Skip to main content
Log in

Lattice closures of polyhedra

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

Given \(P\subset {\mathbb {R}}^n\), a mixed-integer set \(P^I=P\cap ({\mathbb {Z}}^{t}\times {\mathbb {R}}^{n-t}\)), and a k-tuple of n-dimensional integral vectors \((\pi _1, \ldots , \pi _k)\) where the last \(n-t\) entries of each vector is zero, we consider the relaxation of \(P^I\) obtained by taking the convex hull of points x in P for which \( \pi _1^Tx,\ldots ,\pi ^T_kx\) are integral. We then define the k-dimensional lattice closure of \(P^I\) to be the intersection of all such relaxations obtained from k-tuples of n-dimensional vectors. When P is a rational polyhedron, we show that given any collection of such k-tuples, there is a finite subcollection that gives the same closure; more generally, we show that any k-tuple is dominated by another k-tuple coming from the finite subcollection. The k-dimensional lattice closure contains the convex hull of \(P^I\) and is equal to the split closure when \(k=1\). Therefore, a result of Cook et al. (Math Program 47:155–174, 1990) implies that when P is a rational polyhedron, the k-dimensional lattice closure is a polyhedron for \(k=1\) and our finiteness result extends this to all \(k\ge 2\). We also construct a polyhedral mixed-integer set with n integer variables and one continuous variable such that for any \(k < n\), finitely many iterations of the k-dimensional lattice closure do not give the convex hull of the set. Our result implies that t-branch split cuts cannot give the convex hull of the set, nor can valid inequalities from unbounded, full-dimensional, convex lattice-free sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Andersen, K., Cornuéjols, G., Li, Y.: Split closure and intersection cuts. Math. Program. 102, 457–493 (2005)

    Article  MathSciNet  Google Scholar 

  2. Andersen, K., Louveaux, Q., Weismantel, R.: An analysis of mixed-integer linear sets based on lattice point free convex sets. Math. Oper. Res. 35, 233–256 (2010)

    Article  MathSciNet  Google Scholar 

  3. Andersen, K., Louveaux, Q., Weismantel, R., Wolsey, L.: Inequalities from two rows of a simplex tableau. In: IPCO 2007 Proceedings, Lecture Notes in Computer Science, vol. 4513, pp. 1–15 (2007)

  4. Averkov, G.: On finitely generated closures in the theory of cutting planes. Discrete Optim. 9, 209–215 (2012)

    Article  MathSciNet  Google Scholar 

  5. Averkov, G., Basu, A., Paat, J.: Approximation of corner polyhedra with families of intersection cuts. SIAM J. Optim. 28, 904–929 (2018)

    Article  MathSciNet  Google Scholar 

  6. Bader, J., Hildebrand, R., Weismantel, R., Zemmer, K.: Mixed integer reformulations of integer programs and the affine TU-dimension of a matrix. Math. Program. (2017). https://doi.org/10.1007/s10107-017-1147-2

    Article  MATH  Google Scholar 

  7. Balas, E.: Intersection cuts—a new type of cutting planes for integer programming. Oper. Res. 19, 19–39 (1971)

    Article  MathSciNet  Google Scholar 

  8. Banaszczyk, W.: New bounds in some transference theorems in the geometry of numbers. Math. Ann. 296, 625–635 (1993)

    Article  MathSciNet  Google Scholar 

  9. Barvinok, A.: http://www.math.lsa.umich.edu/~barvinok/latticenotes669.pdf. Accessed 12 June 2015

  10. Basu, A., Hildebrand, R., Köppe, M.: The triangle closure is a polyhedron. Math. Program. 145, 19–58 (2014)

    Article  MathSciNet  Google Scholar 

  11. Basu, A., Conforti, M., Cornuéjols, G., Zambelli, G.: Maximal lattice-free convex sets in linear subspaces. Math. Oper. Res. 35(3), 704–720 (2010)

    Article  MathSciNet  Google Scholar 

  12. Caprara, A., Fischetti, M.: \(\{0, 1/2\}\)-Chvátal–Gomory cuts. Math. Program. 74, 221–235 (1996)

    MATH  Google Scholar 

  13. Cevallos, A., Weltge, S., Zenklusen, R.: Lifting linear extension complexity bounds to the mixed-integer setting. In: Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2018), pp. 788–807 (2018)

  14. Chvátal, V., Cook, W.J., Hartmann, M.: On cutting-plane proofs in combinatorial optimization. Linear Algebra Appl. 114(115), 455–499 (1989)

    Article  MathSciNet  Google Scholar 

  15. Conforti, M., Cornuéjols, G., Zambelli, G.: Integer Programming. Springer, New York (2014)

    MATH  Google Scholar 

  16. Cook, W.J., Kannan, R., Schrijver, A.: Chvátal closures for mixed-integer programming problems. Math. Program. 47, 155–174 (1990)

    Article  Google Scholar 

  17. Cornuéjols, G., Li, Y.: On the rank of mixed \(\{0, 1\}\) polyhedra. Math. Program. 91, 391–397 (2002)

    Article  MathSciNet  Google Scholar 

  18. Dadush, D., Dey, S.S., Vielma, J.P.: On the Chvátal–Gomory closure of a compact convex set. Math. Program. 145, 327–348 (2014)

    Article  MathSciNet  Google Scholar 

  19. Dash, S., Dey, S.S., Günlük, O.: Two dimensional lattice-free cuts and asymmetric disjunctions for mixed-integer polyhedra. Math. Program. 135, 221–254 (2012)

    Article  MathSciNet  Google Scholar 

  20. Dash, S., Dey, S.S., Günlük, O.: On mixed-integer sets with two integer variables. Oper. Res. Lett. 39, 305–309 (2010)

    Article  MathSciNet  Google Scholar 

  21. Dash, S., Günlük, O.: On t-branch split cuts for mixed-integer programs. Math. Program. 141, 191–199 (2013)

    Article  MathSciNet  Google Scholar 

  22. Dash, S., Günlük, O., Molinaro, M.: On the relative strength of different generalizations of split cuts. Discrete Optim. 16, 36–50 (2015)

    Article  MathSciNet  Google Scholar 

  23. Dash, S., Günlük, O., Morán R, D.A.: On the polyhedrality of cross and quadrilateral closures. Math. Program. 160, 245–270 (2016)

    Article  MathSciNet  Google Scholar 

  24. Dash, S., Günlük, O., Morán R, D.A.: On the polyhedrality of closures of multi-branch split sets and other polyhedra with bounded max-facet-width. SIAM J. Optim. 27(3), 1340–1361 (2017)

    Article  MathSciNet  Google Scholar 

  25. Dunkel, J., Schulz, A.S.: The Gomory–Chvátal closure of a non-rational polytope is a rational polytope. Math. Oper. Res. 38, 63–91 (2013)

    Article  MathSciNet  Google Scholar 

  26. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer, Berlin (1988)

    Book  Google Scholar 

  27. Higman, F.: Ordering by divisibility in abstract algebras. Proc. Lond. Math. Soc. 3, 326–336 (1952)

    Article  MathSciNet  Google Scholar 

  28. Hildebrand, R., Oertel, T., Weismantel, R.: Note on the complexity of the mixed-integer hull of a polyhedron. Oper. Res. Lett. 43, 279–282 (2015)

    Article  MathSciNet  Google Scholar 

  29. Hildebrand, R., Weismantel, R., Zenklusen, R.: Extension complexity lower bounds for mixed-integer extended formulations. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2017) (2017)

  30. Li, Y., Richard, J.P.P.: Cook, Kannan and Schrijver’s example revisited. Discrete Optim. 5, 724–734 (2008)

    Article  MathSciNet  Google Scholar 

  31. Lenstra Jr., H.W.: Integer programming with a fixed number of variables. Math. Oper. Res. 8, 538–548 (1983)

    Article  MathSciNet  Google Scholar 

  32. Lovász, L.: Geometry of numbers and integer programming. In: Iri, M., Tanabe, K. (eds.) Mathematical Programming: Recent Developements and Applications, pp. 177–210. Kluwer, Dordrecht (1989)

    Google Scholar 

  33. Meyer, R.R.: On the existence of optimal solutions to integer and mixed-integer programming problem. Math. Program. 7, 223–235 (1974)

    Article  MathSciNet  Google Scholar 

  34. Schrijver, A.: On cutting planes. Ann. Discrete Math. 9, 291–296 (1980)

    Article  MathSciNet  Google Scholar 

  35. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1986)

    MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Santanu S. Dey for the many interesting discussions we had on multi-branch and lattice-free cuts over the years. We would also like to thank the two anonymous referees for their careful reading of the paper and their many helpful comments which helped improve the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeeb Dash.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dash, S., Günlük, O. & Morán R., D.A. Lattice closures of polyhedra. Math. Program. 181, 119–147 (2020). https://doi.org/10.1007/s10107-019-01379-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-019-01379-y

Mathematics Subject Classification

Navigation