
ar
X

iv
:1

80
3.

02
92

4v
4

 [
m

at
h.

O
C

]
 1

2
N

ov
 2

01
8

Noname manuscript No.
(will be inserted by the editor)

A Newton-CG Algorithm with Complexity Guarantees

for Smooth Unconstrained Optimization

Clément W. Royer · Michael O’Neill ·

Stephen J. Wright

Received: date / Accepted: date

Abstract We consider minimization of a smooth nonconvex objective func-
tion using an iterative algorithm based on Newton’s method and the linear
conjugate gradient algorithm, with explicit detection and use of negative curva-
ture directions for the Hessian of the objective function. The algorithm tracks
Newton-conjugate gradient procedures developed in the 1980s closely, but in-
cludes enhancements that allow worst-case complexity results to be proved for
convergence to points that satisfy approximate first-order and second-order
optimality conditions. The complexity results match the best known results in
the literature for second-order methods.

Keywords smooth nonconvex optimization · Newton’s method · conjugate
gradient method · optimality conditions · worst-case complexity.

Mathematics Subject Classification (2000) 49M05, 49M15, 65F10,
65F15, 90C06, 90C60.

Research supported by NSF Awards IIS-1447449, 1628384, 1634597, and 1740707; AFOSR
Award FA9550-13-1-0138; Subcontracts 3F-30222 and 8F-30039 from Argonne National Lab-
oratory; and Award N660011824020 from the DARPA Lagrange Program.

C. W. Royer
Wisconsin Institute of Discovery, University of Wisconsin, 330 N. Orchard St., Madison, WI
53715.
E-mail: croyer2@wisc.edu

M. O’Neill
Computer Sciences Department, University of Wisconsin, 1210 W. Dayton St., Madison, WI
53706.
E-mail: moneill@cs.wisc.edu

S. J. Wright
Computer Sciences Department, University of Wisconsin, 1210 W. Dayton St., Madison, WI
53706.
E-mail: swright@cs.wisc.edu.

http://arxiv.org/abs/1803.02924v4

2 Clément W. Royer et al.

1 Introduction

We consider the unconstrained optimization problem

min
x∈Rn

f(x), (1)

where f : Rn → R is a twice Lipschitz continuously differentiable function that
is nonconvex in general. We further assume that f is bounded below for all x,
by some constant flow. Although the Hessian ∇2f(x) is well defined for such
functions, we assume that full evaluation of this matrix is undesirable from a
computational viewpoint, though we assume that Hessian-vector products of
the form ∇2f(x)v can be computed with reasonable efficiency, for arbitrary
vectors v, as is often the case when n is large.

Unconstrained minimization of nonconvex smooth functions of many vari-
ables is a much-studied paradigm in optimization. Approaches such as limited-
memory BFGS and nonlinear conjugate gradient are widely used to tackle (1),
particularly in the case of large dimension n. Another popular approach, known
as “Newton-CG,” applies the (linear) conjugate gradient (CG) method to the
second-order Taylor-series approximation of f around the current iterate xk.
Each iteration of CG requires computation of one Hessian-vector product of
the form∇2f(xk)v. A trust-region variant of Newton-CG, due to Steihaug [27],
terminates the CG iterations when sufficient accuracy is achieved in minimiz-
ing the quadratic approximation, when a CG step leads outside the trust
region, or when negative curvature is encountered in ∇2f(xk). A line-search
variant presented in [25] applies CG until some convergence criterion is sat-
isfied, or until negative curvature is encountered, in which case the search
direction reverts to the negative gradient.

Theoretical guarantees for Newton-CG algorithms have been provided, e.g.
in [12,15,16,17,25]. Convergence analysis for such methods typically shows
that accumulation points are stationary, that is, they satisfy the first-order
optimality condition ∇f(x) = 0. Local linear or superlinear convergence to a
point satisfying second-order sufficient conditions is sometimes also proved for
Newton-CG methods. Although several Newton-type methods have been an-
alyzed from a global complexity perspective [8], particularly in terms of outer
iterations and derivative evaluations, bounds that explicitly account for the use
of inexact Newton-CG techniques have received less attention in the optimiza-
tion literature. Meanwhile, with the recent upsurge of interest in complexity,
several new algorithms have been proposed that have good global complexity
guarantees. We review some such contributions in Section 2. In most cases,
these new methods depart significantly from those seen in the traditional opti-
mization literature, and there are questions surrounding their practical appeal.

Our aim in this paper is to develop a method that hews closely to the
Newton-CG approach, but which comes equipped with certain safeguards and
enhancements that allow worst-case complexity results to be proved. At each it-
eration, we use CG to solve a slightly damped version of the Newton equations,
monitoring the CG iterations for evidence of indefiniteness in the Hessian. If

A Newton-CG Algorithm with Complexity Guarantees 3

the CG process terminates with an approximation to the Newton step, we
perform a backtracking line search along this direction. Otherwise, we step
along a negative curvature direction for the Hessian, obtained either from the
CG procedure on the Newton equations, or via some auxiliary computation
(possibly another CG process). In either case, we can show that significant de-
crease can be attained in f at each iteration, at reasonable computational cost
(in terms of the number of gradient evaluations or Hessian-vector products),
allowing worst-case complexity results to be proved.

The remainder of the paper is organized as follows. We position our work
within the existing literature in Section 2. Our algorithm is described in Sec-
tion 3. Section 4 contains the complexity analysis, showing both a deterministic
upper bound on the computation required to attain approximate first-order
conditions (Section 4.2) and a high-probability upper bound on the computa-
tion required to satisfy approximate second-order necessary conditions (Sec-
tion 4.3). Section 5 contains some conclusions and discussion. Several technical
results and proofs related to CG are gathered in the Appendix.

Assumptions, Background, Notation. Our algorithm seeks a point that ap-
proximately satisfies second-order necessary conditions for optimality, that is,

‖∇f(x)‖ ≤ ǫg, λmin(∇2f(x)) ≥ −ǫH , (2)

for specified small positive tolerances ǫg and ǫH . (Here and subsequently, ‖ · ‖
denotes the Euclidean norm, or its induced norms on matrices.) We make the
following standard assumptions throughout.

Assumption 1 The level set Lf (x0) = {x|f(x) ≤ f(x0)} is compact.

Assumption 2 The function f is twice uniformly Lipschitz continuously dif-
ferentiable on an open neighborhood of Lf (x0) that includes the trial points
generated by the algorithm. We denote by LH the Lipschitz constant for ∇2f
on this neighborhood.

Note that Assumption 2 is made for simplicity of exposition; slightly weaker
variants could be used at the expense of some complication in the analysis.

Under these two assumptions, there exist scalars flow, Ug > 0, and UH > 0
such that the following are satisfied for x ∈ Lf (x0):

f(x) ≥ flow, ‖∇f(x)‖ ≤ Ug, ‖∇2f(x)‖ ≤ UH . (3)

We observe that UH is a Lipschitz constant for the gradient.
For any x and d such that Assumption 2 is satisfied at x and x + d, we

have

f(x+ d) ≤ f(x) +∇f(x)⊤d+
1

2
d⊤∇2f(x)d +

LH

6
‖d‖3. (4)

Notationally, we use order notation O in the usual sense, whereas Õ(·) rep-
resents O with logarithmic terms omitted. We use such notation in bounding
iteration count and computational effort, and focus on the dependencies of
such complexities on ǫg and ǫH . (In one of our final results — Corollary 2 —
we also show explicitly the dependence on n and UH .)

4 Clément W. Royer et al.

2 Complexity in Nonconvex Optimization

In recent years, many algorithms have been proposed for finding a point that
satisfies conditions (2), with iteration complexity and computational complex-
ity bounded in terms of ǫg and ǫH . We review several works most relevant to
this paper here, and relate their results to our contributions. For purposes
of computational complexity, we define the unit of computation to be one
Hessian-vector product or one gradient evaluation, implicitly using the ob-
servation from computational / algorithmic differentiation [18] that these two
operations differ in cost only by a modest factor, independent of the dimension
n.

Classical second-order convergent trust-region schemes [12] can be shown
to satisfy (2) after at mostO(max{ǫ−2

g ǫ−1

H , ǫ−3

H }) iterations [10]. For the class of
second-order algorithms (that is, algorithms which rely on second-order deriva-

tives and Newton-type steps) the best known iteration bound isO(max{ǫ−3/2
g , ǫ−3

H }).
This bound was first established for a form of cubic regularization of Newton’s
method [24]. Following this paper, numerous other algorithms have also been
proposed which match this bound, see for example [3,8,14,13,23].

A recent trend in complexity analysis of these methods also accounts for the
computational cost of each iteration, thus yielding a bound on the computa-
tional complexity. Two independent proposals, respectively based on adapting
accelerated gradient to the nonconvex setting [6] and approximately solving
the cubic subproblem [1], require Õ(ǫ−7/4) operations (with high probability,
showing dependency only on ǫ) to find a point x that satisfies

‖∇f(x)‖ ≤ ǫ and λmin(∇2f(x)) ≥ −
√

UHǫ. (5)

The difference of a factor of ǫ−1/4 with the results presented above arises from
the cost of computing a negative curvature direction of ∇2f(xk) and/or the
cost of solving a linear system. The probabilistic nature of the bound is gener-
ally due to the introduction of randomness in the curvature estimation process;
see [2,28] for two recent examples. A complexity bound of the same type was
also established for a variant of accelerated gradient free of negative curvature
computation, that regularly adds a random perturbation to the iterate when
the gradient norm is small [19].

In an interesting followup to [6], an algorithm based on accelerated gradient
with a nonconvexity monitor was proposed [5]. It requires at most Õ(ǫ−7/4)
iterations to satisfy (5) with high probability. However, if one is concerned only
with satisfying the gradient condition ‖∇f(x)‖ ≤ ǫ, the Õ(ǫ−7/4) bound holds
deterministically. Note that this bound represents an improvement over the
O(ǫ−2) of steepest descent and classical Newton’s method [7]. The improve-
ment is due to a modification of the accelerated gradient paradigm that allows
for deterministic detection and exploitation of negative curvature directions
in regions of sufficient nonconvexity.

In a previous work [26], two authors of the current paper proposed a
Newton-based algorithm in a line-search framework which has an iteration

A Newton-CG Algorithm with Complexity Guarantees 5

complexity of O(max{ǫ−3/2
g , ǫ−3

H }) when the subproblems are solved exactly,

and a computational complexity of Õ
(

ǫ−7/4
)

Hessian-vector products and/or
gradient evaluations, when the subproblems are solved inexactly using CG
and the randomized Lanczos algorithm. Compared to the accelerated gradi-
ent methods, this approach aligns more closely with traditional optimization
practice, as described in Section 1.

Building on [26], the current paper describes a similar line-search frame-
work with inexact Newton steps, but uses a modified version of CG to solve the
system of Newton equations, without first checking for positive definiteness of
the coefficient matrix. The modification is based in part on a convexity mon-
itoring device introduced in the accelerated gradient algorithms mentioned
above. An implicit cap is imposed on the number of CG iterations that are
used to solve the damped Newton system. We show that once this cap is
reached, either the damped Newton system has been solved to sufficient accu-
racy or else a direction of “sufficiently negative curvature” has been identified
for the Hessian. (A single extra CG iteration may be needed to identify the
negative curvature direction, in much the same manner as in [5] for accelerated
gradient.) In contrast to the previous work [26], no estimate of the smallest
eigenvalue of the Hessian is required prior to computing a Newton step. In ad-
dition to removing potentially unnecessary computation, this approach allows
a deterministic result for first-order optimality to be proved, as in [5].

We are deliberate in our use of CG rather than accelerated gradient as
the method of choice for minimizing the quadratic objective that arises in
the damped Newton step. When applied to strongly convex quadratics, both
approaches have similar asymptotic linear convergence rates that depend only
on the extreme eigenvalues of the Hessian, and both can be analyzed using
the same potential function [20] and viewed as two instances of an underlying
“idealized algorithm” [21]. However, CG has several advantages: It has a rich
convergence theory that depends on the full spectrum of eigenvalues; it is
fully adaptive, requiring no prior estimates of the extreme eigenvalues; and its
practical performance on convex quadratics is superior. (See, for example, [25,
Chapter 5] for a description of these properties.) Further, as we prove in this
paper (Section 3.1), CG can be adapted to detect nonconvexity efficiently in a
quadratic function, without altering its core properties. We show in addition
(see Section 3.2 and Appendix B) that by applying CG to a linear system
with a random right-hand side, we can find a direction of negative curvature
in an indefinite matrix efficiently, with the same iteration complexity as the
randomized Lanczos process of [22] used elsewhere.

The practical benefits of CG in large-scale optimization have long been ap-
preciated. We establish here that with suitable enhancements, methods based
on CG can also be equipped with good complexity properties as well.

6 Clément W. Royer et al.

3 Damped-Newton / Capped-CG Method with Negative
Curvature Steps

We describe our algorithm in this section, starting with its two major com-
ponents. The first component, described in Section 3.1, is a linear conjugate
gradient procedure that is used to solve a slightly damped Newton system.
This procedure includes enhancements to detect indefiniteness in the Hessian
and to restrict the number of iterations. Because of this implicit bound on
the number of iterations, we refer to it as “Capped CG.” The second compo-
nent (see Section 3.2) is a “minimum eigenvalue oracle” that seeks a direction
of negative curvature for a symmetric matrix, along with its corresponding
vector. The main algorithm is described in Section 3.3.

3.1 Capped Conjugate Gradient

Conjugate Gradient (CG) is a widely used technique for solving linear equa-
tions with symmetric positive definite coefficient matrices or, equivalently,
minimizing strongly convex quadratic functions. We devise a modified CG
algorithm and apply it to a system of the form H̄y = −g, where H̄ = H +2ǫI
is a damped version of the symmetric matrix H , which is our notational proxy
for the Hessian ∇2f(xk).

Algorithm 1 presents our Capped CG procedure. The main loop consists
of classical CG iterations. When H̄ � ǫI, Algorithm 1 will generate the same
iterates as a classical conjugate gradient method applied to H̄y = −g, and
terminate at an inexact solution of this linear system. When H̄ 6� ǫI, the
features added to Algorithm 1 cause a direction d to be identified along which
d⊤H̄d < ǫ‖d‖2 or, equivalently, d⊤Hd < −ǫ‖d‖2 — a direction of “sufficiently
negative curvature” for H . Directions d of this type are encountered most
obviously when they arise as iterates yj or search directions pj in the CG
iterations. But evidence of the situation H̄ 6� ǫI can arise more subtly, when
the residual norms ‖rj‖ decrease more slowly than we would expect if the
eigenvalues of H̄ were bounded below by ǫ. Accordingly, Algorithm 1 checks
residual norms for slow decrease, and if such behavior is detected, it uses a
technique based on one used for accelerated gradient methods in [5] to recover
a direction d such that d⊤H̄d < ǫ‖d‖2.

Algorithm 1 may be called with an optional input M that is meant to be an
upper bound on ‖H‖. Whether or not this parameter is supplied, it is updated
so that at any point in the execution of the algorithm,M is an upper bound on
the maximum curvature of H revealed to that point. Other parameters that
depend on M (namely, κ, ζ̂, τ , and T) are updated whenever M is updated.

The following lemma justifies our use of the term “capped” in connection
with Algorithm 1. Regardless of whether the condition H̄ � ǫI is satisfied,
the number of iterations will not exceed a certain number J(M, ǫ, ζ) that we
subsequently show to be Õ(ǫ−1/2). (We write J for J(M, ǫ, ζ) in some of the
subsequent discussion, to avoid clutter.)

A Newton-CG Algorithm with Complexity Guarantees 7

Algorithm 1 Capped Conjugate Gradient

Inputs: Symmetric matrix H ∈ R
n×n; vector g 6= 0; damping parameter ǫ ∈ (0, 1); desired

relative accuracy ζ ∈ (0, 1);
Optional input: scalar M (set to 0 if not provided);
Outputs: d type, d;
Secondary outputs: final values of M , κ, ζ̂, τ , and T ;
Set

H̄ := H + 2ǫI, κ :=
M + 2ǫ

ǫ
, ζ̂ :=

ζ

3κ
, τ :=

√
κ√

κ+ 1
, T :=

4κ4

(1 −√τ)2
;

y0 ← 0, r0 ← g, p0 ← −g, j ← 0;
if p⊤0 H̄p0 < ǫ‖p0‖2 then

Set d = p0 and terminate with d type=NC;
else if ‖Hp0‖ > M‖p0‖ then

Set M ← ‖Hp0‖/‖p0‖ and update κ, ζ̂, τ, T accordingly;
end if

while TRUE do

αj ← r⊤j rj/p
⊤
j H̄pj ; {Begin Standard CG Operations}

yj+1 ← yj + αjpj ;
rj+1 ← rj + αjH̄pj ;
βj+1 ← (r⊤j+1rj+1)/(r⊤j rj);
pj+1 ← −rj+1 + βj+1pj ; {End Standard CG Operations}
j ← j + 1;
if ‖Hpj‖ > M‖pj‖ then

Set M ← ‖Hpj‖/‖pj‖ and update κ, ζ̂, τ, T accordingly;
end if

if ‖Hyj‖ > M‖yj‖ then
Set M ← ‖Hyj‖/‖yj‖ and update κ, ζ̂, τ, T accordingly;

end if

if ‖Hrj‖ > M‖rj‖ then
Set M ← ‖Hrj‖/‖rj‖ and update κ, ζ̂, τ, T accordingly;

end if

if y⊤j H̄yj < ǫ‖yj‖2 then

Set d← yj and terminate with d type=NC;

else if ‖rj‖ ≤ ζ̂‖r0‖ then
Set d← yj and terminate with d type=SOL;

else if p⊤j H̄pj < ǫ‖pj‖2 then

Set d← pj and terminate with d type=NC;

else if ‖rj‖ >
√
Tτ j/2‖r0‖ then

Compute αj , yj+1 as in the main loop above;
Find i ∈ {0, . . . , j − 1} such that

(yj+1 − yi)⊤H̄(yj+1 − yi)
‖yj+1 − yi‖2

< ǫ; (6)

Set d← yj+1 − yi and terminate with d type=NC;
end if

end while

Lemma 1 The number of iterations of Algorithm 1 is bounded by

min{n, J(M, ǫ, ζ)},

8 Clément W. Royer et al.

where J = J(M, ǫ, ζ) is the smallest integer such that
√
TτJ/2 ≤ ζ̂ where M , ζ̂,

T , and τ are the values returned by the algorithm. If all iterates yi generated by
the algorithm are stored, the number of matrix-vector multiplications required
is bounded by

min{n, J(M, ǫ, ζ)}+ 1. (7)

If the iterates yi must be regenerated in order to define the direction d returned
after (6), this bound becomes 2min{n, J(M, ǫ, ζ)}+ 1.

Proof. If the full n iterations are performed, without any of the termination
conditions being tripped, the standard properties of CG (see Appendix A)

ensure that the final residual rn is zero, so that the condition ‖rn‖ ≤ ζ̂‖r0‖ is
satisfied, and termination occurs.

Since no more than n iterations are performed, the upper bound M is
updated at most a finite number of times, so the quantity J is well defined.

Supposing that J < n, we note from the definition of J that
√
TτJ/2‖r0‖ ≤

ζ̂‖r0‖. Thus at least one of the following two conditions must be satisfied at

iteration J : ‖rJ‖ ≤ ζ̂‖r0‖ or ‖rJ‖ >
√
TτJ/2‖r0‖. In either case, termination

will occur at iteration J , unless it has occurred already at a previous iteration.

To derive (7), note that the main workload at each iteration j is compu-
tation of a single matrix-vector product Hpj after the increment of j (since
matrix-vector products involving the matrices H and H̄ and the vectors yj
and rj can be computed in terms of this vector, in an additional O(n) opera-
tions). (The “+1” in (7) accounts for the initial matrix-vector multiplication
Hp0 performed prior to entering the loop.)

If we do not store additional information, we need to regenerate the in-
formation needed to compute the direction d satisfying (6) by re-running the
iterations of CG, possibly up to the second-to-last iteration. This fact accounts
for the additional cost of min{n, J(M, ǫ, ζ)} in the no-storage case. 1

Note that J(M, ǫ, ζ) is an increasing function of M , since ζ̂ is a decreasing
function of M , while T and τ (and thus

√
Tτ j/2) are increasing in M . If UH is

known in advance, we can call Algorithm 1 with M = UH and use J(UH , ǫ, ζ)
as the bound. Alternately, we can call Algorithm 1 withM = 0 and let it adjust
M as needed during the computation. Since the final value of M will be at
most UH , and since J(M, ǫ, ζ) is an increasing function of M , the quantity
J(UH , ǫ, ζ) provides the upper bound on the number of iterations in this case
too.

We can estimate J by taking logs in its definition, as follows:

J ≤ 2 ln(ζ̂/
√
T)

ln(τ)
=

ln(ζ̂2/T)

ln
(√

κ√
κ+1

) =
ln(T/ζ̂2)

ln(1 + 1/
√
κ)

≤
(√

κ+
1

2

)

ln

(

T

ζ̂2

)

,

1 Interestingly, as we show in Appendix A, the ratios on the left-hand side of (6) can be
calculated without knowledge of yi for i = 0, 1, . . . , j − 1, provided that we store the scalar
quantities αi and ‖ri‖2 for i = 0, 1, . . . , j − 1.

A Newton-CG Algorithm with Complexity Guarantees 9

where we used ln(1 + 1

t) ≥ 1

t+1/2 to obtain the latest inequality. By replacing

T, τ, ζ̂, κ by their definitions in Algorithm 1, and using 1

1−
√
τ
= 1+

√
τ

1−τ ≤ 2

1−τ ,

we obtain

J(M, ǫ, ζ) ≤ min

{

n,

⌈

(√
κ+

1

2

)

ln

(

144 (
√
κ+ 1)

2
κ6

ζ2

)⌉}

= min
{

n, Õ(ǫ−1/2)
}

. (8)

3.2 Minimum Eigenvalue Oracle

A minimum eigenvalue oracle is needed in the main algorithm to either return
a direction of “sufficient negative curvature” in a given symmetric matrix, or
else return a certificate that the matrix is almost positive definite. This oracle
is stated as Procedure 2.

Procedure 2 Minimum Eigenvalue Oracle

Inputs: Symmetric matrix H ∈ R
n×n, tolerance ǫ > 0;

Optional input: Upper bound on Hessian norm M ;
Outputs: An estimate λ of λmin(H) such that λ ≤ −ǫ/2, and vector v with ‖v‖ = 1
such that v⊤Hv = λ OR a certificate that λmin(H) ≥ −ǫ. In the latter case, when the
certificate is output, it is false with probability δ for some δ ∈ [0, 1).

To implement this oracle, we can use any procedure that finds the smallest
eigenvalue of H to an absolute precision of ǫ/2 with probability at least 1− δ.
This probabilistic property encompasses both deterministic and randomized
instances of Procedure 2. In Section 4.3, we will establish complexity results
under this general setting, and analyze the impact of the threshold δ. Several
possibilities for implementing Procedure 2 have been proposed in the liter-
ature, with various guarantees. An exact, deterministic computation of the
minimum eigenvalue and eigenvector (through a full Hessian evaluation and
factorization) would be a valid choice for Procedure 2 (with δ = 0 in that case),
but is unsuited to our setting in which Hessian-vector products and vector op-
erations are the fundamental operations. Strategies that require only gradient
evaluations [2,28] may offer similar guarantees to those discussed below.

We focus on two inexact, randomized approaches for implementing Proce-
dure 2. The first is the Lanczos method, which finds the smallest eigenvalue
of the restriction of a given symmetric matrix to a Krylov subspace based on
some initial vector. When the starting vector is chosen randomly, the dimen-
sion of the Krylov subspace increases by one at each Lanczos iteration, with
high probability (see Appendix B and [22]). To the best of our knowledge,
[6] was the first paper to propose a complexity analysis based on the use of
randomized Lanczos for detecting negative curvature. The key result is the
following.

10 Clément W. Royer et al.

Lemma 2 Suppose that the Lanczos method is used to estimate the smallest
eigenvalue of H starting with a random vector uniformly generated on the unit
sphere, where ‖H‖ ≤ M . For any δ ∈ [0, 1), this approach finds the smallest
eigenvalue of H to an absolute precision of ǫ/2, together with a corresponding
direction v, in at most

min

{

n, 1 +

⌈

1

2
ln(2.75n/δ2)

√

M

ǫ

⌉}

iterations, (9)

with probability at least 1− δ.

Proof. If ǫ
4M ≥ 1, we have − ǫ

4
I ≺ −MI � H � MI ≺ ǫ

4
I. Therefore,

letting b be the (unit norm) random start of the Lanczos method, we obtain

b⊤Hb ≤ M <
ǫ

4
= − ǫ

4
+

ǫ

2
< −M +

ǫ

2
≤ λmin(H) +

ǫ

2
,

thus the desired conclusion holds at the initial point.
We now suppose that ǫ

4M ∈ (0, 1). By setting ǭ = ǫ
4M in Lemma 9, we have

that when k is at least the quantity in (9), the estimate ξmin(H, b, k) of the
smallest eigenvalue after k iterations of Lanczos applied to H starting from
vector b satisfies the following bound, with probability at least 1− δ:

ξmin(H, b, k)−λmin(H) ≤ ǭ(λmax(H)−λmin(H)) ≤ ǫ

2

λmax(H)− λmin(H)

2M
≤ ǫ

2
,

as required.
Procedure 2 can be implemented by outputting the approximate eigenvalue

λ for H , determined by the randomized Lanczos process, along with the corre-
sponding direction v, provided that λ ≤ −ǫ/2. When λ > −ǫ/2, Procedure 2
returns the certificate that λmin(H) ≥ −ǫ, which is correct with probability at
least 1− δ.

The second approach to implementing Procedure 2 is to apply the classi-
cal CG algorithm to solve a linear system in which the coefficient matrix is a
shifted version of the matrix H and the right-hand side is random. This proce-
dure has essentially identical performance to Lanczos in terms of the number
of iterations required to detect the required direction of sufficiently negative
curvature, as the following theorem shows.

Theorem 1 Suppose that Procedure 2 consists in applying the standard CG
algorithm (see Appendix A) to the linear system

(

H + 1

2
ǫI
)

d = b,

where b is chosen randomly from a uniform distribution over the unit sphere.
Let M satisfying ‖H‖ ≤ M and δ ∈ (0, 1) be given. If λmin(H) < −ǫ, then with
probability at least 1− δ, CG will yield a direction v satisfying the conditions
of Procedure 2 in a number of iterations bounded above by (9). Conversely,
if CG runs for this number of iterations without encountering a direction of
negative curvature for H + 1

2
ǫI, then λmin(H) ≥ −ǫ with probability at least

1− δ.

A Newton-CG Algorithm with Complexity Guarantees 11

We prove this result, and give some additional details of the CG implemen-
tation, in Appendices A and B. We also present in Appendix B.3 a variant of
the randomized-Lanczos implementation of Procedure 2 that does not require
prior knowledge of the bound M such that ‖H‖ ≤ M . In this variant, M
itself is also estimated via randomized Lanczos, and the number of iterations
required does not different significantly from (9). It follows from this result,
together with our observation above that M can also be obtained adaptively
inside Algorithm 1, that knowledge of the bound on ‖∇2f(x)‖ is not needed
at all in implementing our method.

3.3 Damped Newton-CG

Algorithm 3 presents our method for finding a point that satisfies (2). It uses
two kinds of search directions. Negative curvature directions (that are also
first-order descent steps) are used when they are either encountered in the
course of applying the Capped CG method (Algorithm 1) to the damped New-
ton equations, or found explicitly by application of Procedure 2. The second
type of step is an inexact damped Newton step, which is the other possible
outcome of Algorithm 1. For both types of steps, a backtracking line search
is used to identify a new iterate that satisfies a sufficient decrease condition,
that depends on the cubic norm of the step. Such a criterion is instrumental
in establishing optimal complexity guarantees in second-order methods [3,14,
13,26].

In its deployment of two types of search directions, our method is similar to
Steihaug’s trust-region Newton-CG method [27], which applies CG (starting
from a zero initial guess) to solve the Newton equations but, if it encoun-
ters a negative curvature direction during CG, steps along that direction to
the trust-region boundary. It differs from the line-search Newton-CG method
described in [25, Section 7.1] in that it makes use of negative curvature direc-
tions when they are encountered, rather than discarding them in favor of a
steepest-descent direction. Algorithm 3 improves over both approaches in hav-
ing a global complexity theory for convergence to both approximate first-order
points, and points satisfying the approximate second-order conditions (2).

In Section 4, we will analyze the global complexity properties of our algo-
rithm. Local convergence could also be of interest, in particular, it is probably
possible to prove rapid convergence of Algorithm 3 once it reaches the neigh-
borhood of a strict local minimum. We believe that such results would be
complicated and less enlightening than the complexity guarantees, so we re-
strict our study to the latter.

4 Complexity Analysis

In this section, we present a global worst-case complexity analysis of Algo-
rithm 3. Elements of the analysis follow those in the earlier paper [26]. The

12 Clément W. Royer et al.

Algorithm 3 Damped Newton-CG
Inputs: Tolerances ǫg > 0, ǫH > 0; backtracking parameter θ ∈ (0, 1); starting point x0;
accuracy parameter ζ ∈ (0, 1);
Optional input: Upper bound M > 0 on Hessian norm;
for k = 0, 1, 2, . . . do

if ‖∇f(xk)‖ > ǫg then

Call Algorithm 1 with H = ∇2f(xk), ǫ = ǫH , g = ∇f(xk), accuracy parameter ζ
and M if provided, to obtain outputs d, d type;
if d type=NC then

dk ← −sgn(d⊤g) |d
⊤∇2f(xk)d|

‖d‖2
d

‖d‖ ;

else {d type=SOL}
dk ← d;

end if

Go to Line Search;
else

Call Procedure 2 with H = ∇2f(xk), ǫ = ǫH and M if provided;
if Procedure 2 certifies that λmin(∇2f(xk)) ≥ −ǫH then

Terminate;
else {direction of sufficient negative curvature found}
dk ← −sgn(v⊤g) |v

⊤∇2f(xk)v|
‖v‖2 v (where v is the output from Procedure 2) and go

to Line Search;
end if

end if

Line Search: Compute a step length αk = θjk , where jk is the smallest nonnegative
integer such that

f(xk + αkdk) < f(xk)−
η

6
α3
k‖dk‖3; (10)

xk+1 ← xk + αkdk;
end for

most technical part appears in Section 4.1 below, where we show that the
Capped CG procedure returns (deterministically) either an inexact Newton
step or a negative curvature direction, both of which can be used as the basis
of a successful backtracking line search. These properties are used in Sec-
tion 4.2 to prove complexity results for convergence to a point satisfying the
approximate first-order condition ‖∇f(x)‖ ≤ ǫg. Section 4.3 proves complexity
results for finding approximate second-order points (2), leveraging properties
of the minimum eigenvalue oracle, Procedure 2.

4.1 Properties of Capped CG

We now explore the properties of the directions d that are output by our
Capped CG procedure, Algorithm 1. The main result deals with the case in
which Algorithm 1 terminates due to insufficiently rapid decrease in ‖rj‖,
showing that the strategy for identifying a direction of sufficient negative cur-
vature for H is effective.

A Newton-CG Algorithm with Complexity Guarantees 13

Theorem 2 Suppose that the main loop of Algorithm 1 terminates with j = Ĵ ,
where

Ĵ ∈ {1, . . . ,min{n, J(M, ǫ, ζ)}},

(where J(M, ǫ, ζ) is defined in Lemma 1 and (8)) because the fourth termi-
nation test is satisfied and the three earlier conditions do not hold, that is,
y⊤
Ĵ
H̄yĴ ≥ ǫ‖yĴ‖2, p⊤Ĵ H̄pĴ ≥ ǫ‖pĴ‖2, and

‖rĴ‖ > max{ζ̂,
√
Tτ Ĵ/2}‖r0‖. (11)

where M , T , ζ̂, and τ are the values returned by Algorithm 1. Then yĴ+1
is

computed by Algorithm 1, and we have

(yĴ+1
− yi)

⊤H̄(yĴ+1
− yi)

‖yĴ+1
− yi‖2

< ǫ, for some i ∈ {0, . . . , Ĵ − 1}. (12)

The proof of Theorem 2 is quite technical, and can be found in Appendix C.
It relies on an argument previously used to analyze a strategy based on ac-
celerated gradient [5, Appendix A.1], itself inspired by a result of Bubeck [4],
but it needs some additional steps that relate specifically to CG. The part of
our proof that corresponds to [5, Appendix A.1] is simplified in some respects,
thanks to the use of CG and the fact that a quadratic (rather than a nonlinear)
function is being minimized in the subproblem.

Having shown that Algorithm 1 is well-defined, we summarize the proper-
ties of its outputs.

Lemma 3 Let Assumptions 1 and 2 hold, and suppose that Algorithm 1 is
invoked at an iterate xk of Algorithm 3 (so that ‖∇f(xk)‖ > ǫg > 0). Let dk
be the vector obtained in Algorithm 3 from the output d of Algorithm 1. Then,
one of the two following statements holds:

1. d type=SOL, and the direction dk satisfies

d⊤k (∇2f(xk) + 2ǫHI)dk ≥ ǫH‖dk‖2, (13a)

‖dk‖ ≤ 1.1ǫ−1

H ‖∇f(xk)‖, (13b)

‖r̂k‖ ≤ 1

2
ǫHζ‖dk‖, (13c)

where

r̂k := (∇2f(xk) + 2ǫHI)dk +∇f(xk); (14)

2. d type=NC, and the direction dk satisfies d⊤k ∇f(xk) ≤ 0 as well as

d⊤k ∇2f(xk)dk
‖dk‖2

= −‖dk‖ ≤ −ǫH . (15)

14 Clément W. Royer et al.

Proof. For simplicity of notation, we use H = ∇2f(xk) and g = ∇f(xk)
in the proof. Suppose first that d type=SOL. In that case, we have from the
termination conditions in Algorithm 1 and (14) that

d⊤k (H + 2ǫHI)dk ≥ ǫH‖dk‖2, (16a)

‖r̂k‖ ≤ ζ̂‖g‖, (16b)

where ζ̂ was returned by the algorithm. We immediately recognize (13a)
in (16a). We now prove (13b). Observe first that (16a) yields

ǫH‖dk‖2 ≤ d⊤k (H + 2ǫHI)dk ≤ ‖dk‖‖(H + 2ǫHI)dk‖,

so from (14) we have

‖dk‖ ≤ ǫ−1

H ‖(H+2ǫHI)dk‖ = ǫ−1

H ‖−g+r̂k‖ = ǫ−1

H

√

‖g‖2 + ‖r̂k‖2 ≤ ǫ−1

H

√

1 + ζ̂2‖g‖,

where we used (16b) to obtain the final bound, together with the equality ‖−
g+ r̂k‖2 = ‖g‖2+‖r̂k‖2, which follows from g⊤r̂k = r⊤0 r̂k = 0, by orthogonality

of the residuals in CG (see Lemma 7, Property 2). Since ζ̂ ≤ ζ/(3κ) ≤ 1/6 by
construction, we have ‖dk‖ ≤

√

37/36ǫ−1

H ‖g‖ ≤ 1.1ǫ−1

H ‖g‖, proving (13b).
The bound (13c) follows from (16b) and the logic below:

‖r̂k‖ ≤ ζ̂‖g‖ ≤ ζ̂ (‖(H + 2ǫHI)dk‖+ ‖r̂k‖) ≤ ζ̂ ((M + 2ǫH)‖dk‖+ ‖r̂k‖)

⇒ ‖r̂k‖ ≤ ζ̂

1− ζ̂
(M + 2ǫH)‖dk‖,

where M is the value returned by the algorithm. We finally use ζ̂ < 1/6 to
arrive at

ζ̂

1− ζ̂
(M + 2ǫH) ≤ 6

5
ζ̂(M + 2ǫH) =

6

5

ζǫH
3

<
1

2
ζǫH ,

yielding (13c).
In the case of d type=NC, we recall that Algorithm 3 defines

dk = −sgn(d⊤g)
|d⊤Hd|
‖d‖2

d

‖d‖ (17)

where d denotes the direction obtained by Algorithm 1. It follows immediately
that d⊤k g ≤ 0. Since dk and d are collinear, we also have that

d⊤k (H + 2ǫHI)dk
‖dk‖2

=
d⊤(H + 2ǫHI)d

‖d‖2 ≤ ǫH ⇒ d⊤k Hdk
‖dk‖2

≤ −ǫH .

By using this bound together with (17), we obtain

‖dk‖ =
|d⊤Hd|
‖d‖2 =

|d⊤k Hdk|
‖dk‖2

= −d⊤k Hdk
‖dk‖2

≥ ǫH ,

proving (15).

A Newton-CG Algorithm with Complexity Guarantees 15

4.2 First-Order Complexity Analysis

We now find a bound on the number of iterations and the amount of computa-
tion required to identify an iterate xk for which ‖∇f(xk)‖ ≤ ǫg. We consider
in turn the two types of steps (approximate damped Newton and negative
curvature), finding a lower bound on the descent in f achieved on the current
iteration in each case. We then prove an upper bound on the number of itera-
tions required to satisfy these approximate first-order conditions (Theorem 3)
and an upper bound on the number of gradient evaluations and Hessian-vector
multiplications required (Theorem 4).

We start with a lemma concerning the approximate damped Newton steps.

Lemma 4 Suppose that Assumptions 1 and 2 hold. Suppose that at iteration
k of Algorithm 3, we have ‖∇f(xk)‖ > ǫg, so that Algorithm 1 is called. When
Algorithm 1 outputs a direction dk with d type=SOL, then the backtracking
line search requires at most jk ≤ jsol + 1 iterations, where

jsol =

[

1

2
logθ

(

3(1− ζ)

LH + η

ǫ2H
1.1Ug

)]

+

, (18)

and the resulting step xk+1 = xk + αkdk satisfies

f(xk)− f(xk+1) ≥ csol min
(

‖∇f(xk+1)‖3ǫ−3

H , ǫ3H
)

, (19)

where

csol =
η

6
min

[

4
√

(4 + ζ)2 + 8LH + 4 + ζ

]3

,

[

3θ2(1 − ζ)

LH + η

]3

.

Proof. The proof tracks closely that of [26, Lemma 13]. The only significant
difference is that equation (65) of [26], which is instrumental to the proof
and requires a probabilistic assumption on λmin(∇2f(xk)), is now ensured
deterministically by (13b) from Lemma 3. As a result, both the proof and the
result are deterministic.

When ‖∇f(xk+1)‖ ≤ ǫg, the estimate (19) may not guarantee a “signifi-
cant” decrease in f at this iteration. However, in this case, the approximate
first-order condition ‖∇f(x)‖ ≤ ǫg holds at the next iteration, so that Algo-
rithm 3 will invoke Procedure 2 at iteration k+1, leading either to termination
with satisfaction of the conditions (2) or to a step that reduces f by a multiple
of ǫ3H , as we show in Theorem 4 below.

We now address the case in which Algorithm 1 returns a negative curvature
direction to Algorithm 3 at iteration k. The backtracking line search guarantees
that a sufficient decrease will be achieved at such an iteration. Although the
Lipschitz constant LH appears in our result, our algorithm (in contrast to [5])
does not require this constant to be known or estimated.

16 Clément W. Royer et al.

Lemma 5 Suppose that Assumptions 1 and 2 hold. Suppose that at iteration
k of Algorithm 3, we have ‖∇f(xk)‖ > ǫg, so that Algorithm 1 is called. When
Algorithm 1 outputs d type=NC, the direction dk (computed from d in Algo-
rithm 3) has the following properties: The backtracking line search terminates
with step length αk = θjk with jk ≤ jnc + 1, where

jnc :=

[

logθ

(

3

LH + η

)]

+

, (20)

and the resulting step xk+1 = xk + αkdk satisfies

f(xk)− f(xk + αk dk) ≥ cncǫ
3
H , (21)

with

cnc :=
η

6
min

{

1,
27θ3

(LH + η)3

}

.

Proof. By Lemma 3, we have from (15) that

d⊤k ∇2f(xk)dk = −‖dk‖3 ≤ −ǫH‖dk‖2 (22)

The result can thus be obtained exactly as in [26, Lemma 1].

We are ready to state our main result for first-order complexity.

Theorem 3 Let Assumptions 1 and 2 hold. Then, defining

K̄1 :=

⌈

f(x0)− flow
min{csol, cnc}

max
{

ǫ−3
g ǫ3H , ǫ−3

H

}

⌉

,

some iterate xk, k = 0, 1, . . . , K̄1 + 1 generated by Algorithm 3 will satisfy

‖∇f(xk)‖ ≤ ǫg. (23)

Proof. Suppose for contradiction that ‖∇f(xk)‖ > ǫg for all k = 0, 1, . . . , K̄1+
1, so that

‖∇f(xl+1)‖ > ǫg, l = 0, 1, . . . , K̄1. (24)

Algorithm 1 will be invoked at each of the first K̄1+1 iterates of Algorithm 3.
For each iteration l = 0, 1, . . . , K̄1 for which Algorithm 1 returns d type=SOL,
we have from Lemma 4 and (24) that

f(xl)− f(xl+1) ≥ csol min
{

‖∇f(xl+1)‖3ǫ−3

H , ǫ3H
}

≥ csol min
{

ǫ3gǫ
−3

H , ǫ3H
}

.
(25)

For each iteration l = 0, 1, . . . , K̄1 for which Algorithm 1 returns d type=NC,
we have by Lemma 5 that

f(xl)− f(xl+1) ≥ cncǫ
3
H . (26)

A Newton-CG Algorithm with Complexity Guarantees 17

By combining these results, we obtain

f(x0)− f(xK̄1+1) ≥
K̄1
∑

l=0

(f(xl)− f(xl+1))

≥
K̄1
∑

l=0

min{csol, cnc}min
{

ǫ3gǫ
−3

H , ǫ3H
}

= (K̄1 + 1)min{csol, cnc}min
{

ǫ3gǫ
−3

H , ǫ3H
}

> f(x0)− flow.

where we used the definition of K̄1 for the final inequality. This inequality
contradicts the definition of flow in (3), so our claim is proved.

If we choose ǫH in the range [ǫ
1/3
g , ǫ

2/3
g], this bound improves over the clas-

sical O(ǫ−2
g) rate of gradient-based methods. The choice ǫH = ǫ

1/2
g yields the

rate O(ǫ
−3/2
g), which is known to be optimal among second-order methods [9].

Recalling that the workload of Algorithm 1 in terms of Hessian-vector prod-
ucts depends on the index J defined by (8), we obtain the following corollary.
(Note the mild assumption on the quantities of M used at each instance of
Algorithm 1, which is satisfied provided that this algorithm is always invoked
with an initial estimate of M in the range [0, UH].)

Corollary 1 Suppose that the assumptions of Theorem 3 are satisfied, and
let K̄1 be as defined in that theorem and J(M, ǫH , ζ) be as defined in (8).
Suppose that the values of M used or calculated at each instance of Algorithm 1
satisfy M ≤ UH . Then the number of Hessian-vector products and/or gradient
evaluations required by Algorithm 3 to output an iterate satisfying (23) is at
most

(2min {n, J(UH , ǫH , ζ)}+ 2) (K̄1 + 1).

For n sufficiently large, this bound is Õ
(

max
{

ǫ−3
g ǫ

5/2
H , ǫ

−7/2
H

})

, while if

J(UH , ǫH , ζ) ≥ n, the bound is Õ
(

n max
{

ǫ−3
g ǫ3H , ǫ−3

H

})

.

Proof. From Lemma 1, the number of Hessian-vector multiplications in the
main loop of Algorithm 1 is bounded by min {n, J(UH , ǫH , ζ) + 1}. An addi-
tional min {n, J(UH , ǫH , ζ)} Hessian-vector products may be needed to return
a direction satisfying (6), if Algorithm 1 does not store its iterates yj . Each
iteration also requires a single evaluation of the gradient ∇f , giving a bound
of (2min {n, J(UH , ǫH , ζ)}+ 2) on the workload per iteration of Algorithm 3.
We multiply this quantity by the iteration bound from Theorem 3 to obtain
the result.

By setting ǫH = ǫ
1/2
g , we obtain from this corollary a computational bound

of Õ(ǫ
−7/4
g) (for n sufficiently large), which matches the deterministic first-

order guarantee obtained in [5], and also improves over the O(ǫ−2
g) computa-

tional complexity of gradient-based methods.

18 Clément W. Royer et al.

4.3 Second-Order Complexity Results

We now find bounds on iteration and computational complexity of finding a
point that satisfies (2). In this section, as well as using results from Sections 4.1
and 4.2, we also need to use the properties of the minimum eigenvalue oracle,
Procedure 2. To this end, we make the following generic assumption.

Assumption 3 For every iteration k at which Algorithm 3 calls Procedure 2,
and for a specified failure probability δ with 0 ≤ δ ≪ 1, Procedure 2 either
certifies that ∇2f(xk) � −ǫHI or finds a vector of curvature smaller than
−ǫH/2 in at most

Nmeo := min
{

n, 1 +
⌈

Cmeoǫ
−1/2
H

⌉}

(27)

Hessian-vector products, with probability 1 − δ, where Cmeo depends at most
logarithmically on δ and ǫH .

Assumption 3 encompasses the strategies we mentioned in Section 3.2.
Assuming the bound UH on ‖H‖ is available, for both the Lanczos method
with a random starting vector and the conjugate gradient algorithm with a
random right-hand side, (27) holds with Cmeo = ln(2.75n/δ2)

√
UH/2. When

a bound on ‖H‖ is not available in advance, it can be estimated efficiently
with minimal effect on the overall complexity of the method, as shown in
Appendix B.3.

The next lemma guarantees termination of the backtracking line search
for a negative curvature direction, regardless of whether it is produced by
Algorithm 1 or Procedure 2. As in Lemma 4, the result is deterministic.

Lemma 6 Suppose that Assumptions 1 and 2 hold. Suppose that at iteration
k of Algorithm 3, the search direction dk is of negative curvature type, ob-
tained either directly from Procedure 2 or as the output of Algorithm 1 and
d type=NC. Then the backtracking line search terminates with step length
αk = θjk with jk ≤ jnc + 1, where jnc is defined as in Lemma 5, and the
decrease in the function value resulting from the chosen step length satisfies

f(xk)− f(xk + αk dk) ≥ cnc
8

ǫ3H , (28)

with cnc is defined in Lemma 5.

Proof. Lemma 5 shows that the claim holds (with a factor of 8 to spare)
when the direction of negative curvature is obtained from Algorithm 1. When
the direction is obtained from Procedure 2, we have by the scaling of dk applied
in Algorithm 3 that

d⊤k ∇2f(xk)dk = −‖dk‖3 ≤ −1

2
ǫH‖dk‖2 < 0, (29)

from which it follows that ‖dk‖ ≥ 1

2
ǫH . The result can now be obtained by

following the proof of Lemma 5, with 1

2
ǫH replacing ǫH .

We are now ready to state our iteration complexity result for Algorithm 3.

A Newton-CG Algorithm with Complexity Guarantees 19

Theorem 4 Suppose that Assumptions 1, 2, and 3 hold, and define

K̄2 :=

⌈

3(f(x0)− flow)

min{csol, cnc/8}
max{ǫ−3

g ǫ3H , ǫ−3

H }
⌉

+ 2, (30)

where constants csol and cnc are defined in Lemmas 4 and 5, respectively.
Then with probability at least (1 − δ)K̄2 , Algorithm 3 terminates at a point
satisfying (2) in at most K̄2 iterations. (With probability at most 1−(1−δ)K̄2 ,
it terminates incorrectly within K̄2 iterations at a point for which ‖∇f(xk)‖ ≤
ǫg but λmin(∇2f(x)) < −ǫH .)

Proof. Algorithm 3 terminates incorrectly with probability δ at any iter-
ation at which Procedure 2 is called, when Procedure 2 certifies erroneously
that λmin(∇2f(x)) ≥ −ǫH . Since an erroneous certificate can only lead to ter-
mination, an erroneous certificate at iteration k means that Procedure 2 did
not produce an erroneous certificate at iterations 0 to k − 1. By a disjunction
argument, we have that the overall probability of terminating with an erro-
neous certificate during the first K̄2 iterations is bounded by 1 − (1 − δ)K̄2 .
Therefore, with probability at least (1− δ)K̄2 , no incorrect termination occurs
in the first K̄2 iterations.

Suppose now for contradiction that Algorithm 3 runs for K̄2 iterations
without terminating. That is, for all l = 0, 1, . . . , K̄2, we have either ‖∇f(xl)‖ >
ǫg or λmin(∇2f(xl)) < −ǫH . We perform the following partition of the set of
iteration indices:

K1 ∪ K2 ∪ K3 = {0, 1, . . . , K̄2 − 1}, (31)

where K1, K2, and K3 are defined as follows.

Case 1: K1 := {l = 0, 1, . . . , K̄2 − 1 : ‖∇f(xl)‖ ≤ ǫg}. At each iter-
ation l ∈ K1, Algorithm 3 calls Procedure 2, which does not certify that
λmin(∇2f(xl)) ≥ −ǫH (since the algorithm continues to iterate) but rather re-
turns a direction of sufficient negative curvature. By Lemma 6, the step along
this direction leads to an improvement in f that is bounded as follows:

f(xl)− f(xl+1) ≥
cnc
8

ǫ3H . (32)

Case 2: K2 := {l = 0, 1, . . . , K̄2 − 1 : ‖∇f(xl)‖ > ǫg and ‖∇f(xl+1)‖ >
ǫg}. Algorithm 3 calls Algorithm 1 at each iteration l ∈ K2, returning either an
approximate damped Newton or a negative curvature direction. By combining
Lemmas 4 and 5, we obtain a decrease in f satisfying

f(xl)− f(xl+1) ≥ min{csol, cnc}min
{

‖∇f(xl+1)‖3ǫ−3

H , ǫ3H
}

≥ min{csol, cnc/8}min
{

ǫ3gǫ
−3

H , ǫ3H
}

. (33)

Case 3: K3 := {l = 0, 1, . . . , K̄2 − 1 : ‖∇f(xl)‖ > ǫg ≥ ‖∇f(xl+1)‖}.
Because ‖∇f(xl+1)‖ may be small in this case, we can no longer bound the
decrease in f by an expression such as (33). We can however guarantee at
least that f(xl) − f(xl+1) ≥ 0. Moreover, provided that l < K̄2 − 1, we have

20 Clément W. Royer et al.

from ‖∇f(xl+1)‖ ≤ ǫg that the next iterate l + 1 is in K1. Thus, a significant
decrease in f will be attained at the next iteration, and we have

|K3| ≤ |K1|+ 1. (34)

We now consider the total decrease in f over the span of K̄2 iterations,
which is bounded by f(x0)− flow as follows:

f(x0)− flow ≥
K̄2−1
∑

l=0

(f(xl)− f(xl+1))

≥
∑

l∈K1

(f(xl)− f(xl+1)) +
∑

l∈K2

(f(xl)− f(xl+1)) (35)

where both sums in the final expression are nonnegative. Using first the bound
(32) for the sum over K1, we obtain

f(x0)− flow ≥ |K1|
cnc
8

ǫ3H ⇔ |K1| ≤
f(x0)− flow

cnc/8
ǫ−3

H . (36)

Applying (33) to the sum over K2 leads to

|K2| ≤
f(x0)− flow

min{csol, cnc/8}
max{ǫ−3

g ǫ3H , ǫ−3

H }. (37)

Using these bounds together with (34), we have

K̄2 = |K1|+ |K2|+ |K3|
≤ 2|K1|+ |K2|+ 1

≤ 3max{|K1|, |K2|}+ 1

≤ 3(f(x0)− flow)

min{csol, cnc/8}
max{ǫ−3

g ǫ3H , ǫ−3

H }+ 1

≤ K̄2 − 1,

giving the required contradiction.
We note that when δ < 1/K̄2 in Theorem 4, a technical result shows

that (1− δ)K̄2 ≥ 1− δK̄2. In this case, the qualifier “with probability at least
(1−δ)K̄2 in the theorem can be replaced by “with probability at least 1−δK̄2”
while remaining informative.

Finally, we provide an operation complexity result: a bound on the number
of Hessian-vector products and gradient evaluations necessary for Algorithm 3
to find a point that satisfies (2).

Corollary 2 Suppose that assumptions of Theorem 4 hold, and let K̄2 be de-
fined as in (30). Suppose that the values of M used or calculated at each in-
stance of Algorithm 1 satisfy M ≤ UH . Then with probability at least (1−δ)K̄2 ,
Algorithm 3 terminates at a point satisfying (2) after at most

(max{2min{n, J(UH , ǫH , ζ)}+ 2, Nmeo}) K̄2

A Newton-CG Algorithm with Complexity Guarantees 21

Hessian-vector products and/or gradient evaluations. (With probability at most
1−(1−δ)K̄2, it terminates incorrectly with this complexity at a point for which
‖∇f(xk)‖ ≤ ǫg but λmin(∇2f(x)) < −ǫH .)

For n sufficiently large, and assuming that δ < 1/K̄2, the bound is

Õ
(

max
{

ǫ−3
g ǫ

5/2
H , ǫ

−7/2
H

})

, with probability at most 1− K̄2δ.

Proof. The proof follows by combining Theorem 4 (which bounds the num-
ber of iterations) with Lemma 1 and Assumption 3 (which bound the workload
per iteration).

By setting ǫH = ǫ
1/2
g and assuming that n is sufficiently large, we re-

cover (with high probability) the familiar complexity bound of order Õ(ǫ
−7/4
g),

matching the bound of accelerated gradient-type methods such as [1,6,19].

5 Discussion

We have presented a Newton-CG approach for smooth nonconvex uncon-
strained minimization that is close to traditional variants of this method,
but incorporates additional checks and safeguards that enable convergence
to a point satisfying approximate second-order conditions (2) with guaranteed
complexity. This was achieved by exploiting the properties of Lanczos-based
methods in two ways. First, we used CG to compute Newton-type steps when
possible, while monitoring convexity during the CG iterations to detect nega-
tive curvature directions when those exist. Second, by exploiting the close rela-
tionship between the Lanczos and CG algorithms, we show that both methods
can be used to detect negative curvature of a given symmetric matrix with high
probability. Both techniques are endowed with complexity guarantees, and can
be combined within a Newton-CG framework to match the best known bounds
for second-order algorithms on nonconvex optimization [11].

Nonconvexity detection can be introduced into CG in ways other than those
used in Algorithm 1. For instance, we can drop the implicit cap on the number
of CG iterations that is due to monitoring of the condition ‖rj‖ >

√
Tτ j/2‖r0‖

and use of the negative curvature direction generation procedure (6) from Al-
gorithm 1, and instead impose an explicit cap (smaller by a factor of approx-
imately 4 than J(M, ǫ, ζ)) on the number of CG iterations. In this version, if
the explicit cap is reached without detection of a direction of sufficient nega-
tive curvature for H̄, then Procedure 2 is invoked to find one. This strategy
comes equipped with essentially the same high-probability complexity results
as Theorem 4 and Corollary 2, but it lacks the deterministic approximate-
first-order complexity guarantee of Theorem 3. On the other hand, it is more
elementary, both in the specification of the Capped CG procedure and the
analysis.

A common feature to the Capped CG procedures described in Algorithm 1
and in the above paragraph, which also emerges in most Newton-type methods
with good complexity guarantees [11], is the need for high accuracy in the
step computation. That is, only a small residual is allowed in the damped

22 Clément W. Royer et al.

Newton system at the approximate solution. Looser restrictions are typically
used in practical algorithms, but our tighter bounds appear to be necessary
for the complexity analysis. Further investigation of the differences between
our procedure in this paper and practical Newton-CG procedures is a subject
of ongoing research.

Acknowledgments

We thank sincerely the associate editor and two referees, whose comments led
us to improve the presentation and to derive stronger results.

References

1. N. Agarwal, Z. Allen-Zhu, B. Bullins, E. Hazan, and T. Ma, Finding approximate
local minima faster than gradient descent, in Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing (STOC 2017), PMLR, 2017.

2. Z. Allen-Zhu and Y. Li, NEON2: Finding local minima via first-order oracles, in
Proceedings of the 32nd Conference on Neural Information Processing Systems, 2018.

3. E. G. Birgin and J. M. Mart́ınez, The use of quadratic regularization with a cubic
descent condition for unconstrained optimization, SIAM J. Optim., 27 (2017), pp. 1049–
1074.

4. S. Bubeck, Convex optimization: Algorithms and complexity, Foundations and
Trends c© in Machine Learning, 8 (2015), pp. 231–357.

5. Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford, “Convex until proven guilty”:
Dimension-free acceleration of gradient descent on non-convex functions, in Volume
70: International Conference on Machine Learning, 6-11 August 2017, International
Convention Centre, Sydney, Australia, PMLR, 2017, pp. 654–663.

6. , Accelerated methods for non-convex optimization, SIAM J. Optim., 28 (2018),
pp. 1751–1772.

7. C. Cartis, N. I. M. Gould, and P. L. Toint, On the complexity of steepest descent,
Newton’s and regularized Newton’s methods for nonconvex unconstrained optimization,
SIAM J. Optim., 20 (2010), pp. 2833–2852.

8. , Adaptive cubic regularisation methods for unconstrained optimization. Part I:
motivation, convergence and numerical results, Math. Program., 127 (2011), pp. 245–
295.

9. , Optimal Newton-type methods for nonconvex optimization, Tech. Rep. naXys-
17-2011, Dept of Mathematics, FUNDP, Namur (B), 2011.

10. , Complexity bounds for second-order optimality in unconstrained optimization,
Journal of Complexity, 28 (2012), pp. 93–108.

11. , Worst-case evaluation complexity and optimality of second-order methods for
nonconvex smooth optimization. arXiv:1709.07180, 2017.

12. A. R. Conn, N. I. M. Gould, and P. L. Toint, Trust-Region Methods, MPS-SIAM
Series on Optimization, Society for Industrial and Applied Mathematics, Philadelphia,
2000.

13. F. E. Curtis, D. P. Robinson, and M. Samadi, A trust region algorithm with a worst-
case iteration complexity of O

(

ǫ−3/2
)

for nonconvex optimization, Math. Program.,
162 (2017), pp. 1–32.

14. , An inexact regularized Newton framework with a worst-case iteration complexity
of O(ǫ−3/2) for nonconvex optimization, IMA J. Numer. Anal., (2018 (to appear)).

15. R. S. Dembo and T. Steihaug, Truncated-Newton algorithms for large-scale uncon-
strained optimization, Math. Program., 26 (1983), pp. 190–212.

16. G. Fasano and S. Lucidi, A nonmonotone truncated Newton-Krylov method exploiting
negative curvature directions, for large-scale unconstrained optimization, Optim. Lett.,
3 (2009), pp. 521–535.

A Newton-CG Algorithm with Complexity Guarantees 23

17. N. I. M. Gould, S. Lucidi, M. Roma, and P. L. Toint, Exploiting negative curva-
ture directions in linesearch methods for unconstrained optimization, Optim. Methods
Softw., 14 (2000), pp. 75–98.

18. A. Griewank and A. Walther, Evaluating Derivatives: Principles and Techniques
of Algorithmic Differentiation, Frontiers in Applied Mathematics, SIAM, Philadelphia,
PA, second ed., 2008.

19. C. Jin, P. Netrapalli, and M. I. Jordan, Accelerated gradient descent escapes saddle
points faster than gradient descent, in Proceedings of the 31st Conference On Learning
Theory, PMLR, 2018, pp. 1042–1085.

20. S. Karimi and S. A. Vavasis, A unified convergence bound for conjugate gradient and
accelerated gradient. arXiv:1605.00320, 2016.

21. , A single potential governing convergence of conjugate gradient, accelerated gra-
dient and geometric descent. arXiv:1712.09498, 2017.

22. J. Kuczyński and H. Woźniakowski, Estimating the largest eigenvalue by the power
and Lanczos algorithms with a random start, SIAM J. Matrix Anal. Appl., 13 (1992),
pp. 1094–1122.

23. J. M. Mart́ınez and M. Raydan, Cubic-regularization counterpart of a variable-
norm trust-region method for unconstrained minimization, J. Global Optim., 68 (2017),
pp. 367–385.

24. Y. Nesterov and B. T. Polyak, Cubic regularization of Newton method and its global
performance, Math. Program., 108 (2006), pp. 177–205.

25. J. Nocedal and S. J. Wright, Numerical Optimization, Springer Series in Operations
Research and Financial Engineering, Springer-Verlag, New York, second ed., 2006.

26. C. W. Royer and S. J. Wright, Complexity analysis of second-order line-search algo-
rithms for smooth nonconvex optimization, SIAM J. Optim., 28 (2018), pp. 1448–1477.

27. T. Steihaug, The conjugate gradient method and trust regions in large scale optimiza-
tion, SIAM J. Numer. Anal., 20 (1983), pp. 626–637.

28. Y. Xu, R. Jin, and T. Yang, First-order stochastic algorithms for escaping from saddle
points in almost linear time, in Proceedings of the 32nd Conference on Neural Informa-
tion Processing Systems, 2018.

A Linear Conjugate Gradient: Relevant Properties

In this appendix, we provide useful results for the classical CG algorithm, that also apply to
the “standard CG” operations within Algorithm 1. To this end, and for the sake of discussion
in Appendix B, we sketch the standard CG method in Algorithm 4, reusing the notation of
Algorithm 1.

Algorithm 4 Conjugate Gradient

Inputs: Symmetric matrix H̄, vector g;
r0 ← g, p0 ← −r0, y0 ← 0, j ← 0;
while p⊤j H̄pj > 0 and rj 6= 0 do

αj ← r⊤j rj/p
⊤
j H̄pj ;

yj+1 ← yj + αjpj ;
rj+1 ← rj + αjH̄pj ;
βj+1 ← (r⊤j+1rj+1)/(r⊤j rj);
pj+1 ← −rj+1 + βj+1pj ;
j ← j + 1;

end while

Here and below, we refer often to the following quadratic function:

q(y) :=
1

2
y⊤H̄y + g⊤y, (38)

24 Clément W. Royer et al.

where H̄ and g are the matrix and vector parameters of Algorithms 1 or 4. When H̄ is
positive definite, the minimizer of q is identical to the unique solution of H̄y = −g. CG can
be viewed either as an algorithm to solve H̄y = −g or as an algorithm to minimize q.

The next lemma details several properties of the conjugate gradient method to be used
in the upcoming proofs.

Lemma 7 Suppose that j iterations of the CG loop are performed in Algorithm 1 or 4.
Then, we have

p⊤i H̄pi
‖pi‖2

> 0 for all i = 0, 1, . . . , j − 1. (39)

Moreover, the following properties hold.

1. yi ∈ span {p0, . . . , pi−1}, i = 1, 2, . . . , j.
2. ri ∈ span {p0, . . . , pi} for all i = 1, 2, . . . , j, and

r⊤i v = 0, for all v ∈ span {p0, . . . , pi−1} and all i = 1, 2, . . . , j.

(In particular, r⊤i rl = 0 if 0 ≤ l < i ≤ j. If j = n, then rn = 0.)
3. ‖ri‖ ≤ ‖pi‖, i = 0, 1, . . . , j.
4. r⊤i pi = −‖ri‖2, i = 0, 1, . . . , j.

5. p⊤i H̄pk = 0 for all i, k = 0, 1, . . . , j with k 6= i.

6. pi = −
∑i

k=0(‖ri‖2/‖rk‖2)rk, i = 0, 1, . . . , j.
7.

q(yi+1) = q(yi)−
‖ri‖4

2p⊤i H̄pi
, i = 0, 1, . . . , j − 1.

8. r⊤i H̄ri ≥ p⊤i H̄pi, i = 0, 1, . . . , j.

Proof. Since CG has not terminated prior to iteration j, (39) clearly holds. All properties
then follow from the definition of the CG process, and most are proved in standard texts
(see, for example, [25, Chapter 5]). Property 8 is less commonly used, so we provide a proof
here.

The case i = 0 is immediate since r0 = −p0 and there is equality. When i ≥ 1, we have:

pi = −ri +
‖ri‖2
‖ri−1‖2

pi−1 ⇔ ri = −pi +
‖ri‖2
‖ri−1‖2

pi−1.

(Note that if iteration i is reached, we cannot have ‖ri−1‖ = 0.) It follows that

r⊤i H̄ri = p⊤i H̄pi − 2
‖ri‖2
‖ri−1‖2

p⊤i H̄pi−1 +
‖ri‖4
‖ri−1‖4

p⊤i−1H̄pi−1

= p⊤i H̄pi +
‖ri‖4
‖ri−1‖4

p⊤i−1H̄pi−1,

as p⊤i H̄pi−1 = 0 by Property 5 above. Since iteration i has been reached, pi−1 is a direction

of positive curvature, and we obtain r⊤i H̄ri ≥ p⊤i H̄pi, as required.
We next address an important technical point about Algorithm 1: the test (6) to identify

a direction of negative curvature for H after an insufficiently rapid rate of reduction in
the residual norm ‖rj‖ has been observed. As written, the formula (6) suggests both that
previous iterations yi, i = 1, 2, . . . , j−1 must be stored (or regenerated) and that additional
matrix-vector multiplications (specifically, H̄(yj+1 − yi), i = 0, 1, . . .) must be performed.
We show here that in fact (6) can be evaluated at essentially no cost, provided we store two
extra scalars at each iteration of CG: the quantities αk and ‖rk‖2, for k = 0, 1, . . . , j.

Lemma 8 Suppose that Algorithm 1 computes iterates up to iteration j+1. Then, for any
i ∈ {0, . . . , j}, we can compute (6) as

(yj+1 − yi)⊤H̄(yj+1 − yi)
‖yj+1 − yi‖2

=

∑j
k=i αk‖rk‖2

∑j
ℓ=0

[

∑j
k=max{ℓ,i} αk‖rk‖2

]2
/‖rℓ‖2

.

A Newton-CG Algorithm with Complexity Guarantees 25

Proof. By definition, yj+1 − yi =
∑j

k=i αkpk. By conjugacy of the pk vectors, we have

(yj+1 − yi)⊤H̄(yj+1 − yi) =
j
∑

k=i

α2
kp

⊤
k H̄pk =

j
∑

k=i

αk‖rk‖2, (40)

where we used the definition of αk to obtain the last equality. Now we turn our attention
to the denominator. Using Property 6 of Lemma 7, we have that

yj+1 − yi =
j
∑

k=i

αkpk =

j
∑

k=i

αk

(

−
k
∑

ℓ=0

‖rk‖2
‖rℓ‖2

rℓ

)

,

By rearranging the terms in the sum, we obtain

yj+1 − yi = −
j
∑

k=i

k
∑

ℓ=0

αk‖rk‖2
rℓ

‖rℓ‖2
= −

j
∑

ℓ=0

j
∑

k=max{ℓ,i}
αk‖rk‖2

rℓ

‖rℓ‖2
.

Using the fact that the residuals {rℓ}ℓ=0,1,...,j form an orthogonal set (by Property 2 of
Lemma 7), we have that

‖yj+1 − yi‖2 =

j
∑

ℓ=0

1

‖rℓ‖2

j
∑

k=max{ℓ,i}
αk‖rk‖2

2

.

Combining this with (40) gives the desired result.

B Implementing Procedure 2 via Lanczos and Conjugate Gradient

In the first part of this appendix (Appendix B.1) we outline the randomized Lanczos ap-
proach and describe some salient convergence properties. The second part (Appendix B.2)
analyzes the CG method (Algorithm 4) applied to a (possibly nonconvex) quadratic func-
tion with a random linear term. We show that the number of iterations required by CG
to detect nonpositive curvature in an indefinite matrix is the same as the number required
by Lanczos, when the two approaches are initialized in a consistent way, thereby proving
Theorem 1. As a result, both techniques are implementations of Procedure 2 that satisfy
Assumption 3, provided than an upper bound M on ‖H‖ is known. In the third part (Ap-
pendix B.3), we deal with the case in which a bound on ‖H‖ is not known a priori, and
describe a version of the randomized Lanczos scheme which obtains an overestimate of this
quantity (to high probability) during its first phase of execution. The complexity of this
version differs by only a modest multiple from the complexity of the original method, and
still satisfies Assumption 3.

B.1 Randomized Lanczos

Consider first the Lanczos algorithm applied to a symmetric, n-by-nmatrix H̄ and a starting
vector b ∈ R

n with ‖b‖ = 1. After t + 1 iterations, Lanczos constructs a basis of the t-th
Krylov subspace defined by

Kt(b, H̄) = span{b, H̄b, . . . , H̄tb}. (41)

The Lanczos method can compute estimates of the minimum and maximum eigenvalues of
H̄. For t = 0, 1, . . . , those values are given by

ξmin(H̄, b, t) = min
z

z⊤H̄z subject to ‖z‖2 = 1, z ∈ Kt(b, H̄), (42a)

ξmax(H̄, b, t) = max
z

z⊤H̄z subject to ‖z‖2 = 1, z ∈ Kt(b, H̄). (42b)

26 Clément W. Royer et al.

The Krylov subspaces satisfy a shift invariance property, that is, for any Ĥ = a1I + a2H
with (a1, a2) ∈ R

2, we have that

Kt(b, Ĥ) = Kt(b,H) for t = 0, 1, . . . (43)

Properties of the randomized Lanczos procedure are explored in [22]. The following key
result is a direct consequence of Theorem 4.2(a) from the cited paper, along with the shift
invariance property mentioned above.

Lemma 9 Let H̄ be an n×n symmetric matrix, let b be chosen from a uniform distribution
over the sphere ‖b‖ = 1, and suppose that ǭ ∈ [0, 1) and δ ∈ (0, 1) are given. Suppose that
ξmin(H̄, b, k) and ξmax(H̄, b, k) are defined as in (42). Then after k iterations of randomized
Lanczos, the following convergence condition holds:

λmax(H̄)− ξmax(H̄, b, k) ≤ ǭ(λmax(H̄)− λmin(H̄)) with probability at least 1− δ, (44)

provided k satisfies

k = n or 1.648
√
n exp

(

−
√
ǭ(2k − 1)

)

≤ δ. (45)

A sufficient condition for (44) thus is

k ≥ min

{

n, 1 +

⌈

1

4
√
ǭ
ln(2.75n/δ2)

⌉}

. (46)

Similarly, we have that

ξmin(H̄, b, k)− λmin(H̄) ≤ ǭ(λmax(H̄)− λmin(H̄)) with probability at least 1− δ (47)

for k satisfying the same conditions (45) or (46).

B.2 Lanczos and Conjugate Gradient as Minimum Eigenvalue Oracles

Lemma 2 implies that using the Lanczos algorithm to generate the minimum eigenvalue of
H̄ from (42a) represents an instance of Procedure 2 satisfying Assumption 3. The sequence
of iterates {zt} given by z0 = b and

zt+1 ∈ argmin
z

1

2
z⊤H̄z subject to ‖z‖2 = 1, z ∈ Kt(b, H̄), for t = 0, 1, . . . (48)

eventually yields a direction of sufficient negative curvature, when such a direction exists.
Consider now Algorithm 4 applied to H̄ , and g = −b. By Property 2 of Lemma 7, we

can see that if Algorithm 4 does not terminate with j ≤ t, for some given index t, then yt+1,
rt+1, and pt+1 are computed, and we have

span{p0, . . . , pi} = span{r0, . . . , ri} = Ki(b, H̄), for i = 0, 1, . . . , t, (49)

because {rℓ}iℓ=0 is a set of i+1 orthogonal vectors inKi(b, H̄). Thus {p0, . . . , pi}, {r0, . . . , ri},
and {b, H̄b, . . . , H̄ib} are all bases for Ki(b, H̄), i = 0, 1, . . . , t. As long as they are computed,
the iterates of Algorithm 4 satisfy

yt+1 := argmin
y

1

2
y⊤H̄y − b⊤y subject to y ∈ Kt(b, H̄), for t = 0, 1, (50)

The sequences defined by (48) (for Lanczos) and (50) (for CG) are related via the Krylov
subspaces. We have the following result about the number of iterations required by CG to
detect non-positive-definiteness.

A Newton-CG Algorithm with Complexity Guarantees 27

Theorem 5 Consider applying Algorithm 4 to the quadratic function (38), with g = −b
for some b with ‖b‖ = 1. Let J be the smallest value of t ≥ 0 such that Kt(b, H̄) con-
tains a direction of nonpositive curvature, so that J is also the smallest index t ≥ 0 such
that z⊤t+1H̄zt+1 ≤ 0, where {zj} are the Lanczos iterates from (48). Then Algorithm 4

terminates with j = J, with p⊤J H̄pJ ≤ 0.

Proof. We consider first the case of J = 0. Then z1 = b/‖b‖ and b⊤H̄b ≤ 0, so since
p0 = −r0 = b, we have p⊤0 H̄p0 ≤ 0, so the result holds in this case. We assume that J ≥ 1
for the remainder of the proof.

Suppose first that Algorithm 4 terminates with j = t, for some t satisfying 1 ≤ t ≤ J ,
because of a zero residual — rt = 0 — without having encountered nonpositive curvature.
In that case, we can show that H̄tb ∈ span{b, . . . , H̄t−1b}.

We can invoke (49) with t replaced by t − 1 since Algorithm 4 has not terminated at
iteration t−1. By the recursive definition of rt−1 within Algorithm 4, there exist coefficients
τi and σi such that

rt−1 = −b+
t−1
∑

i=1

τiH̄
ib, pt−1 =

t−1
∑

i=0

σiH̄
ib.

Since rt = 0, we have again from Algorithm 4 that

0 = rt−1 + αt−1H̄pt−1 = −b+
t−1
∑

i=1

(τi + αt−1σi−1)H̄
ib+ αt−1σt−1H̄

tb. (51)

The coefficient αt−1σt−1 must be nonzero, because otherwise this expression would represent
a nontrivial linear combination of the basis elements {b, H̄b, . . . , H̄t−1b} of Kt−1(b, H̄) that is
equal to zero. It follows from this observation and (51) that H̄tb ∈ span{b, H̄b, . . . , H̄t−1b} =
Kt−1(b, H̄), as required.

Consequently,

Kt(b, H̄) = span{b, H̄b, . . . , H̄tb} = span{b, . . . , H̄t−1b} = Kt−1(b, H̄).

By using a recursive argument on the definition of Ki(b, H̄) for i = t, . . . , J , we arrive at
Kt−1(b, H̄) = KJ(b, H̄). Thus there is a value of t smaller than J such that Kt(b, H̄) contains
a direction of nonpositive curvature, contradicting our definition of J . Thus we cannot have
termination of Algorithm 4 with j ≤ J unless p⊤j H̄pj ≤ 0.

Suppose next that CG terminates with j = t for some t > J . It follows that p⊤j H̄pj > 0

for all j = 0, 1, . . . , J . By definition of J , there is a nonzero vector z ∈ KJ (b, H̄) such that
z⊤H̄z ≤ 0. On the other hand, we have KJ(b, H̄) = span{p0, p1, . . . , pJ} by (49), thus we

can write z =
∑J

j=0 γjpj , for some scalars γj , j = 0, 1, . . . , J . By Property 5 of Lemma 7,
we then have

0 ≥ z⊤H̄z =
J
∑

j=0

γ2j p
⊤
j H̄pj .

Since p⊤j H̄pj > 0 for every j = 0, 1, . . . , J , and not all γj can be zero (because z 6= 0), the
final summation is strictly positive, a contradiction.

Suppose now that CG terminates at some j < J . Then p⊤j H̄pj ≤ 0, and since pj ∈
Kj(b, H̄), it follows that Kj(b, H̄) contains a direction of nonpositive curvature, contradicting
the definition of J .

We conclude that Algorithm 4 must terminate with j = J and p⊤J H̄pJ ≤ 0, as claimed.

Theorem 5 is a generic result that does not require b to be chosen randomly. It does
not guarantee that Lanczos will detect nonpositive curvature in H̄ whenever present, be-
cause b could be orthogonal to the subspace corresponding to the nonpositive curvature,
so the Lanczos subspace never intersects with the subspace of negative curvature. When b
is chosen randomly from a uniform distribution over the unit ball, however, we can certify

28 Clément W. Royer et al.

the performance of Lanczos, as we have shown in Lemma 2 based on Lemma 9 above. We
can exploit Theorem 5 to obtain the same performance for CG, as stated in Theorem 1. We
restate this result as a corollary, and prove it now.

Corollary 3 Let b be distributed uniformly on the unit ball and H be a symmetric n-by-n
matrix, with ‖H‖ ≤M . Given δ ∈ [0, 1), define

J̄ := min

{

n, 1 +

⌈

ln(2.75n/δ2)

2

√

M

ǫ

⌉}

. (52)

Consider applying Algorithm 4 with H̄ := H + 1
2
ǫI and g = −b. Then, the following

properties hold:

(a) If λmin(H) < −ǫ, then with probability at least 1 − δ, there is some index j ≤ J̄ such
that Algorithm 4 terminates with a direction pj such that p⊤j Hpj ≤ −(ǫ/2)‖pj‖2.

(b) if Algorithm 4 runs for J̄ iterations without terminating, then with probability at least
1− δ, we have that λmin(H) ≥ −ǫ.

Proof. We will again exploit the invariance of the Krylov subspaces to linear shifts given
by (43). This allows us to make inferences about the behavior of Algorithm 4 applied to
H̄ from the behavior of the Lanczos method applied to H, which has been described in
Lemma 2.

Suppose first that λmin(H) < −ǫ. By Lemma 2, we know that with probability at least
1 − δ, the Lanczos procedure returns a vector v such that ‖v‖ = 1 and v⊤Hv ≤ −(ǫ/2)
after at most J̄ iterations. Thus, for some j ≤ J̄, we have v ∈ Kj(b,H) = Kj(b, H̄), and
moreover v⊤H̄v ≤ 0 by definition of H̄, so the Krylov subspace Kj(b, H̄) contains directions
of nonpositive curvature, for some j ≤ J̄ . It then follows from Theorem 5 that p⊤j H̄pj ≤ 0

for some j ≤ J̄ . To summarize: If λmin(H) < −ǫ, then with probability 1− δ, Algorithm 4
applied to H̄ and g = −b will terminate with some pj such that p⊤j H̄pj ≤ 0 for some j with

j ≤ J̄ . The proof of (a) is complete.
Suppose now that Algorithm 4 applied to H̄ and g = −b runs for J̄ iterations without

terminating, that is p⊤j H̄pj > 0 for j = 0, 1, . . . , J̄ . It follows from the logic of Theorem 5

that KJ̄(b, H̄) contains no directions of nonpositive curvature for H̄. Equivalently, there is
no direction of curvature less than −ǫ/2 for H in KJ̄(b,H). By Lemma 2, this certifies with
probability at least 1− δ that λmin(H) ≥ −ǫ, establishing (b).

B.3 Randomized Lanczos with Internal Estimation of a Bound on ‖H‖

The methods discussed in Section B.2 assume knowledge of an upper bound on the consid-
ered matrix, denoted by M . When no such bound is known, we show here that it is possible
to estimate it within the Lanczos procedure. Algorithm 5 details the method; we show that
it can be used as an instance of Procedure 2 satisfying Assumption 3 when the optional
parameter M is not provided.

Algorithm 5 consists in applying the Lanczos method onH starting with a random vector
b. We first run Lanczos for jM iterations, where jM does not depend on any estimate on
the minimum or maximum eigenvalue and instead targets a fixed accuracy. After this initial
phase of jM iterations, we have approximations of the extreme eigenvalues ξmax(H, b, jM)
and ξmin(H, b, jM) from (42). An estimate M of ‖H‖ is then given by:

M = 2max {|ξmax(H, b, jM)|, |ξmin(H, b, jM)|} . (53)

We show below that ‖H‖ ≤M ≤ 2‖H‖, with high probability. This value can then be used
together with a tolerance ǫ to define a new iteration limit for the Lanczos method. After
this new iteration limit is reached, we can either produce a direction of curvature at most
−ǫ/2, or certify with high probability that λmin(H) � −ǫI — the desired outcomes for
Procedure 2.

A Newton-CG Algorithm with Complexity Guarantees 29

Algorithm 5 Lanczos Method with Upper Bound Estimation

Inputs: Symmetric matrix H ∈ R
n×n, tolerance ǫ > 0.

Internal parameters: probability δ ∈ [0, 1), vector b uniformly distributed on the unit
sphere.
Outputs: Estimate λ of λmin(H) such that λ ≤ −ǫ/2, and vector v with ‖v‖ = 1 such
that v⊤Hv = λ OR certificate that λmin(H) ≥ −ǫ. If the certificate is output, it is false
with probability δ.
Set jM = min

{

n, 1 +
⌈

1
2
ln(25n/δ2)

⌉}

.
Perform jM iterations of Lanczos starting from b.
Compute ξmin(H, b, jM) and ξmax(H, b, jM), and set M according to (53).

Set jtotal = min

{

jM , 1 +

⌈

1
2
ln(25n/δ2)

√

M
ǫ

⌉}

.

Perform max{0, jtotal − jM} additional iterations of Lanczos.
Compute ξmin(H, b, jtotal).
if ξmin(H, b, jtotal) ≤ −ǫ/2 then

Output λ = ξmin(H, b, jtotal) and a unit vector v such that v⊤Hv = λ.
else

Output λ = ξmin(H, b, jtotal) as a certificate that λmin(H) ≥ −ǫ. This certificate is
false with probability δ.

end if

Algorithm 5 could be terminated earlier, in fewer than jtotal iterations, when a direction
of sufficient negative is encountered. For simplicity, we do not consider this feature, but
observe that it would not affect the guarantees of the method, described in Lemma 10
below.

Lemma 10 Consider Algorithm 5 with input parameters H and b, and internal parameter
δ. The method outputs a value λ such that

λ ≤ λmin(H) +
ǫ

2
(54)

in at most

min

{

n, 1 + max

{

⌈

1

2
ln(25n/δ2)

⌉

,

⌈

1

2
ln(25n/δ2)

√

2‖H‖
ǫ

⌉}}

(55)

matrix-vector multiplications by H, with probability at least 1− δ.

Proof. We begin by showing that the first phase of Algorithm 5 yields an accurate
estimate of ‖H‖ with high probability. We assume that ‖H‖ > 0 as the result is trivially
true otherwise. By setting δ ← δ/3 and ǭ = 1

4
in Lemma 9, we obtain that the following

inequalities hold, each with probability at least 1− δ/3:

ξmax(H, b, jM) ≥ λmax(H) − 1
4
(λmax(H) − λmin(H)), (56a)

ξmin(H, b, jM) ≤ λmin(H) + 1
4
(λmax(H) − λmin(H)). (56b)

We consider the various possibilities for λmin(H) and λmax(H) separately, showing in each
case that M defined by (53) has ‖H‖ ≤M ≤ 2‖H‖.
– When λmax(H) ≥ λmin(H) ≥ 0, we have ξmax(H, b, jM) ≥ 3

4
λmin(H) and 0 ≤

ξmin(H, b, jM) ≤ ξmax(H, b, jM), so that

M = 2ξmax(H, b, jM) ≥ 3

2
λmax(H) =

3

2
‖H‖,

M = 2ξmax(H, b, jM) ≤ 2λmax(H) = 2‖H‖,

as required.

30 Clément W. Royer et al.

– When λmin(H) ≤ λmax(H) ≤ 0, we have ξmin(H, b, jM) ≤ 3
4
λmin(H) ≤ 0 and

ξmin(H, b, jM) ≤ ξmax(H, b, jM) ≤ 0, so that

M = 2|ξmin(H, b, jM)| ≥ 3

2
|λmin(H)| = 3

2
‖H‖,

M = 2|ξmin(H, b, jM)| ≤ 2|λmin(H)| = 2‖H‖,

as required.
– When λmin(H) ≤ 0 ≤ λmax(H) and −λmin(H) ≤ λmax(H), we have λmax(H) −
λmin(H) ≤ 2λmax(H), so from (56a), it follows that ξmax(H, b, jM) ≥ 1

2
λmax(H) =

1
2
‖H‖, and so

M ≥ 2ξmax(H, b, jM) ≥ ‖H‖,
M = 2max {|ξmax(H, b, jM)|, |ξmin(H, b, jM)|} ≤ 2max {|λmax(H)|, |λmin(H)|} = 2‖H‖,

as required.
– When λmin(H) ≤ 0 ≤ λmax(H) and −λmin(H) ≥ λmax(H), we have λmax(H) −
λmin(H) ≤ −2λmin(H), so from (56b), it follows that ξmin(H, b, jM) ≤ 1

2
λmin(H) ≤ 0,

and so

M ≥ 2|ξmin(H, b, jM)| ≥ |λmin(H)| = ‖H‖,
M = 2max {|ξmax(H, b, jM)|, |ξmin(H, b, jM)|} ≤ 2max {|λmax(H)|, |λmin(H)|} = 2‖H‖,

as required.

Since each of the bounds in (56) holds with probability at least 1 − δ/3, both hold with
probability at least 1− 2δ/3, by a union bound argument.

We finally consider the complete run of Algorithm 5, which requires jtotal iterations of
Lanczos. If our estimate M is accurate, we have by setting δ ← δ/3 and M ← 2‖H‖ in
Lemma 2 that λ = ξmin(H, b, jtotal) satisfies (54) with probability 1−δ/3. By using a union
bound to combine this probability with the probabilities of estimating M appropriately, we
obtain the probability of at least 1− δ.

In conclusion, Algorithm 5 runs jtotal iterations of Lanczos (each requiring one matrix-
vector multiplication by H) and terminates correctly with probability at least 1− δ.

The lemma above shows that Algorithm 5 is an instance of Procedure 2 that does not
require an a priori bound on ‖H‖. Assuming ‖H‖ ≤ UH , we further observe that Algorithm 5

satisfies the conditions of Assumption 3 with Cmeo = ln(25n/δ2)√
2

√
UH , which is within a

modest constant multiple of the one obtained for the Lanczos method with knowledge of
‖H‖ or UH .

C Proof of Theorem 2

Proof. The proof proceeds by contradiction: If we assume that all conditions specified in the
statement of the theorem hold, and in addition that

(y
Ĵ+1 − yi)⊤H̄(y

Ĵ+1 − yi)
‖y

Ĵ+1 − yi‖2
≥ ǫ, for all i = 0, 1, . . . , Ĵ − 1, (57)

then we must have
‖r

Ĵ
‖ ≤
√
Tτ Ĵ/2‖r0‖, (58)

contradicting (11). Note that

(y
Ĵ+1
− y

Ĵ
)⊤H̄(y

Ĵ+1
− y

Ĵ
)

‖y
Ĵ+1
− y

Ĵ
‖2 =

α
Ĵ
p⊤
Ĵ
H̄(α

Ĵ
p
Ĵ
)

‖α
Ĵ
p
Ĵ
‖2 =

p⊤
Ĵ
H̄p

Ĵ

‖p
Ĵ
‖2 ≥ ǫ (59)

A Newton-CG Algorithm with Complexity Guarantees 31

by assumption, therefore we can consider (57) to hold for i = 0, 1, . . . , Ĵ . Moreover, recalling

the definition (38) of the quadratic function q, we have for any i = 0, 1, . . . , Ĵ that

q(y
Ĵ+1) = q(yi) +∇q(yi)⊤(y

Ĵ+1 − yi) +
1

2
(y

Ĵ+1 − yi)
⊤H̄(y

Ĵ+1 − yi).

Thus, (57) can be reformulated as

q(y
Ĵ+1

) ≥ q(yi) + r⊤i (y
Ĵ+1
− yi) +

ǫ

2
‖y

Ĵ+1
− yi‖2, for all i = 0, 1, . . . , Ĵ , (60)

where we used ∇q(yi) = ri and the definitions (57), (59) of strong convexity along the
directions y

Ĵ+1−yi. In the remainder of the proof, and similarly to [5, Proof of Proposition

1], we will show that (60) leads to the contradiction (58), thus proving that (12) holds.

We define the sequence of functions Φj , j = 0, 1, . . . Ĵ as follows:

Φ0(z) := q(y0) +
ǫ

2
‖z − y0‖2,

and for j = 0, . . . , Ĵ − 1:

Φj+1(z) := τΦj(z) + (1− τ)
(

q(yj) + r⊤j (z − yj) +
ǫ

2
‖z − yj‖2

)

. (61)

Since each Φj is a quadratic function with Hessian ǫI, it can be written as follows:

Φj(z) = Φ∗
j +

ǫ

2
‖z − vj‖2, (62)

where vj is the unique minimizer of Φj , and Φ
∗
j = Φj(vj) is the minimum value of Φj . (Note

that v0 = y0 = 0 and Φ∗
0 = q(y0) = 0.)

Defining

ψ(y) := q(y0)− q(y) +
ǫ

2
‖y − y0‖2 = Φ0(y) − q(y), (63)

we give a short inductive argument to establish that

Φj(yĴ+1
) ≤ q(y

Ĵ+1
) + τ jψ(y

Ĵ+1
), j = 0, 1, . . . , Ĵ . (64)

For j = 0, (64) holds because Φ0(y) = q(y) + ψ(y) by definition. Assuming that (64) holds
for some index j ≥ 0, we find by first applying (61) (with z = y

Ĵ+1
) and then (60) (with

i = j) that

Φj+1(yĴ+1) = τΦj(yĴ+1) + (1− τ)
(

q(yj) + r⊤j (y
Ĵ+1 − yj) +

ǫ

2
‖y

Ĵ+1 − yj‖
2
)

≤ τΦj(yĴ+1) + (1− τ)q(y
Ĵ+1).

Thus, we have

Φj+1(yĴ+1) ≤ τΦj(yĴ+1) + (1− τ)q(y
Ĵ+1)

≤ τq(y
Ĵ+1) + τ j+1ψ(y

Ĵ+1) + (1 − τ)q(y
Ĵ+1) from (64)

= q(y
Ĵ+1) + τ j+1ψ(y

Ĵ+1),

which proves (64) for j + 1, and thus completes the inductive argument.
We next prove another technical fact about the relationship between q(yj) and Φ∗

j ,
namely,

q(yj) ≤ Φ∗
j , j = 0, 1, . . . , Ĵ . (65)

We establish this result by an inductive argument that is quite lengthy and technical; we
note the termination of this phase of the proof clearly below.

32 Clément W. Royer et al.

This result trivially holds (with equality) at j = 0. Supposing that it holds for some

j = 0, 1, . . . , Ĵ − 1, we will prove that it also holds for j + 1.

By using Properties 7 and 8 of Lemma 7, and also ‖H̄rj‖ ≤ (M + 2ǫ)‖rj‖, we have

q(yj+1) = q(yj)−
‖rj‖4

2 p⊤j H̄pj
≤ q(yj)−

‖rj‖4
2 r⊤j H̄rj

≤ q(yj)−
‖rj‖2

2(M + 2ǫ)
.

It follows from induction hypothesis q(yj) ≤ Φ∗
j that

q(yj+1) ≤ q(yj)−
‖rj‖2

2(M + 2ǫ)
= τq(yj) + (1− τ)q(yj)−

‖rj‖2
2(M + 2ǫ)

≤ τΦ∗
j + (1− τ)q(yj)−

‖rj‖2
2(M + 2ǫ)

. (66)

By taking the derivative in (61), and using (62), we obtain

∇Φj+1(z) = τ∇Φj(z) + (1 − τ) [rj + ǫ(z − yj)]
⇒ ǫ(z − vj+1) = ǫτ(z − vj) + (1− τ) (rj + ǫ(z − yj)) .

By rearranging the above relation (and noting that the z terms cancel out), we obtain:

vj+1 = τvj −
1− τ
ǫ

rj + (1− τ)yj . (67)

It follows from this expression together with Properties 1 and 2 of Lemma 7 that

vj ∈ span {p0, p1, . . . , pj−1} , j = 1, 2, . . . , Ĵ . (68)

(The result holds for j = 1, from (67) we have v1 ∈ span{v0, r0, y0} = span{r0} = span{p0},
and an induction based on (67) can be used to establish (68) for the other values of j.) By
combining the expressions (62) for Φj , Φj+1 with the recurrence formula (61) for Φj+1, we
obtain

Φ∗
j+1 +

ǫ

2
‖yj − vj+1‖2 = Φj+1(yj)

= τΦj(yj) + (1− τ)q(yj)

= τ
(

Φ∗
j +

ǫ

2
‖yj − vj‖2

)

+ (1 − τ)q(yj)

and therefore

Φ∗
j+1 = τ

(

Φ∗
j +

ǫ

2
‖yj − vj‖2

)

+ (1 − τ)q(yj)−
ǫ

2
‖yj − vj+1‖2. (69)

On the other hand, we have by (67) that

‖yj − vj+1‖2 =

∥

∥

∥

∥

τ(yj − vj) +
1− τ
ǫ

rj

∥

∥

∥

∥

2

= (τ2‖yj − vj‖2 +
(1− τ)2

ǫ2
‖rj‖2 +

2

ǫ
(1− τ)τr⊤j (yj − vj)

= τ2‖yj − vj‖2 +
(1 − τ)2

ǫ2
‖rj‖2, (70)

where the last relation comes from rj ⊥ span{p0, . . . , pj−1} (Property 2 of Lemma 7) and
(68) in the case j ≥ 1, and immediately in the case j = 0, since y0 = v0 = 0. By combining

A Newton-CG Algorithm with Complexity Guarantees 33

(69) and (70), we arrive at:

Φ∗
j+1 = τ

(

Φ∗
j +

ǫ

2
‖yj − vj‖2

)

+ (1 − τ)q(yj)−
ǫ

2
‖yj − vj+1‖2

= τ
(

Φ∗
j +

ǫ

2
‖yj − vj‖2

)

+ (1 − τ)q(yj)−
ǫ

2
τ2‖yj − vj‖2 −

(1− τ)2
2ǫ

‖rj‖2

= τΦ∗
j +

ǫ

2

[

τ − τ2
]

‖yj − vj‖2 + (1 − τ)q(yj) −
(1− τ)2

2ǫ
‖rj‖2

= τΦ∗
j +

ǫ

2
(1 − τ)τ‖yj − vj‖2 + (1 − τ)q(yj)−

(1 − τ)2
2ǫ

‖rj‖2

≥ τΦ∗
j + (1− τ)q(yj)−

(1− τ)2
2ǫ

‖rj‖2

≥ q(yj+1) +
1

2(M + 2ǫ)
‖rj‖2 −

(1− τ)2
2ǫ

‖rj‖2. (71)

where the last inequality comes from (66). By using the definitions of τ and κ in Algorithm 1,
we have

(1 − τ)2
2ǫ

=
1

2ǫ(
√
κ+ 1)2

≤ 1

2ǫκ
=

1

2(M + 2ǫ)
.

It therefore follows from (71) that q(yj+1) ≤ Φ∗
j+1. At this point, we have shown that when

q(yj) ≤ Φ∗
j for j = 0, 1, . . . , Ĵ − 1, it follows that q(yj+1) ≤ Φ∗

j+1, establishing the inductive

step. As a result, our proof of (65) is complete.

By substituting j = Ĵ into (65), we obtain q(y
Ĵ
) ≤ Φ∗

Ĵ
, which in combination with (64)

with j = Ĵ , and the definition (62), yields

q(y
Ĵ
)− q(y

Ĵ+1) ≤ Φ
∗
Ĵ
− q(y

Ĵ+1) ≤ ΦĴ
(y

Ĵ+1)− q(yĴ+1) ≤ τ
Ĵψ(y

Ĵ+1). (72)

By substitution from (63), we obtain

q(y
Ĵ
)− q(y

Ĵ+1) ≤ τ Ĵ
(

q(y0)− q(yĴ+1) +
ǫ

2
‖y0 − yĴ+1‖

2
)

. (73)

We now depart from the analysis of [5], and complete the proof of this result by express-
ing (73) in terms of residual norms. On the left-hand side, we have

q(y
Ĵ
) − q(y

Ĵ+1) = r⊤
Ĵ+1

(y
Ĵ
− y

Ĵ+1) +
1

2
(y

Ĵ
− y

Ĵ+1)
⊤H̄(y

Ĵ
− y

Ĵ+1)

=
1

2
(y

Ĵ
− y

Ĵ+1)
⊤H̄(y

Ĵ
− y

Ĵ+1)

because r⊤
Ĵ+1

(y
Ĵ
− y

Ĵ+1) = r⊤
Ĵ+1

(α
Ĵ
p
Ĵ
) = 0 by Lemma 7, Property 2. We thus have from

(59) that

q(y
Ĵ
)− q(y

Ĵ+1
) ≥ ǫ

2
‖y

Ĵ
− y

Ĵ+1
‖2

=
ǫ

2
‖α

Ĵ
p
Ĵ
‖2

≥ ǫ

2(M + 2ǫ)2
‖H̄(α

Ĵ
p
Ĵ
)‖2 (since ‖H̄p

Ĵ
‖ ≤ (M + 2ǫ)‖p

Ĵ
‖)

=
ǫ

2(M + 2ǫ)2
‖H̄(y

Ĵ
− y

Ĵ+1
)‖2

=
ǫ

2(M + 2ǫ)2
‖r

Ĵ
− r

Ĵ+1‖
2 (since rj = g + H̄yj)

=
ǫ

2(M + 2ǫ)2
(‖r

Ĵ
‖2 + ‖r

Ĵ+1
‖2) (by Lemma 7, Property 2)

≥ ǫ

2(M + 2ǫ)2
‖r

Ĵ
‖2, (74)

34 Clément W. Royer et al.

On the right-hand side of (73), because of the strong convexity condition (60) at i = 0,
we have

q(y0)− q(yĴ+1) +
ǫ

2
‖y0 − yĴ+1‖

2 ≤ −∇q(y0)⊤(y
Ĵ+1 − y0)

= −r⊤0 (y
Ĵ+1 − y0) ≤ ‖r0‖‖yĴ+1 − y0‖.

Moreover, we have

‖y
Ĵ+1
− y0‖ =

∥

∥

∥

∥

∥

∥

Ĵ
∑

i=0

αipi

∥

∥

∥

∥

∥

∥

≤
Ĵ
∑

i=0

αi‖pi‖ =
Ĵ
∑

i=0

‖ri‖2
p⊤i H̄pi

‖pi‖,

where the last relation follows from the definition of αi. By combining these last two bounds,
and using Property 3 of Lemma 7, we obtain

q(y0) − q(yĴ+1
) +

ǫ

2
‖y0 − yĴ+1

‖2 ≤ ‖r0‖
Ĵ
∑

i=0

‖ri‖
‖pi‖2
p⊤i H̄pi

≤ ‖r0‖
1

ǫ

Ĵ
∑

i=0

‖ri‖, (75)

where the last inequality holds p⊤j H̄pj ≥ ǫ‖pj‖2 for j = 0, 1, . . . , Ĵ by assumption.

To bound the sum in (75), we recall that since Algorithm 1 did not terminate until

iteration Ĵ , the residual norms ‖ri‖ at all iterations i = 0, 1, . . . , Ĵ − 1 must have decreased
at the expected convergence rate. In particularly, we have ‖ri‖ ≤

√
Tτ i/2‖r0‖ for the possibly

smaller versions of
√
T and τ that prevailed at iteration i, so certainly ‖ri‖ ≤

√
Tτ i/2‖r0‖

for the final values of these parameters. Thus for i = 0, 1, . . . , Ĵ − 1, we have

‖ri‖ ≤
√
Tτ i/2‖r0‖ ≤ τ (i−Ĵ)/2‖r

Ĵ
‖,

where we used ‖r
Ĵ
‖ ≥
√
Tτ Ĵ/2‖r0‖ (from (11)) for the last inequality. Observing that this

bound also holds (trivially) for i = Ĵ , we obtain by substituting in (75) that

q(y0)− q(yĴ+1
) +

ǫ

2
‖y0 − yĴ+1

‖2 ≤ ‖r0‖
1

ǫ

Ĵ
∑

i=0

τ (i−Ĵ)/2‖r
Ĵ
‖

≤ ‖r0‖
τ−Ĵ/2

ǫ
‖r

Ĵ
‖

Ĵ
∑

i=0

(
√
τ)i

≤ ‖r0‖
τ−Ĵ/2

ǫ
‖r

Ĵ
‖ 1

1−√τ
. (76)

Applying successively (74), (73) and (76) finally yields:

ǫ

2(M + 2ǫ)2
‖r

Ĵ
‖2 ≤ q(y

Ĵ
) − q(y

Ĵ+1)

≤ τ Ĵ
(

q(y0)− q(yĴ+1) +
ǫ

2
‖y0 − yĴ+1‖

2
)

≤ τ Ĵ‖r0‖‖rĴ‖
τ−Ĵ/2

ǫ

1

1−√τ
.

After rearranging this inequality and dividing by ‖r
Ĵ
‖ > 0, we obtain

‖r
Ĵ
‖ ≤ 2(M + 2ǫ)2

ǫ2
τ Ĵ/2

1−√τ ‖r0‖ =
√
Tτ Ĵ/2‖r0‖. (77)

We have thus established (58) which, as we noted earlier, contradicts (11). Thus (57) cannot
be true, so we have established (12), as required.

	1 Introduction
	2 Complexity in Nonconvex Optimization
	3 Damped-Newton / Capped-CG Method with Negative Curvature Steps
	4 Complexity Analysis
	5 Discussion
	A Linear Conjugate Gradient: Relevant Properties
	B Implementing Procedure ?? via Lanczos and Conjugate Gradient
	C Proof of Theorem ??

