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Abstract
We consider the fully dynamic bin packing problem, where items arrive and depart in an online
fashion and repacking of previously packed items is allowed. The goal is, of course, to minimize
both the number of bins used as well as the amount of repacking. A recently introduced way of
measuring the repacking costs at each timestep is the migration factor, defined as the total size
of repacked items divided by the size of an arriving or departing item. Concerning the trade-off
between number of bins and migration factor, if we wish to achieve an asymptotic competitive
ratio of 1 + ε for the number of bins, a relatively simple argument proves a lower bound of Ω(1/ε)
on the migration factor. We establish a fairly close upper bound of O(1/ε4 log 1/ε) using a new
dynamic rounding technique and new ideas to handle small items in a dynamic setting such that
no amortization is needed. The running time of our algorithm is polynomial in the number of
items n and in 1/ε. The previous best trade-off was for an asymptotic competitive ratio of 5/4 for
the bins (rather than 1 + ε) and needed an amortized number of O(logn) repackings (while in
our scheme the number of repackings is independent of n and non-amortized).
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1 Introduction

For the classical bin packing problem, we are given a set I of items with a size function
s : I → (0, 1] and need to pack them into as few unit sized bins as possible. In practice, the
complete instance is often not known in advance, which has lead to the definition of a variety
of online versions of the bin packing problem. First, in the classical online bin packing [35],
items arrive over time and have to be packed on arrival. Second, in dynamic bin packing [8],
items also depart over time. This dynamic model is often used for instance in

the placement and movement of virtual machines onto different servers for cloud computing
[3, 4, 22, 23, 32, 36],
the development of guaranteed quality of service channels over certain multi-frequency
time division multiple access systems [28],
the placement of processes, which require different resources, onto physical host machines
[33, 34],
the resource allocation in a cloud network where the cost depends upon different parame-
ters [9, 26].
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Name Deletion Repacking
Online Bin Packing 7 7

Relaxed Online Bin Packing 7 3

Dynamic Bin Packing 3 7

Fully Dynamic Bin Packing 3 3

Figure 1 Overview of online models.

Third and fourth, we may allow already packed items to be slightly rearranged, leading to
online bin packing with repacking (known as relaxed online bin packing) [14] and dynamic
bin packing with repacking (known as fully dynamic bin packing) [16]. See Figure 1 for a
short overview on the different models.

The amount of repacking can be measured in different ways. We can either count the
total number of moved items at each timestep or the sum of the sizes of the moved items
at each timestep. If one wants to count the number of moved items, one typically counts a
group of tiny items as a single move. A shifting move [14] thus involves either a single large
item or a bundle of small items in the same bin of total size s with 1/10 ≤ s ≤ 1/5. Such a
bundle may consists of up to Ω(n) (very small) items. If an algorithm measures the repacking
by shifting moves, an occurring tiny item may lead to a large amount of repacking. In order
to guarantee that a tiny item i with size s(i) only leads to a small amount of repacking, one
may allow to repack items whose size adds up to at most β · s(i). The term β is called the
migration factor [29]. Note that shifting moves and migration factor are incomparable in the
sense that a small migration factor does not imply a small number of shifting moves and
vice versa.

In order to measure the quality of an online algorithm, we compare the costs incurred
by an online algorithm with the costs incurred by an optimal offline algorithm. An online
algorithm receives as input a sequence of items I = (i1, i2, i3, . . .) and decides at each timestep
t, where to place the item it without knowing future items it+1, it+2, . . .. We denote by
I(t) = (i1, i2, . . . , it) the instance containing the first t items of the instance I and by
opt(I(t)) the minimal number of bins needed to pack all items in I(t). Note that the
packings corresponding to opt(I(t)) and opt(I(t + 1)) may differ significantly, as those
packings do not need to be consistent. For an online algorithm A, we denote by A(I(t))
the number of bins generated by the algorithm on the input sequence I(t). Note that A
must make its decision online, while opt(I(t)) is the optimal value of the offline instance.
The quality of an algorithm for the online bin packing problem is typically measured by its
asymptotic competitive ratio. An online algorithm A is called an asymptotic α-competitive
algorithm, if there is a function f with limn→∞ sup

{
f(I)

opt(I) | opt(I) = n
}

= 0 such that
A(I(t)) ≤ αopt(I(t)) + f(I(t)) for all instances I and all t ≤ |I|. The minimum α such
that A is an asymptotic α-competitive algorithm is called the asymptotic competitive ratio
of A, denoted by ron

∞ (A), i. e., the ratio is defined as ron
∞ (A) = min{α | A is an asymptotic

α-competitive algorithm}. The online algorithm A thus has a double disadvantage: It does
not know future items and we compare its quality to the optimal offline algorithm which
may produce arbitrary different packings at time t and time t+ 1. In order to remedy this
situation, one may also compare the solution generated by A to a non-repacking optimal
offline algorithm. This non-repacking optimal offline algorithm knows the complete instance,
but is not allowed to repack, i.e., the solutions at time t and time t+ 1 must be consistent.

In this work, we present new results in fully dynamic bin packing where we measure
the quality of an algorithm against a repacking optimal offline algorithm and achieve an
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asymptotic competitive ratio of 1+ε. The amount of repacking is bounded by O(1/ε4 log(1/ε)).
While we measure the amount of repacking in terms of the migration factor, we also prove
that our algorithm uses at most O(1/ε4 log(1/ε)) shifting moves. Our algorithm runs in time
polynomial in the instance size and in 1/ε.

1.1 Previous Results on Online Variants of Bin Packing
Online Bin Packing
The classical version of the online bin packing problem was introduced by Ullman [35]. In
this classical model items arrive over time and have to be packed at their arrival, while one
is not allowed to repack already packed items. Ullman gave the very first online algorithm
FirstFit for the problem and proved that it its absolute competitive ratio is at most 2.
The next algorithm NextFit was given by Johnson [19], who proved that its absolute
competitive is also at most 2. The analysis of FirstFit was refined by Johnson, Demers,
Ullman, Garey and Graham [20], who proved that its asymptotic competitive ratio is at
most 17/10. A revised version of FirstFit, called Revised FirstFit was shown to have
asymptotic competitive ratio of at most 5/3 by Yao [39]. A series of developments of so called
harmonic algorithms for this problem was started by Lee and Lee [25] and the best known
algorithm of this class which has asymptotic competitive ratio at most 1.58889 was given by
Seiden [30].

The lower bound on the absolute approximation ratio of 3/2 also holds for the asymptotic
competitive ratio as shown by Yao [39]. This lower bound was first improved independently
by Brown [5] and Liang [27] to 1.53635 and subsequently to 1.54014 by van Vliet [37] and
finally to 1.54037 by Balogh, Békési and Galambos [1].

Relaxed Online Bin Packing Model
In contrast to the classical online bin packing problem, Gambosi, Postiglione and Talamo
[14] considered the online case where one is allowed to repack items. They called this model
the relaxed online bin packing model and proved that the lower bound on the competitive
ratio in the classical online bin packing model can be beaten. They presented an algorithm
that uses 3 shifting moves and has an asymptotic competitive ratio of at most 3/2, and an
algorithm that uses at most 7 shifting moves and has an asymptotic competitive ratio of
4/3. In another work, Ivković and Lloyd [15] gave an algorithm that uses O(logn) amortized
shifting moves and achieves an asymptotic competitive ratio of 1 + ε. In this amortized
setting, shifting moves can be saved up for later use and the algorithm may repack the
whole instance sometimes. Epstein and Levin [11] used the measure of the migration factor
to give an algorithm that has an asymptotic competitive ratio of 1 + ε and a migration
factor of 2O((1/ε) log2(1/ε)). This result was improved by Jansen and Klein [18] who achieved
polynomial migration of O(1/ε4) to achieve an asymptotic competitive ratio of 1 + ε.

Concerning lower bounds on the migration factor, Epstein and Levin [11] showed that no
optimal solution can be maintained while having a constant migration factor (independent of
1/ε). Furthermore, Balogh, Békési, Galambos and Reinelt [2] proved that a lower bound on
the asymptotic competitive ratio of 1.3877 holds, if one is only allowed to repack a constant
number of items.

Dynamic Bin Packing
An extension to the classical online bin packing model was given by Coffman, Garey and
Johnson [8], called the dynamic bin packing model. In addition to the insertion of items,
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items also depart over time. No repacking is allowed in this model. It is easily seen that no
algorithm can achieve a constant asymptotic competitive ratio in this setting. In order to
measure the performance of an online algorithm A in this case, they compared the maximum
number of bins used by A with the maximum number of bins used by an optimal offline
algorithm, i. e., an algorithm A in this dynamic model is called an asymptotic α-competitive
algorithm, if there is a function f with limn→∞ sup

{
f(I)

max-OPT(I) | max-opt(I) = n
}

= 0
where max-opt(I) = maxt opt(I(t)) such that maxtA(I(t)) ≤ α · maxt opt(I(t)) + f(I)
for all instances I. The minimum of all such α is called the asymptotic competitive ratio
of A. Coffman, Garey and Johnson modified the FirstFit algorithm and proved that its
asymptotic competitive ratio is at most 2.897. Furthermore, they showed a lower bound of
2.5 on the asymptotic competitive ratio when the performance of the algorithm is compared
to a repacking optimal offline algorithm, i. e., maxt opt(I(t)).

In the case that the performance of the algorithm is compared to an optimal non-repacking
offline algorithm, Coffman, Garey and Johnson showed a lower bound of 2.388. This bound
on the non-repacking optimum was improved to 2.428 by Chan, Lam and Wong [6], to 2.5
by Chan, Wong and Yung [7] and finally to 8/3 ≈ 2.666 by Wong, Yung and Burcea [38].

Fully Dynamic Bin Packing
We consider the dynamic bin packing when repacking of already packed items is allowed. This
model was first investigated by Ivković and Lloyd [16] and is called fully dynamic bin packing.
In this model, items arrive and depart in an online fashion and limited repacking is allowed.
The quality of an algorithm is measured by the asymptotic competitive ratio as defined in
the classical online model (no maximum is taken as in the dynamic bin packing model).
Ivković and Lloyd developed an algorithm that uses amortized O(logn) many shifting moves
(see definition above) to achieve an asymptotic competitive ratio of 5/4.

Related Results on the Migration Factor
Since the introduction of the migration factor, several problems were considered in this model
and different algorithms for these problems have been developed. Following the terminology of
Sanders, Sivadasan and Skutella [29] we sometimes use the term approximation ratio instead
of competitive ratio. Hence, we also use the terms asymptotic polynomial time approximation
scheme (APTAS) and asymptotic fully polynomial time approximation scheme (AFPTAS)
in the context of online algorithms. If the migration factor of an algorithm A only depends
upon the approximation ratio ε and not on the size of the instance, we call A robust.

In the case of online bin packing, Epstein and Levin [11] developed the first robust APTAS
for the problem using a migration factor of 2O((1/ε2) log(1/ε)). They also proved that there is
no online algorithm for this problem that has a constant migration factor and that maintains
an optimal solution. The APTAS by Epstein and Levin was later improved by Jansen
and Klein [18], who developed a robust AFPTAS for the problem with migration factor
O(1/ε4). In their paper, they developed new linear program (LP)/integer linear program (ILP)
techniques, which we make use of to obtain polynomial migration. It was shown by Epstein
and Levin [12] that their APTAS for bin packing can be generalized to packing d-dimensional
cubes into unit cubes. Sanders, Sivadasan and Skutella [29] developed a robust polynomial
time approximation scheme (PTAS) for the scheduling problem on identical machines with
a migration factor of 2O((1/ε) log2(1/ε)). Skutella and Verschae [31] studied the problem of
maximizing the minimum load given n jobs and m identical machines. They also considered a
dynamic setting, where jobs may also depart. They showed that there is no robust PTAS for
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this machine covering problem with constant migration. The main reason for the nonexistence
is due to very small jobs. By using an amortized migration factor, they developed a PTAS
for the problem with amortized migration of 2O((1/ε) log2(1/ε)).

1.2 Our Contributions
Main Result
In this work, we investigate the fully dynamic bin packing model. We measure the amount
of repacking by the migration factor ; but our algorithm uses a bounded number of shifting
moves as well. Since the work of Ivković and Lloyd from 1998 [16], no progress was made on
the fully dynamic bin packing problem concerning the asymptotic competitive ratio of 5/4. It
was also unclear whether the number of shifting moves (respectively migration factor) must
depend on the number of packed items n. In this paper we give positive answers for both of
these concerns. We develop an algorithm that provides at each time step t an approximation
guarantee of (1 + ε) opt(I(t)) + O(1/ε log(1/ε)). The algorithm uses a migration factor of
O(1/ε4 · log(1/ε)) by repacking at most O(1/ε3 · log(1/ε)) bins. Hence, the generated solution
can be arbitrarily close to the optimum solution, and for every fixed ε the provided migration
factor is constant (it does not depend on the number of packed items). The running time is
polynomial in n and 1/ε. In case that no deletions are used, the algorithm has a migration
factor of O(1/ε3 · log(1/ε)), which beats the best known migration factor of O(1/ε4) by Jansen
and Klein [18]. Since the number of repacked bins is bounded, so is the number of shifting
moves as it requires at most O(1/ε) shifting moves to repack a single bin. Furthermore, we
prove that there is no asymptotic approximation scheme for the online bin packing problem
with a migration factor of o(1/ε) even in the case that no items depart (and even if P = NP).

Technical Contributions
We use the following techniques to achieve our results:

In order to obtain a lower bound on the migration factor in Section 2, we construct a
series of instances that provably need migration of Ω(1/ε) in order to have an asymptotic
approximation ratio of 1 + ε.
In Section 3, we show how to handle large items in a fully dynamic setting. The fully
dynamic setting involves more difficulties in the rounding procedure, in contrast to the
setting where large items may not depart, treated in [18]. A simple adaption of the
dynamic techniques developed in [18] does not work (see introduction of Section 3). We
modify the offline rounding technique by Karmarkar and Karp [24] such that a feasible
rounding structure can be maintained when items are inserted or removed. This way, we
can make use of the LP-techniques developed in Jansen and Klein [18].
In Section 4, we explain how to deal with small items in a dynamic setting. In contrast
to the setting where departure of items is not allowed, the fully dynamic setting provides
major challenges in the treatment of small items. An approach is thus developed where
small items of similar size are packed near each other. We describe how this structure
can be maintained as new items arrive or depart. Note that the algorithm of Ivković and
Lloyd [16] relies on the ability to manipulate up to Ω(n) very small items in constant
time. See also their updated work for a thorough discussion of this issue [17].
In order to unify the different approaches for small and large items in Section 4.2, we
develop an advanced structure for the packing. We give novel techniques and ideas to
manage this mixed setting of small and large items. The advanced structure makes use
of a potential function, which bounds the number of bins that need to be reserved for
incoming items.

APPROX/RANDOM’15
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Several proofs in this extended abstract are removed due to space constraints. The full
version1 contains all of these proofs.

2 Lower Bound

We start our investigation by analyzing the connection between the approximation ratio and
the migration factor of an algorithm. Intuitively, one would expect that a small migration
factor c leads to a worse approximation ratio rc. Whether the dependency between those
term is logarithmic, linear, quadratic or something completely different is unclear. A simple
argument shows that the dependency is at least linear, i. e., there is no robust asymptotic
approximation scheme for bin packing with migration factor of o(1/ε), even if P = NP.
This improves upon the lower bound given by Epstein and Levin [11], which states that
no algorithm for online bin packing, that maintains an optimal solution can have constant
migration.

I Theorem 1. For a fixed migration factor γ > 0, there is no robust approximation algorithm
for bin packing with asymptotic approximation ratio better than 1 + 1

6dγe+5 .

I Corollary 2. There is no robust asymptotic approximation scheme for bin packing with a
migration factor γ ≤ 1/6(1/ε− 11) = Θ(1/ε).

3 Dynamic Rounding

The goal of this section is to give a robust AFPTAS for the case that only large items arrive
and depart. In the first subsection we present a general rounding structure. In the second
subsection we give operations that modify the rounding in a way that the general structure
is preserved. We give the final algorithm for the insertion and departure of large items in
Section 3.3. Finally, the correctness is proved by using the LP/ILP techniques developed in
[18].

In [18], the last two authors developed a dynamic rounding technique based on an offline
rounding technique from Fernandez de la Vega and Lueker [13]. However, a simple adaption
of these techniques does not work in the dynamic case where items may also depart. In
the case of the offline rounding by Fernandez de la Vega and Lueker, items are sorted and
then collected in groups of the same cardinality. As a new item arrives in an online fashion,
this structure can be maintained by inserting the new item to its corresponding group. By
shifting the largest item of each group to the left, the cardinality of each group (except for
the first one) can be maintained. However, shifting items to the right whenever an item
departs leads to difficulties in the LP/ILP techniques. As the rounding for a group may
increase, patterns of the existing LP/ILP solution might become infeasible. We overcome
these difficulties by developing a new dynamic rounding structure and operations based
on the offline rounding technique by Karmarkar and Karp [24]. We felt that this dynamic
rounding technique is easier to analyze since the structure can essentially be maintained by
shifting items, instead of the use of multiple complex operations as in [18].

A bin packing instance consists of a set of items I = {i1, i2, . . . , in} with size function
s : I → [0, 1] ∩Q. A feasible solution is a partition B1, . . . , Bk of I such that

∑
i∈Bj s(i) ≤ 1

for j = 1, . . . , k. We call a partition B1, . . . , Bk a packing and a single set Bj is called a bin.
The goal is to find a solution with a minimal number of bins. If the item i is packed into the

1 The full version is available at http://arxiv.org/abs/1411.0960.

http://arxiv.org/abs/1411.0960
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bin Bj , we write B(i) = j. The smallest value k ∈ N such that a packing with k bins exists
is denoted by opt(I, s) or if the size function is clear by opt(I). A trivial, yet useful lower
bound on opt(I, s) is given by the value size(I, s) =

∑
i∈I s(i).

3.1 Rounding
First, we divide the set of items into small ones and large ones. An item i is called small
if s(i) < ε/14, otherwise it is called large. Instance I is partitioned accordingly into a set of
large items IL and a set of small items IS . We treat small items and large items differently.
Small items can be packed using an algorithm presented in Section 4.1 while large items will
be assigned using an ILP. In this section we discuss how to handle large items.

To obtain a LP formulation of fixed (independent of |I|) dimension, we use a rounding
technique based on the offline AFPTAS by Karmarkar and Karp [24]. Here, large items are
put into categories such that each item in category ` has size ∈ (2−(`+1), 2−`]. In each of
those categories, the items are sorted by their size and the first 2` · k items are put into the
first group, the second 2` · k items into the second group and so on. The size of every item in
a group is rounded to the maximal size in this group. Depending on a suitable choice of k,
there are at most O(1/ε log(1/ε)) groups and the additive error produced by the rounding is
bounded by ε.

In order to use this rounding technique for our dynamic setting, we generalize their
rounding by having groups of size 2` · k (the A-block) and groups of size 2`(k − 1) (the
B-block). This generalized rounding has a certain structure that is maintained throughout
the algorithm and guarantees an approximate solution for the original instance. As in [24],
we characterize the set of large items more precisely by their sizes. We say that an item i is
in size category ` if s(i) ∈ (2−(`+1), 2−`]. Denote the set of all size categories by W . As every
large item has size at least ε/14, the number of size categories is bounded by |W | ≤ log(1/ε)+5.
Next, items of the same size category are characterized by their block, which is either A or B
and their position r ∈ N in this block. Therefore, we partition the set of large items into a
set of groups G ⊆W ×{A,B}×N. A group g ∈ G thus consists of a triple (`,X, r) with size
category ` ∈W , block X ∈ {A,B} and position r ∈ N. The rounding function R : IL 7→ G

maps each large item i ∈ IL to a group g ∈ G. By g[R] we denote the set of items being
mapped to the group g, i. e., g[R] = {i ∈ IL | R(i) = g}.

Let q(`,X) be the maximal r ∈ N such that |(`,X, r)[R]| > 0, i.e., q(`,X) is the last
position in block X (with respect to the size category `). If (`,X1, r1) and (`,X2, r2) are
two different groups, we say that (`,X1, r1) is left of (`,X2, r1), if X1 = A and X2 = B or
X1 = X2 and r1 < r2. We say that (`,X1, r1) is right of (`,X2, r2) if it is not left of it.

(`, A, 0) . . . (`, A, q(`, A)) (`, B, 0) . . . (`, B, q(`, B)) s ∈ [2−(`+1), 2−`)

Figure 2 Grouping in (`, A, ·) and (`, B, ·).

Given an instance (I, s) and a rounding function R, we define the rounded size function
sR by rounding the size of every large item i up to the size of the largest item in its group,
i.e. sR(i) = maxi′ {s(i′) | R(i′) = R(i)}. We denote by opt(I, sR) the value of an optimal
solution of the rounded instance (I, sR).

Depending on a parameter k, we define the following properties for a rounding function R.
Property (a) guarantees that the items are categorized correctly according to their sizes.

APPROX/RANDOM’15
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Property (b) guarantees that items of the same size category are sorted by their size and
properties (c) and (d) define the number of items in each group.
(a) For each i ∈ (`,X, r)[R] we have 2−(`+1) < s(i) ≤ 2−`.
(b) For each i ∈ (`,X, r)[R] and each i′ ∈ (`,X, r′)[R] and r < r′, we have s(i) ≥ s(i′).
(c) For each ` ∈W and 1 ≤ r ≤ q(`, A) we have that |(`, A, r)[R]| = 2`k and |(`, A, 0)[R]| ≤

2`k.
(d) For each ` ∈ W and 0 ≤ r ≤ q(`, B) − 1 we have |(`, B, r)[R]| = 2`(k − 1) and
|(`, B, q(`, B))[R]| ≤ 2`(k − 1).

The following lemma shows that the number of groups is bounded and the rounding
function does in fact yield a (1 + ε)-approximation for a suitable choice of k.

I Lemma 3. If size(IL, s) > 8/ε · (dlog(1/ε)e + 5) and k =
⌊

size(IL,s)·ε
2(blog(1/ε)c+5)

⌋
, the number of

non-empty groups is bounded by O(1/ε log(1/ε)).

I Lemma 4. Given an instance (IL, s) with items greater than ε/14 and a rounding function R
fulfilling properties (a) to (d), then opt(IL, sR) ≤ (1 + ε)OPT (IL, s).

3.2 Rounding Operations
Let us consider the case where large items arrive and depart in an online fashion. Formally
this is described by a sequence of pairs (i1, A1), . . . , (in, An) where Ai ∈ {Insert,Delete}.
At each time t ∈ {1, . . . , n} we need to pack the item it into the corresponding packing of
i1, . . . , it−1 if Ai = Insert or remove the item it from the corresponding packing of i1, . . . , it−1
if Ai = Delete. We will denote the instance i1, . . . , it at time t by I(t) and the corresponding
packing by Bt. We will also round our items and denote the rounding function at time t by Rt.
The large items of I(t) are denoted by IL(t). At time t we are allowed to repack several items
with a total size of β · s(it) but we intend to keep the migration factor β as small as possible.
The term repack(t) =

∑
i,Bt−1(i)6=Bt(i) s(i) denotes the sum of the items which are moved at

time t, the migration factor β of an algorithm is then defined as maxt {repack(t)/s(it)}. As the
value of size will also change over the time, we define the value κ(t) as

κ(t) = size(IL(t), s) · ε
2(blog(1/ε)c+ 5) .

As shown in Lemma 3, we will make use of the value k(t) := bκ(t)c.
We present operations that transform the current rounding Rt, the current packing Bt

with its corresponding LP/ILP solutions into a new rounding Rt+1, a new packing Bt+1
and new corresponding LP/ILP solutions for the new instance I(t+ 1). At every time t the
rounding Rt maintains properties (a) to (d). Therefore the rounding provides an asymptotic
approximation ratio of 1 + ε (Lemma 4) while maintaining only O(1/ε log(1/ε)) many groups
(Lemma 3). We will now present a way how to adapt this rounding to a dynamic setting,
where items arrive or depart online.

Our rounding Rt is manipulated by different operations, called the insert, delete, shiftA
and shiftB operation. Some ideas behind the operations are inspired by the operations
described by Epstein and Levin [11]. The insert operation is performed whenever a large
item arrives and the delete operation is performed whenever a large item departs. The shift
operations are used to modify the number of groups that are contained in the A and B block.
As we often need to filter the largest items of a group g in a rounding R, we denote this
item by λ(g,R). Due to space constraints we do not describe how the LP/ILP solutions are
modified by the operations (see full version). Intuitively, an insert operation finds the group
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g, where the new item needs to be placed and inserts it into g. In order to maintain the size
of g, the largest item from g is shifted to its left neighbour g′. The largest item of g′ is then
shifted to its left neighbour and so on. The deletion algorithm removes the item from its
group g. In order to maintain the size of g, the largest item from its right neighbour g′ is
shifted into g. The largest item of the right neighbour of g′ is then shifted into g′ and so on.

Insert: To insert item it, find the corresponding group (`,X, r) with
s(it) ∈ (2−(`+1), 2−`],
mini {s(i) | i ∈ (`,X, r − 1)} > s(it) and
s(λ((`,X, r + 1), R)) ≤ s(it).

We will then insert it into (`,X, r) and get the rounding R′ by shifting the largest element
of (`,X, r) to (`,X, r − 1) and the largest item of (`,X, r − 1) to (`,X, r − 2) and so on
until the first group (`, A, 0) is reached.

(`, A, 0) . . . (`,X, r) . . . (`,X, q(`,X))

i

(a) Insert i into (`, X, ·)

(`,X, 0) . . . (`,X, r) . . . (`, B, q(`, B))

i

(b) Delete i from (`, X, ·)

Figure 3 Insert and Delete.

Delete: To delete an item it that is in group (`,X, r), we remove it from this group and
move the largest item from (`,X, r+1) into (`,X, r) and the largest item from (`,X, r+2)
into (`,X, r + 1) and so on until the last group (`, B, q(`, B)) is reached.

To control the number of groups in A and B we introduce operations shiftA and shiftB
that increase or decrease the number of groups in A respectively B. An operation shiftA
increases the number of groups in A by 1 and decreases the number of groups in B by 1 by
shifting a group from block B to block A. The operation shiftB moves a group From block
A to block B. The ability to modify the blocks is needed later on, as the value k used by the
rounding changes over time.

shiftA: In order to move a group from B to A, shift exactly 2` items from (`, B, q(`, B)) to
(`, B, q(`, B)− 1). Then shift exactly 2` items from (`, B, q(`, B)− 1) to (`, B, q(`, B)− 2)
and so on until (`, B, 0) is reached. The group (`, B, 0) has now the same size as the
groups in (`, A, ·). We transfer (`, B, 0) to block A. Note that the total size of the 2`
items is bounded by 1.
shiftB: In order to move a group from A to B, shift 2` items from (`, A, q(`, A)) to
(`, A, q(`, A)− 1). Then shift exactly 2` items from (`, A, q(`, A)− 1) to (`, A, q(`, A)− 2)
and so on until (`, A, 0) is reached. The group (`, A, q(`, A)) has now the same size as the
groups in (`, B, ·). We transfer (`, A, q(`, A)) to block B.
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(`, B, 0) . . . (`, B, r) . . . (`, B, q(`, B))

2` 2` 2` 2`

Figure 4 shiftA.

The next lemma shows that all of these operations maintain the desired properties of the
rounding.

I Lemma 5. Let R be a rounding function fulfilling properties (a) to (d). Applying any of
the operations insert, delete, shiftA or shiftB on R results in a rounding function R′ fulfilling
properties (a) to (d).

According to Lemma 3 the rounded instance (I, sR) has O(1/ε log(1/ε)) different item sizes
(given a suitable k). Using the LP formulation of Eisemann [10], the resulting LP called
LP (I, sR) has m = O(1/ε log(1/ε)) constraints. We say a packing B corresponds to a rounding
R and an integral solution y of the ILP if all items in (I, sR) are packed by B according to y.
The operations also modify these ILP solutions.

I Lemma 6. Applying any of the operations insert, delete, shiftA or shiftB on a rounding R
and ILP solution y with corresponding packing B defines a new rounding R′ and a new
integral solution y′. The solution y′ is a feasible solution of the linear program LP (I, sR′).

3.3 Algorithm for Dynamic Bin Packing
We will use the operations from the previous section to obtain a dynamic algorithm for
bin packing with respect to large items. The operations insert and delete are designed to
process the input depending of whether an item is to be inserted or removed. Keep in mind
that the parameter k(t) = bκ(t)c =

⌊
size(IL(t))·ε

2(blog(1/ε)c+5)

⌋
changes over time as size(IL(t)) may

increase or decrease. In order to fulfill the properties (c) and (d), we need to adapt the
number of items per group whenever k changes. The shiftA and shiftB operations are thus
designed to manage the dynamic number of items in the groups as k changes. Note that a
group in the A-block with parameter k has by definition the same number of items as a group
in the B-block with parameter k − 1 if they are in the same size category. If k increases, the
former A block is treated as the new B block in order to fulfill the properties (c) and (d)
while a new empty A block is introduced. To be able to rename the blocks, the B block
needs to be empty. Accordingly the A block needs to be empty if k decreases in order to
treat the old B block as new A block. Hence we need to make sure that there are no groups
in the B-block if k increases and vice versa, that there are no groups in the A-block if k
decreases.

We denote the number of all groups in the A-blocks at time t by A(t) and the number
of groups in B-blocks at time t by B(t). To make sure that the B-block (respectively the
A-block) is empty when k increases (decreases) the ratio A(t)

A(t)+B(t) needs to correlate to
the fractional digits of κ(t) at time t denoted by ∆(t). For example, if ∆(t) = 0.98, nearly
every group must be in an A-block, as the B-blocks need to be empty if k(t) increases (see
Figure 5(a) for a sketch of the situation). Note that the term A(t)

A(t)+B(t) is 0 if the A-block
is empty and the term is 1 if the B-block is empty. This way, we can make sure that as
soon as k(t) increases, the number of B-blocks is close to 0 and as soon as k(t) decreases,
the number of A-blocks is close to 0. Therefore, the blocks can be renamed whenever k(t)
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k(t− 1) k(t− 1) + 1 k(t− 1) + 2

J0 J1 . . . Jj . . .

A(t− 1)

98%

B(t− 1)

2%

∆(t− 1)

(a) Before Insert

k(t)− 1
‖

k(t− 1)

k(t)
‖

k(t− 1) + 1

k(t) + 1
‖

k(t− 1) + 2

J0

Jj
‖
J1 . . . . . . . . .

A(t)

1%

B(t)

99%

∆(t)

(b) After Insert

Figure 5 Comparison of the situation before and after an Insert Operation.

changes. Hence we partition the interval [0, 1) into exactly A(t) + B(t) smaller intervals
Ji =

[
i

A(t)+B(t) ,
i+1

A(t)+B(t)

)
. We will make sure that ∆(t) ∈ Ji iff A(t)

A(t)+B(t) ∈ Ji.
The algorithm inserts an item via the insert operation and then uses shiftA and shiftB

operations to adjust the number of A- and B-blocks. Recall that a shiftA operation reduces
the number of groups in the B-block by 1 and increases the number of groups in the A-block
by 1 (shiftB works vice versa).

In the following algorithm we also make use of an algorithm called improve, which was
developed in [18] to reduce the number of used bins. Using improve(x) on a packing B with
approximation guarantee maxiB(i) ≤ (1 + ε̄) opt +C for some ε̄ = O(ε) and some additive
term C yields a new packing B′ with approximation guarantee maxiB(i) ≤ (1+ε̄) opt +C−x.
We use the operations in combination with improve to obtain a fixed approximation guarantee.
The similar deletion algorithm can be found in the full version.

I Algorithm 1 (AFPTAS for large items).

Algorithm: Insertion
if SIZE(I(t)) < (m+ 2)(1/δ + 2) or SIZE(I(t)) < 8(1/δ + 1) then

use offline Bin Packing;
else

improve(2); insert(i);
// Shifting to the correct interval
Let Ji be the interval containing ∆(t);
Let Jj be the interval containing A(t)

A(t)+B(t) ;
Set d = i− j;
if k(t) > k(t− 1) then // Modulo A(t) +B(t) when k increases

d = d + (A(t) +B(t));
for p := 0 to |d| − 1 do // Shifting d groups from B to A

if i+p = A(t) + B(t) then
Rename(A,B);

improve(1); shiftA;

Note that as exactly d = i − j groups are shifted from A to B (or B to A) we have
by definition that ∆(t) ∈

[
A(t)

A(t)+B(t) ,
A(t)+1

A(t)+B(t)

)
at the end of the algorithm. The following

lemmas prove that the algorithm works as expected by moving only a constant number of
groups.

I Lemma 7. At most 11 groups are shifted from A to B (or B to A) in Algorithm 1.

APPROX/RANDOM’15
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I Lemma 8. Every rounding function Rt produced by Algorithm 1 fulfills properties (a) to
(d) with parameter k(t) =

⌊
size(IL(t))·ε

2(blog(1/ε)c+5)

⌋
.

Using analysing techniques developed in [18] we prove the following theorem.

I Theorem 9. Algorithm 1 is an AFPTAS with migration factor O( 1
ε3 · log(1/ε)) for the fully

dynamic bin packing problem with respect to large items.

If no deletions are present, we can use a simple FirstFit algorithm (as described by
Jansen and Klein [18]) to pack the small items into the bins. This does not change the
migration factor or the running time of the algorithm and we obtain a robust AFPTAS with
O( 1

ε3 · log(1/ε)) migration for the case that no items depart. This improves the best known
migration factor of O( 1

ε4 ) [18].

4 Handling Small Items

In this section we present methods for dealing with arbitrary small items in a dynamic
setting. First, we present a robust AFPTAS with migration factor of O(1/ε) for the case
that only small items arrive and depart. In Section 4.2 we generalize these techniques to a
setting where small items arrive into a packing, that already contains large items which can
not be rearranged. Finally we state the AFPTAS for the general fully dynamic bin packing
problem. In a robust setting without departing items, small items can easily be treated
by packing them greedily via the classical FirstFit algorithm of Johnson et al. [21] (see
Epstein and Levin [11] or Jansen and Klein [18]). However, in a setting where items may
also depart, small items need much more attention. We show in the full version that the
FirstFit algorithm does not work in this dynamic setting.

I Lemma 10. Using the FirstFit algorithm to pack small items may lead to an arbitrarily
bad approximation.

4.1 Only Small Items
We consider a setting where only small items exist, i.e., items with a size less than ε/14. One
way to overcome the problematic instances, like those in Lemma 10, is to make sure that
the small items remain ordered. If one has m bins b1, b2, . . . , bm, one can make sure that
the larger small items are in bins with lower indices as the smaller ones. A possible way
to maintain such a property works as follows: Whenever a small items i arrives, find the
bin with the smallest index that contains a set J of small items such that

∑
j∈J s(j) ≥ s(i).

Remove those items in J from the bin and add i in this place. Insert all of the items in J in
the same way. The deletion algorithm is very similar, but searches for a set J from smaller
sizes, that replaces the departing item i. In order to bound the migration of this operation,
we declare every 1/ε-th bin as buffer bin and terminate the procedure at the buffer bin. If
the moved items do not fit into the buffer bin, we declare the buffer bin as normal and open
a new buffer bin containing the remaining items. As only a fraction of ε of the bins are buffer
bins, this worsen the approximation ratio only by ε. The migration remains bounded as at
most 1/ε bins are changed.

Formally, we divide the set of small items into different size intervals Sj where Sj =[
ε

2j+1 ,
ε

2j
)
for j ≥ 1. Let b1, . . . , bm be the used bins of our packing. We say a size category Sj

is bigger than a size category Sk if j < k, i. e., the item sizes contained in Sj are larger (note
that a size category Sj with large index j is called small). We say a bin b is filled completely
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b1

. . .

b|Q1|−1 bb1Q1 b|Q1|+1

. . .

b|Q2|−1 bb2Q2

. . .

b|Qd−1|+1

. . .

b|Qd|−1 bbdQd

Figure 6 Distribution of bins with small items into queues.

if it has less than ε
2j remaining space, where Sj is the biggest size category appearing in

b, i.e., no item from the categories S1, S2, . . . , Sj fit into b. Furthermore we label bins b as
normal or as buffer bins and partition all bins b1, . . . , bm into queues Q1, . . . , Qd. A queue is
a consecutive subsequence of bins bi, bi+1 . . . , bi+c where bins bi, . . . , bi+c−1 are normal bins
and bin bi+c is a buffer bin. We denote the number of bins in Qi by |Qi|. The buffer bin of
queue Qi is denoted by bbi. See Figure 6 for a sketch of the situation.

We will maintain a special form for the packing of small items such that the following
properties are always fulfilled. For the sake of simplicity, we assume that 1/ε is integral.
1. For every item i ∈ bd with size s(i) ∈ Sj for some j, d ∈ N, there is no item i′ ∈ bd′ with

size s(i′) ∈ Sj′ such that d′ > d and j′ > j. This means: Items are ordered from left to
right by their size intervals.

2. Every normal bin is filled completely.
3. The length of each queue is at least 1/ε and at most 2/ε except for the last queue Qd.
Note that property (1) implies that all items in the same size interval Sj are packed into
consecutive bins bx, bx+1, . . . , bx+c. Items in the next smaller category Sj+1 are then packed
into bins bx+c, bx+c+1, . . . and so on. We denote by bS(j) the last bin in which an item of
category Sj appears.

The following lemma guarantees that a packing with properties (1) to (3) is close to the
optimum solution.

I Lemma 11. If properties (1) to (3) hold, then at most (1 +O(ε)) opt(I, s) + 2 bins are
used in the packing for every ε ≤ 1/3.

We will now describe the operations that are applied whenever a small item is inserted
or removed from the packing. The operations are designed such that properties (1) to (3)
are maintained. Lemma 11 thus guarantees a good approximation ratio at every step of
the algorithm. The operations are applied recursively such that some items from each size
interval are shifted from left to right (insert) or right to left (delete). The recursion halts if
the first buffer bin is reached. Therefore, the free space in the buffer bins will change over
time. Since the recursion always halts at the buffer bin, the algorithm is applied on a single
queue Qk.

The following Insert/Delete operation is defined for a whole set J = {i1, . . . , in} of items.
If an item i of size interval S` has to be inserted or deleted, the algorithm is called with
Insert({i}, bS(`), Qk) respectively Delete({i}, bx, Qk), where bx is the bin containing item i

and Qk is the queue containing bin bS(`) or bx. Recall that Sj =
[

ε
2j+1 ,

ε
2j
)
is a fixed interval

for every j ≥ 1 and define S≤j , S>j as S≤j =
⋃j
i=1 Si and S>j =

⋃
i>j Si.

Figure 7a shows an example call of Insert({i},bx,Qk). Item i with s(i) ∈ S1 is put into
the corresponding bin bx into the size interval S1. As bx now contains too many items, some
items from the smallest size interval S2 (marked by the dashed lines) are put into the last
bin bx+2 containing items from S2. Those items in turn push items from the smallest size
interval S3 into the last bin containing items of this size and so on. This process terminates
if either no items need to be shifted to the next bin or the buffer bin bbk is reached.

APPROX/RANDOM’15
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S0

S1

S2

bx

i

S2

bx+1

S2

S3

bx+2

. . .

Sj

Sj+1

bbk

(a) Insert({i},bx,Qk) with s(i) ∈ S1

S0

S1

S2

bx

i
S2

bx+1

S2

S3

bx+2

. . .

Sj

Sj+1

bbk

(b) Delete({i},bx,Qk) with s(i) ∈ S1

Figure 7 Example calls of Insert and Delete.

I Algorithm 2 (Insert/Delete: only small items).
Insert(J, bx, Qk):

For J = {i1, . . . , in}, find the smallest ` such that s(ij) ∈ S≤` for all j ≥ 1 and insert
those items into bin bx. (By Lemma 12 the total size of J is bounded by O(1/ε) times
the size of the item which triggered the first Insert operation.)
Remove just as many items J ′ = {i′1, . . . , i′m} of the smaller size intervals S>` appearing
in bin bx (starting by the smallest) such that all items J fit into the bin bx. If there are
not enough items of smaller categories to insert all items from J , insert the remaining
items from J into bx+1.
Partition J ′ into J ′`+1, J

′
`+2, . . . such that J`+i contains the items in the respective size

interval S`+i. Put J ′`+i recursively into bin bS(`+i) (i. e., call Insert(J ′`+i, bS(`+i), Qk)
for each i ≥ 1). If the buffer bin bbk is left of bS(`+i) call Insert(J ′`+i, bbk, Qk) instead.

Delete(J, bx, Qk):
For J = {i1, . . . , in}, find the smallest ` such that s(ij) ∈ S≤` for all j ≥ 1 and remove
those from bin bx (By Lemma 12 the total size of J is bounded by O(1/ε) times the size
of the item which triggered the first Delete operation.)
Let S`′ be the smallest size interval appearing in bx. Insert as many items J ′ =
{i′1, . . . , i′m} from bS(`′) such that bx is filled completely. If there are not enough items
from the size category S`′ , choose items from the next size category S≥`′+1 in bin bx+1.
Partition J ′ into J ′`+1, J

′
`+2, . . . such that J`+i contains the items in the respec-

tive size interval S`+i. Remove items J ′`+i from bin bS(`+i) recursively (i. e., call
Delete(J ′`+i, bS(`+i), Qk) for each i ≥ 1). If the buffer bin bbk is left of bS(`+i), call
Delete(J ′`+i, bbk, Qk) instead.

Using the above operations, the normal bins are filled completely. However, the size of the
items in the buffer bins changes. In the following we describe how to handle buffer bins
that are being emptied or filled completely. If a buffer bin is filled completely, we add a new
empty buffer bin and split the queue if it contains too many bins. Similarly, if a buffer bin is
emptied completely, we remove it and label the last bin of the queue as buffer bin. If the
queue now contains too few bins, we merge the queue with its successor. There is thus no
need in introducing a new buffer bin, as one can simply use the buffer bin of the successor as
the new buffer bin.

I Algorithm 3 (Handle filled/emptied buffer bins).
Case 1: The buffer bin of Qi is filled completely by an insert operation.

Label the filled bin as a normal bin and add a new empty buffer bin to the end of Qi.
If |Qi| > 2/ε, split Qi into two queues Q′i, Q′′i with |Q′′i | = |Q′i|+ 1. The buffer bin of
Q′′i is the newly added buffer bin. Add an empty buffer bin to Q′i such that |Q′i| = |Q′′i |.

Case 2: The buffer bin of Qi is being emptied due to a delete operation.
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Remove the now empty bin.
If |Qi| ≥ |Qi+1| and |Qi| > 1/ε, choose the last bin of Qi and label it as new buffer bin
of Qi.
If |Qi+1| > |Qi| and |Qi+1| > 1/ε, choose the first bin of Qi+1, move it to Qi and label
it buffer bin.
If |Qi+1| = |Qi| = 1/ε, merge queues Qi and Qi+1. As Qi+1 already contains a buffer
bin, there is no need to label another bin as buffer bin for the merged queue.

Creating and deleting buffer bins this way guarantees that property (3) is never violated
since queues never exceed the length of 2/ε and never fall below 1/ε.

It remains to prove that the migration of the operations is bounded and that the properties
are invariant under those operations.

I Lemma 12.
(i) Let B be a packing that fulfills properties (1) to (3). Applying Algorithm 2 on B yields a

packing B′ that also fulfills properties (1) to (3).
(ii) The migration factor of a single operation is bounded by O(1/ε) for all ε ≤ 2/7.

4.2 Handling the General Setting
In the scenario that there are mixed item types (small and large items), we need to be
more careful in the creation and the deletion of buffer bins. To maintain the approximation
guarantee, we have to make sure that as long as there are bins containing only small items,
the remaining free space of all bins can be bounded. Packing small items into empty bins
and leaving bins with large items untouched does not lead to a good approximation, as the
free space of the bins containing only large items is not used. To tackle this problem we
developed new techniques and ideas using an even more refined distribution of the bins. A
bin that contains no small items is called a heap bin. The heap bins are then used as buffer
bins. In order to measure the number of buffer bins that are about to get filled, we developed
a potential function. The potential function is related to the number of heap bins and the
free space of the last buffer bin that contains large items. This relation allows us to extend
Algorithm 2 to the general case of both small and large items. The developed techniques
involve a complex structure of the packing and require an intricate analysis. See the full
version for details.

Combining all the results from the current and the previous section, we finally obtain our
central result.

I Theorem 13. There is a AFPTAS with a migration factor of at most O(1/ε4 · log 1/ε) for
the fully dynamic bin packing problem.

Acknowledgements. We would like to thank Till Tantau for his valuable comments and
suggestions to improve the presentation of the paper.
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