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Abstract

We consider the problem of designing piecewise affine policies for two-stage adjustable robust
linear optimization problems under right-hand side uncertainty. It is well known that a piecewise
affine policy is optimal although the number of pieces can be exponentially large. A significant
challenge in designing a practical piecewise affine policy is constructing good pieces of the
uncertainty set. Here we address this challenge by introducing a new framework in which the
uncertainty set is “approximated” by a “dominating” simplex. The corresponding policy is then
based on a mapping from the uncertainty set to the simplex. Although our piecewise affine
policy has exponentially many pieces, it can be computed efficiently by solving a compact linear
program given the dominating simplex. Furthermore, we can find the dominating simplex in
a closed form if the uncertainty set satisfies some symmetries and can be computed using a
MIP in general. The performance of our policy is significantly better than the affine policy
for many important uncertainty sets, such as ellipsoids and norm-balls, both theoretically and
numerically. For instance, for hypersphere uncertainty set, our piecewise affine policy can be
computed by an LP and gives a O(m1/4)-approximation whereas the affine policy requires us
to solve a second order cone program and has a worst-case performance bound of O(

√
m).

1 Introduction

Addressing uncertainty in problem parameters in an optimization problem is a fundamental chal-
lenge in most real world problems where decisions often need to be made in the face of uncertainty.
Stochastic and robust optimization are two approaches that have been studied extensively to handle
uncertainty. In a stochastic optimization framework, uncertainty is modeled using a probability
distribution and the goal is to optimize an expected objective [18]. We refer the reader to Kall and
Wallace [25], Prekopa [27], Shapiro [28], Shapiro et al. [29] for a detailed discussion on stochastic
optimization. While it is a reasonable approach in certain settings, it is intractable in general
and suffers from the “curse of dimensionality”. Moreover, in many applications, we may not have
sufficient historical data to estimate a joint probability distribution over the uncertain parameters.

Robust optimization is another paradigm where we consider an adversarial model of uncertainty
using an uncertainty set and the goal is to optimize over the worst-case realization from the uncer-
tainty set. This approach was first introduced by Soyster [30] and has been extensively studied in
recent past. We refer the reader to Ben-Tal and Nemirovski [4, 5, 6], El Ghaoui and Lebret [19],
Bertsimas and Sim [15, 16], Goldfarb and Iyengar [23], Bertsimas et al. [8] and Ben-Tal et al. [2]
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for a detailed discussion of robust optimization. Robust optimization leads to a tractable approach
where an optimal static solution can be computed efficiently for a large class of problems. More-
over, in many cases, designing an uncertainty set is significantly less challenging than estimating
a joint probability distribution for high-dimensional uncertainty. However, computing an optimal
adjustable (or dynamic) solution for a multi-stage problem is generally hard even in the robust
optimization framework.

In this paper, we consider two-stage adjustable robust (AR) linear optimization problems with
covering constraints and uncertain right-hand side. In particular, we consider the following model:

ΠAR(U):

zAR(U) = min cTx+ max
h∈U

min
y(h)

dTy(h)

Ax+By(h) ≥ h ∀h ∈ U
x ∈ Rn1

+

y(h) ∈ Rn2
+ ,

(1.1)

where A ∈ Rm×n1
+ , c ∈ Rn1

+ ,d ∈ Rn2
+ ,B ∈ Rm×n2 , and U ⊆ Rm+ is the uncertainty set. The goal

in this problem is to select the first-stage decision x, and the second-stage recourse decision, y(h),
as a function of the uncertain right hand side realization, h such that the worst-case cost over all
realizations of h ∈ U is minimized. We assume without loss of generality that n1 = n2 = n and
that the uncertainty set U satisfies the following assumption.

Assumption 1. U ⊆ [0, 1]m is convex, full-dimensional with ei ∈ U for all i = 1, . . . ,m, and
down-monotone, i.e., h ∈ U and 0 ≤ h′ ≤ h implies that h′ ∈ U .

We would like to emphasize that the above assumption can be made without loss of generality
since we can appropriately scale the uncertainty set, and consider a down-monotone completion,
without affecting the two-stage problem (1.1). Note that in the model ΠAR(U) the objective co-
efficients c, d, the first-stage constraint matrix A, and the decision variables x,y(h) are all non-
negative. This is restrictive as compared to general two-stage linear programs but the above model
still captures many important applications including set cover, facility location and network design
problems under uncertain demand. Here the right-hand side, h models the uncertain demand and
the covering constraints capture the requirement of satisfying the uncertain demand.

The worst case scenario of problem (1.1) occurs on extreme points of U . Therefore, given an
explicit list of the extreme points of the uncertainty set U , the adjustable robust optimization
problem (1.1) can be solved efficiently by including the second-stage decisions and the covering
constraints only for the extreme points of U . Some approaches have been developed to generate
dynamically the required extreme points, e.g. Zeng and Zhao [31], Ayoub and Poss [1]. However,
in general the adjustable robust optimization problem (1.1) is intractable; for example, when the
number of extreme points is large or due to other structural complexities of U . In fact, Feige
et al. [22] show that problem ΠAR(U) is hard to approximate within any factor that is better
than Ω(logm), even in the case of budget uncertainty set and A,B being 0-1 matrices. This
motivates us to consider approximations for the problem. Static robust and affinely adjustable
solution approximations have been studied in the literature for this problem. In a static robust
solution, we compute a single optimal solution (x,y) that is feasible for all realizations of the
uncertain right hand side. Bertsimas et al. [13] relate the performance of static solution to the
symmetry of the uncertainty set and show that it provides a good approximation to the adjustable
problem if the uncertainty is close to being centrally symmetric. However, the performance bound
of static solutions can be arbitrarily large for a general convex uncertainty set with the worst case
performance being Ω(m). El Housni and Goyal [21] consider piecewise static policies for two-stage
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adjustable robust problem with uncertain constraint coefficients. These are a generalization of
static policies where the uncertainty set is divided into several pieces and a static solution specified
for each piece. However, they show that, in general, there is no piecewise static policy with a
polynomial number of pieces that has a significantly better performance than an optimal static
policy.

Ben-Tal et al. [3] introduce an affine adjustable solution (also known as affine policy) to ap-
proximate adjustable robust problems. Affine policy restricts the second-stage decisions, y(h) to
being an affine function of the uncertain right-hand side h, i.e., y(h) = Ph+q for some P ∈ Rn×m
and q ∈ Rm, which are decision variables on top of x ∈ Rn+. An optimal affine policy can be
computed efficiently for a large class of problems and has a strong empirical performance. For a
class of multistage problems where there is a single uncertain parameter in each period, Bertsimas
et al. [14] and Iancu et al. [24] show that affine policies are optimal. Bertsimas and Goyal [12]
show that affine policies are optimal if the uncertainty set U is a simplex. They prove a worst case
bound of O(

√
m) on the performance of affine policy for general uncertainty sets. Moreover, they

show that this bound is tight for an uncertainty set quite analogous to the intersection of the unit
`2-norm ball and the non-negative orthant, i.e.,

U = {h ∈ Rm+ | ||h||2 ≤ 1}. (1.2)

Bertsimas and Bidkhori [7] provide improved approximation bounds for affine policies for ΠAR(U)
that depend on the geometric properties of the uncertainty set. More general decision rules have
been considered in the literature and tested numerically; extended affine decision rules (Chen
et al. [17]), binary decision rules (Bertsimas and Georghiou [11]) and adjustable solutions via
iterative splitting of uncertainty sets, (Postek and Den Hertog [26]). More recently, Bertsimas and
Dunning [10] give an MIP-based algorithm to adaptively partition the uncertainty set. However,
no theoretical guarantees on the performance, or the number of partitions, are known.

Piecewise affine policies (PAP) have been studied earlier. In a PAP, we consider pieces Ui, i ∈ [k]
of U such that Ui ⊆ U and U is covered by the union of all pieces. For each Ui, we have an affine
solution y(h) where h ∈ Ui. PAP are significantly more general than static and affine policies. For
problem ΠAR(U), with U being a polytope, a PAP is known to be optimal. However, the number of
pieces can be exponentially large. Moreover, finding the optimal pieces is, in general, an intractable
task. In fact, Bertsimas and Caramanis [9] prove that it is NP-hard to construct the optimal pieces,
even for pieceiwse policies with two pieces, for two-stage robust linear programs.

1.1 Our Contributions

Our main contributions in this paper are as follows.

New Framework for Piecewise affine policy. We present a new framework to efficiently con-
struct a “good” piecewise affine policy for the adjustable robust problem ΠAR(U). As we mentioned
earlier, one of the significant challenges in designing a piecewise affine policy arises from the need
to construct “good pieces” of the uncertainty set. We suggest a new approach where instead of
directly finding an explicit partition of U , we approximate U with a “simple” set Û satisfying the
following two properties:

1. the adjustable robust problem (1.1) over Û can be solved efficiently,

2. Û “dominates” U , i.e., for any h ∈ U , there exists ĥ ∈ Û such that h ≤ ĥ.

Using the uncertainty set Û instead of U , the domination property of Û preserves the feasibility of
the adjustable robust problem. Specifically, we choose Û to be a simplex dominating U . Therefore,
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the adjustable robust problem (1.1) over Û can be solved efficiently since Û only has m+ 1 extreme
points. We construct a piecewise affine mapping between the uncertainty set U and the dominating
set Û , i.e. we use a piecewise affine function to map each point h ∈ U to a point ĥ that dominates h.
This mapping leads to our piecewise affine policy which is constructed from an optimal adjustable
solution over Û . We show that the performance of our policy is significantly better than the affine
policy for many important uncertainty sets both theoretically and numerically.

We elaborate on the two ingredients of designing our piecewise affine policy below, namely,
constructing Û and the corresponding piecewise map below.

a) Constructing a dominating uncertainty set. Our framework is based on choosing an
appropriate dominating simplex Û based on the geometric structure of U . Specifically, Û is
taken to be a simplex of the following form

Û = β · conv (e1, . . . , em,v) ,

where β > 0 and v ∈ U are chosen appropriately so that Û dominates U . Solving the ad-
justable robust problem over Û gives a feasible solution for problem ΠAR(U) due to the dom-
ination property. Moreover, the optimal adjustable solution over Û gives a β-approximation
for problem ΠAR(U), since Û = β · conv (e1, . . . , em,v) ⊆ β · U . The approximation bound β
is related to a geometric scaling factor that represents the Banach-Mazur distance between
U and Û . We note that Û does not necessarily contain U .

b) The piecewise affine mapping. We employ the following piecewise affine mapping ĥ(h) =
βv + (h− βv)+ that maps any h ∈ U to a dominating point ĥ such that h ≤ ĥ. For
any h ∈ U , ĥ(h) is contained in the down-monotone completion of 2 · Û . The piecewise
affine policy is based on the above piecewise affine mapping and gives a 2β-approximation
for problem ΠAR(U). In this policy, βv is covered by the static component and (h− βv)+ is
covered by the piecewise linear component of our policy. This is quite analogous to threshold
policies that are widely used in dynamic optimization. Note that ĥ does not necessarily
belong to Û but is contained in the down-monotone completion of 2 · Û and therefore, we get
an approximation factor of 2β instead of β. We can construct a set-dependent piecewise affine
map between U and Û that allows us to construct a piecewise affine policy with a performance
bound of β. This bound β is not affected by the scaling introduced in Assumption 1.

Given the dominating set, Û , our piecewise affine policy can be computed efficiently; in fact,
it can be computed even more efficiently than an affine solution over U in many cases because the
adjustable problem over Û is a simple LP with only m+ 1 constraints while the affine problem over
U is a general convex program for general convex uncertainty sets.

Results for Scaled Permutation Invariant (SPI) Sets. The uncertainty set U is SPI if
U = diag (λ) · V where λ ∈ Rm+ and V is an invariant set, i.e., if v ∈ V, then any permutation of
the components of v are also in V. SPI sets include ellipsoids, weighted norm-balls, intersection
of norm-balls with budget uncertainty sets and more. SPI sets are commonly used in Robust
Optimization literature and in practice.

We show that for SPI uncertainty set U , it is possible to construct the dominating set Û and
compute the scaling factor β. In particular, we give an efficiently computable closed-form expression
for β and v ∈ U that are needed to construct Û . Consequently, we can efficiently construct our
piecewise affine decision rule, having a performance bound 2β.
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Using this framework, we provide approximation bounds for the piecewise affine policy that
are significantly better than those of the optimal affine policy in [7] for many SPI uncertainty
sets. For instance, we show that our policy gives a O(m1/4)-approximation for the two-stage
adjustable robust problem (1.1) with hypersphere uncertainty set as in (1.2), compared to the
affine policy in [7] that has an approximation bound of O(

√
m). More generally, the performance

bound for our policy for the p-norm ball is O(m
p−1

p2 ) as opposed to O(m
1
p ) given by the affine policy

in [7] 1. Table 1 summarizes the above comparisons. We also present computational experiments
and observe that our policy also outperforms affine policy in computation time on several examples
of uncertainty sets considered in our experiments including hypersphere, norm-balls and certain
polyhedral uncertainty sets. However, we would like to note that our piecewise affine policy does
not a generalize affine policy and there are instances where affine policy performs better than our
policy. For instance, we observe in our computational experiments that the performance of affine
policy is better than our policy for budget of uncertainty sets.

Results for general uncertainty sets. While the dominating set Û is given in an efficiently
computable closed-form expression for SPI sets, the construction of Û for general uncertainty sets
requires solving a sequence of MIPs which is computationally much harder than for the case of SPI
sets. In Section 4, we give an algorithm for constructing the dominating set Û , and a piecewise
affine policy for general uncertainty set U . Our framework is not necessarily computationally
more appealing than computing optimal affine policies. However, we would like to note that in
practice these MIPs can be solved efficiently. Moreover, the construction of the dominating set Û
is independent of the parameters of the adjustable problem and depends only on the uncertainty
set, U . Therefore, Û can be computed offline and then used to construct the piecewise affine policy
efficiently.

We show that our policy gives a O(
√
m)-approximation for general uncertainty sets which is

same as the worst-case performance bound for affine policy. We also show that the bound of O(
√
m)

is tight. In particular, for the budget uncertainty set

U =

{
h ∈ Rm+

∣∣∣∣ m∑
i=1

hi =
√
m, 0 ≤ hi ≤ 1 ∀i ∈ [m]

}
,

the performance bound of our piecewise affine policy is Θ(
√
m). Furthermore, the bound of Θ(

√
m)

holds even if we consider dominating sets with a polynomial number of extreme points that are
significantly more general than a simplex. While this example shows that the worst-case perfor-
mance of our policy is the same as the worst-case performance of the affine policy, we would like
to emphasize that our policy still gives a significantly better approximation than affine policies for
many important uncertainty sets, and does so in a fraction of computing time (see Section 6.2).

Outline. In Section 2, we present the new framework for approximating the two-stage adjustable
robust problem (1.1) via dominating uncertainty sets and constructing piecewise affine policies. In
Section 3, we provide improved approximation bounds for (1.1) for scaled permutation invariant

1Remark. We note that in [7], in Tables 1 and 2, there is a typo in the performance bound for affine policies for
p-norm balls. According to Theorem 3 in [7], the bound should be

m
p−1
p + m

m
p−1
p + m

1
p

= O
(
m

1
p

)
,

instead of m
p−1
p +m

m
1
p +m

as mentioned in Table 2 in [7]).
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No. Uncertainty set Bounds in [7] Our Bounds

1
{
h ∈ Rm+

∣∣ ‖h‖2 ≤ 1
}

O (
√
m) O

(
m

1
4

)
2

{
h ≥ 0

∣∣ ∑m
i=1 rih

2
i ≤ 1

}
O (
√
m) O

(
m

1
4

)
3

{
h ∈ Rm+ | hTΣh ≤ 1

}
— O

(
m

2
5

)
4

{
h ∈ Rm+

∣∣ ‖h‖p ≤ 1
}

O
(
m

1
p

)
O

(
m

p−1

p2

)
5

{
h ∈ Rm+

∣∣ ‖h‖p ≤ 1, ‖h‖q ≤ r
}

O
(
r−1m

1
q

)
O

(
min

(
r

1−p
p m

p−1
pq , r

1
qm

q−1

q2

))
6

{
h ∈ [0, 1]m

∣∣ ∑m
i=1 hi ≤ k

}
O
(
k2+mk
k2+m

)
O
(
min

(
k, mk

))
Table 1: Comparison with performance bounds for affine policies in Bertsimas and Bidkhori [7].
The ellipsoid in Example 3 is assumed to be a permutation invariant set. There is no specialized
bound for this Ellipsoid in [7]. For intersection of norm-balls (Example 4 in the table), we assume

m
1
q
− 1
p ≥ r ≥ 1.

sets. We present the case of general uncertainty sets in Section 4. In Section 5, we present a family
of lower-bound instances where our piecewise affine policy has the worst performance bound and
finally in Section 6, we present a computational study to test our policy and compare it to an affine
policy over U .

2 A new framework for piecewise affine policies

We present a piecewise affine policy to approximate the two-stage adjustable robust problem (1.1).
Our policy is based on approximating the uncertainty set U with a simple set Û such that the
adjustable problem (1.1) can be efficiently solved over Û . In particular, we select Û such that it
dominates U and it is close to U . We make these notions precise with the following definitions.

Definition 2.1. (Domination) Given an uncertainty set U ⊆ Rm+ , Û ⊆ Rm+ dominates U if for all

h ∈ U , there exists ĥ ∈ Û such that ĥ ≥ h.

Definition 2.2. (Scaling factor) Given a full-dimensional uncertainty set U ⊆ Rm+ and Û ⊆ Rm+
that dominates U . We define the scaling factor β(U , Û) as following

β(U , Û) = min
{
β > 0 | Û ⊆ β · U

}
.

For the sake of simplicity, we denote the scaling factor β(U , Û) by β in the rest of this paper.
The scaling factor always exists since U is full-dimensional. Moreover, it is greater than one because
Û dominates U . Note that the dominating set Û does not necessarily contain U . We illustrate this
in the following example.

Example. Consider the uncertainty set U defined in (1.2) which is the intersection of the unit
`2-norm ball and the non-negative orthant. We show later in this paper (Proposition 3.6) that the
simplex Û dominates U where

Û = m
1
4 · conv

(
e1, . . . , em,

1√
m
e

)
. (2.1)
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Figures 1 and 2 illustrate the sets U and Û for m = 3. Note that Û does not contain U but only
dominates U . This is an important property in our framework.

Figure 1: The uncertainty set (1.2) Figure 2: The dominating set Û (2.1)

The following theorem shows that solving the adjustable problem over the set Û gives a β-
approximation to the two-stage adjustable robust problem (1.1).

Theorem 2.3. Consider an uncertainty set U that verifies Assumption 1 and Û ⊆ Rm+ that dom-

inates U . Let β be the scaling factor of (U , Û). Moreover, let zAR(U) and zAR(Û) be the optimal
values for (1.1) corresponding to U and Û , respectively. Then,

zAR(U) ≤ zAR(Û) ≤ β · zAR(U).

The proof of Theorem 2.3 is presented in Appendix A.

2.1 Choice of Û

Theorem 2.3 provides a new framework for approximating the two-stage adjustable robust problem
ΠAR(U) (1.1). Note that we require Û to be such that it dominates U and that ΠAR(Û) can be
solved efficiently over Û . In fact, the latter is satisfied if the number of extreme points of Û is small
and is explicitly given (typically polynomial of m). In our framework, we choose the dominating
set to be a simplex of the following form

Û = β · conv (e1, . . . , em,v) , (2.2)

for some v ∈ U . The coefficient β and v ∈ U are chosen such that Û dominates U . For a given Û
(i.e., β and v ∈ U), the adjustable robust problem, ΠAR(Û) (1.1) can be solved efficiently as it can
be reduced to the following LP:

zAR(Û) = min cTx+ z

z ≥ dTyi, ∀i ∈ [m+ 1]

Ax+Byi ≥ βei, ∀i ∈ [m]

Ax+Bym+1 ≥ βv
x ∈ Rn+, yi ∈ Rn+, ∀i ∈ [m+ 1].
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2.2 Mapping points in U to dominating points

Consider the following piecewise affine mapping for any h ∈ U :

∀h ∈ U , ĥ(h) = βv + (h− βv)+. (2.3)

We show that this maps any h ∈ U to a dominating point contained in the down-monotone
completion of 2 · Û . First, the following structural result is needed.

Lemma 2.4. (Structural Result) Consider an uncertainty set U that verifies Assumption 1.
a) Suppose there exists β and v ∈ U such that Û = β · conv (e1, . . . , em,v) dominates U . Then,

1

β

m∑
i=1

(hi − βvi)+ ≤ 1, ∀h ∈ U . (2.4)

b) Moreover, if there exists β and v ∈ U satisfying (2.4). Then,
2β · conv (e1, . . . , em,v) dominates U .

The proof of Lemma 2.4 is presented in Appendix B.
The following lemma shows that the mapping in (2.3) maps any h ∈ U to a dominating point

that belongs to the down-monotone completion of 2 · Û .

Lemma 2.5. For all h ∈ U , ĥ(h) as defined in (2.3) is a dominating point that belongs to the
down-monotone completion of 2 · Û .

Proof. It is clear that ĥ(h) dominates h because ĥ(h) ≥ βv + (h − βv) = h. Moreover, for all
h ∈ U , we have

ĥ(h) = βv +
1

β

m∑
i=1

(hi − βvi)+βei

≤ βv︸︷︷︸
∈Û

+
1

β

m∑
i=1

(hi − βvi)+βei + (1− 1

β

m∑
i=1

(hi − βvi)+)βv︸ ︷︷ ︸
∈Û

∈ 2 · Û

where the inequality

1− 1

β

m∑
i=1

(hi − βvi)+ ≥ 0.

follows from part a) of Lemma 2.4. Therefore, ĥ(h) belongs to the down-monotone completion of
2 · Û .

2.3 Piecewise affine policy

We construct a piecewise affine policy over U from the optimal solution of ΠAR(Û) based on the
piecewise affine mapping in (2.3). Let x̂, ŷ(ĥ) for ĥ ∈ Û be an optimal solution of ΠAR(Û). Since
Û is a simplex, we can compute this efficiently.

The piecewise affine policy (PAP)

x = 2x̂

y(h) =
1

β

m∑
i=1

(hi − βvi)+ ŷ(βei) + ŷ(βv), ∀h ∈ U .
(2.5)

The following theorem shows that the above PAP gives a 2β-approximation for ΠAR(U) (1.1).
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Theorem 2.6. Consider an uncertainty set U that verifies Assumption 1 and Û = β·conv (e1, . . . , em,v)
be a dominating set where v ∈ U . The piecewise affine solution in (2.5) is feasible and gives a 2β-
approximation for the adjustable robust problem, ΠAR(U) (1.1).

Proof. First, we show that the policy (2.5) is feasible. We have,

Ax+By(h) = 2Ax̂+B

(
1

β

m∑
i=1

(hi − βvi)+ ŷ(βei) + ŷ(βv)

)

= (Ax̂+Bŷ(βv)) +Ax̂+
1

β

m∑
i=1

(hi − βvi)+Bŷ(βei)

≥ (Ax̂+Bŷ(βv)) +
1

β

m∑
i=1

(hi − βvi)+ (Bŷ(βei) +Ax̂)

≥ βv +
m∑
i=1

(hi − βvi)+ ei

≥ βv +
m∑
i=1

(hi − βvi) ei = h,

where the first inequality follows from part a) of Lemma 2.4 and the non-negativity of x̂ and A.
The second inequality follows from the feasibility of x̂, ŷ(ĥ).

To compute the performance of (2.5), we have for any h ∈ U ,

cTx+ dTy(h) = 2

(
cT x̂+ dT

(
1

2β

m∑
i=1

(hi − βvi)+ ŷ(βei) +
1

2
ŷ(βv)

))

≤ 2

(
cT x̂+ max

ĥ∈Û
dT ŷ(ĥ)

(
1

2β

m∑
i=1

(hi − βvi)+ +
1

2

))

≤ 2

(
cT x̂+ max

ĥ∈Û
dT ŷ(ĥ)

)
= 2 · zAR(Û),

where the second last inequality follows from part a) of Lemma 2.4. From Theorem 2.3, zAR(Û) ≤
β · zAR (U). Therefore, the cost of the piecewise affine policy for any h ∈ U

cTx+ dTy(h) ≤ 2β · zAR (U) ,

which implies that the piecewise affine solution (2.5) gives a 2β-approximation for the adjustable
robust problem, ΠAR(U) (1.1).

The above proof shows that it is sufficient to find β and v ∈ U satisfying (2.4) in Lemma 2.4
to construct a piecewise affine policy that gives a 2β-approximation for (1.1). In particular, we
summarize the main result in the following theorem.

Theorem 2.7. Let the uncertainty set U satisfy Assumption 1. Consider any β and v ∈ U
satisfying (2.4). Then, the piecewise affine solution in (2.5) gives a 2β-approximation for the
adjustable robust problem, ΠAR(U) (1.1).
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We would like to note that our piecewise affine policy in not necessarily an optimal piecewise
policy. However, for a large class of uncertainty sets, we show that our policy is significantly better
than affine policy and can even be computed more efficiently than an affine policy.

3 Performance Bounds for Scaled Permutation Invariant Sets

In this section, we present performance bounds of our policy for the class of scaled permutation
invariant sets. This class includes ellipsoids, weighted norm-balls, intersection of norm-balls and
budget of uncertainty sets. These are widely used uncertainty sets in theory and in practice.

Definition 3.1. Scaled Permutation Invariant Sets (SPI)

1. U is a permutation invariant set if x ∈ U implies that for any permutation τ of {1, 2, . . . ,m},
xτ ∈ U where xτi = xτ(i).

2. U is a scaled permutation invariant set if there exists λ ∈ Rm+ and V a permutation
invariant set such that U = diag(λ) · V

For a given SPI set U , it is possible to scale the two-stage adjustable problem (1.1) and get
a new problem where the uncertainty set is permutation invariant (PI). Indeed, suppose U =
diag(λ) · V where V is a permutation invariant set; by multiplying the constraint matrices A and
B by diag(λ)−1, we get a new problem where the uncertainty set now is PI. The performance of
our policy is not affected by this scaling. Therefore, without loss of generality, we consider in the
rest of this section, the case of permutation invariant uncertainty sets.

We first introduce some structural properties of PI sets. Let U be PI satisfying Assumption 1.
For all k = 1, . . . ,m, let

γ(k) =
1

k
·max

{
k∑
i=1

hi

∣∣∣ h ∈ U} . (3.1)

The coefficients, γ(k) for all k = 1, . . . ,m affect the geometric structure of U . In particular, we
have the following lemma.

Lemma 3.2. Le U be a permutation invariant set and γ(·) be as defined in (3.1). Then,

γ(k) ·
k∑
i=1

ei ∈ U , ∀k = 1, . . . ,m

We present the proof of Lemma 3.2 in Appendix C. For the sake of simplicity, we denote γ(m)
by γ in the rest of the paper. From the above lemma, we know that γ · e ∈ U .

3.1 Piecewise affine policy for Permutations Invariant Sets

For any PI set U , we consider the following dominating uncertainty set, Û of the form (2.2) with
v = γe, i.e.,

Û = β · conv (e1, e2, . . . , em, γe) (3.2)

where β is the scaling factor guaranteeing that Û dominates U . This dominating set Û is motivated
by the symmetry of the permutation invariant set U . In this section, we show that one can efficiently
compute the minimum β such that Û in (3.2) dominates U . In particular, we derive an efficiently
computable closed-form expression for β, for any PI set U .
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From Theorem 2.7 we know that to construct a piecewise affine policy with an approximation
bound of 2β, it is sufficient to find β such that

1

β
max
h∈U

m∑
i=1

(hi − βγ)+ ≤ 1 (3.3)

and any β implies that 2β · conv (e1, e2, . . . , em, γe) dominates U (see Lemma 2.4b). Finding the
minimum β that satisfies (3.3) requires solving:

min

{
β ≥ 1

∣∣∣ 1

β
max
h∈U

m∑
i=1

(hi − βγ)+ ≤ 1

}
. (3.4)

The following lemma characterizes the structure of the optimal solution for the maximization
problem in (3.3) for a fixed β.

Lemma 3.3. Consider the maximization problem in (3.3) for a fixed β. There exists an optimal
solution h∗ such that

h∗ = γ(k) ·
k∑
i=1

ei,

for some k = 1, . . . ,m.

We present the proof of Lemma 3.3 in Appendix D. The following lemma characterizes the
optimal β for (3.4).

Lemma 3.4. Let U be a permutation invariant uncertainty set satisfying Assumption 1. Then the
optimal solution for (3.4) is given by

β = max
k=1,...,m

γ(k)

γ + 1
k

. (3.5)

Proof. Using Lemma 3.3, we can reformulate (3.4) as follows.

min

{
β ≥ 1

∣∣∣ 1

β
max

k=1,...,m

k∑
i=1

(γ(k)− βγ) ≤ 1

}
,

i.e.,

min

{
β ≥ 1

∣∣∣ β ≥ γ(k)

γ + 1
k

, ∀k = 1, . . . ,m

}
.

Therefore,

β = max
k=1,...,m

γ(k)

γ + 1
k

.

The above lemma computes the minimum β that satisfies (3.3). Therefore, from Theorem 2.7,
we have the following theorem.
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Theorem 3.5. Let U be a permutation invariant set satisfying Assumption 1. Let γ = γ(m) be as
defined in (3.1) and β be as defined in (3.5), and

Û = β · conv (e1, . . . , em, γe) .

Let x̂, ŷ(ĥ) for ĥ ∈ Û be an optimal solution for ΠAR(Û) (1.1). Then the following piecewise affine
solution

x = 2x̂

y(h) =
1

β

m∑
i=1

(hi − βγ)+ ŷ(βei) + ŷ(βγe) ∀h ∈ U ,
(3.6)

gives a 2β-approximation for ΠAR(U) (1.1). Moreover, the set 2 · Û dominates U .

The last claim that 2 · Û dominates U is a straightforward consequence of part(b) of Lemma 2.4.
As a consequence of Theorem 3.5, for any permutation invariant uncertainty set, U , we can

compute the piecewise-affine policy for ΠAR(U)(1.1) efficiently. In fact, for many cases, even more
efficiently than an affine policy.

3.2 Examples

We present the approximation bounds for several permutation invariant uncertainty sets that are
commonly used in the literature and in practice, including norm balls, intersection of norm balls
and budget of uncertainty sets. In particular, it follows that for these sets, the performance bounds
of our piecewise affine policy are significantly better than the best known performance bounds for
affine policy.

Propostion 3.6. (Hypersphere) Consider the uncertainty set U = {h ∈ Rm+ | ||h||2 ≤ 1} which
is the intersection of the unit hypersphere and the nonnegative orthant. Then,

Û = m
1
4 · conv

(
e1, e2, . . . , em,

1√
m
e

)
,

dominates U and our piecewise affine solution (3.6) gives O(m
1
4 ) approximation to (1.1).

Proof. We have for k = 1, . . . ,m,

γ(k) =
1

k
·max

{
k∑
i=1

hi| h ∈ U

}
=

1√
k
.

In particular, γ = 1√
m

. From Lemma 3.4 we get,

β = max
k=1,...,m

γ(k)

γ(m) + 1
k

= max
k=1,...,m

1√
k

1√
m

+ 1
k

.

The maximum of this problem occurs for k =
√
m. Then, β = m

1
4

2 . We conclude from Theorem 3.5

that Û dominates U and our piecewise affine policy gives O(m
1
4 ) approximation to the adjustable

problem (1.1).
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Remark. Consider the following ellipsoid uncertainty set{
h ≥ 0

∣∣∣∣∣
m∑
i=1

rih
2
i ≤ 1

}
. (3.7)

This is widely used to model uncertainty in practice and is just a diagonal scaling of the hypersphere
uncertainty set. As we mention before, the performance of our policy is not affected by scaling.
Hence, our piecewise affine policy gives an O(m

1
4 )-approximation to the adjustable problem (1.1)

for ellipsoid uncertainty sets (3.7) similar to hypersphere. We analyze the case of more general
ellipsoids in Proposition 3.9.

Propostion 3.7. (p-norm ball) Consider the p-norm ball uncertainty set U =
{
h ∈ Rm+

∣∣ ‖h‖p ≤ 1
}

where p ≥ 1. Then

Û = 2β · conv
(
e1, e2, . . . , em,m

− 1
pe
)

dominates U with

β =
1

p
(p− 1)

p−1
p ·m

p−1

p2 = O(m
p−1

p2 ).

Our piecewise affine solution (3.6) gives O(m
p−1

p2 ) approximation to (1.1).

Proof. We have for k = 1, . . . ,m,

γ(k) =
1

k
·max

{
k∑
i=1

hi| h ∈ U

}
= k

−1
p .

In particular, γ = m
−1
p . From Lemma 3.4 we get,

β = max
k=1,...,m

γ(k)

γ(m) + 1
k

= max
k=1,...,m

k
−1
p

m
−1
p + 1

k

=
1

p
(p− 1)

p−1
p ·m

p−1

p2 = O

(
m

p−1

p2

)
.

We conclude from Theorem 3.5 that Û dominates U and our piecewise affine policy gives O(m
p−1

p2 )
approximation to the adjustable problem (1.1).

Propostion 3.8. (Intersection of two norm balls) Consider U the intersection of the norm
balls U1 =

{
h ∈ Rm+

∣∣ ‖h‖p ≤ 1
}

and

U2 =
{
h ∈ Rm+

∣∣ ‖h‖q ≤ r} where p > q ≥ 1 and m
1
q
− 1
p ≥ r ≥ 1. Then,

Û = β · conv
(
e1, e2, . . . , em,

(
rm
− 1
q

)
e
)
,

where

β = min(β1, β2), β1 = r
1−p
p m

p−1
pq , and β2 = r

1
qm

q−1

q2 .

Our piecewise affine solution (3.6) gives a 2β approximation to (1.1).
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Proof. To prove that Û dominates U1 ∩ U2, it is sufficient to consider h in the boundary of U1 or
U2 and find α1, α2, . . . , αm+1 ≥ 0 with α1 + . . .+ αm+1 = 1 such that for all i ∈ [m],

hi ≤ β
(
αi + rm

− 1
qαm+1

)
.

Case 1: β = β1.

Let h ∈ U1 such that ‖h‖p = 1, we take αi =
hpi
p for i ∈ [m] and αm+1 = p−1

p . First, we have∑m+1
i=1 αi = 1 and for all i ∈ [m],

β
(
αi + rm

− 1
qαm+1

)
= β1

(
hpi
p

+
p− 1

p
rm
− 1
q

)
≥ β1 (hpi )

1
p

(
rm
− 1
q

) p−1
p

= hi,

where the inequality follows from the weighted inequality of arithmetic and geometric means (known
as Weighted AM-GM inequality). Therefore Û dominates U1 ∩ U2.

Case 2: β = β2.

Let h ∈ U2 such that ‖h‖q = r, we take αi =
hqi
rqq for i ∈ [m] and αm+1 = q−1

q . First, we have∑m+1
i=1 αi = 1 and for all i ∈ [m],

β
(
αi + rm

− 1
qαm+1

)
= β2

(
hqi
rqq

+
q − 1

q
rm
− 1
q

)
≥ β2

(
hqi
rq

) 1
q (
rm
− 1
q

) q−1
q

= hi,

where the inequality followed from the weighted AM-GM inequality. Therefore, Û dominates
U1 ∩ U2.

We also consider a permutation invariant uncertainty set that is the intersection of an ellipsoid
and the non-negative orthant , i.e.,

U =
{
h ∈ Rm+ | hTΣh ≤ 1

}
(3.8)

where Σ � 0. For U to be a permutation invariant set satisfying Assumption 1, Σ must be of the
following form

Σ =


1 a . . . a
a 1 . . . a
...

...
. . .

...
a a . . . 1

 (3.9)

where 0 ≤ a ≤ 1.

Propostion 3.9. (Permutation invariant ellipsoid) Consider the uncertainty set U defined in
(3.8) where Σ is defined in (3.9). Then

Û = β · conv (e1, e2, . . . , em, γe) ,
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dominates U with

β =

(
a

2
+

(1− a)
1
2

(am2 + (1− a)m)
1
4

)−1
= O

(
m

2
5

)
and

γ =
1√

(am2 + (1− a)m)
.

Our piecewise affine policy (3.6) gives O
(
m

2
5

)
approximation to the adjustable robust problem

(1.1).

The proof of Proposition 3.9 is presented in Appendix E.

Propostion 3.10. (Budget of uncertainty set) Consider the budget of uncertainty set

U =

{
h ∈ [0, 1]m

∣∣ m∑
i=1

hi ≤ k

}
. (3.10)

Then,

Û = β · conv
(
e1, e2, . . . , em,

k

m
e

)
where β = min

(
k, mk

)
. In particular, our piecewise affine policy (3.6) gives 2β approximation to

the adjustable problem (1.1).

The proof of Proposition 3.10 is presented in Appendix F.

3.3 Comparison to affine policy

Table 1 summarizes the performance bounds for our piecewise affine policy and the best known
performance bounds in the literature for affine policies [7]. As can be seen, our piecewise affine policy
performs significantly better than the known bounds for affine policy for many interesting sets, in-
cluding hypersphere, ellipsoid and norm-balls. For instance, our policy gives O(m

1
4 )-approximation

for the hypersphere and O(m
p−1

p2 )-approximation for the p-norm ball, while affine policy gives

O(m
1
2 )-approximation for hypersphere and O(m

1
p )-approximation for the p-norm ball [7], respec-

tively. However, as we mentioned before, our policy is not a generalization of affine policies and,
in fact, affine policies may perform better for certain uncertainty sets. However, we present a
family of examples where an optimal affine policy gives an Ω(

√
m)-approximation, while our policy

is near-optimal for the adjustable robust problem (1.1). In particular, we consider the following
instance motivated from the worst-case examples of affine policy in [12] and [20].

n = m, r = dm−
√
me, N =

(
m

r

)
Bij =

{
1 if i = j
1√
m

if i 6= j

A = B, c =
1

15
e, d = e

U = conv (0, e1, . . . , em,ν1, . . . ,νN )

where ν1 =
1√
m
· [1, . . . , 1︸ ︷︷ ︸

r

, 0 . . . , 0];

(3.11)
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ν1 has exactly r non-zero coordinates, each equal to 1√
m

. The extreme points νi of ν1, are permu-

tations of the non-zero coordinates of ν1. Therefore, U has exactly
(
m
r

)
+m+ 1 extreme points.

Lemma 3.11. Our piecewise affine policy (2.5) gives an O(1 + 1√
m

)-approximation for the ad-

justable robust problem (1.1) for instance (3.11).

We can prove Lemma 3.11 by constructing a dominating set within a scaling factor O(1 + 1√
m

)

from U . We present the complete proof of Lemma 3.11 in Appendix G.

Lemma 3.12. Affine policy gives an Ω(
√
m)-approximation for the adjustable robust problem (1.1)

for instance (3.11). Moreover, for any optimal affine solution, the cost of the first-stage solution
x∗Aff is Ω(

√
m) away from the optimal adjustable problem (1.1), i.e. cTx∗Aff = Ω(m1/2) · zAR(U).

We present the proof of Lemma 3.12 in Appendix H. From Lemma 3.12 and 3.11, we conclude
that our policy is near-optimal whereas affine policy is Ω(

√
m) away from the optimal adjustable

solution for the instance (3.11). Hence our policy provides a significant improvement. We would
like to note that since Û is a simplex, an affine policy is optimal for ΠAR(Û). In particular, we have
the following

zAR(U) ≤ zAR(Û) = zAff(Û) ≤ O
(

1 +
1√
m

)
· zAR(U),

where the first inequality follows as Û dominates U and the last inequality follows from Lemma 3.11.
Moreover, from Lemma 3.12, we know that for instance (3.11),

zAff(U) = Ω(
√
m) · zAR(U).

Therefore,
zAff(U) = Ω(

√
m) · zAff(Û),

which is quite surprising since Û dominates U . We would like to emphasize that Û only dominates
U and does not contain it and this is crucial to get a significant improvement for our piecewise
affine policy constructed through the dominating set.

Comparison to re-solving policy: In many applications, a practical implementation of affine
policy only implements the first stage solution x∗Aff and re-solve (or recompute) the second-stage
solution once the uncertainty is realized. The performance of such a re-solving policy is at least as
good as affine policy and in many cases significantly better. Lemma 3.12 shows that for instance
(3.11), such a re-solving policy is Ω(

√
m) away from the optimal adjustable policy whereas we

show in Lemma 3.11 that our piecewise affine policy is near-optimal. Hence, our piecewise affine
policy for instance (3.11) is performing significantly better not only than affine policy but also the
re-solving policy.

4 General uncertainty set

In this section, we consider the case of general uncertainty sets. The main challenge in our frame-
work of constructing the piecewise affine policy is the choice of the dominating simplex, Û . More
specifically, the choice of β and v ∈ U such that β · conv (e1, . . . , em,v) dominates U . For a per-
mutation invariant set, U , we choose v = γe and we can efficiently find β using Lemma 3.4 to
construct the dominating set. However, this does not extend to general sets and we need a new
procedure to find those parameters.
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Algorithm 1 Computing β and v for general uncertainty sets

1: Initialize t = 0, u0 = 0

2: while

{
max
h∈U

∑m
i=1

(
hi − uti

)+
> t

}
do

3: ht ∈ argmax
h∈U

∑m
i=1

(
hi − uti

)+
4: for i = 1, . . . ,m do
5: if uti = 1 then hti = 0
6: end if
7: ut+1

i = min(1, uti + hti)
8: end for
9: t = t+ 1

10: end while
11: return β = t, v = ut

β .

Theorem 2.7 shows that to construct a good piecewise affine policy over U , it is sufficient to
find β and v ∈ U such that for all h ∈ U

1

β

m∑
i=1

(hi − βvi)+ ≤ 1. (4.1)

In this section, we present an iterative algorithm to find such β and v ∈ U satisfying (4.1). In each
iteration t, the algorithm maintains a candidate solution, βt and vt ∈ U . Let ut = βt · vt. The
algorithm solves the following maximization problem:

max
h∈U

m∑
i=1

(
hi − uti

)+
(4.2)

The algorithm stops if the optimal value is at most βt in which case, Condition (4.1) is verified for
all h ∈ U . Otherwise, let ht be an optimal solution of problem (4.2). The current solutions are
updated as follows:

βt+1 = βt + 1

ut+1
i = min

(
1, uti + hti

)
.

This corresponds to updating vt+1 = 1
βt+1 · ut+1. Algorithm 1 presents the steps in detail.

The number of β-iterations is finite since U is compact. The following theorem shows that v
returned by the algorithm belongs to U and the corresponding piecewise affine policy is a O(

√
m)-

approximation for the adjustable problem (1.1).

Theorem 4.1. Suppose Algorithm 1 returns β, v. Then v ∈ U . Furthermore, the piecewise affine
policy (2.5) with parameters β and v gives a O(

√
m)-approximation for the adjustable problem (1.1).

Proof. Suppose Algorithm 1 returns β,v. Note that β is the number of iterations in Algorithm 1.
First, we have

uβ ≤
β−1∑
t=0

ht.

Moreover 1
β ·
∑β−1

t=0 h
t ∈ U since U is convex. Therefore v = uβ

β ∈ U by down-monotonicity of U .
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Let us prove that β = O(
√
m). First, note that, when we set hti = 0 for uti = 1, the objective

of the maximization problem in the algorithm does not change and ht still belongs to U by down-
monotonicity. Then, for any t = 0, . . . , β − 1

m∑
i=1

(
hti − uti

)+
> t.

Moreover, hti ≥ 0 and uti ≥ 0, hence hti ≥ (hti − uti)+ and therefore for all t = 0, . . . , β − 1

m∑
i=1

hti > t.

Then,
β−1∑
t=0

m∑
i=1

hti >

β−1∑
t=0

t =
1

2
β(β − 1). (4.3)

Note that, if uti = 1 at some iteration t, then ht
′
i = 0 for any t′ ≥ t. Hence, for any i ∈ [m],

β−1∑
t=0

hti ≤ u
β
i + 1 ≤ 2. (4.4)

Hence, from (4.3) and from (4.4) we get, 2m > 1
2β(β − 1), i.e., β · (β − 1) ≤ 4m, which implies,

β = O(
√
m).

We note that the maximization problem (4.2) that Algorithm 1 solves in each iteration t is not
a convex optimization problem. However, (4.2) can be formulated as the following MIP:

max

m∑
i=1

zi

zi ≤ (hi − uti) + (1− xi) ∀i ∈ [m],

zi ≤ xi ∀i ∈ [m]

zi ≥ 0, ∀i ∈ [m]

xi ∈ {0, 1} ∀i ∈ [m]

h ∈ U .

(4.5)

Therefore, for general uncertainty set U , the procedure to find β and v ∈ U is computationally
more challenging than for the case of permutation invariant sets.

Remark. Since the computation of β and v depends only on U , and not on the problem
parameters (i.e., the parameters A,B, c and d), one can compute them offline and then use them
to efficiently construct a good piecewise affine policy.

Connection to Bertsimas and Goyal [12]. We would like to note that Algorithm 1 is quite
analogous to the explicit construction of good affine policies in [12]. The analysis of the O(

√
m)-

approximation bound for affine policies is based on the following projection result (which is a
restatement of Lemma 8 and Lemma 9 in [12]).

Theorem 4.2. [Bertsimas and Goyal 2011] Consider any uncertainty set U satisfying Assump-
tion 1. There exists β ≤

√
m, v ∈ U such that∑

j:βvj<1

hj ≤ β, ∀h ∈ U .
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Suppose J = {j | βvj < 1}. The affine solution in [12] covers βv using the static component
and the components J using a linear solution. The linear solution does not exploit the coverage
of βvi for i ∈ J from the static solution. The approximation factor is O(β) since for all h ∈ U ,∑

j∈J hj ≤ β.
Our piecewise affine solution given by Algorithm 1 finds analogous β, v ∈ U such that

m∑
i=1

(hi − βvi)+ ≤ β, ∀h ∈ U .

In the piecewise affine solution, the static component covers βv and the remaining part (h− βv)+
is covered by a piecewise-linear function that exploits the coverage of βv. This allows us to improve
significantly as compared to the affine policy for a large family of uncertainty sets. We would like
to note again that our policy is not necessarily an optimal one and there can be examples where
affine policy is better than our policy.

5 A worst case example for the domination policy

From Theorem 4.1, we know that our piecewise affine policy gives an O(
√
m)-approximation for the

adjustable robust problem (1.1). In this section, we show that this bound is tight for the following
budget of uncertainty set:

U =

{
h ∈ Rm+

∣∣∣∣ m∑
i=1

hi =
√
m, 0 ≤ hi ≤ 1 ∀i ∈ [m]

}
. (5.1)

We show that our dominating simplex based piecewise affine policy gives an Ω(
√
m)-approximation

to the adjustable robust problem (1.1). The lower bound of Ω(
√
m) holds even when we consider

more general dominating sets than simplex. We show that for any ε > 0, there is no polynomial
number of points in U such that the convex hull of those points scaled by m

1
2
−ε dominates U . In

particular, we have the following theorem.

Theorem 5.1. Given any 0 < ε < 1/2, and k ∈ N, consider the budget of uncertainty set, U (5.1)
with m sufficiently large. Let P (m) ≤ mk. Then for any z1, z2, . . . zP (m) ∈ U , the set

Û = m
1
2
−ε · conv

(
z1, z2, . . . zP (m))

)
,

does not dominate U .

Proof. Suppose for a sake of contradiction that there exists z1, z2, . . . ,zP (m) ∈ U such that Û =

m
1
2
−ε · conv

(
z1, z2, . . .zP (m)

)
dominates U .

By Caratheodory’s theorem, we know that any point in U can be expressed as a convex combi-
nation of at most m+ 1 extreme points of U . Therefore

Û ⊆ m
1
2
−ε · conv

(
y1,y2, . . . ,yQ(m))

)
,

where y1,y2, . . . ,yQ(m) are extreme points of U and

Q(m) ≤ (m+ 1) · P (m) = O(mk+1).
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Consider any I ⊆ {1, 2, . . . ,m} such that |I| =
√
m. Let h be an extreme point of U corre-

sponding to I, i.e., hi = 1 if i ∈ I and hi = 0 otherwise. Since we assume that Û dominates U ,
there exists ĥ ∈ Û such that h ≤ ĥ. Let

ĥ = m
1
2
−ε

Q(m)∑
j=1

αjyj ,

where
∑Q(m)

j=1 αj = 1 and αj ≥ 0 for all j = 1, 2, . . . , Q(m). We have

1 = hi ≤ ĥi ∀i ∈ I

i.e.

1 ≤ m
1
2
−ε

Q(m)∑
j=1

αjyji, ∀i ∈ I.

Summing over i ∈ I, we have,

√
m = |I| ≤ m

1
2
−ε
∑
i∈I

Q(m)∑
j=1

αjyji.

Therefore,

mε ≤
Q(m)∑
j=1

αj
∑
i∈I

yji,

≤

Q(m)∑
j=1

αj

 · max
j=1,2,...,Q(m)

∑
i∈I

yji

= max
j=1,2,...,Q(m)

∑
i∈I

yji =
∑
i∈I

yj∗i,

where the second inequality follows from taking the max of the inner sum over indices j and j∗ is
the index corresponding to the maximum sum.

Therefore, for any I ⊆ {1, 2, . . . ,m} with cardinality |I| =
√
m, there exists j = 1, 2, . . . , Q(m)

such that ∑
i∈I

yji ≥ mε.

Denote F =
{
I ⊆ {1, 2, . . . ,m}

∣∣ |I| = √m} which represents the set of all subsets of {1, 2, . . . ,m}
with cardinality

√
m. Note that the cardinality of F is

|F| =
(
m√
m

)
.

We know that for any I ∈ F there exists yj ∈ {y1,y2, . . .yQ(m)} such that∑
i∈I

yji ≥ mε.
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We have
(
m√
m

)
possibilities for I and Q(m) possibilities for yj , hence by the pigeonhole principle,

there exists a fixed y ∈ {y1,y2, . . .yQ(m)} and F̃ ⊆ F such that

|F̃ | ≥ 1

Q(m)

(
m√
m

)
, and

∑
i∈I

yi ≥ mε, ∀I ∈ F̃ .

(5.2)

Note that y is an extreme point of U . Hence, y has exactly
√
m ones and the remaining components

are zeros. The maximum cardinality of subsets I ⊆ [m] that can be constructed to satisfy
∑

i∈I yi ≥
mε is

k=
√
m∑

k=mε

(√
m

k

)
·
(
m−

√
m√

m− k

)
.

By over counting, the above sum can be upper-bounded by(√
m

mε

)
·
(
m−mε

√
m−mε

)
.

Therefore, cardinality of F̃ should be less that the above upper bound, i.e.(√
m

mε

)
·
(
m−mε

√
m−mε

)
≥ |F̃| ≥ 1

Q(m)

(
m√
m

)
Then, (√

m
mε

)
·
(
m−mε√
m−mε

)(
m√
m

) ≥ 1

Q(m)
. (5.3)

which is a contradiction. The contradiction is derived by analyzing the order of the fractions in
(5.3)) (see Appendix I).

6 Computational study

In this section, we present a computational study to compare the performance of our policy with
affine policies both in terms of objective function value of problem ΠAR(U) (1.1) and computation
times. We explore both cases of permutation invariant sets and non-permutations invariant sets.

6.1 Experimental setup

Uncertainty sets. We consider the following classes of uncertainty sets for our computational
experiments.

1. Hypersphere. We consider the following unit hypersphere defined in (1.2),

U = {h ∈ Rm+ | ||h||2 ≤ 1}.
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2. p-norm balls. We consider the following sets defined in Proposition 3.7.

U =
{
h ∈ Rm+

∣∣ ‖h‖p ≤ 1
}
.

For our numerical experiments, we consider the cases of p = 3 and p = 3/2.

3. Budget of uncertainty set. We consider the following set defined in (3.10),

U =

{
h ∈ [0, 1]m

∣∣∣∣∣
m∑
i=1

hi ≤ k

}
.

Here, k denotes the budget. For our numerical experiments, we choose k = c
√
m where c is

a random uniform constant between 1 and 2.

4. Intersection of budget of uncertainty sets. We consider the following intersection of L
budget of uncertainty sets:

U =

h ∈ [0, 1]m

∣∣∣∣∣
m∑
j=1

αijhj ≤ 1, ∀i = 1, . . . , L

 . (6.1)

Here, αij are non-negative scalars. Note that the intersection of budget of uncertainty sets are
not permutation invariant. For our numerical experiments, we generate αij i.i.d. according
to absolute value of standard Gaussians and we normalize ||αi||2 to 1 for all i (i.e. αi =
|Gi|/||Gi||2 where Gi are i.i.d. according to N (0, Im)) and we consider L = 2 and L = 5.

5. Generalized budget of uncertainty set. We consider the following set

U =

{
h ∈ [0, 1]m

∣∣∣∣∣
m∑
`=1

h` ≤ 1 + θ(hi + hj) ∀i 6= j

}
. (6.2)

This is a generalized version of the budget of uncertainty set (3.10) where the budget θ is not
a constant but depends on the uncertain parameter h. In particular, the budget in the set
(6.2) depends on the sum of the two lowest components of h. For our numerical experiments,
we choose θ = O(m).

Instances. We construct test instances of the adjustable robust problem (1.1) as follows. We
choose n = m, c = d = e and A = B where B is randomly generated as

B = Im +G,

where Im is the identity matrix and G is a random normalized gaussian. In particular, for the
hypersphere uncertainty set, the budget of uncertainty set, the intersection of budget of uncertainty
sets and the generalized budget, we conisder Gij = |Yij |/

√
m. For the 3-norm ball, Gij = |Yij |/m

1
3

and for the 3
2 -norm ball, Gij = |Yij |/m

2
3 , where Yij are i.i.d. standard gaussian. We consider values

of m from m = 10 to m = 100 in increments of 10 and consider 50 instances for each value of m.

Our piecewise affine policy. We construct the piecewise affine policy based on the dominating
simplex Û as follows. For permutation invariant sets, we use the dominating simplex that can be
computed in closed form. In particular, for the hypersphere uncertainty set, we use the dominating
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set Û in Proposition 3.6. For the p-norm balls, we use the dominating set Û in Proposition 3.7.
For the budget of uncertainty set, we use the dominating set Û in Proposition 3.10 and for the
generalized budget of uncertainty set (6.2), we use the dominating set Û in Proposition K.1 (see
Appendix K).

For non-permutation invariant sets, we use Algorithm 1 to compute the dominating simplex. In
particular, we get β and v that satisfies (2.4) and 2β · conv (e1, . . . , em,v) is a dominating set (see
Lemma 2.4-b). We can also show that the following set (6.3) is a dominating set (see Proposition
J.1 in Appendix J),

Û = β · conv (v, e1 + v, . . . , em + v) . (6.3)

While the worst case scaling factor for the above dominating set can be 2β and therefore the
theoretical bounds do not change, computationally (6.3) can provide a better policy and we use
this in our numerical experiments for the intersection of budget of uncertainty sets (6.1).

6.2 Results

Let zp−aff(U) denote the worst-case objective value of our piecewise affine police. Note that the

piecewise affine policy over U is computed by solving the adjustable robust problem over Û and
zp−aff(U) = zAR(Û). For each uncertainty set we report the ratio r = zAff(U)

zp−aff(U) for m = 10 to 100.

In particular, for each value of m, we report the average ratio (Avg), the maximum ratio (Max),
the minimum ratio (Min), the quantiles 5%, 10%, 25%, 50% for the ratio r, the running time of our
policy (Tp−aff(s)) and the running time of affine policy (Taff(s)). In addition, for the intersection

of budget of uncertainty sets, we also report the computation time to construct Û via Algorithm 1
(TAlg1(s)). The numerical results are obtained using Gurobi 7.0.2 on a 16-core server with 2.93GHz
processor and 56GB RAM.

Hypersphere and Norm-balls. We present the results of our computational experiments in
Tables 2, 3 and 4 for the hypersphere and norm-ball uncertainty sets. We observe that the piecewise
affine policy performs significantly better than affine policy for our family of test instances. In Tables
2, 3 and 4, we observe that the ratio r = zAff(U)

zp−aff(U) increases significantly as m increases which implies

that our policy provides a significant improvement over affine policy for large values of m. We also
observe that the ratio for the hypersphere is larger than the ratio for norm-balls. This matches the
theoretical bounds presented in Table 1 which suggests that the improvement over affine policy is
the highest for p = 2 for p-norm balls.

We note that for the smallest values of m (m = 10), the performance of affine policy is better
than our policy. However, for m > 10, the performance of our policy is significantly better for all
these three uncertainty sets: hypersphere, 3-norm ball and 3/2-norm ball.

Furthermore, our policy scales well and the average running time is less than 0.1 second even
for large values of m. On the other hand, computing the optimal affine policy over U becomes
computationally challenging as m increases. For instance, the average running time for computing
an optimal affine policy for m = 100 is around 9 minutes for the hypersphere uncertainty set,
around 17 minutes for the 3-norm ball and around 16 minutes for the 3/2-norm ball.

Budget of uncertainty sets. We present the results of our computational experiments in Tables
5, 6, 7 and 8 for the single budget of uncertainty set, the intersection of budget sets and the
generalized budget.

For the budget of uncertainty set (3.10), we observe that affine policy performs better than our
piecewise affine policy for our family of test instances. Note that as we mention earlier, our policy
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is not a generalization of affine policies and therefore is not always better. For our experiments, we
use k = c

√
m which gives the worst case theoretical bound for our policy (see Theorem 5.1), but

the performance of our policy is still reasonable and the average ratio r = zAff(U)
zp−aff(U) over all instances

is around 0.88 as we can observe in Table 5. On the other hand, as in the case of conic uncertainty
sets, our policy scales well with an average running time less than 0.1 second even for large values
of m, whereas affine policy takes for example more than 6 minutes on average for m = 100.

Tables 6 and 7 present the results for intersection of budget of uncertainty sets. We observe
that affine policy outperforms our policy as in the case of a single budget. This confirms that
affine policy performs very well empirically for this class of uncertainty sets. We also observe that
the performance of our policy improves when we increase the number of budget constraints. For
example, for m = 100, the average ratio r = zAff(U)

zp−aff(U) increases from 0.79 in the case of L = 2 to

0.88 for L = 5. This suggests that the performance of our policy gets closer to the one of affine
policy as long as we add more budgets constraints. While affine policy performs better than our
policy for budget of uncertainty sets, we would like to note that this is not necessarily true for any
polyhedral uncertainty set. In particular, we also test our policy with the generalized budget (6.2)
and observe that our policy is significantly better than affine even when the set is polyhedral.

Table 8 presents the results for the generalized budget set (6.2). We observe that our piecewise
affine policy outperforms affine policy both in terms of objective value and computation time. The
gap increases as m increases which implies a significant improvement over affine policy for large
values of m. Furthermore, unlike the piecewise affine policy, computing an affine solution becomes
challenging for large values of m.

For the intersection of budget of uncertainty sets (6.1) that are not permutation invariant, we
compute the dominating set (in particular β and v) using Algorithm 1. We report the average
running time, TAlg1 of Algorithm 1 which solves a sequence of MIPs in Tables 6 and 7. We note
that there is no need to solve MIPs optimally in Algorithm 1; one can stop when a feasible solution
with an objective value greater than t is found. We observe that the running time of Algorithm
1 is reasonable as compared to that of affine policy. For example, the average running time of
Algorithm 1 for m = 100 and L = 5 is 7 min whereas affine policy takes 10 min in average. For
large values of m and a large number of budget constraints, the running time of Algorithm 1 might
increase significantly and exceed the computation time of affine policy. However, we would like to
emphasize that β and v given by Algorithm 1 do not depend on the parameters (A,B, c,d) and
only depend on the uncertainty set. Therefore, they can be computed offline and can be used to
solve many instances of the problem parameters for the same uncertainty set.

7 Conclusion

This paper introduces a new framework for designing piecewise affine policies (PAP) for two-
stage adjustable robust optimization with right-hand side uncertainty. The framework is based on
approximating the uncertainty set U by a dominating simplex and constructing a PAP using the
map from U to the dominating simplex. For the class of conic uncertainty sets including ellipsoids
and norm-balls, our PAP performs significantly better, theoretically and computationally than affine
policy. For general uncertainty sets (particularly a “budgeted” U or intersection of a small number
of “budget of uncertainty sets”), our PAP does not necessarily outperform affine policies, but while
the latter may fail for large dimensional U , the PAP scales well given the dominating set. It is an
interesting open question whether a PAP can be designed that significantly improves over affine
policy for budgeted uncertainty sets.

‘

24



m Avg Max Min 5% 10% 25% 50% Tp−aff(s) Taff(s)

10 0.955 1.006 0.875 1.003 0.988 0.971 0.960 0.001 0.221

20 1.120 1.168 1.076 1.152 1.141 1.132 1.122 0.002 0.948

30 1.218 1.251 1.180 1.243 1.238 1.225 1.221 0.003 2.753

40 1.288 1.328 1.238 1.318 1.312 1.299 1.291 0.006 6.479

50 1.349 1.382 1.319 1.375 1.370 1.357 1.349 0.009 14.678

60 1.399 1.429 1.366 1.418 1.415 1.408 1.398 0.013 32.323

70 1.443 1.472 1.454 1.460 1.457 1.451 1.440 0.019 58.605

80 1.485 1.509 1.485 1.505 1.499 1.491 1.482 0.033 107.898

90 1.523 1.549 1.527 1.539 1.532 1.530 1.525 0.040 200.134

100 1.557 1.578 1.560 1.574 1.570 1.564 1.557 0.081 564.772

Table 2: Comparison on the performance and computation time of affine policy and our piecewise
affine policy for the hypersphere uncertainty set. For 50 instances, we compute zAff(U)

zp−aff(U) and

present the average, min, max ratios and the percentiles 5%, 10%, 25%, 50%. Here, Tp−aff(s) denotes
the running time for our piecewise affine policy and Taff(s) denotes the running time for affine policy
in seconds.

m Avg Max Min 5% 10% 25% 50% Tp−aff(s) Taff(s)

10 0.975 1.049 0.907 1.023 1.017 0.991 0.971 0.001 0.743

20 1.082 1.141 1.042 1.128 1.119 1.097 1.080 0.002 3.714

30 1.157 1.195 1.094 1.190 1.177 1.167 1.158 0.003 12.386

40 1.218 1.247 1.184 1.236 1.233 1.226 1.219 0.006 31.687

50 1.270 1.294 1.245 1.293 1.284 1.275 1.271 0.009 69.302

60 1.312 1.346 1.274 1.335 1.325 1.319 1.312 0.013 117.949

70 1.345 1.363 1.323 1.361 1.358 1.351 1.347 0.020 258.862

80 1.378 1.402 1.356 1.396 1.393 1.384 1.378 0.031 435.629

90 1.408 1.429 1.389 1.421 1.418 1.413 1.409 0.043 728.436

100 1.434 1.457 1.419 1.447 1.443 1.438 1.433 0.050 1033.174

Table 3: Comparison on the performance and computation time of affine policy and our piecewise
affine policy for the 3-norm ball uncertainty set.

m Avg Max Min 5% 10% 25% 50% Tp−aff(s) Taff(s)

10 0.904 0.952 0.817 0.939 0.932 0.918 0.905 0.001 0.728

20 1.028 1.058 0.992 1.051 1.044 1.036 1.031 0.002 3.462

30 1.115 1.144 1.095 1.132 1.128 1.122 1.115 0.003 10.896

40 1.174 1.190 1.161 1.184 1.183 1.177 1.174 0.005 29.209

50 1.226 1.244 1.204 1.240 1.235 1.232 1.227 0.009 70.099

60 1.266 1.278 1.255 1.275 1.274 1.269 1.267 0.013 123.518

70 1.303 1.311 1.292 1.310 1.309 1.305 1.303 0.019 267.450

80 1.335 1.345 1.328 1.341 1.339 1.337 1.335 0.034 458.791

90 1.363 1.372 1.353 1.370 1.369 1.366 1.363 0.044 701.262

100 1.387 1.395 1.381 1.392 1.391 1.389 1.387 0.056 967.773

Table 4: Comparison on the performance and computation time of affine policy and our piecewise
affine policy for the 3/2-norm ball uncertainty set.
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m Avg Max Min 5% 10% 25% 50% Tp−aff(s) Taff(s)

10 0.906 0.989 0.766 0.986 0.974 0.957 0.915 0.001 0.014

20 0.897 0.963 0.780 0.957 0.951 0.939 0.916 0.002 0.207

30 0.891 0.961 0.765 0.957 0.945 0.923 0.906 0.004 0.803

40 0.882 0.954 0.753 0.950 0.946 0.928 0.900 0.006 2.997

50 0.899 0.954 0.763 0.950 0.947 0.937 0.914 0.011 11.687

60 0.879 0.956 0.772 0.953 0.948 0.932 0.896 0.015 26.760

70 0.887 0.958 0.911 0.951 0.950 0.936 0.909 0.020 71.167

80 0.882 0.954 0.768 0.951 0.946 0.937 0.902 0.047 147.376

90 0.890 0.953 0.765 0.950 0.949 0.936 0.917 0.039 220.809

100 0.886 0.955 0.750 0.946 0.943 0.931 0.900 0.066 397.981

Table 5: Comparison on the performance and computation time of affine policy and our piecewise
affine policy for the budget of uncertainty set with a budget k = c

√
m where for each instance

we generate c uniformly from [1, 2].

m Avg Max Min 5% 10% 25% 50% Tp−aff(s) TAlg1(s) Taff(s)

10 0.814 0.881 0.700 0.861 0.851 0.833 0.821 0.002 0.191 0.013

20 0.805 0.866 0.716 0.850 0.838 0.825 0.807 0.016 0.723 0.227

30 0.770 0.847 0.701 0.827 0.808 0.787 0.773 0.091 0.386 0.931

40 0.801 0.839 0.702 0.832 0.828 0.814 0.810 0.270 1.399 3.731

50 0.781 0.825 0.726 0.818 0.814 0.803 0.784 0.656 2.081 12.056

60 0.805 0.841 0.752 0.829 0.824 0.817 0.811 1.406 4.093 32.695

70 0.789 0.839 0.706 0.820 0.809 0.802 0.795 2.595 1.798 80.342

80 0.774 0.844 0.725 0.825 0.816 0.789 0.770 4.484 5.096 163.257

90 0.807 0.838 0.756 0.832 0.828 0.818 0.807 7.628 8.734 354.598

100 0.790 0.821 0.750 0.817 0.812 0.801 0.791 5.235 6.391 646.136

Table 6: Comparison on the performance and computation time of affine policy and our piecewise
affine policy for the intersection of 2 budget of uncertainty sets (6.1).

m Avg Max Min 5% 10% 25% 50% Tp−aff(s) TAlg1(s) Taff(s)

10 0.869 0.932 0.824 0.920 0.910 0.884 0.871 0.002 0.043 0.015

20 0.852 0.924 0.795 0.909 0.893 0.870 0.852 0.021 0.058 0.309

30 0.864 0.898 0.820 0.888 0.880 0.872 0.865 0.100 0.343 1.024

40 0.856 0.896 0.802 0.883 0.882 0.874 0.861 0.290 0.464 4.010

50 0.857 0.891 0.794 0.891 0.886 0.876 0.861 0.706 3.546 12.535

60 0.880 0.900 0.860 0.894 0.892 0.885 0.881 1.471 18.474 33.693

70 0.873 0.896 0.809 0.894 0.890 0.882 0.878 2.800 13.125 82.961

80 0.858 0.889 0.825 0.886 0.881 0.872 0.858 4.809 21.780 167.753

90 0.859 0.890 0.818 0.885 0.881 0.877 0.866 8.004 144.808 344.924

100 0.885 0.902 0.865 0.900 0.896 0.893 0.888 5.821 459.436 632.483

Table 7: Comparison on the performance and computation time of affine policy and our piecewise
affine policy for the intersection of 5 budget of uncertainty sets (6.1).
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m Avg Max Min 5% 10% 25% 50% Tp−aff(s) Taff(s)

10 1.015 1.067 0.983 1.053 1.045 1.025 1.006 0.001 0.046

20 1.107 1.159 1.100 1.147 1.142 1.127 1.106 0.003 0.840

30 1.148 1.214 1.092 1.189 1.179 1.163 1.155 0.004 3.933

40 1.173 1.220 1.105 1.206 1.198 1.188 1.175 0.009 18.097

50 1.191 1.227 1.154 1.216 1.213 1.201 1.189 0.016 62.668

60 1.209 1.259 1.193 1.238 1.225 1.215 1.210 0.021 145.552

70 1.225 1.254 1.190 1.247 1.239 1.228 1.224 0.019 237.448

80 1.237 1.275 1.213 1.264 1.260 1.245 1.235 0.044 573.342

90 1.248 1.284 1.223 1.268 1.260 1.254 1.249 0.050 1168.928

100 1.257 1.274 1.240 1.271 1.268 1.261 1.257 0.053 1817.940

Table 8: Comparison on the performance and computation time of affine policy and our piecewise
affine policy for the generalized budget of uncertainty set (6.2).
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A Proof of Theorem 2.3

Proof. Let (x̂, ŷ(ĥ), ĥ ∈ Û) be an optimal solution for zAR(Û). For each h ∈ U , let ỹ(h) = ŷ(ĥ)
where ĥ ∈ Û dominates h. Therefore, for any h ∈ U ,

Ax̂+Bỹ(h) = Ax̂+Bŷ(ĥ) ≥ ĥ ≥ h,

i.e., (x̂, ỹ(h),h ∈ U) is a feasible solution for zAR(U). Therefore,

zAR(U) ≤ cT x̂+ max
h∈U

dT ỹ(h) ≤ cT x̂+ max
ĥ∈Û

dT ŷ(ĥ) = zAR(Û).

Conversely, let (x∗,y∗(h),h ∈ U) be an optimal solution of zAR(U). Then, for any ĥ ∈ Û , since
ĥ
β ∈ U , we have,

Ax∗ +By∗

(
ĥ

β

)
≥ ĥ
β
,

Therefore, (βx∗, βy∗
(
ĥ
β

)
, ĥ ∈ U) is feasible for ΠAR(Û). Therefore,

zAR(Û) ≤ cTβx∗ + max
ĥ∈Û

dTβy∗

(
ĥ

β

)
≤ β ·

(
cTx∗ + max

h∈U
dTy∗(h)

)
= β · zAR(U).

B Proof of Lemma 2.4

Proof. a) Suppose there exists β and v ∈ U such that Û = β · conv (e1, . . . , em,v) dominates U .
Consider h ∈ U . Since Û dominates U , there exists α1, α2, . . . , αm+1 ≥ 0 with α1 + . . .+ αm+1 = 1
such that

hi ≤ β (αi + αm+1vi) , ∀i = 1, . . . ,m. (B.1)

Let

I(h) =

{
i ∈ [m]

∣∣∣∣ hi − βvi ≥ 0

}
.

Then,

m∑
i=1

(hi − βvi)+ =
∑
i∈I(h)

hi − β
∑
i∈I(h)

vi

≤
∑
i∈I(h)

β (αi + αm+1vi)− β
∑
i∈I(h)

vi

= β
∑
i∈I(h)

αi + (αm+1 − 1)β
∑
i∈I(h)

vi

≤ β,

where the first inequality follows from (B.1) and the last inequality holds because αm+1 − 1 ≤ 0,
vi ≥ 0 , β ≥ 0 and

∑
i∈I(h) αi ≤ 1. We conclude that

1

β

m∑
i=1

(hi − βvi)+ ≤ 1.
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b) Now, suppose there exists β and v ∈ U such that Û = β · conv (e1, . . . , em,v) dominates U .
For any h ∈ U , let

ĥ =
m∑
i=1

(hi − βvi)+ ei + βv.

Then for all i = 1, . . . ,m,

ĥi = (hi − βvi)+ + βvi

≥ (hi − βvi) + βvi ≥ hi.

Therefore, ĥ dominates h. Moreover,

ĥ = 2β

(
m∑
i=1

(hi − βvi)+

2β
ei +

1

2
v

)
∈ 2β · conv (0, e1, . . . , em,v) ,

because
1

β

m∑
i=1

(hi − βvi)+ ≤ 1.

Therefore, 2β · conv (0, e1, . . . , em,v) dominates U and consequently
2β · conv (e1, . . . , em,v) dominates U as well.

C Proof of Lemma 3.2

Proof. Suppose k ∈ [m]. Let us consider

h ∈ argmax
h∈U

k∑
i=1

hi.

Without loss of generality, we can suppose that hi = 0 for i = k + 1, . . . ,m. Denote, Sk the set of
permutations of {1, 2, . . . , k}. We define hσ ∈ Rm+ such that hσi = hσ(i) for i = 1, . . . , k and hσi = 0
otherwise. Since U is a permutation invariant set, we have hσ ∈ U for any σ ∈ Sk. The convexity
of U implies that

1

k!

∑
σ∈Sk

hσ ∈ U .

We have, ∑
σ∈Sk

hσi =

{
(k − 1)! ·

∑k
j=1 hj if i = 1, . . . , k

0 otherwise,

and
∑k

j=1 hj = k · γ(k) by definition. Therefore,

1

k!

∑
σ∈Sk

hσ = γ(k) ·
k∑
i=1

ei ∈ U .
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D Proof of Lemma 3.3

Proof. Consider, h̃ ∈ U an optimal solution for the maximization problem in (3.3) for fixed β. We
will construct h∗ ∈ U another optimal solution of (3.3) that verifies the properties in the lemma.
First, denote I = {i | h̃i > βγ} and |I| = k. Since, U is permutation invariant, we can suppose
without loss of generality that I = {1, 2, . . . , k}. We define,

h∗i =

{
γ(k) if i = 1, . . . , k
0 otherwise.

From Lemma 3.2, we have h∗ ∈ U . Moreover,

m∑
i=1

(h̃i − βγ)+ =
k∑
i=1

h̃i − βγk ≤ k · γ(k)− βγk

=

k∑
i=1

(γ(k)− βγ) =

k∑
i=1

(h∗i − βγ)

≤
k∑
i=1

(h∗i − βγ)+ =
m∑
i=1

(h∗i − βγ)+

where the first inequality follows from the definition of the coefficients γ(.). Therefore, h∗ and h̃
have the same objective value in (3.3) and consequently h∗ is also optimal for the maximization
problem (3.3). Moreover, from the first inequality, we have γ(k)−βγ > 0, i.e.,

∣∣{i | h∗i > βγ}
∣∣ = k.

Therefore, h∗ verifies the properties of the lemma.

E Proof of Proposition 3.9

Proof. To prove that Û dominates U , it is sufficient to take h in the boundaries of U , i.e.,

a
m∑
i=1

hi

m∑
j=1

hj + (1− a)
m∑
i=1

h2i = 1, (E.1)

and find α1, α2, . . . , αm+1 nonnegative reals with
∑m+1

i=1 αi = 1 such that for all i ∈ [m],

hi ≤ β (αi + γαm+1) .

By taking all hi equal in (E.1), we get

γ =
1√

(am2 + (1− a)m)
.

We choose for i ∈ [m],

αi =
1

2

(1− a)h2i + ahi

m∑
j=1

hj



31



and αm+1 = 1
2 . First, we have

∑m+1
i=1 αi = 1 and for all i ∈ [m],

β (αi + γαm+1) =
β

2

(1− a)h2i + ahi

m∑
j=1

hj +
1√

am2 + (1− a)m


≥ β

2

(
(1− a)h2i +

1√
am2 + (1− a)m

+ ahi

)

≥ β

2

2

(
(1− a)√

am2 + (1− a)m

) 1
2

hi + ahi

 = hi

where the first inequality holds because
∑m

j=1 hj ≥ 1 which is a direct consequence of hTΣh = 1
and a ≤ 1. The second one follows from the inequality of arithmetic and geometric means (AM-GM
inequality). Finally, we can verify by case analysis on the values of a that(

a

2
+

(1− a)
1
2

(am2 + (1− a)m)
1
4

)−1
= O

(
m

2
5

)
.

In fact, denote H(m) =

(
a
2 + (1−a)

1
2

(am2+(1−a)m)
1
4

)−1
= O

(
a+ 1

(am2+m)
1
4

)−1
Case1: a = O( 1

m). We have
(
am2 +m

) 1
4 = O(m

1
4 ). Then H(m) = O(m

1
4 ) = O(m

2
5 ).

Case2: a = Ω(m
−2
5 ). We have H(m) = O(a−1) = O(m

2
5 ).

Case3: a = O(m
−2
5 ) and a = Ω( 1

m). We have
(
am2 +m

) 1
4 = O(m

2
5 ). Then,

a+
1

(am2 +m)
1
4

= Ω(
1

m
) + Ω(m

−2
5 ) = Ω(m

−2
5 ).

Therefore, H(m) = O(m
2
5 ).

F Proof of Proposition 3.10

Proof. To prove that Û dominates U , it is sufficient to take h in the boundaries of U , i.e.,
∑m

i=1 hi =
k and find α1, α2, . . . , αm+1 non-negative reals with

∑m+1
i=1 αi = 1 such that for all i ∈ [m],

hi ≤ β
(
αi +

k

m
αm+1

)
.

First case: If β = k, we choose αi = hi
k for i ∈ [m] and αm+1 = 0. We have

∑m+1
i=1 αi = 1 and for

all i ∈ [m],

β

(
αi +

k

m
αm+1

)
= k

hi
k
≥ hi.

Second case: If β = m
k , we choose αi = 0 for i ∈ [m] and αm+1 = 1. We have

∑m+1
i=1 αi = 1 and for

all i ∈ [m],

β

(
αi +

k

m
αm+1

)
= 1 ≥ hi.

32



G Proof of Lemma 3.11

Proof. Consider the following simplex

Û = conv

(
e1, . . . , em,

1√
m
e

)
It is clear that Û dominates U since 1√

m
e dominates all the extreme points νj for j ∈ [N ]. Moreover,

by the convexity of U , we have 1
N

∑N
j=1 νj =

(m−1
r−1 )
√
m(mr )

e = r
m
√
m
e ∈ U . Denote β = m

r . Hence, for all

i ∈ [m]

ei = β

(
1

β
· ei + (1− 1

β
) · 0

)
︸ ︷︷ ︸

∈U

and
1√
m
e = β · r

m
√
m
e︸ ︷︷ ︸

∈U

.

Therefore, Û ⊆ β · U and from Theorem 2.3, we conclude that our policy gives a β-approximation
to the adjustable problem (1.1) where β = m

dm−
√
me

= O(1 + 1√
m

).

H Proof of Lemma 3.12

Proof. First, let us prove that zAR(U) ≤ 1. It is sufficient to define an adjustable solution only for
the extreme points of U because the constraints are linear. We define the following solution for all
i = 1, . . . ,m and for all j = 1, . . . , N

x = 0, y(0) = 0, y(ei) = ei, y(νj) =
1

m
e.

We have By(0) = 0. For i ∈ [m]

By(ei) = ei +
1√
m

(e− ei) ≥ ei

and for j ∈ [N ]

By(νj) =
1

m
Be =

(
1

m
+
m− 1

m
√
m

)
e ≥ 1√

m
e ≥ νj .

Therefore, the solution defined above is feasible. Moreover, the cost of our feasible solution is 1
because for all i ∈ [m] and j ∈ [N ], we have

dTy(ei) = dTy(νj) = 1.

Hence, zAR(U) ≤ 1. Now, it is sufficient to prove that zAff(U) = Ω(
√
m). First, x̃ = 1√

m
e and

y(h) = 0 for any h ∈ U is a feasible static solution (which is a special case of an affine solution).
In fact,

Ax̃ =
1√
m
Ae =

(
1√
m

+
m− 1

m

)
e ≥ e ≥ h ∀h ∈ U

where the last inequality holds because U ⊆ [0, 1]m. Moreover, the cost of this static solution is

cT x̃ =

√
m

15
.
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Hence,

zAff(U) ≤
√
m

15
. (H.1)

Our instance is ”a permuted instance”, i.e. U is permutation invariant, A and B are symmetric
and c and d are proportional to e. Hence, from Lemma 8 and Lemma 7 in Bertsimas and Goyal
[12], for any optimal solution x∗Aff ,y

∗
Aff(h) of the affine problem, we can construct another optimal

affine solution that is ”symmetric” and have the same stage cost. In particular, there exists an
optimal solution for the affine problem of the following form x = αe, y(h) = Ph + q for h ∈ U
where

P =


θ µ . . . µ
µ θ . . . µ
...

...
. . .

...
µ µ . . . θ

 (H.2)

q = λe, cTx = cTx∗Aff and maxh∈U d
Ty(h) = maxh∈U d

Ty∗Aff(h). We have x ≥ 0 and y(0) =
λe ≥ 0 hence

λ ≥ 0 and α ≥ 0. (H.3)

Claim: α ≥ 1
24
√
m

For a sake of contradiction, suppose that α > 1
24
√
m

. We know that

zAff(U) ≥ cTx+ dTy(0) =
α

15
m+ λm. (H.4)

Case 1: If λ ≥ 1
12
√
m

, then from (H.4) and α ≥ 0, we have zAff(U) ≥
√
m

12 . Contradiction with

(H.1).
Case 2: If λ ≤ 1

12
√
m

. We have

y(e1) = (θ + λ)e1 + (µ+ λ)(e− e1).

By feasibility of the solution, we have Ax+By(e1) ≥ e1, hence

θ + λ+ α

(
m− 1√
m

+ 1

)
+

1√
m

(m− 1)(µ+ λ) ≥ 1

Therefore θ + λ+ α
(
m−1√
m

+ 1
)
≥ 1

2 or 1√
m

(m− 1)(µ+ λ) ≥ 1
2 .

Case 2.1: Suppose 1√
m

(m− 1)(µ+ λ) ≥ 1
2 . Therefore,

zAff(U) ≥ dTy(e1) = θ + λ+ (m− 1)(µ+ λ) ≥
√
m

2
. (Contradiction with (H.1))

where the last inequality holds because θ + λ ≥ 0 as y(e1) ≥ 0.

Case 2.2: Now suppose we have the other inequality i.e. θ + λ + α
(
m−1√
m

+ 1
)
≥ 1

2 . Recall that

we have λ ≤ 1
12
√
m

and we know that α < 1
24
√
m

. Therefore,

θ ≥ 1

2
− 1

12
√
m
− 1

24
√
m

(
m− 1√
m

+ 1

)
=

11

24
− 3

24
√
m

+
1

24m
≥ 11

24
− 3

24
=

1

3
.

We have,

y(ν1) =
1√
m

((θ + (r − 1)µ)(e1 + . . . er) + rµ(e− (e1 + . . . er))) + λe.
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In particular we have ,

zAff(U) ≥ dTy(ν1) =
r√
m

(θ + (m− 1)µ) + λm

≥ r√
m

(
1

3
+ (m− 1)µ

)
. (H.5)

where the last inequality follows from λ ≥ 0 and θ ≥ 1
3 .

Case 2.2.1: If µ ≥ 0 then from (H.5)

zAff(U) ≥ r

3
√
m
≥ m−

√
m

3
√
m

≥
√
m

6
for m ≥ 4 (Contradiction with (H.1))

Case 2.2.2: Now suppose that µ < 0, by non-negativity of y(ν1) we have

r√
m
µ+ λ ≥ 0

i.e.

µ ≥ −λ
√
m

r

and from (H.5)

zAff(U) ≥ r√
m

(
1

3
+ (m− 1)µ

)
≥ r√

m

(
1

3
− λ
√
m
m− 1

r

)
≥ r√

m

(
1

3
− 1

12

m− 1

r

)
≥ r√

m

(
1

3
− 1

6

)
for m ≥ 4.

≥
√
m

12
(Contradiction with (H.1))

We conclude that α ≥ 1
24
√
m

and consequently

zAff(U) ≥ cTx =
αm

15
≥
√
m

360
= Ω(

√
m).

Hence,
zAff(U) = Ω(

√
m) · zAR(U).

cTx = cTx∗Aff Moreover, for any optimal affine solution, the cost of the first-stage affine solution
x∗Aff is Ω(

√
m) away from the optimal adjustable problem (1.1), i.e. cTx∗Aff = cTx = Ω(

√
m) ·

zAR(U).
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I Proof of Theorem 5.1

Proof. Let us find the order of the left hand side ratio in inequality (5.3). We have,(√
m
mε

)
·
(
m−mε√
m−mε

)(
m√
m

) =
(
√
m)!× (m−mε)!× (m−

√
m)!× (

√
m)!

(
√
m−mε)!× (mε)!×m!× (

√
m−mε)!× (m−

√
m)!

=

(
(
√
m)!

(
√
m−mε)!

)2

· (m−mε)!

(mε)!×m!
.

By Stirling’s approximation, we have

(√
m
)
! = Θ

(
m

1
4

(√
m

e

)√m)
.

(√
m−mε

)
! = Θ

(
(
√
m−mε)

1
2

(√
m−mε

e

)√m−mε)
.

(m−mε)! = Θ

(
(m−mε)

1
2

(
m−mε

e

)m−mε)
.

(m)! = Θ
(
m

1
2

(m
e

)m)
.

(mε)! = Θ

(
m

1
2
ε

(
mε

e

)mε)
.

All together, (√
m
mε

)
·
(
m−mε√
m−mε

)(
m√
m

) = Θ

(
(
√
m)

2
√
m · (m−mε)(m−m

ε)

m
1
2
ε · (
√
m−mε)

2(
√
m−mε) ·mm ·mεmε

)
.

We have

(m−mε)(m−m
ε) = Θ

(
m(m−mε) · e−mε+

m2ε

m

)
,

and (√
m−mε

)2(√m−mε) = Θ

((√
m
)2(√m−mε) · e−2mε+2m

2ε
√
m

)
,

WLOG, we can suppose that ε < 1
4 , therefore(√

m
mε

)
·
(
m−mε√
m−mε

)(
m√
m

) = Θ

emε−2m2ε
√
m

+m2ε

m

mεmε+ 1
2
ε


= Θ

(
em

ε

mεmε+ 1
2
ε

)
.

We have,

Θ

(
Q(m)em

ε

mεmε+ 1
2
ε

)
≥ 1,
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but the later inequality contradicts

lim
m→∞

Q(m)em
ε

mεmε+ 1
2
ε

= 0.

J Domination for non-permutation invariant sets

Propostion J.1. Suppose Algorithm 1 returns β and v for some uncertainty set U . Then the set
(6.3) is a dominating set for U .

Proof. Suppose Algorithm 1 returns β and v,then the inequality (2.4) is verified, namely,

1

β

m∑
i=1

(hi − βvi)+ ≤ 1, ∀h ∈ U .

Recall the dominating point (2.3)

ĥ(h) = βv + (h− βv)+.

We have

ĥ(h) = β


m∑
i=1

(hi − βvi)+

β
(ei + v) +

(
1−

m∑
i=1

(hi − βvi)+

β

)
︸ ︷︷ ︸

≥0

v

 ∈ Û
where

Û = β · conv (v, e1 + v, . . . , em + v)

Hence Û is a dominating set.

K Domination for the generalized budget set

Propostion K.1. Let consider

Û = conv

(
e1, . . . , em,

1

m− 1− 2θ
e

)
(K.1)

The set (K.1) dominates the uncertainty set (6.2).

Proof. Consider the uncertainty set (6.2) given by

U =

{
h ∈ [0, 1]m

∣∣∣∣∣
m∑
i=1

hi ≤ 1 + θ(hi + hj) ∀i 6= j

}

and

Û = conv

(
e1, . . . , em,

1

m− 1− 2θ
e

)
.
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Note that in our setting we choose θ > m−1
2 . Take any h ∈ U . Suppose WLOG that

h1 ≤ h2 ≤ . . . ≤ hm

Hence, by definition of U
eTh ≤ 1 + θ(h1 + h2)

To prove that Û dominates U , it is sufficient to find α1, α2, . . . , αm+1 non-negative reals with∑m+1
i=1 αi ≤ 1 such that for all i ∈ [m],

hi ≤ αi +
1

m− 1− 2θ
αm+1.

We choose αm+1 = (m− 1− 2θ) · h1+h22 , α1 = h1 and for i ≥ 2, αi = hi− h1+h2
2 . We can verify that

α1 +
1

m− 1− 2θ
αm+1 ≥ α1 = h1

and for i ≥ 2,

αi +
1

m− 1− 2θ
αm+1 = hi

Moreover, αm+1 ≥ 0, α1 ≥ 0 and for i ≥ 2, αi ≥ 0 since h1 + h2 = mini 6=j(hi + hj). Finally,

m+1∑
i=1

αi =
m∑
i=1

hi − (m− 1) · h1 + h2
2

+ (m− 1− 2θ) · h1 + h2
2

≤ 1 + θ(h1 + h2)− (m− 1) · h1 + h2
2

+ (m− 1− 2θ) · h1 + h2
2

= 1.

Note that the construction of this dominating set is slightly different from the general approach in
Section 3 since we do not scale the unit vectors ei in Û .
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