ ub = lb/0.387 and then run the multi-objective maximization
algorithm above with a geometrically increasing sequence of O(1/ log(1 + δ))
many values to get an estimate OPT ′ within factor (1 ± δ) of OPT .

In summary, our scheme starts with the set A0 of size 3τ2, obtained by
running Algorithm 7 with τ ′ = 3τ2, then uses the algorithm for multi-objective
optimization as a subroutine to find the estimate OPT ′ ≥ (1 − δ)OPT and
simultaneously a set A1 = A({OPT ′ − f(Yi)}i,L) of size k − 3τ2, such that
fi(A1) ≥ (1− 1/e)(1−Θ(1/k))(OPT ′ − f(Yi)).

The final output is A = A0∪A1 and we next show that this is asymptotically
(1− 1/e− ǫ) approximate.

Proof We ignore the ǫ and Θ(1/k) terms to ease notation. First, note that if
Z ⊆ A0, then f(.|A0 − Z) ∈ L gives us, f(A1|A0 − Z) ≥ (1 − 1/e)(OPT ′ −
f(A0 − Z)). Hence,

g(A) = f(A0 − Z) + f(A1|A0 − Z)

≥ f(A0 − Z) + (1− 1/e)(OPT ′ − f(A0 − Z))

≥ (1 − 1/e)OPT ′.

If Z 6⊆ A0, then let Z1 = Z ∩ A1 and Z0 = Z − Z1. Similar to the proof
of Theorem 12, let Ai

0 denote the ith set of 3τ elements greedily chosen for

24 James B. Orlin et al.

constructing A0, i ≤ τ . Since |Z0| < τ , ∃i such that Ai
0 ∩ Z0 = ∅. Then

analogous to the proof of Theorem 12, we have due to greedy additions,

f(A0 − Z0) ≥ f(Ai
0) ≥ 3f(Z1|A− Z) (15)

(in contrast with c(k)f(Z1|A−Z) in Theorem 12). Now, since f(.|A0 −Z0) is
one of the functions in L, we have f(A1|A0−Z0) ≥ (1−1/e)(OPT ′−f(A0−Z0))
which implies,

f(A−Z0) = f(A0−Z0)+f(A1|A0−Z0) ≥ f(A0−Z0)+(1−1/e)(OPT ′−f(A0−Z0)).

Further, letting f(Z1|A− Z) = ηf(A− Z0) and using (15),

f(A− Z0) ≥ 3η

e
f(A− Z0) + (1− 1/e)OPT ′

≥ β(3η, 1)OPT ′.

Now, using Lemma 6 we have g(A) = f(A − Z) ≥ (1 − η)f(A − Z0) ≥
β(0, 1)OPT ′. ⊓⊔

Finally, consider the following generalization of Lemma 6,

Conjecture 15 Given l ≥ 1 (treated as a constant) monotone submodular
functions f1, . . . , fl on ground set N , a set S ⊆ N of size k, such that fi(S) ≥
Vi for all i ∈ [l] and an arbitrary m with k ≥ m ≥ l, there exists a set X ⊆ S
of size m, such that,

fi(X) ≥ m−Θ(1)

k
Vi, ∀i ∈ [l]

If true, the above would give a greedy deterministic (1 − 1/e) − 1/Θ(m) ap-
proximation for the multi-objective optimization problem and thus also for
our robust problem, for constant τ .

4 Extension to general constraints

So far, we have looked at a robust formulation of P1, where we have a car-
dinality constraint. However, there are more sophisticated applications where
we find instances of budget or even matroid constraints. In particular, consider
the generalization max

A∈I
min
|B|≤τ

f(A\B), for some independence system I. By
definition, for any feasible set A ∈ I, all subsets of the form A\B are feasible as
well, so the formulation is sensible. Let’s briefly discuss the case of τ = 1 and
suppose that we are given an α approximation algorithm A, with query/run
time O(R) for the τ = 0 case. Let G0 denote its output and z0 be a minimizer
of G0. Consider the restricted system Iz0 = {A : z0 ∈ A,A ∈ I}. Now, in
order to be able to pick elements that have small marginal on z0 but large
value otherwise, we can generalize the notion of ignoring z0 by maximizing
the monotone submodular function f(.\z0) subject to the independence sys-
tem Iz0 . However, unlike the cardinality constraint case, where this algorithm

Robust Monotone Submodular Function Maximization 25

gives a guarantee of 0.387, the algorithm can be arbitrarily bad in general (be-
cause of severely restricted Iz0 , for instance). We tackle this issue by adopting
an enumerative procedure.

Let Aj denote the algorithm for τ = j and let Aj(N,Z) denote the output
of Aj on ground set N and subject to restricted system IZ . Finally, let ẑ(A) =
argmax

x∈A
f(x). With this, we have for general constraints:

Algorithm 8 Aτ : α
τ+1 for General Constraints

1: Initialize i = 0, Z = ∅
2: while N − Z 6= ∅ do
3: Gi = A0(N − Z, ∅)
4: zi ∈ ẑ(Gi); Z = Z ∪ zi
5: Mi = zi ∪ Aτ−1(N − Z, zi); i = i+ 1

6: Output: argmax{gτ (S)|S ∈ {Gj}
i
j=0 ∪ {Mj}

i
j=0}

To understand the basic idea behind the algorithm, assume that z0 is in
an optimal solution for the given τ . Then, given the algorithm Aτ−1, if a
minimizer of the set M0 = z0 ∪ Aτ−1(N − z0, z0) includes z0, it only removes
τ−1 elements fromAτ−1(N−z0, z0). On the other hand, if a minimizer doesn’t

include z0, gτ (M0) ≥ f(z0) ≥ f(M0)−gτ (M0)
τ . These two cases yield the desired

ratio, however, since z0 need not be in an optimal solution, we systematically
enumerate.

Theorem 16 Given an α approximation algorithm A for τ = 0 with query
time O(R), algorithm Aτ described above guarantees ratio α

τ+1 for general τ

with query time O(nτR+ nτ+1)

Proof We proceed via induction on j ∈ {0, . . . , τ}. Clearly, for j = 0, A0 ≡ A,
and the statement holds. Assume true for j ∈ {0, 1, . . . , τ − 1}, then we show
validity of the claim for Aτ . The query time claim follows easily since the while
loop runs for at most n iterations and each iteration makes O(nτ + nτ−1R)
queries (by assumption on query time of Aτ−1) and updating the best solution
at the end of each iteration (counts towards the final output step) takes O(nτ)
time to find the minimizer by brute force for two sets Gi and Mi.

Now, letOPT (I, N, τ) denote an optimal solution to maxA∈I min|B|=τ f(A−
B) on ground set N and assume that z0 ∈ OPT (I, N, τ). For any minimizer B

of A, we have for every element z ∈ ẑ(A), f(z) ≥ f(B)
τ ≥ f(A)−f(A−B)

τ . Let Z0

denote a minimizer of G0. Hence, if z0 6∈ Z0, we have that gτ (G0) ≥ f(z0) ≥
f(G0)−gτ (G0)

τ , giving us gτ (G0) ≥ f(G0)
τ+1 . Instead if z0 is in the minimizer of G0

and if f(G0 − Z0) < f(G0)
τ+1 , then we have that f(Z0|G0 − Z0) ≥ τ

τ+1f(G0),

implying that f(z0) ≥ f(G0)
τ+1 . Now, let Z ′

0 denote the minimizer of M0 and

26 James B. Orlin et al.

note that if z0 6∈ Z ′
0, we are done. Else, we have that,

gτ (M0) = gτ−1(M0 − z0) ≥ α

τ
gτ−1(OPT (Iz0 , N − z0, τ − 1))

≥ α

τ
gτ−1(OPT (I, N, τ) − z0)

≥ α

τ
gτ (OPT (I, N, τ)) >

α

τ + 1
gτ (OPT (I, N, τ))

Where the first inequality stems from the induction assumption, the second
and third by our assumption on z0. This was all true under the assump-
tion that z0 ∈ OPT (I, N, τ), if that is not the case, we remove z0 from the
ground set and repeat the same process. The algorithm takes the best set out
of all the ones generated, and hence there exists some iteration l such that
zl ∈ OPT (I, N, τ) and analyzing that iteration as we did above, gives us the
desired.

Finally, for the cardinality constraint case, we can avoid enumeration al-
together and the simplified algorithm has runtime polynomial in (n, τ) and
guarantee that scales as 1

τ , which for Ω(
√
k) ≤ τ = o(k), is a better guarantee

than the näıve one of 1
k−τ from Section 2.2. ⊓⊔

5 Conclusion, Open Problems and Further Work

We looked at a robust version of the classical monotone submodular function
maximization problem, where we want sets that are robust to the removal of
any τ elements. We introduced the special, yet insightful case of copies, for
which we gave a fast and asymptotically (1− 1/e) approximate algorithm for
τ = o(k).

For the general case, where we may not have copies, we gave a deter-
ministic asymptotically (1 − 1/e − 1/Θ(m)) algorithm for τ = 1, with the
runtime scaling as nm+1. As a byproduct, we also developed a determinis-
tic (1 − 1/e) − 1/Θ(m) approximation algorithm for bi-objective monotone
submodular maximization, subject to cardinality constraint. For larger but
constant τ , we gave a randomized (1−1/e)− ǫ approximation and conjectured
that this could be made deterministic. Additionally, we also gave a fast and
practical 0.387 algorithm for τ = o(

√
k). Note that here, unlike in the special

case of copies, we could not tune the algorithm to work for larger τ and in fact,
there has been further work in this direction since the appearance of the con-
ference and arXiv version of this paper. Notably, [6] generalizes the notion of
geometrically reducing the number of copies from Section 3.1.2, and achieves
a 0.387 approximation for τ = o(k). It is still open whether one can go all the
way up to (1−1/e) and no constant factor approximation or inapproximability
result is known for τ = Θ(k).

Finally, similar robustness versions can be considered for maximization
subject to independence system constraints and we gave an enumerative black
box approach that leads to an α

τ+1 approximation algorithm with query time

scaling as nτ+1, given an α approximation algorithm for the non-robust case.

Robust Monotone Submodular Function Maximization 27

Acknowledgement

The authors would like to thank all the anonymous reviewers for their useful
suggestions and comments on all the versions of the paper so far. In addition,
RU would also like to thank Jan Vondrák for a useful discussion and pointing
out a relevant result in [10].

References

1. A. Badanidiyuru and J. Vondrák. Fast algorithms for maximizing submodular functions.
In SODA ’14, pages 1497–1514. SIAM, 2014.

2. A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust optimization. Princeton University
Press, 2009.

3. D. Bertsimas, D. Brown, and C. Caramanis. Theory and applications of robust opti-
mization. SIAM review, 53(3):464–501, 2011.

4. D. Bertsimas and M. Sim. Robust discrete optimization and network flows. Mathemat-
ical programming, 98(1-3):49–71, 2003.

5. D. Bertsimas and M. Sim. The price of robustness. Operations research, 52(1):35–53,
2004.

6. I. Bogunovic, S. Mitrovic, J. Scarlett, and V. Cevher. Robust submodular maximization:
A non-uniform partitioning approach. In ICML, 2017.

7. N. Buchbinder and M. Feldman. Deterministic algorithms for submodular maximization
problems. CoRR, abs/1508.02157, 2015.

8. N. Buchbinder, M. Feldman, J.S. Naor, and R. Schwartz. A tight linear time (1/2)-
approximation for unconstrained submodular maximization. FOCS ’12, pages 649–658,
2012.

9. G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák. Maximizing a monotone submodular
function subject to a matroid constraint. SIAM Journal on Computing, 40(6):1740–
1766, 2011.

10. C. Chekuri, J. Vondrák, and R. Zenklusen. Dependent randomized rounding via ex-
change properties of combinatorial structures. In FOCS 10, pages 575–584. IEEE, 2010.

11. S. Dobzinski and J. Vondrák. From query complexity to computational complexity. In
STOC ’12, pages 1107–1116. ACM, 2012.

12. U. Feige. A threshold of ln n for approximating set cover. Journal of the ACM (JACM),
45(4):634–652, 1998.

13. U. Feige, V.S. Mirrokni, and J. Vondrak. Maximizing non-monotone submodular func-
tions. SIAM Journal on Computing, 40(4):1133–1153, 2011.

14. M. Feldman, J.S. Naor, and R. Schwartz. A unified continuous greedy algorithm for
submodular maximization. In FOCS ’11, pages 570–579. IEEE.

15. M. Feldman, J.S. Naor, and R. Schwartz. Nonmonotone submodular maximization via
a structural continuous greedy algorithm. In Automata, Languages and Programming,
pages 342–353. Springer, 2011.

16. S.O. Gharan and J. Vondrák. Submodular maximization by simulated annealing. In
SODA ’11, pages 1098–1116. SIAM.

17. A. Globerson and S. Roweis. Nightmare at test time: robust learning by feature deletion.
In Proceedings of the 23rd international conference on Machine learning, pages 353–360.
ACM, 2006.

18. D. Golovin and A. Krause. Adaptive submodularity: Theory and applications in active
learning and stochastic optimization. J. Artificial Intelligence Research, 2011.

19. C. Guestrin, A. Krause, and A.P. Singh. Near-optimal sensor placements in gaussian
processes. In Proceedings of the 22nd international conference on Machine learning,
pages 265–272. ACM, 2005.

20. S. Iwata, L. Fleischer, and S. Fujishige. A combinatorial strongly polynomial algorithm
for minimizing submodular functions. Journal of the ACM (JACM), 48(4):761–777,
2001.

28 James B. Orlin et al.

21. A. Krause, C. Guestrin, A. Gupta, and J. Kleinberg. Near-optimal sensor placements:
Maximizing information while minimizing communication cost. In Proceedings of the
5th international conference on Information processing in sensor networks, pages 2–10.
ACM, 2006.

22. A. Krause, H B. McMahan, C. Guestrin, and A. Gupta. Robust submodular observation
selection. Journal of Machine Learning Research, 9:2761–2801, 2008.

23. J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and N. Glance. Cost-
effective outbreak detection in networks. In Proceedings of the 13th ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining, pages 420–429. ACM,
2007.

24. Y. Liu, K. Wei, K. Kirchhoff, Y. Song, and J. Bilmes. Submodular feature selection
for high-dimensional acoustic score spaces. In Acoustics, Speech and Signal Processing
(ICASSP), 2013 IEEE International Conference on, pages 7184–7188. IEEE, 2013.

25. G.L. Nemhauser and L.A. Wolsey. Best algorithms for approximating the maximum of
a submodular set function. Mathematics of operations research, 3(3):177–188, 1978.

26. G.L. Nemhauser, L.A. Wolsey, and M.L. Fisher. An analysis of approximations for
maximizing submodular set functions—i. Mathematical Programming, 14(1):265–294,
1978.

27. A. Schrijver. A combinatorial algorithm minimizing submodular functions in strongly
polynomial time. Journal of Combinatorial Theory, Series B, 80(2):346–355, 2000.

28. M. Sviridenko. A note on maximizing a submodular set function subject to a knapsack
constraint. Operations Research Letters, 32(1):41–43, 2004.

29. M. Thoma, H. Cheng, A. Gretton, J. Han, HP. Kriegel, A.J. Smola, L. Song, S.Y. Philip,
X. Yan, and K.M. Borgwardt. Near-optimal supervised feature selection among frequent
subgraphs. In SDM, pages 1076–1087. SIAM, 2009.

30. J. Vondrák. Optimal approximation for the submodular welfare problem in the value
oracle model. In STOC ’08, pages 67–74. ACM.

31. J. Vondrák. Symmetry and approximability of submodular maximization problems.
SIAM Journal on Computing, 42(1):265–304, 2013.

32. J. Vondrák, C. Chekuri, and R. Zenklusen. Submodular function maximization via the
multilinear relaxation and contention resolution schemes. In STOC ’11, pages 783–792.
ACM, 2011.

A Appendix

A.1

Lemma 17 (Nemhauser, Wolsey [25, 26]) For all α ≥ 0, greedy algorithm terminated
after αk steps yields a set A with f(A) ≥ β(0, α)f(OPT (k,N, 0)).

Proof Let Ai be the set at iteration i of the greedy algorithm. Then by monotonicity, we
have,

f(Ai ∪OPT (k,N, 0)) ≥ f(OPT (k,N, 0))

and by submodularity,

∑

e∈OPT (k,N,0)−Ai

f(e|Ai) ≥ f(OPT (k,N, 0)|Ai) ≥ f(OPT (N, k, 0))− f(Ai)

Hence, there exists an element e in OPT (k,N, 0)− Ai such that,

f(e|Ai) ≥ (f(OPT (k,N, 0)) − f(Ai))/k

Hence, we get the recurring inequality,

f(Ai+1) ≥ f(Ai + e) ≥ f(Ai) + (f(OPT (k,N, 0)) − f(Ai))/k

Robust Monotone Submodular Function Maximization 29

The above implies that the difference between the value of the greedy set and optimal
solution decreases by a factor of (1− 1/k) at each step, so after αk steps,

f(Aαk) ≥ (1 − (1 − 1/k)αk)f(OPT (k,N, 0))

=⇒ f(Aαk) ≥ β(0, α)f(OPT (k,N, 0))

A.2

Lemma 18 There exists no polytime algorithm with approximation ratio greater than (1−
1/e) for P2 unless P = NP . For the value oracle model, we have the same threshold, but
for algorithms that make only a polynomial number of queries.

Proof We will give a strict reduction from the classical problem P1 (for which the above
hardness result holds [12,26]) to the robust problem P2. Consider an instance of P1, denoted
by (k,N, 0). We intend to reduce this to an instance of P2 on an augmented ground set N∪X
i.e. (k + τ,N ∪X, τ).

The set X = {x1, · · · , xτ} is such that f(xi) = (k + 1)f(a1) (and recall that f(a1) ≥
f(ai), ∀ai ∈ N) and f(xi|S) = f(xi) for every i and S ⊂ N ∪X not containing xi. We will
show that g(OPT (k + τ, N ∪X, τ)) = f(OPT (k,N, 0)).

First, note that for an arbitrary set S = SN ∪SX , such that |S| = k+τ and SX = S∩X,
we have that every minimizer contains SX . This follows by definition of X, since for any
two subsets P,Q of S with |P | = |Q| = k and P disjoint with X but Q∩X 6= ∅, we have by
monotonicity f(Q) ≥ f(xi) = (k+ 1)f(a1) > kf(a1) and by submodularity kf(a1) ≥ f(P).
This implies that X is the minimizer of OPT (k,N, 0) ∪ X and hence f(OPT (k,N, 0)) ≤
g(OPT (k + τ,N ∪X, τ))

For the other direction, consider the set OPT (k + τ, N ∪X, τ) and define,

M = OPT (k+ τ,N ∪X, τ) ∩X

Next, observe that carving out an arbitrary set B of size τ − |M | from OPT (k + τ,N ∪
X, τ)−M will give us the set

C = OPT (k+ τ,N ∪X, τ)−M −B

of size k + τ − (|M | + τ − |M |) = k. Also note that by design, C ⊆ N and hence f(C) ≤
f(OPT (k,N, 0)), but by definition, we have that g(OPT (k + τ, N ∪ X, τ)) ≤ f(C). This
gives us the other direction and we have g(OPT (k + τ,N ∪X, τ)) = f(OPT (k,N, 0)).

To complete the reduction we need to show how to obtain an α-approximate solution to
(k,N, 0) given an α-approximate solution to (k + τ,N ∪X, τ). Let S = SN ∪ SX be such a
solution i.e. a set of size k+τ with SX = S∩X, such that g(S) ≥ αg(OPT (k+τ,N∪X, τ)).
Now consider an arbitrary subset S′

N of SN of size τ − |SX |. Observe that |SN − S′
N | =

|S| − |SX | − (τ − |SX |) = k and further f(SN − S′
N) ≥ g(S) ≥ αg(OPT (k+ τ, N ∪X, τ)) =

αf(OPT (k,N, 0)), by definition. Hence the set SN −S′
N ⊆ N is an α-approximate solution

to (k,N, 0) that, given S, can be obtained in polynomial time/queries. ⊓⊔

A.3 Tight analysis of Algorithm 3

Theorem 19 The 0.387-algorithm is 1
2
β(0.5, k−2

k−1
)(> 0.387 asymptotically) approximate.

Proof Let OPT = g(OPT (k,N, 1)), A be the output of the 0.387-algorithm and a′1 be
the first element added to A apart from a1. The case z = a1 is straightforward since
f(A−a1) ≥ β(0, 1)f(OPT (k−1, N−a1, 0)) ≥ β(0, 1)OPT where the last inequality follows
from Lemma 2. So assume z 6= a1. Further, let f(z|A− a1 − z) = ηf(A− a1) which implies
that f(a′1) ≥ f(z) ≥ f(z|A−a1 − z) = ηf(A−a1) and now from Lemma 5 with N replaced

30 James B. Orlin et al.

by N − a1, A replaced by A − a1 and thus k replaced by k − 1, S = a′1 with s = 1 and
l = k − 1− |S| = k − 2, we get,

f(A− a1) ≥ β(η,
k − 2

k − 1
)f(OPT (k − 1, N − a1, 0))

This together with Lemma 2 implies, f(A− a1) ≥ β(η, k−2
k−1

)OPT . Also, we have by defini-
tion,

f(A− a1 − z) = (1− η)f(A − a1) ≥ (1 − η)β(η,
k − 2

k − 1
)OPT

Further, we have,

g(A) ≥ max{f(a1), f(A− a1 − z)}

≥ max{f(z|A− a1 − z), f(A − a1 − z)}

≥ max{ηβ(η,
k − 2

k − 1
), (1− η)β(η,

k − 2

k − 1
)}OPT

≥ 0.5β(0.5,
k − 2

k − 1
)OPT [for η = 0.5]

k→∞
−−−−→ 0.387OPT

We now give an instance where the above analysis is tight. Let the algorithm start with a
maximum value element a1, then pick a2, and then add the set C, such that the output of the
algorithm is a1 ∪a2 ∪C, with C being a set of size k−2. Let f(a1) = 1, f(a2) = 1, f(C) = 1
with f(a1+C) = 1, f(a1+a2) = 2, f(a2+C) = 2 i.e. C copies a1. Hence f(a1+a2+C) = 2
and g(a1 + a2 + C) = f(a1 + C) = 1.

Let OPT (k,N, 1) include a2, a copy a′2 of a2 (so f(a′2) = 1, f(a2 + a′2) = 1) and a

set D of k − 2 elements of value 1
(k−2)β(0,1)

each, such that f(OPT (k,N, 1)) = 1 + (k −

2) 1
(k−2)β(0,1)

= 1+ e
e−1

= 2
β(0.5,1)

. Observe that the small value elements are all minimizers

and g(OPT (k,N, 1)) ≈ 2
β(0.5,1)

as k becomes large. Note that f(D) = f(C)
β(0,1)

and we can

have sets C and D as above based on the worst case example for the greedy algorithm given
in [26].This proves that the inequality in Lemma 5 is tight.

A.4 Analysis of Algorithm 4

Theorem 20 Algorithm 4 is 0.5547 −Ω(1/k) approximate.

Proof Let A denote the output and A0 ⊂ A denote {a1, a2}. Due to submodularity, there

exists at most two distinct x ∈ A with f(x|A− x) >
f(A)
3

. Additionally, for every x 6∈ A0,
we have that f(x|S) ≤ f(a1) and f(x|S) ≤ f(a2|a1) for arbitrary subset S of A containing
A0 and x 6∈ S. This implies that that 2f(x|S) ≤ f(A0) ≤ f(S), which gives us that

f(x|S) ≤ f(S+x)
3

.
Note that due to condition in Phase 1, the algorithm ignores a1 even if it is not a

minimizer, as long as its marginal is more than a third the value of the set at that iteration.
At the end of Phase 1, if a2 has marginal more than third of the set value, then it is
ignored until its contribution/marginal decreases. Phase 3 adds greedily (without ignoring
any element added). As argued above, no element other than a1, a2 can have marginal more
than a third of the set value at any iteration, so during Phase 2 we have that a2 is also a
minimizer.

We will now proceed by splitting into cases. Denote g(OPT (k,N, 1)) as OPT and recall
from Lemma 2, OPT ≤ f(OPT (k− 1, N −ai, 0)) for i ∈ {1, 2}. Also, let the set of elements
added to A0 during Phase 1 be U = {u1, . . . , up}, similarly elements added during Phases
2 and 3 be V = {v1, . . . , vq},W = {w1, . . . , wr} respectively, with indexing in order of ad-

dition to the set. Finally, let αp = p−2
k−1

, αq = q−1
k−1

, αr = r
k−1

, α = αp + αq + αr = k−5
k−1

,

Robust Monotone Submodular Function Maximization 31

and assume k ≥ 8.

Case 1: Phase 2,3 do not occur i.e. p = k − 2, q = r = 0.

Since we have,

f(A − a1)
(a)

≥ f(a2) + β
(

0,
k − 2

k − 1

)

(f(OPT (k − 1, N − a1, 0)) − f(a2))

≥ β
(

0,
k − 2

k − 1

)

f(OPT (k − 1, N − a1, 0))

(b)

≥ β
(

0,
k − 2

k − 1

)

OPT , (16)

where (a) follows from Lemma 1 and (b) from Lemma 2. This deals with the case z = a1. If
z = up, we have,

f(A − up) ≥ f(A− up − a1)
(c)

≥ β
(

0,
k − 3

k − 1

)

f(OPT (k − 1, N − a1, 0))

≥ β
(

0,
k − 3

k − 1

)

OPT,

where (c) is like (16) above but with k− 2 replaced by k− 3 when using Lemma 1. Finally,
let z 6∈ {a1, up}, then due to the Phase 1 termination criteria, we have f(a1|A− a1 − up) ≥
f(A− up)/3, which implies that,

2f(a1|A− a1 − up) ≥ f(A− a1 − up) (17)

Now letting η =
f(z|A−a1−up−z)

f(A−a1−up)
, we have by submodularity f(z|A− z) ≤ ηf(A− a1 − up)

and by definition f(A− a1 − up − z) = (1 − η)f(A − a1 − up). Using the above we get,

f(A− z)
(d)

≥ max{f(a1), f(A− up − z)}

≥ max{f(z|A− a1 − up − z), f(A− a1 − up − z) + f(a1|A− a1 − up − z)}

≥ max{ηf(A − a1 − up), (1− η)f(A − a1 − up) + f(a1|A− a1 − up)}

≥ max{η, (1 − η) +
1

2
}f(A− a1 − up) (18)

where (d) follows from monotonicity and the fact that a1 ∈ A− z and A− up − z ⊂ A− z.
Now, from Lemma 5 with S = {a2, u1}, l = p − 2, k replaced by k − 1, N by N − a1
and s = 1, we have, f(A − a1 − up) ≥ β(η, αp)f(OPT (k − 1, N − a1, 0)) ≥ β(η, αp)OPT .
Substituting this in (18) above we get,

f(A− z) max{η,
3

2
− η}β(η, αp)OPT

≥
3

4
β
(3

4
, αp

)

OPT [η = 3/4]

> β(0, αp)OPT = β
(

0,
k − 4

k − 1

)

OPT (19)

Case 2: Phase 2 occurs, 3 doesn’t i.e. p+ q = k − 2 and q > 0.

As stated earlier, during Phase 2, a2 is the minimizer of A0∪U∪(V −vq). We have g(A) ≥
g(A−vq) = f(A−vq−a2) = f(a1+U)+f(V −vq |a1+U). Further, since the addition rule in
Phase 2 ignores a2, we have from Lemma 1, f(V −vq|a1+U) ≥ β(0, αq)(OPT −f(a1+U)),
and f(a1 + U) ≥ β(0, αp)OPT follows from the previous case (to see this, suppose that
the algorithm was terminated after Phase 1 and note that z = a2 falls under the scenario

32 James B. Orlin et al.

z 6∈ {a1, up}). Using this,

g(A− vq) ≥ f(a1 + U) + β(0, αq)(OPT − f(a1 + U))

f(A− z)

OPT
≥ (1− β(0, αq))β(0, αp) + β(0, αq)

= β(0, α) = β
(

0,
k − 5

k − 1

)

(20)

Case 3: Phase 3 occurs i.e., r > 0.
We consider two sub-cases, z ∈ A − W and z ∈ W . Suppose z ∈ A − W . Due to

f(z|A−W−z) ≤ f(A−W)/3 we have, f(A−W) ≤ 3
2
f(A−W−z). Also, f(W |A−W−z) ≥

f(W |A−W) ≥ β(0, αr)(OPT − f(A−W)). Then using this along with the previous cases,

f(A− z) = f(A−W − z) + f(W |A−W − z)

≥ f(A−W − z) + β(0, αr)(OPT − f(A−W))

≥ f(A−W − z) + β(0, αr)(OPT −
3

2
f(A−W − z))

≥ (1−
3

2
β(0, αr))f(A −W − z) + β(0, αr)OPT

≥ (1−
3

2
β(0, αr))β(0, αp + αq)OPT + β(0, αr)OPT [from (19),(20)]

f(A− z)

OPT
≥ 0.5−

3

2eα
+

1

2
(e−(αp+αq) + e−αr)

≥ 0.5−
3

2eα
+ e−α/2 [for αr = αp + αq = α/2]

= 0.5−
3

2e
k−4
k−1

+ e
− k−4

2(k−1)
k→∞
−−−−→ 0.5547

Now, suppose z ∈ W , then note that for p+ q ≥ 6 we have either p ≥ 3, and hence due
to greedy additions f(z|A− z) ≤ f({u1, u2, u3})/3 ≤ f(A−W)/3, or q ≥ 3, and again due
to greedy additions f(z|A− z) ≤ f(a1 + U ∪ {v1, v2})/3 ≤ f(A−W)/3.

If q > 0, then note that f(A − W) ≥ f(A − W − vq) ≥ 3
2
f(A − W − vq − a2) due to

the Phase 2 termination conditions. Now we reduce the analysis to look like the previous
sub-case through the following,

f(A− z) = f(A −W) + f(W |A−W)− f(z|A− z)

≥ f(A −W) + β(0, αr)(OPT − f(A −W))− f(z|A− z)

≥ (1 − β(0, αr))f(A −W) + β(0, αr)OPT − f(A−W)/3

≥
(

1−
3

2
β(0, αr)

) 2

3
f(A−W) + β(0, αr)OPT

≥
(

1−
3

2
β(0, αr)

)

f(A−W − vq − a2) + β(0, αr)OPT

Which since f(A − W − vq − a2) ≥ β
(

0, p+q−3
k−1

)

OPT from (20), leads to the same ratio

asymptotically as when z ∈ A − W . The case q = 0 can be dealt with similarly by using
f(A−W) ≥ f(A−W − up) ≥

3
2
f(A−W − up − a1)

If p + q < 6, then let f(z|A − z) = ηf(A). Now we have, f(A − W) ≥ f(A0) =
f(a1)+f(a2|a1) ≥ 2f(z|A−z) = 2ηf(A), which further implies that f(A−W+w1) ≥ 3ηf(A)
since z ∈ W . Then proceeding as in Lemma 5 with k replaced by k − 1, S = A − W + w1

and hence s = 3 and finally l = k − |S| = k − (p + q + 2 + 1) ≤ k − 8 gives us,

f(A) ≥ β(3η,
k − 8

k − 1
)f(OPT (k − 1, N, 0)) ≥ β(3η,

k − 8

k − 1
)OPT

Then using Lemma 6 we have, f(A− z) ≥ (1− η)β(3η, k−8
k−1

)OPT ≥ β(0, k−8
k−1

)OPT . ⊓⊔

	1 Introduction
	2 Preliminaries
	2.1 Definitions
	2.2 Negative Results

	3 Main Results
	3.1 Special case of ``copies''
	3.1.1 Algorithms for =1 in presence of ``copies''
	3.1.2 (1-1/e) Algorithms for =o(k) in the presence of ``copies''

	3.2 Algorithms in the possible absence of ``copies''
	3.2.1 Algorithms for =1 in the possible absence of ``copies''
	3.2.2 0.387 Algorithm for k in the possible absence of ``copies"
	3.2.3 (1-1/e)- algorithm for constant

	4 Extension to general constraints
	5 Conclusion, Open Problems and Further Work
	A Appendix
	A.1
	A.2
	A.3 Tight analysis of Algorithm ??
	A.4 Analysis of Algorithm ??

