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Abstract

We consider the classification problem when the input features are represented as matrices rather 

than vectors. To preserve the intrinsic structures for classification, a successful method is the 

Support Matrix Machine (SMM) in [19], which optimizes an objective function with a hinge loss 

plus a so-called spectral elastic net penalty. However, the issues of extending SMM to 

multicategory classification still remain. Moreover, in practice, it is common to see the training 

data contaminated by outlying observations, which can affect the robustness of existing matrix 

classification methods. In this paper, we address these issues by introducing a robust angle-based 

classifier, which boils down binary and multicategory problems to a unified framework. 

Benefitting from the use of truncated hinge loss functions, the proposed classifier achieves certain 

robustness to outliers. The underlying optimization model becomes nonconvex, but admits a 

natural DC (difference of two convex functions) representation. We develop a new and efficient 

algorithm by incorporating the DC algorithm and primal-dual first-order methods together. The 

proposed DC algorithm adaptively chooses the accuracy of the subproblem at each iteration while 

guaranteeing the overall convergence of the algorithm. The use of primal-dual methods removes a 

natural complexity of the linear operator in the subproblems and enables us to use the proximal 

operator of the objective functions, and matrix-vector operations. This advantage allows us to 

solve large-scale problems efficiently. Theoretical and numerical results indicate that for problems 

with potential outliers, our method can be highly competitive among existing methods.
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1 Introduction

Many popular classification methods are originally developed for data with a vector of 

covariates, such as linear discriminant analysis, logistic regression, support vector machine 

(SVM), and Adaboost [12]. Recent advances in technology enable the generation of a wealth 

of data with complex structures, where the input features are represented by multi-linear 

geometric objects such as matrices or tensors, rather than by the form of vectors or scalars. 

The matrix-type datasets are often encountered in a wide range of real applications, e.g., the 

face recognition [31] and the analysis of medical images, such as the electroencephalogram 

data [36].

One common strategy to handle the matrix data classification is to stack a matrix into a long 

vector, and then employ some existing vector-based methods. This approach has several 

drawbacks. First, after vectorization, the dimensionality of the resulting vector typically 

becomes exceedingly high, which in turn leads to the curse of dimensionality, i.e. the large p 
and small n phenomenon. Second, vectorization of matrix-type data can destroy informative 

structure and correlation of data matrix, such as the neighbor information and the adjacent 

relation. Third, under the statistical learning framework, the regularization of vector and 

matrix data should be different due to their intrinsic structures. To exploit the correlation 

among the columns or rows of the data matrix, several methods were developed, for 

example, [6], [27], [24], [14]. These methods are essentially built on the low-rank 

assumption. Another major direction is to extend regularization techniques commonly used 

in vector-based classification methods to the present matrix-type data, under certain sparsity 

assumptions. The regularization with the nuclear norm of matrix of parameters is popular in 

a variety of settings; see [7] for matrix completion with a low rank constraint, and [36] for 

matrix regression problems based on generalized linear models. Specifically, [19] proposed 

the Support Matrix Machine (SMM) which employs a so-called spectral elastic net penalty 

for binary classification problems. The spectral elastic net penalty is the combination of the 

squared Frobenius matrix norm and the nuclear norm, in parallel to the elastic net [37]. They 

showed that the SMM classifier enjoys the property of grouping effect, while keeping a low-

rank representation.

Our approach and contribution:

Though the SMM model is simple yet effective, two major issues still remain. The first one 

is how to extend it to address the problem of multicategory classification. One may reduce 

the multicategory problem via a sequence of binary problems, for example, using one-

versus-rest or one-versus-one techniques. However, the one-versus-rest method can be 

inconsistent when there is no dominating class, and one-versus-one method may suffer a tie-

in-vote problem [17, 18]. Another issue is that existing classifiers may not be robust against 

outliers, and thus they may have unstable performance in practice [30]. To address these two 
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issues, we propose a new multicategory angle-based SMM using truncated hinge loss 

functions, which not only provides a natural generalization of binary SMM methods, but 

also achieves certain robustness to outliers. Our proposed classifier can be viewed as a 

robust matrix counterpart of the robust vector-based classifier in [32]. We show that the 

proposed classifier enjoys Fisher consistency and other attractive theoretical properties.

Because the truncated hinge loss is nonconvex and the spectral elastic net regularization is 

not smooth, the optimization problem involved in our classifier is highly non-trivial. We first 

show that this problem admits a global optimal solution by exploiting special structures of 

the model. Next, we show that the optimization problem has a natural DC (difference of two 

convex functions) decomposition. Hence, one can apply a DC algorithm (DCA) [2] to solve 

this problem. However, the convex subproblem is rather complicated with nonsmooth 

objective functions and linear operators, and cannot be solved exactly. This prevents us from 

solely applying DCA to solve our nonconvex problem. We instead develop a new variant, 

namely the inexact proximal DCA, to solve this problem. By using the proximal term, we 

obtain a strongly convex subproblem. Then, to approximately solve this subproblem, we 

propose to use primal-dual first-order methods proposed in [8, 28]. These methods allow us 

to exploit the special structures of the problem by utilizing the proximal operator of the 

objective terms, and matrix-vector multiplications. One drawback of this approach is to 

match the number of inner iterations in the primal-dual scheme and the inexactness of the 

proximal DCA scheme. By exploiting the problem structure, we show how to estimate this 

number of inner iterations at each step of the DCA scheme to obtain a unified DCA 

algorithm for solving the nonconvex optimization problem. We prove that by adaptively 

controlling the number of iterations in the primal-dual routine, we can still achieve a global 

convergence of our DCA variant, which converges to a stationary point. Our method can be 

implemented efficiently and does not require to estimate any parameter with expensive 

computational cost. To our limited knowledge, we are not aware of any efficient method to 

solve SMM-type problems in the literature except the alternating direction method of 

multipliers (ADMM)-based scheme [5]. In order to examine the efficiency of our method, 

we compare it with an ADMM-based scheme [5]. As shown in Section 5, our method 

outperforms ADMM in terms of computational time, and our new model has highly 

competitive performance among existing methods in different aspects.

Paper organization:

The rest of the article is organized as follows. In Section 2, we briefly review some related 

works, and then introduce our proposed model and methodology. In Section 3, we describe a 

new inexact proximal DCA algorithm and investigate its convergence. Some statistical 

learning results, including Fisher consistency, risk and robustness analysis, are presented in 

Section 4. Numerical studies are given in Section 5 on both synthetic and real data. Section 6 

concludes our work with some remarks, and theoretical proofs are delineated in the 

appendix.
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Notation:

For a matrix A ∈ ℝp × q of rank r (r ≤ min(p, q)), r(r ≤ min(p, q)), A = UAΣAVA
⊤ represents the 

condensed singular value decomposition (SVD) of A, where UA ∈ ℝp × r and VA ∈ ℝq × r

satisfy UA
⊤UA = Ir and VA

⊤VA = Ir, and ΣA = diag·{σ1(A), ⋯, σr(A)} with σ1 (A) ≥ ⋯ ≥ σr 

(A) > 0. For each τ > 0, the singular value thresholding operator 𝒟τ( ⋅ ) is defined as follows:

𝒟τ(A) = UA𝒟τ ΣA VA
⊤,

where 𝒟τ ΣA =  diag  σ1(A) − τ +, ⋯, σr(A) − τ +  with [a]+ = max 0, a . For A ∈ ℝp × q, 

A
F

= ∑i, jai j
2  denotes the Frobenius norm of A, A * = ∑i = 1

r σi(A) denotes the nuclear 

norm of A, and ∥A∥2 = σ1(A) stands for the spectral norm of A. The inner product between 

two matrices is defined as A, B =  tr  A⊤B = ∑i, jai, jbi, j. It is well-known that the 

nuclear norm ∥A∥*, as a mapping from ℝp × q to ℝ, is not differentiable, but convex. 

Alternatively, one considers the subdifferential of ∥A∥*, which is the set of subgradients and 

denoted by ∂∥A∥*. For a matrix A, vec(A) denotes its vectorization. We use 〈·, ·〉 to denote 

the inner product.

For a proper, closed and convex function φ:ℝn ℝ ∪ + ∞ , dom(φ) denotes the domain of 

φ, proxφ(x) ≜ argminy φ(y) + 1
2 y − x

2
 denotes its proximal operator, and 

φ*(y) ≜ sup x⊤y − φ(x)  denotes its Fenchel conjugate. We say that φ has a “friendly” 

proximal operator if its proximal operator proxφ can be computed efficiently by, e.g., closed-

form or polynomial time algorithms. We say that φ is μφ-strongly convex if φ( ⋅ ) − 1
2 μφ ⋅

F

2

is convex, where μφ ≥ 0. Given a nonnegative real number x, we denote ⌊x⌋ the largest 

integer that is less than or equal to x.

2 Methodology

Assume that the underlying joint distribution of (X, 𝒴) is Pr(X, 𝒴), where X ∈ ℝp × q is the 

matrix of predictors and 𝒴 is the label. We are given a set of training samples of matrix-type 

data 𝒯N = Xi, yi i = 1
N  collected independently and identically distributed (i.i.d.) from Pr, 

where Xi ∈ ℝp × q is the ith input sample and yi is its corresponding class label. Here, we 

assume that Xi’s are zero-centered; otherwise we can make transformation by Xi − X, where 

X = N−1∑i = 1
r Xi. We take the structure into consideration and handle all Xi’s in the matrix 

form. Based on the given training set, the target of a classification problem is to estimate a 

classifier 𝒯N, by minimizing the empirical prediction error
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1
N ∑

i = 1

N
𝕀 y Xi ≠ yi ,

where 𝕀( ⋅ ) is the indicator function. Because 𝕀( ⋅ ) is discontinuous, in practice, we use some 

surrogate loss function to approximate it. As an example, in the case of the SVM, the hinge 

loss is adopted.

2.1 Review of the Support Matrix Machine

We take the binary problem as a special example with the encoded class labels set {+1, −1}. 

The optimization problem of [19]’s SMM can be expressed as

min
M1, b

1
N ∑

i = 1

N
𝓁 yi M1, Xi + b + λ 1

2 M1 F

2
+ τ M1 *

, (1)

where M1 ∈ ℛp × q, and 𝓁(u) ≜ [[1 − u]+ = max 1 − u, 0  is the hinge loss, τ ≥ 0 controls the 

balance between the Frobenius norm and nuclear norm, and λ > 0 is a tuning parameter that 

balances the loss and regularization terms. The SMM (1) is a soft margin classifier, and it 

has a close connection to the ordinary SVM [4, 10]. With τ = 0, by vectorization of the 

coefficient matrix M1, SMM reduces to the standard form of the SVM.

The penalty term, J M1 ≜ 1
2 M1 F

2
+ τ M1 *

, can be re-expressed as

J M1 = ∑
i = 1

min p, q σi
2 M1

2 + τ ∑
i = 1

min p, q
σi M1 .

Clearly, this term is essentially of the form of the elastic net penalty for all singular values of 

the regression matrix M1, and thus is referred to as the spectral elastic net penalty. Such 

regularization encourages a low-rank constraint of the coefficient matrix. This can be better 

understood by the dual problem of (1), which is presented as follows:

min
α

1
2 Dτ ∑

i = 1

N
αiyiXi

F

2
− ∑

i = 1

N
αi

s.t. 0 ≤ αi ≤ C, i = 1, …, N; ∑
i = 1

N
αiyi = 0,

(2)

where C = (Nλ)−1, and the optimum satisfies M1 = 𝒟τ ∑i = 1
N aiyiXi . The derivation of (2) is 

given in the appendix. Under the low-rank assumption, small singular values of ∑i = 1
N aiyiXi

are more likely to be noisy, and hence SMM could be more efficient than the SVM by 

thresholding with an appropriate choice of τ. Moreover, due to the use of the trace norm, 
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[19] also showed that there is a stronger grouping effect in the estimation of M1 than the 

ordinary SVM.

2.2 Robust Multicategory SMM

For extensions of the binary classification method to the multicategory case, a common 

approach is to use K classification functions to stand for the K categories, and the prediction 

rule is based on which function has the largest value. Recently, [32] showed that this 

approach can be inefficient and suboptimal, and proposed an angle-based classification 

framework that needs to train K 1 classification functions f = (f1, ⋯ , fK−1)⊤. The angle-

based classifiers can enjoy better prediction performance and faster computation [33, 34, 

26]. Hence, we adopt this strategy here. For simplicity, we focus on linear learning.

To be more specific, consider a centered simplex with K vertices W = (w1, ⋯, wK) in ℝK − 1, 

where these vertices are given by

wk =
(K − 1)

− 1
21  if k = 1,

− 1 + K

(K − 1)
3
2

1 + K
K − 1ek − 1  if k ≥ 2.

Here, ek is the unit vector of length K − 1 with the kth entry 1 and 0 otherwise, and 1 is the 

vector of all ones. One can verify that each vector wk has Euclidean norm 1, and the matrix 

W introduces a symmetric simplex in ℝK − 1. Each wk represents the kth class label. Let M 

be the linear transformation matrix which maps an input X into a (K − 1)-variate vector f(X) 

= M · vec(X), where M =   vec M1 , ⋯,   vec MK − 1
⊤ ∈ ℝ(K − 1) × pq and M j ∈ ℝp × q for 

any j ∈ {1, ⋯ , K − 1}. The angle ∠(f(X), wk) shows the confidence of the sample X 
belonging to class k. Thus the prediction rule is based on which angle is the smallest, i.e.,

y(X) = arg min
k ∈ 1, ⋯, K

∠ f(X), wk .

It can also be verified that the least-angle prediction rule is equivalent to the largest inner 

product, i.e.,

y(X) = arg max
k ∈ 1, ⋯, K

f(X), wk .

Here, we define Ha(u) ≜ [a − u]+ = max 0, a − u  and Ga(u) ≜ [a − u]+ = max 0, a + u . Based 

on the structure of matrix-type data, our proposed Robust Multicategory Support·Matrix 
·Machine (RMSMM) solves
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min
f ∈ ℱ

1
N ∑

i = 1

N
γT(K − 1)s f Xi , wyi

+ (1 − γ) ∑
k ≠ yi

Rs f Xi , wk + λJ(M) , (3)

Where

• ℱ ≜ f|f(X) =  Mvec(X), M ∈ ℝ(K − 1) × pq ;

• f(X) ≜ f 1(X), ⋯, f K − 1(X)  with fj(X) = 〈Mj,X〉 for j = 1, ⋯,K − 1;

• J(M) ≜ ∑ j = 1
k − 1 1

2 M j F
2 + τ M j * , where τ ≥ 0 is a balancing parameter;

• Ts(u) ≜ HK − 1(u) − Hs(u) and Rs(u) ≜ G1(u) − Gs(u). The notation s ≤ 0 a parameter 

that controls the location of truncation, and γ ∈ [0, 1] is a convex combination 

parameter.

In (3), the loss term ℒ(X, y, M) = γT(K − 1)s f(X), wy + (1 − γ)∑k ≠ y Rs f(X), wk  can be 

written as ℒ1(X, y, M) − ℒ2(X, y, M), where

ℒ1(X, y, M) = γH(K − 1) f(X), wy + (1 − γ) ∑
k ≠ y

G1 f(X), wk ,  and

ℒ2(X, y, M) = γH(K − 1)s f(X), wy + (1 − γ) ∑
k ≠ y

Gs f(X), wk .

The first term ℒ1 of the above representation is a generalization of the reinforced 

multicategory loss function in the angle-based framework proposed by [33]. Note that ℒ1
explicitly encourages 〈f(X), wy〉 to be small for k ≠ yi In parallel to [33], we will show later 

that this convex combination of hinge loss functions enjoys Fisher consistency with γ ∈ 0, 1
2

and s ≤ 0.

The use of the second term ℒ2 is motivated by [30] to alleviate the effect of potential 

outliers, resulting in a truncated hinge loss. It can be seen that for any potential outlier (X, y) 

with a sizable 〈f(X), wy〉, its loss ℒ is upper bounded by a constant for any f. Thus, the 

impact of outliers can be alleviated by using ℒ. Note that when s > 0, Ts(u) and Rs(u) are 

constants within [−s, s]. In this case, the loss for some correctly classified observations is the 

same as that of those misclassified ones. Hence, it is more desirable to set s ≤ 0. As 

recommended by [32], the choice of s = −(K − 1)−1 works well and will be used in our 

simulation study.

The truncated hinge loss is nonconvex, which makes the optimization problem (3) more 

involved than that of SMM. We next present an efficient algorithm to implement our 

RMSMM.
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3 Optimization Algorithm

Since the optimization problem (3) admits a DC decomposition, we propose to apply DCA 

[2] to solve this problem. At each iteration of DCA, it requires to solve a convex 

subproblem, which does not have a closed form. We instead solve this convex subproblem 

up to a given accuracy and design an inexact variant of DCA so that it automatically adapts 

the accuracy of the subproblem to guarantee the overall convergence of the full algorithm.

3.1 A DC Representation of (3)

Problem (3) is nonconvex, but fortunately, it possesses a natural DC representation. Indeed, 

due to the relation f (X) ≜ M ⋅  vec (X), we can write

f (X), w = w⊤M ⋅  vec (X) = a⊤ vec (M),

where a ≜  vec (X) ⊗ w with ⊗ denoting the Kronecker product. Let us define

ai ≜  vec  Xi ⊗ wyi
,   and  bik ≜  vec  Xi ⊗ wk,  i = 1, ⋯, N, k = 1, ⋯, K − 1. (4)

Then, we can rewrite problem (3) as

min
M ∈ ℝ(K − 1) × pq

F(M) ≜ 1
N ∑

i = 1

N
γTs(K − 1) ai

⊤ vec (M) + (1 − γ

) ∑
k ≠ yi

Rs bik
⊤ vec (M) + λJ(M) .

(5)

Problem (5) has a DC representation as follows:

min
M

F(M) ≜ Φ(M) − Ψ (M) , (6)

where

Φ(M) ≜ 1
N ∑

i = 1

N
γHK − 1 ai

⊤ vec (M) + (1 − γ) ∑
k ≠ yi

G1 bik
⊤ vec (M) + λJ(M)

Ψ (M) ≜ 1
N ∑

i = 1

N
γHs(K − 1) ai

⊤ vec (M) + (1 − γ) ∑
k ≠ yi

Gs bik
⊤ vec (M) .

(7)

Here, both function Φ and Ψ are convex, but nonsmooth. In addition, Ψ is polyhedral. Note 

that we can always add any strongly convex function S to Φ and Ψ to write F = Φ − Ψ as

F(M) = Φ(M) − Ψ (M) = [Φ(M) + S(M)] − [Ψ (M) + S(M)], (8)

to obtain a new DC representation. The latter representation shows that both convex 

functions Φ+S and Ψ+S are strongly convex. This representation also leads to a strongly 

Qian et al. Page 8

Math Program. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



convex subproblem at each iteration of DCA as we will see in the sequel. However, the 

choice of S is crucial, and also affects the performance of the algorithm. In our 

implementation, we simply add a convex quadratic function which leads to a proximal DCA.

Note that dom(Φ) ∩ dom(Ψ) ≠ ∅. Since problem (6) is nonconvex, any point 

M* ∈ ℝ(K − 1) × pq satisfies

0 ∈ ∂F M* ≡ ∂Φ M* − ∂Ψ M* (9)

is called a stationary point of (6). If M* satisfies ∂Φ (M*) ∩ ∂Φ (M*) ≠ ∅, then we say that 

M* is a critical point (6). We show in the following theorem that (6) has a global optimal 

solution.

Theorem 1—If λ > 0, then problem (6) has at least one global optimal solution M*.

Proof We first write the objective function F of (5) into the sum F(M) = F(M) + λ
2 M

F

2
, 

where F is a function combining the sum of Ts(K−1), Rs, and the nuclear norm 

∑i = 1
K − 1τ M j *i in J.

Next, we show that F is Lipschitz continuous. Indeed, using the fact that 

a + = max 0, a = 1
2 (a + a ) we can show that 

Ts(u) = HK − 1(u) − Hs(u) = K − 1 − u + − [s − u]+ and 

Rs(u) = G1(u) − Gs(u) = [1 + u]+ − [s + u]+ are both Lipschitz continuous. In addition, we have 

M j F
≤ M j * ≤ [min p, q ]1/2 M j F

 for j = 1, ⋯ K – 1. Hence, ∑i = 1
K − 1τ M j * is also 

Lipschitz continuous. As a consequence, F defined above is Lipschitz continuous. That is, 

there exists L ∈ [0, + ∞) such that F(M) − F(M) ≤ L M − M F for all M, M ∈ ℝ(K − 1) × pq.

Using a fixed point M0 ∈ ℝ(K − 1) × pq, we can bound F as

F(M) ≥ F M0 − LF M − M0
F

+ λ
2 M

F

2
+ ∞,  as  M

E
+ ∞ .

Hence, F is coercive, i.e., F(M) → +∞ as ∥M∥F → +∞. Consequently, its sublevel set 

ℒ(β) = M|F(M) ≤ β  is closed and bounded for any β ∈ ℝ. By the well-known Weierstrass 

theorem, (6) has at least one global optimal solution M*. ◻

3.2 Inexact Proximal DCA Scheme

Let us start with the standard DCA scheme [2] and propose an inexact proximal DCA 

scheme to solve (6). The proximal DCA is equivalent to DCA applying to the DC 

decomposition (8) mentioned above, but often uses an adaptive strongly convex term S.
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3.2.1 The Standard DCA Scheme and Its Proximal Variant—The DCA method 

for solving (6) is very simple. At each iteration t ≥ 0, given Mt, we compute a subgradient r 

(Mt) ∈ ∂Ψ(Mt) and form the subproblem:

min
M

Ft(M) ≜ Φ(M) − ∇Ψ Mt , M , (10)

to compute the next iteration Mt+1 as an exact solution of (10). The subproblem (10) is 

convex. However, it is fully nonsmooth and does not have a closed form solution.

In the proximal DC variant, we instead apply DCA to the DC decomposition (8) with 

S(M) ≜ ρ
2 M

F

2
, which leads to the following scheme:

Mt + 1 ≜ arg min
M

Ft(M) ≜ Φ(M) − ∇Ψ (Mt, M +
ρt
2 M − Mt

F

2
, (11)

where ρt > 0 is a given proximal parameter. Clearly, Mt+1 is well-defined and unique.

3.2.2 Inexact Proximal DCA Scheme—Clearly the subproblem (11) in the proximal 

DCA scheme (11) does not have a closed form solution. We can only obtain an approximate 

solution of this problem. This certainly affects the convergence of (11). We instead propose 

an inexact variant of (11) by approximately solving

Mt + 1: ≈ arg min
M

 Ft(M) ≜ Φ(M) − ∇Ψ Mt , M +
ρt
2 M − Mt

F

2
, (12)

where :≈ stands for the approximation between the approximate solution Mt+1 and the true 

solution Mt + 1 of the subproblem (12), and is characterized via the objective residual as

Ft Mt + 1 − Ft Mt + 1 ≤
δt

2

2 . (13)

We note that this condition is implementable if we apply first-order methods in convex 

optimization to approximately solving (12).

Clearly, by strong convexity, we have

ρt
2 Mt + 1 − Mt + 1

F

2
≤  Ft Mt + 1 − Ft Mt + 1 ≤

δt
2

2 .

This leads to Mt + 1 − Mt + 1
F

≤ δt / ρt, which shows the difference between the 

approximate solution Mt+1 and the true one Mt + 1.

Under the inexact criterion (13), we can still prove the following descent property of the 

inexact proximal DCA scheme (12).
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Lemma 1: Let Ψ be μΨ-strongly convex with μΨ ≥ 0. Let {Mt} be the sequence generated 

by the inexact DCA scheme (12) under the inexact criterion (13). Then

F Mt + 1 ≤ F Mt −
ρt + μΨ

2 Mt + 1 − Mt
F

2

+
δt

2

2 . (14)

Proof Using the optimality condition of (12), we have

∇Φ Mt + 1 − ∇Ψ Mt + ρt Mt + 1 − Mt = 0,   where ∇Φ Mt + 1 ∈ ∂Φ Mt + 1 .

From the μΦ- and μΨ-strong convexity of Φ and Ψ, respectively, we have

Φ Mt + 1 ≤ Φ Mt + ∇Φ Mt + 1 , Mt + 1 − Mt −
μ∞
2 Mt + 1 − Mt

F

2
, − Ψ Mt + 1 ≤ − Ψ Mt −

∇Ψ Mt , Mt + 1 − Mt −
μw
2 Mt + 1 − Mt

F

2

= − Ψ Mt − ∇Ψ Mt , Mt + 1 − Mt + ∇Ψ Mt , Mt + 1 − Mt + 1 −
μΨ
2 Mt + 1 − Mt

F

2
.

Summing up the last two inequalities and using the above optimality condition, we obtain

Φ Mt + 1 − Ψ Mt + 1 ≤ F Mt − ρt Mt + 1 − Mt
F
2 + ∇Ψ Mt , Mt + 1 − Mt + 1 −

μ∞
2 Mt + 1 − Mt

F
2

−
μw
2 Mt + 1 − Mt

F
2 .

Here, F (M) = Φ(M) − Ψ(M). Next, using (13), we have

Φ Mt + 1 ≤ Φ Mt + 1 − ∇Ψ Mt , Mt + 1 − Mt + 1 +
δt
2

2 +
ρt
2 Mt + 1 − Mt

F
2 −

ρt
2 Mt + 1 − Mt

F
2 .

Summing up the last two inequalities and using F = Φ − Ψ again, we obtain

F Mt + 1 ≤ F Mt − 1
2 ρt + μΦ Mt + 1 − Mt

F
2 + ρt + μΨ Mt + 1 − Mt

F
2 +

δt
2

2 .

This implies (14) by neglecting the term − 1
2 ρt + μΦ Mt + 1 − Mt

F

2

3.3 Solution of The Convex Subproblem

By rescaling the objective function by a factor of 1
λ , we can rewrite the strongly convex 

subproblem (12) at the iteration t of the inexact proximal DCA scheme as follows:

Qian et al. Page 11

Math Program. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



min
M

 Ft(M) ≜ Pt(𝒜(M)) + Qt(M) , (15)

where

Pt(𝒜(M)) ≜ 1
λN ∑

i = 1

N
γHK − 1 ai

⊤ vec (M) + (1 − γ) ∑
k ≠ yi

G1 bik
⊤ vec (M) − 1

λ ∇Ψ Mt , M ,

and

Qt(M) ≜ J(M) +
ρt
2 M − Mt

F

2
= ∑

j = 1

K − 1 1
2 M j F

2
+ τ M j *

+
ρt
2 M j − M j

t
F

2
.

Here, 𝒜 is a linear operator concatenating all vectors ai and bik, and the subgradient ∇Ψ(Mt) 

in Pt, and Pt is a nonsmooth convex function, but has a “friendly” proximal operator that can 

be computed in linear time (see Subsection 3.5 for more details). Due to the strong convexity 

of J, (15) is strongly convex even for ρt = 0. However, one can adaptively choose ρt ≥ 0 such 

that we have a “good” strong convexity parameter. If we do not add a regularization term 
1
2 MI j F

2
, then (15) is strongly convex if ρt > 0. Since μΨ = 0 in (6), to strictly get a descent 

property in Lemma 1, we require ρt > 0. The following lemma will be used in the sequel, 

whose proof is given in the appendix.

Lemma 2—The objective function Pt(·) of (15) is Lipschitz continuous, i.e., there exists L0 

∈ (0, + ∞) such that Pt(u) − Pt(u) ) ≤ L0 u − u
F

 for all u, u, where L0 is independent of t. 

Consequently, the domain dom  Pt*  of the conjugate Pt* is bounded uniformly in t, i.e., its 

diameter DP* ≜ 2sup v   |v ∈  dom  Pt*  is · finite and independent of t.

Denote by

ℒ(β) ≜ M ∈ ℝ(K − 1) × pq F(M) ≤ β , (16)

the sublevel set of (5). As we proved in Theorem 1, the sublevel set ℒ(β) is closed and 

bounded for any β ∈ ℝ. We define

Dℒ ≜ 2sup M F F(M) ≤ F M0
(17)

the diameter of this sublevel set, which is finite, i.e., Dℒ ∈ (0, + ∞).

3.3.1 Primal-dual Schemes for Solving (15)—Problem (15) can be written into a 

minimax saddle-point problem using the Fenchel conjugate of Pt. It is natural to apply 

primal-dual first-order methods to solve this problem. We propose in this subsection two 

different primal-dual schemes to solve (15).
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Our first algorithm is the common Chambolle-Pock primal-dual method proposed in [8]. 

This method is described as follows. Starting from M0
t = M0

t = Mt, and Y0
t = Yt as an initial 

dual variable with Y0 = 0, set M0
t = 0, and at each inner iteration l ≥ 0, we perform

Yl + 1
t =  prox

σl
tPt*

Yl
t + σl

t𝒜 Ml
t ,

Ml + 1
t =  prox

ωl
tQt

Ml
t − ωl

t𝒜* Yl + 1
t ,

θl
t = 1

1 + 2 1 + ρt ωl
t
,  ωl + 1

t = θl
tωl

t,  σl + 1
t =

σl
t

θl
t ,

Ml + 1
t = Mt

l + 1 + θl
t Ml + 1

t − Ml
t ,

Ml + 1
t = 1 − sl

t Ml
t + sl

t Ml + 1
t ,  with sl

t =
σl

t

∑ j = 1
l σ j

t .

(18)

Here, we use the index t for the DCA scheme as the outer iteration counter, and the index l 

for the inner iteration counter. The initial stepsizes are set to be σ0
t = ω0

t = c 𝒜 −1
, where 

𝒜  is the operator norm of 𝒜, and c = 0.999; 𝒜 * is the adjoint operator of 𝒜 (i.e., when 𝒜
is a matrix, 𝒜 * is the transpose of 𝒜), prox σPt* is the proximal operator of the Fenchel 

conjugate Pt* of Pt, and proxωQt
 is the proximal operator of ω · Qt. Alternatively, we can also 

apply [28, Algorithm 2] to solve (15). Originally, [28, Algorithm 2] works directly on the 

primal space, and has a convergence guarantee on the primal sequence Ml
t  that is 

independent of the dual variable Ml
t  as we can see in Lemma 3 below. Let us describe this 

scheme here to solve (15). Starting from M0
t = Mt, M0

t = Mt and Y0
t = Yt, at each inner 

iteration l ≥ 0, we update

Yl + 1
t =  prox

σl
tPt*

Y0
t + σl

t𝒜 Ml
t

Ml + 1
t =  prox

Qt /ωl
tβl

t Ml
t − 1

ωl
tβl

t 𝒜* Yl + 1
t

Ml + 1
t = 1 − ωl

t Ml
t + ωl

tMl + 1
t

ωl + 1
t =

ωi
t

2 ωl
t 2 + 4 − ωl

t ,  σl + 1
t =

σi
t

1 − ωl + 1
t ,  βl + 1

t = 𝒜
2

σl + 1
t ,

Ml + 1
t = Ml + 1

t +
ωl + 1

t 1 − ωl
t

ωl
t Ml + 1

t − Ml
t .

(19)

Here, the initial values ω0
t = 1 and σ0

t = 1
2 𝒜

−2
1 + ρt  are given.
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Note that both schemes (18) and (19) look quite similar at first glance, but they are 

fundamentally different. First, the dual step Yl
t in (19) fixes Y0

t  for all iterations l, while it is 

recursive with Yl
t in (18). Second, (18) has an extra averaging step at the last line, while (19) 

has a linear coupling step at the last line, where it works similarly as the accelerated gradient 

method of Nesterov [23]. Finally, the way of updating parameters in both schemes are really 

different.

In terms of complexity, (18) and (19) essentially have the same per-iteration complexity with 

one proximal operator proxsPt*
, one proximal operator proxrQt

, one matrix-vector 

multiplication 𝒜(M), and one adjoint operation 𝒜*(Y).

The following lemma provides us conditions to design a stopping criterion for the inner loop 

(i.e., the l-iterative loop), whose proof is given in the appendix.

Lemma 3: Let Mt + 1 be the unique solution of (15) at the outer iteration t. Then, the 

sequence Ml
t

l ≥ 0 generated by (18) satisfies

Ft Ml
t − Ft Mt + 1 ≤

1 + ρt + 𝒜 𝒜
1 + ρt l2

M0
t − Mt + 1

F
2 + Y0

t − Yt + 1
F
2 , (20)

where Y t + 1 is the corresponding exact dual solution of (15). Alternatively, the sequence 

Ml
t

l ≥ 0 generated by (19) satisfies

Ft Ml
t − Ft Mt + 1 ≤

4L0 𝒜
(l + 1)2

2L0 𝒜
1 + ρt

+ 3 M0
t − Mt + 1

F

+
3 ρt + 1 M0

t − Mt + 1
F
2

(l + 1)2 ,

(21)

where L0 is given in Lemma 2

One advantage of (19) over (18) is that the right-hand side bound (21) does not depend on 

the dual variables Y0
t  and Y t + 1 as in (20).

3.3.2 The Upper Bound of the Inner Iterations—Our next step is to specify the 

maximum number of inner iterations lmax(t) to guarantee the condition (13) at each outer 

iteration t.

First, from both schemes (18) and (19), one can see that Yl
t ⊂  dom  Pt* . Hence, by Lemma 

2, we can bound Y0
t − Yt + 1

F
≤ DP*. On the other hand, by Theorem 1, the sublevel set 
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ℒ F M0  defined by (16) is bounded. We can also bound M0
t − Mt + 1

F
≤ Dℒ, where and 

Dℒ is given by (17). Using these upper bounds (20), we can show that

Ft Ml
t − Ft Mt + 1 ≤

1 + ρt + 𝒜 𝒜

1 + ρt l2
Dℒ

2 + DP*
2 .

Let Kt ≜ 1 + ρt
−1 1 + ρt + 𝒜 𝒜  be a constant. In order to guarantee (13), we require to 

choose the number of iterations l at most

lmax(t) ≜ 1
δt

Kt Dℒ
2 + DP*

2 + 1  with  δt = 1
(t + 1)α Dℒ

2 + DP *
2 . (22)

Here, α > 1 is a given constant specified by the user. With such a choice of δt, we have 

lmax(t) = Kt(t + 1)α + 1, which is independent of Dℒ and DP*.

If we apply (19) to solve (15), then we have the bound (21). Let 

Kt ≜
8L0

2 𝒜 2

1 + ρt
+ 4 3L0 𝒜 Dℒ + 3 ρt + 1 Dℒ

2 . Since M0
t − Mt + 1

F
≤ Dℒ, in order to achieve 

Ft Ml
t −  Ft Mt + 1 ≤ δt

2/2, we require (l + 1)−2Kt ≤ δt
2/2 which implies l + 1 ≥ 2Kt /δt

Hence, we can choose

lmax(t) ≜
2Kt
δt

+ 1,   with δt =
C0 2Kt

(t + 1)α  and C0 ∈ (0, 1), (23)

to terminate the primal-dual scheme (19). With such a choice of δt, we can exactly evaluate 

lmax(t) = C0
−1(t + 1)α + 1 , which is also independent of Dℒ.

Remark 1: By the choice of δt as in (22) or (23), the maximum number of inner iterations 

lmax(t) is independent of the two constants Dℒ and DP*. These constants only show up when 

we prove the convergence of Algorithm 1 in Theorem 2, but they do not need to be evaluated 

in Algorithm 1 below. Hence, in the implementation of Algorithm 1, we simply use 

lmax(t) = Kt(t + 1)α + 1 for (18), or lmax(t) = C0
−1(t + 1)α + 1  for (19) to specify the 

maximum number of inner iterations, where α > 1 is a given number, e.g., α = 1.1.

Algorithm 1

(Inexact Proximal DC Algorithm with primal-dual iterations)

1: Initialization:

 2: Input an accuracy ε > 0. Choose an initial point M0 ∈ ℝ(K − 1) × pq
, and choose Y0 ≜ 0.

 3: Choose two parameters 0 < ρ < ρ < + ∞, and σ0=σ0 = ω0 = 0.999 𝒜 .
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4: For t = 0 to T, perform

 5: Evaluate a subgradient ∇Ψ Mt ∈ ∂Ψ Mt
 and choose ρt ∈ [ρ, ρ].

 6: Initialization of inner loop: Initialize M0
t ,  M0

t ,  M0
t ,  Y0

t ,  σ0
t

 and ω0
t

 Compute lmax(t).

 7: Inner loop: For l = 0, 1,···, lmax(t), perform either (18) or (19).

 8: Terminate the inner loop: If l ≥ lmax(t), then set Mt + 1 = Mlmax(t)
t

 and Yt + 1 = Ylmax(t)
t

.

 9: Stopping criterion: If Mt + 1 − Mt
F

≤ ε  max 1, Mt
F , then terminate and return Mt+1.

10: End for

3.4 The Overall Algorithm and Its Convergence Guarantee

We now combine the inexact proximal DCA scheme (12), and the primal-dual scheme (18) 

(or (19)) to complete the full algorithm for solving (5) as in Algorithm 1.

In the sequel, we will explicitly specify the evaluation of a subgradient ∇Ψ(Mt) of Ψ, the 

choice of ρt, and the evaluation of  proxsPt*
 and proxrQt

. The number of maximum iterations 

T of the outer loop is not necessary to specify. However, we use T as a safeguard value to 

prevent the algorithm from an infinite loop. Practically, we can set T to be a relatively large 

value, e.g., T = 103. Nevertheless, the stopping criterion at Step 9 will terminate Algorithm 1 

earlier. For large-scale problems, we can evaluate the operation norm 𝒜 > of 𝒜 by a power 

method.

We state the overall convergence of Algorithm 1 in the following theorem.

Theorem 2 (Overall convergence)—Let {Mt}· be the sequence generated by Algorithm 

1 using (18) (respectively, (19)) for approximately solving (12) up to lmax(t) inner iterations 

as in (22) (respectively, (23)). Then, we have

∑
t = 0

∞
Mt + 1 − Mt

F

2
< + ∞  and it implies  lim

t ∞
Mt + 1 − Mt

F
= 0.

Moreover, the sequence ·{Mt} is bounded. Any cluster point M* of {Mt} is a stationary 

point of (5). Consequently, the whole sequence{Mt} converges to a stationary point of (5).

Proof Since we apply (19) to solve the subproblem (12), with the choice of t as in (23), we 

can derive from Lemma 1 that

∑
t = 0

T
ρt Mt + 1 − Mt

F

2
≤ 2 F M0 − F MT + 1 + ∑

t = 0

T
δt .
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By Theorem 1, we have F (MT+1) ≥ F (M*) > −∞, the global optimal value of (5). Hence, 

using the fact that ρt ≥ ρ > 0, we obtain

ρ ∑
t = 0

∞
Mt + 1 − Mt

F

2
≤ 2 F M0 − F M* + ∑

t = 0

∞
δt < + ∞ .

Here, ∑t = 0
∞ δt < + ∞ due to the choice of δt. This is exactly the first estimate in Theorem 2. 

The second limit in Theorem 2 is a direct consequence of the first one.

By Theorem 1 again, the sublevel set ∑t = 0
∞ δt < + ∞ defined by (16) is bounded, and F 

(Mt+1) ≤ F (Mt) by Lemma 1, we have Mt ⊂ ℒ F M0 , which is bounded. For any cluster 

point M* of {Mt}, there exists a subsequence M
ts  that converges to M*. Now, we prove 

that M* is a stationary point of (5). Using the optimality condition of (12), we have

0 ∈ ∂Φ Mt + 1 − ∇Ψ Mt + ρt Mt + 1 − Mt . (24)

Note that lim limt ∞ Mt + 1 − Mt + 1
F

= 0 due to the choice of δt. Here, we can pass this 

limit to a subsequence if necessary. Using this limit and the fact that limt→∞∥Mt+1−Mt∥F = 

0, we can show limt ∞ Mt + 1 − Mt
F

= 0. In summary, we have 

limt ∞Mt + 1 = limt ∞Mt = M*. Using the definition of Φ and Ψ, we can see that the 

subgradient ∇Ψ(Mt) of Ψ is uniformly bounded and independent of t. The subgradient 

∇Φ Mt + 1  can be represented as ∇Φ Mt + 1 = St + 1 + λMt + 1., where St + 1 is uniformly 

bounded and independent of t. By taking subsequence if necessary, both ∇Φ Mt + 1  and 

∇Ψ(Mt) converge to ∇Ψ(M*) and ∇Ψ(M*), respectively. By [25, Theorem 24.4], we have 

∇Φ(M*) ∈ ∂Φ(M*) and ∇Ψ(M*) ∈ ∂Ψ(M*). Using this fact, 

limt ∞Mt + 1 = limt ∞Mt = M*, and the boundedness of ρt, we can show that 0 ∈ ∂Φ(M*) 

−∂Ψ(M*) Hence, M* a stationary point of (5). By the boundedness of {M1} and 

limt→∞∥Mt+1−Mt∥F = 0, one can then use routine techniques to show that the whole 

sequence {Mt} converges to M*. ◻

While the convergence result given in Theorem 2 is rather standard and similar to those in 

[2], its analysis for the inexact proximal DCA seems to be new to the best of our knowledge. 

Note that the convex subproblem in DCA-type methods is often general and may not have 

closed-form solutions. It is natural to incorporate inexactness in an adaptive manner to 

guarantee the convergence of the overall algorithm.
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3.5 Implementation Details and Comparison with ADMM

In Algorithm 1, we need to compute the proximal operator prox
σl

tPt*
 of the Fenchel conjugate 

Pt* of Pt and prox
ωl

tQt
 of Qt. In addition, in order to compare our method with other 

optimization methods, we specify the well-known ADMM to solve (12) as our comparison 

candidate.

3.5.1 Evaluation of Subgradient ∇Ψ(Mt) and The Choice of ρt—Using the 

definition of Ψ from (7), we have

∇Ψ Mt = 1
N ∑

i = 1

N
γ ∇Hs(K − 1) ai

⊤ vec Mt ai + (1 − γ) ∑
k ≠ yi

∇Gs bik
⊤ vec Mt bik ,

where ∇Hs(K − 1)(u) = 1
2 ⋅  sign (s(K − 1) − u) − 1

2  and ∇Gs(v) = 1
2 ⋅  sign (s + v) + 1

2 . Here, 

sign(·) is the common sign function.

To choose ρt, we first choose a range [ρ, ρ] in (0, +∞). For instance, we can choose ρ = 10−5

and ρ = 105, and {ρt} is any sequence in [ρ, ρ]. We can also fix ρt for all t as ρt = ρ > 0, e.g., 

ρt = 10−3. From our experience, we observe that if ρt is small, the strong convexity of (15) is 

1+ρt, which is also small. Hence, the number of inner iterations lmax(t) is large. However, the 

number of outer iterations t may be small. In the opposite case, if ρt is large, then we need a 

small number lmax(t). Nevertheless, due to a short step Mt+1 −Mt, the number of outer 

iterations may increase. Therefore, trading-off the value of ρt is crucial and affects the 

performance of Algorithm 1.

3.5.2 Evaluation of Proximal Operators—To compute the proximal operator of Pt* in 

(18), we can use Moreau’s identity [3]:

proxσPt*
(z) =

z j − σ prox1/σPt
z j/σ = z j − σ 𝒮1/σ z j + μ j − μ j ,   j = 1, ⋯, 2N,

z j − σ prox1/σPt
z j/σ = (1 − σ)z2N + 1 + 1,

where 𝒮r(v) =  sign (u) ⊙ max v − r, 0  is the well-known soft-thresholding operator.

To compute the proximal operator of Qt, we note that (here, τj = τ)

Qt(M) ≜ ∑
j = 1

K − 1 1
2 M j F

2
+ τ j M j *

+
ρt
2 M j − M j

t
F

2
.

Hence, we have
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proxωQt
(M) =  proxωQt j

M j
j = 1

K − 1
,

Where Qt j
M j ≜ 1

2 M j
F

2
+ τ j M j *

+
ρt
2 M j − M j

t

F

2
, and

proxωQt j
M j ≜ arg min

M j

ωτ j M j * +
1 + ω 1 + ρt

2 M j −
ωρtM j

t + M j
1 + ω ρt + 1

F

2
.

This operator can be computed in a closed form using SVD of 

ωρtM j
t + M j / 1 + ω ρt + 1 = U jΣ jV j

⊤ as proxωQt j
M j = U j𝒮r Σ j V j

⊤, where 𝒮r is the soft-

thresholding operator defined above with r = ωτj/[1 + ω (1 + ρt)].

3.5.3 ADMM Method for Solving (15)—In Algorithm 1, we can apply ADMM to 

solve the subproblem (15) instead of primal-dual methods. We split the nuclear norm in Qt 

of (15) by introducing an auxiliary variable S and rewrite (15) as

min
M, S

Pt(𝒜(M)) + ∑
j = 1

K − 1 1
2 M j F

2 +
ρt
2 M j − M j

t
F
t

Bt(M)
+ ∑

j = 1

K − 1
τ j S j *

s.t S−M = 0.

(25)

We define the corresponding augmented Lagrangian function of (25) as

ℒβ(M, S, Λ) ≜ Pt(𝒜(M)) + ∑
j = 1

K − 1 1
2 M j F

2
+

ρt
2 M j − M j

t
F

2
+ ∑

j = 1

K − 1
τ j S j

*
+  trace Λ⊤(S − M) + β

2 S

− M
F

2
,

where β > 0 is a penalty parameter. Starting from an initial point M0
t = Mt, S0

t = Mt, our 

ADMM scheme for solving (25) updates at the inner iteration l according to the following 

steps:

Ml + 1
t ≜ arg min

M
Bt(M) +  trace  Λt

l
⊤ Sl

t − M + β
2 Sl

t − M
F

2

Sl + 1
t ≜ arg min

S
∑
j = 1

K − 1
τ j S j

*
+  trace  Λl

t ⊤ S − Ml + 1
t + β

2 S − Ml + 1
t

F

2

Λl + 1
t ≜ Λl

t + β Sl + 1
t − Ml + 1

t .

(26)
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In this scheme, the auxiliary sequence Sl
t  can be computed into a closed form using SVD 

as we have done in Subsection 3.5.2. The sequence Ml
t  requires to solve a general convex 

problem. However, this problem has a special structure so that its dual formulation becomes 

a boxed constrained convex quadratic program, which is very similar to (2). Hence, we solve 

this problem by coordinate descent methods, see, e.g., [29]. In summary, if we apply 

ADMM to solve (15), then our inexact proximal DCA has three loops: DCA outer iterations, 

ADMM inner iterations, and coordinate descent iterations for computing Ml
t .

Remark 2 (Convergence of the ADMM scheme (26))

Note that (15) is strongly convex, and both subproblems in Ml + 1
t  and Sl + 1

t  of (26) are 

strongly convex, and therefore, uniquely solvable. Consequently, this scheme converges 

theoretically as proved e.g., in [5, Appendix A]. Together with asymptotic convergence 

guarantees, the convergence rates of ADMM, where (26) is a special case, have been studied 

in e.g., [11, 13, 21]. We omit the details here.

4 Statistical Properties

In this section, we explore some statistical properties of our proposed classifier RMSMM 

(3). In the first part, we establish the Fisher consistency result for the RMSMM, and study 

the finite sample bound on the misclassification rate. In the second part, we analyze the 

robustness property of RMSMM via the breakdown point theory.

4.1 Classification Consistency

Fisher’s consistency is a fundamental property of classification methods. For an observed 

matrix-type data with fixed X, and denote by Pk(X) =  Pr(𝒴 = k |X) the class conditional 

probability of class k ∈ {1, 2, ⋯, K}. One can verify that the best prediction rule, namely, 

the Bayes rule, which minimizes the misclassification error rate, is ŷBayes(X) = arg maxk 

Pk(X).

For a classifier, denote by ϕ (f(X), y) its surrogate loss function for classification using f as 

the classification function, and ŷf the corresponding prediction rule. Assume the conditional 

loss is L(X) = E[ϕ(f(X), y) | X], where the expectation is taken with respect to the marginal 

distribution of (𝒴|X). We denote the theoretical minimizer of the conditional loss as f*(X) = 

arg minf L(X). When ŷf* (X) = ŷBayes(X), we say the classifier is Fisher consistent. Let us 

denote by ℒ(X, y, M) the loss function in (3). Then, we have the following result.

Theorem 3—The classifier with the loss ℒ(X, y, M) is Fisher consistent when γ ∈ 0, 1
2  and 

s ≤ 0.

This result can be viewed as a generalization of Theorem 1 in [34] which is devised for 

vector-type observations. By this theorem, we know that our classifier RMSMM can achieve 

the best classification accuracy, given a sufficiently large matrix-type training dataset and a 
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rich family ℱ. The following theorem provides an upper bound of the prediction error using 

the training dataset.

The proof of both Theorems 3 and 4 can be found in the appendix.

Theorem 4—Suppose that the conditional distribution of X given 𝒴 = k is the same as the 

distribution of Ck + E, where Ck ∈ ℝp × q is a constant matrix and the entries of E are i.i.d. 

random variables with mean zero and finite fourth moment. Let 

M = vec M1 , ⋯,  vec MK − 1
⊤ ∈ ℝ(K − 1) × pq denote the solution of (5). Then, with 

probability at least 1 − δ, the misclassification rate of the classifier ŷ corresponding to M
can be bounded as

E[𝕀 𝒴 ≠ y(X) ] ≤ 1
N ∑

i = 1

N
𝕀 yi ≠ y Xi +

log δ−1

N +  cr( p + q)
N

, (27)

Where r = ∑ j = 1
K − 1 M j *, and c is a constant specified in the proof.

Theorem 4 measures the gap between the expectation error and the empirical error, which 

allows us to get a better understanding of the utility of the nuclear norm. For each category, 

the decision matrix contains p × q parameters, and therefore, if we only impose the 

Frobenius constraints [34] we would expect at best to obtain rates of the order pq. By 

taking the low rank structure of the decision matrices into account, we use the nuclear norm 

penalty to control the singular values of the decision matrices. For the i-th singular vectors 

of the k-th decision matrix, there are p + q + 1 free parameters in total [22], one for the 

singular value σki and the others for the orthogonal vectors with dimensions p and q. Its 

contribution to the gap will be cσki( p + q). Hence, with the low-rank structure of the 

decision matrices, the nuclear-norm-penalized estimator achieves a substantially faster rate.

The rate in Theorem 4 can be further improved if we additionally impose some low-rank 

constraint on the noise term of Xi. For example, consider E = UΛV⊤, where Λ ∈ ℝ
rx × rx is 

low-rank noise with all entries i.i.d. with mean zero and the finite fourth moment, U and V 
are orthogonal projection matrices independent of Λ. It can be verified that the term p + q
in the rate above can be replaced by 2 rx. Finally, as a side remark, consider a special case 

with q = 1, i.e., the features are vectors rather than matrices. In such a situation, the nuclear 

norm reduces to the quadratic norm, and the last term of the upper bound in (27) will 

become cr( p + 1)/ N, which is equivalent to existing results, for example, see [34].

4.2 Breakdown Point Analysis

Robustness theory has been developed to evaluate instability of statistical procedures since 

the 1960s [15]. The breakdown point theory focuses on the smallest fraction of contaminated 

data that can cause an estimator totally diverging from the original model. Here we consider 

the breakdown point analysis for multicategory classification models.

Qian et al. Page 21

Math Program. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Let 𝒯n be the original n observations, and 𝒯n, m = 𝒯n − m ∪ 𝒱m be the contaminated sample 

with m observations of 𝒯n contaminated, and M = M 𝒯n, m  be the parameters estimated 

from the contaminated sample. We extend the sample angular breakdown point in [35] to the 

multicategory classification problem as

ϵ⋆ M, 𝒯n = min m
n    ∃k,  s.t. wk

⊤M M⊤wk ≤ 0 ,

where M = M 𝒯n  is the estimated decision matrix from the original sample. Since the 

angle-based classifiers make the decision by comparing the angles between the (K − 1)-

dimensional classification function f and the K vertices of the simplex wk k = 1
K , it is 

reasonable to quantify the divergence between classifiers via the angles between the decision 

vectors wk
⊤M and the original counterpart, wk

⊤M. When there exists one category k so that the 

angle between the two decision vectors is larger than π/2, the two classifiers would behave 

totally different at this category. Consequently, the classifier with contaminated samples 

would “break down”.

The following theorem compares the sample breakdown points of the proposed RMSMM 

and the multicategory SMM (MSMM) which generalizes [19]’s SMM using angle-based 

methods, say γ = 1/2 and s = −∞ in Eq. (3).

Theorem 5—Assume that M ≠ 0. Then the breakdown point of MSMM is 1/n, while the 

breakdown point of RMSMM is not smaller than 
ϵ1

2(K − 1)(1 − s) , where

ϵ1 = min
M ∈ Δ−

F(M) − min
M ∈ Δ+

F(M) > 0.

By this theorem, only one contaminated observation will make the MSMM classifier break 

down. In other words, this estimator may not work well in the presence of few outliers. In 

contrast, the breakdown point of our proposed RMSMM, benefitting from the use of 

truncated hinge loss functions, has a fixed lower bound. Thus, the RMSMM has high outlier-

resistance compared to its counterpart without truncation. The robustness property will be 

carefully examined via numerical comparisons in the next section.

5 Numerical Experiments

In this section, we investigate the performance of our proposed robust angle-based SMM 

using simulated and real datasets. Our configuration of the algorithm is as follows. For the 

primal-dual method described in Algorithm 1, we use M0 = 0 and ρt = 0.01 for every t. We 

set the stop criterion as ∥Mt+1 − Mt∥F ≤ 10−4 max {1, ∥Mt∥F}. All the simulation results are 

obtained based on 100 replications.
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5.1 Simulation Results

We generate simulated datasets by the following two scenarios. In the first scenario, the 

dimensions of input matrices are 50 × 50. For the kth category, to make the matrices low-

rank, we randomly generate two 50 × 5 matrices, Uk and Vk, which are standard 

orthonormal. More precisely, we first generate two 50 × 5 matrices with all the entries i.i.d. 

from the standard normal distribution and obtain Uk and Vk by the Gram-Schmidt process. 

The center of each class is then specified by Ck = UkVk
⊤; k = 1, ⋯, K. The observations in 

each class are generated by Ck + E; k = 1,⋯, K, where E is a 50 × 50 normal random matrix 

with all entries i.i.d from 𝒩 0, σ2 . For the contaminated observations, we generate them by 

3C1 + E for 𝒴 ∈ 1, ⋯, K .

In the second scenario, the dimensions of input matrices are fixed as 80 × 100. We follow 

the settings in [36] to generate the true array signals by Ck = Ck, 1Ck, 2
⊤ ; k = 1, ⋯, K, where 

each entry of Ck is 0 or 1 and Ck, i ∈ ℝ
pi × r

, p1 = 80 and p2 = 100. To control the rank and 

the percentage of nonzero entries, we set r = 10 and generate Ck,i by setting each row to 

contain only one entry one and others zero, and the probabilities of entries being one are 

equal. All the entries of the noise matrix E are i.i.d. from σ · t(3), where t(3) denotes the 

Student’s t-distribution with three degrees of freedom. The outliers are generated by the 

same method as in the first scenario.

We use 103 observations for training, 104 observations for tuning and 104 observations for 

testing. The contamination ratio in the training sample ρ, is chosen as 0%, 10%, and 20%. 

For training the truncated model, we use the solutions of the ordinary SMM as an initial 

point. Following the suggestion by [33], we choose γ = 1/2 as it can provide stable 

classification performance. The truncation parameter, s, is fixed at −1/(K − 1). The other 

hyper-parameters, C and τ, are selected via a grid search on the tuning set.

We first consider the binary classification problem, say K = 2. We compare our RMSMM 

with the SMM in [19]. We also include a naive benchmark, the standard SVM method which 

is applied to the stacked-up vectors. Fig. 1 presents the classification error rates of RMSMM, 

SMM, and SVM on the simulated data with Scenario (I) and K = 2. Three noise magnitudes 

are considered: σ = 0.5, 0.7 and 0.9. Both two “support-matrix-based” methods, RMSMM 

and SMM, perform much better than the SVM. It has been observed that RMSMM generally 

outperforms SMM when there exits outliers, and its advantage becomes more pronounced 

for larger ρ. All methods are affected by different values of σ, but the comparison conclusion 

still holds for various σ.

Next we consider the multicategory case. Fig. 2 depicts the boxplots of the classification 

error rates for RMSMM and other competitors under Scenario (I) with K = 3 and 5. Three 

benchmarks are considered: the multicategory SMM using angle-based methods, MSMM; 

the angle-based multicategory SVM classifier [32] and its robust version RMSVM classifier 

[34]. In the case of ρ = 0, the RMSMM and its non-robust counterpart MSMM perform 

almost identically, which demonstrates that the truncation parameter, s, can adapt to the data 

structure and make the efficiency loss of RMSMM relative to MSMM minimal when there is 
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no outlier. When ρ = 0.1 or ρ = 0.2, the advantage of RMSMM is clear: the means and 

standard variations of its classification error rates are generally smaller. From this figure, we 

can also observe that the use of the nuclear norm is prominent: the two SMM-based 

classifiers perform much better than the two SVM-based ones. Similar comparison 

conclusions can be drawn from Fig. 3, which reports the classification error rates of 

RMSMM and the other three methods under Scenario (II) with σ = 3, 4, and 5.

Finally, we present some comparison results of the ADMM and primal-dual algorithms for 

solving the RMSMM optimization problem (5). Fig. 4 reports the classification error rates 

and the corresponding computational time (in seconds) of the RMSMM using the two 

different primal-dual algorithms: (18) and (19) under Scenario (I) with σ = 0.7 and Scenario 

(II) with σ = 4 when K = 3. The bottom two panels record the total run time including the 

selection of tuning parameters. The tuning parameters λ and τ in the RMSMM are selected 

via a grid search. To be more specific, λ ∈ [0.1, 104] and for each choice of λ, τ is tuned to 

make the decision matrix change from full-rank to rank one. One can see that the two 

algorithms perform very similarly in terms of classification rates, but the proposed primal-

dual algorithm is significantly faster and the advantage is more remarkable as ρ increases. 

This is further confirmed by Fig. 5 which depicts the decay curves of the RMSMM objective 

function values versus the computational time until the two algorithms reach the desired 

accuracy. We consider the case under Scenario (II) with K = 3 and σ = 4 for a given 

combination of tuning parameters. In particular, we fix a combination of (λ, τ) and record 

the objective function values for each iteration. Clearly, the primal-dual algorithm is 

generally more stable and converges much faster than ADMM.

5.2 A Real-data Example

We apply the RMSMM model (5) to the Daily and Sports Activities Dataset [1] which can 

be found on the UCI Machine Learning Repository. The dataset comprises motion sensor 

data of 19 daily sport activities, each performed by 8 subjects (4 females, 4 males, between 

the ages of 20 and 30) in their own style for 5 minutes. The dataset was collected by several 

sensors. The input matrices are of dimension 125 × 45, where each column contains 125 

samples of data acquired by a sensor over a period of 5 seconds at 25 Hz sampling 

frequency, and each row contains the data acquired from all of 45 sensor axes at a particular 

sampling instant.

To show the efficient performance of the proposed RMSMM model, we only select the first 

10 categories of the dataset for simplicity. Thus the total number of instances is N = 10 × 8 × 

60 = 4, 800. It is a 10-category and balanced classification problem with 480 instances in 

each category. We equally and randomly divide the data into three parts for training, tuning, 

and testing, and the sample size of each part is 1, 600.

We choose s = −K + 1, and select the other parameters by a grid search. We report the 

classification accuracy of RMSMM, MSMM, RMSVM, and MSVM in Fig. 6-(left). The 

two matrix-based methods achieve lower classification rates than the other two vector-based 

classifiers, due to the benefit of the nuclear norm. This improvement can be more clear in 

Fig. 7, which presents the heatmap of the decision matrices of RMSMM and RMSVM; the 

former has a more sparse structure than the latter.
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To demonstrate the effect of potential outliers on classification accuracy, we artificially 

contaminate the dataset with outliers by randomly relabeling 10% of the training set into 

another class. From Fig. 6-(right), we observe that the performances of all the methods are 

deteriorated by this manipulation, while the RMSMM performs the best. Both two robust 

classifiers, RMSMM and RMSVM, are less affected by the outliers, than the other two non-

robust methods. All these numerical examples shown above suggest that the RMSMM is a 

practical and robust classier for a multicategory classification problem when the input 

features are represented as matrices.

6 Concluding Remarks

In this paper, we consider how to devise a robust multicategory classifier when the input 

features are represented as matrices. Our method is constructed in the angle-based 

classification framework, embedding a truncated hinge loss function into the support matrix 

machine. Although the corresponding optimization problem is nonconvex, it admits a natural 

DC (difference of two convex functions) representation. Hence, it is natural to apply DCA 

algorithms to solve this problem. Unfortunately, the convex subproblem in DCA is rather 

complex and does not have a closed form solution. Therefore, we develop an inexact 

proximal DCA variant to solve the underlying optimization problem. To approximately solve 

the convex subproblem, we propose to use primal-dual first-order methods. We combine 

both inexact proximal DCA and primal-dual methods to obtain a new proximal DCA 

scheme. We prove that our optimization model admits a global optimal solution, and the 

sequence generated by our DCA variant globally converges to a stationary point.

In terms of statistical learning perspective, we prove Fisher’s consistency and prediction 

error bounds. Numerical results demonstrate that our new classifiers are quite efficient and 

much more robust than existing methods in the presence of outlying observations. We 

conclude the article with two remarks. First, our unified framework is demonstrated using 

the linear classifier. Though it is well recognized that linear learning is an effective solution 

in many real applications, it may be sub-efficient especially for problems with complex 

feature structures. Thus it is of interest to thoroughly study nonlinear learning under the 

proposed framework. Second, our numerical results show that the proposed procedure works 

well under large-dimensional scenarios. Theoretical investigation to the necessary condition 

on which the statistical theoretical guarantee of RMSMM holds is another interesting topic 

for future study.
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A Appendix:: Proofs of Technical Results

In this appendix, we provide all the remaining proofs of the results presented in the main 

text.
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A.1 Proof of Lemma 2: Lipschitz continuity and boundedness

Since [a]+ = max {0, a} = (a + |a|)/2, the function Pt defined in (15) can be rewritten as 

Pt(𝒜(z)) = 𝒜z + μ 1 + dt
⊤Z for some matrix 𝒜 and vectors μ and dt. Here, 

dt ≜ d − λ−1vec ∇Ψ Mt . However, ψ is also Lipschitz continuous due to its definition. This 

implies that ∇ψ(Mt) is uniformly bounded, i.e., there exists a constant C0 ∈ (0, + ∞) such 

that ||∇ψ (Mt)||F ≤ C0 for all Mt ∈ ℝ(K − 1) × pq. As a consequence, Pt is Lipschitz continuous 

with the uniform constant L0 that is independent of t, i.e., Pt(u) − Pt(u) ≤ L0 u − u
F

 for all 

u, u. The boundedness of dom  Pt*  of the conjugate Pt* follows from [3, Corollary 17.19].

A.2 The proof of Lemma 3: The convergence of the primal-dual methods

Let 𝒢(M, Y) = Qt(M) + 𝒜(M), Y − Pt*(Y), where Pt* is the Fenchel conjugate of Pt. Applying 

[9, Theorem 4] with f = 0, for any M and Y, we have

𝒢 Ml
t, Y − 𝒢 M, Yl

t ≤ 1
T l

M0
t − M

F
2

2ω0
t +

Y0
t − Y

F
2

2σ0
t , 28)

where T l = ∑i = 1
l σi − 1

t

σ0
t , and Yl

t = 1
Tl

∑ j = 1
l σ j − 1

t

σ0
t Y j

t .

By the update rule in (18), we have ωl + 1
t σl + 1

t = ωl
tσl

t. Hence, by induction, we have 

ωl
tσl

t = ω0
t σ0

t = 𝒜 −2
. On the other hand, by [8, Lemma 2], with the choice of 

λ = 𝒜 −1 1 + ρt , we have

𝒜
1 + ρt

+ 𝒜 l
𝒜 + 1 + ρt

≤ 1
1 + ρt ωl

t ≤ 𝒜
1 + ρt

+ l .

Using this estimate and σl
t = 𝒜 −2

ωl
−t, we have

Tl = ∑
i = 1

l σi − 1
t

σ0
t = 1

𝒜 ∑
i = 1

l 1
ωi − 1

t ≥ ∑
i = 1

l i − 1
1 + c + 1 = l(l − 1)

2(1 + c) + l ≥ l2
2(1 + c) ,

where c = 𝒜 1 + ρt
−1. Hence, we can estimate Tl as T l ≥ 1

2 1 + ρt + 𝒜 −1 1 + ρt l2. 

Using this estimate of Tl, T l, σ0
t = ω0

t = 𝒜 , and 

Ft Ml
t − Ft Mt + 1 ≤ 𝒢 Ml

t, Yt + 1 − 𝒢 Mt + 1, Yl
t , we obtain from (28) that
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Ft Ml
t − Ft Mt + 1 ≤

1 + ρt + 𝒜 𝒜

1 + ρt l2
M0

t − Mt + 1
F
2 + Y0

t − Yt + 1
F
2 .

This is exactly (20).

Next, we prove (21). By introducing Y = 𝒜(M), we can reformulate the strongly convex 

subproblem (15) into the following constrained convex problem:

Ft Mt + 1 = min
M,Y

 Ft(M, Y) = Pt(Y) + Qt(M) 𝒜(M) − Y = 0 . (29)

Note that Qt is strongly convex with the strong convexity parameter 1 + ρt. We can apply 

[28, Algorithm 2] to solve (29). If we define

Δ
σi

t Ml + 1
t = Pt Yl + 1

t + Qt Ml + 1
t +

σl
t

2 𝒜 Ml + 1
t − Yl + 1

t

F

2
− Ft Mt + 1 .

then, from the proof of [28, Theorem 2], we can show that

Δ
σl

t Ml + 1
t ≤

2 σ0
t 𝒜 2 + 1 + ρt M0

t − Mt + 1
F

2

(l + 2)2 . (30)

By Lemma 2, Pt is Lipschitz continuous with the Lipschitz constant L0. Then we have

Ft Ml + 1
t − Ft Mt + 1

= Pt 𝒜 Ml + 1
t + Qt Ml + 1

t − Ft Mt + 1 ≤ Pt Yl + 1
t + Qt Ml + 1

t − Ft Mt + 1 + L0 𝒜 Ml + 1
t

− Yl + 1
t

F
.

Combining (30) and this estimate, we obtain

0 ≤  Ft Ml + 1
t − Ft Mt + 1

≤
2 σ0

t 𝒜 2 + 1 + ρt M0
t − Mt + 1

F

2

(l + 2)2
+ L0 𝒜 Ml + 1

t − Yl + 1
t

F
−

σl
t

2 𝒜 Ml + 1
t − Yl + 1

t

F

2

.

Similar to the proof of [28, Corollary 1], by using σ0
t =

1 + ρt

2 𝒜 2 , the last inequality leads to
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𝒜 Ml + 1
t − Yl + 1

t

F
≤ 4 𝒜

(l + 1)2
2L0 𝒜
1 + ρt

+ 3 M0
t − Mt + 1

F
.

Combining the two last estimates, we obtain

F Ml
t − F Mt + 1 ≤

4 𝒜 L0
(l + 1)2

2L0 𝒜
1 + ρt

+ 3 M0
t − Mt + 1

F
+

3 ρt + 1 M0
t − Mt + 1

F
2

(l + 1)2
,

which is exactly (21). ◻

A.3 Proof of statistical properties

We provide the proof of Theorems 3 and 4 in this section.

A.3.1 Proof of Theorem 3: Fisher’s consistency

In our RMSMM (3), one can abstract the truncated hinge loss function as

ϕ(f(X), y) = γT(K − 1)s f(X), wy + (1 − γ) ∑
k ≠ y

Rs f(X), wk .

Then, the conditional loss can be rewritten as

L(X) ≜ ∑
k = 1

K
γPkT(K − 1)s f(X), wk + 1 − Pk Rs f(X), wk .

[34, Theorem 1] showed that for a vector data x, the robust classifier based on the loss 

function ϕ(f(x), y) is Fisher consistent with γ ∈ 0, 1
2  and s ≤ 0. By vectorizing the matrix 

data X to a new vector x = vec(X), then all settings here are the same as those of Theorem 1 

in [34]. In this case, Fisher consistency results can naturally be transferred to matrix-type 

data. ◻

A.3.2 Proof of Theorem 4: Misclassification rates

First, we introduce the Rademacher complexity. Let 𝒢 = g:X × 𝒴 ℝ  be a class of loss 

functions. Given the sample 𝒯 = Xi, yi i = 1
N , we define the empirical Rademacher 

complexity of 𝒢 as

RN(𝒢) = Eσ sup
g ∈ 𝒢

1
N ∑

i = 1

N
σig Xi, yi ,
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where σ = σi i = 1
N  are i.i.d. random variables with Pr(σ1 = 1) = Pr(σ1 = −1) = 1/2. The 

Rademacher complexity of 𝒢 is defined as

RN(𝒢) = Eσ, 𝒯 sup
g ∈ 𝒢

1
N ∑

i = 1

N
σig Xi, yi .

For our model, let

H = h(X, y) = mink ≠ y f(X), wy − wk f ∈ ℱ, ∑
j

M j
*

≤ r ,

and

𝕀κ(x) =

1  x < 0,

1 − 1
κ x 0 ≤ x ≤ κ,

0 otherwise .

To prove Theorem 4, we first recall the following lemma which provides a bound on 

E 𝕀κ h(X, y)  by the empirical error and the Rademacher complexity.

Lemma 4—For any h ∈ H, with probability at least 1 – δ, we have

E 𝕀κ h(X, y) ≤ 1
N ∑

i = 1

N
𝕀κ h Xi, yi + 2RN 𝕀κ ∘ H +

log δ−1

N

1/2
.

The proof of Lemma 4 can be found in [34].

Now, we need to derive the upper bound of the Rademacher complexity used in Lemma 4. 

Since 𝕀κ is 1
κ -Lipschitz, we have

RN 𝕀κ ∘ H ≤ 1
κ Eσ, 𝒯 sup

Σ M j + ≤ r
1
N ∑

i = 1

N
σi ∑

j = 1

K − 1
 tr  M j

⊤Xi

= r
κN Eσ, 𝒯 ∑

i = 1

N
σiXi

2
,

where Xi denotes Xi − X and X = N−1∑i = 1
N Xi. The first inequality is due to Lemma 4.2 in 

[20], and the absolute values of the entries in wy − wk are all bounded by 1.
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Firstly, by the assumption, we can write X = E(X) + E, where E(X) = ∑k = 1
K Pr(𝒴 = k)Ck and 

the variance and the fourth moment of the entries are σ2 and μ4
4. Accordingly, Xi = Ei − E, 

where E = N−1∑i = 1
N Ei. Since Xi, yi i = 1

N  are the i.i.d. copies of (X, 𝒴), we have

∑
i = 1

N
σiXi

2
≤ ∑

i = 1

N
σi E

2
+ ∑

i = 1

N
σiEi

2
.

Because E ∑i = 1
N σiEi

2 = Nσ2 and E ∑i = 1
N σiEi

4 = Nμ4
4 + 3N(N − 1)σ4, by Theorem 2 in 

[16] we have

Eσ, 𝒯 ∑
i = 1

N
σiEi

2
≤ cσN1/2 p1/2 + q1/2 + (pq)1/4 Nμ4

4 + 3N(N − 1)σ4 1/4/ σN1/2

≤ cσ 1 + 31/4
2 N1/2 p1/2 + q1/2 + O N1/4 p1/2 + q1/2 ,

where c is a constant which does not depend on 𝒯. By similar arguments, it is easy to see 

that

Eσ, 𝒯 ∑
i = 1

N
σi E

2
≤ Eσ ∑

i = 1

N
σi

2
E𝒯 E 2

= N1/2ET E 2 = O p1/2 + q1/2 .

Accordingly, we obtain the upper bound of the Rademacher complexity as

RN 𝕀κ ∘ H ≤ r
κ N

cσ 1 + 31/4
2 p1/2 + q1/2 .

The proof is completed by using Lemma 4 with this bound and the fact that the continuous 

indicator function 𝕀κ is an upper bound of the indicator function for any κ. ◻

A.3.3 Proof of Theorem 5: Breakdown Point Analysis

Let F(M, 𝒯) denote the loss function (3) with the sample 𝒯, and

Δ+ ≜ M   ∀k,  s . t .  wk
⊤MM⊤wk 0  and Δ− ≜ M   ∃k,  s . t .  wk

⊤MM⊤wk ≤ 0 .

For the MSMM classifier, we can choose the contaminated observation as (Xo, k) with 

vec  Xo ⊤ = − cwk
⊤M. For any M ∈ Δ+, wk

⊤MM⊤wk > 0, then 
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wk
⊤Mvec  Xo = − cwk

⊤MM⊤wk − ∞ as c → ∞. In this situation, the loss term 

corresponding to this contaminated observation will tend to infinity. Hence, we have M ∈ Δ−

and the classifier breaks down.

For the RMSMM, since M ≠ 0, M is an interior point of Δ+, the claim

ϵ1 = min
M ∈ Δ−

F M, 𝒯n − min
M ∈ Δ+

F M, 𝒯n > 0

is true. Note that the loss function

l(X, 𝒴, M) = γTs(K − 1) wy
⊤Mvec (X) + (1 − γ) ∑

k ≠ 𝒴
Rs wk

⊤Mvec (X)

is bounded by (K − 1)(1 − s). For any m ≤ nϵ1/[2(1 + δ)(K − 1)(1 − s)] with δ > 0 being any 

positive constant, any corresponding n −m clean subset 𝒯n − m ⊂ 𝒯n, and any M ∈ ℝp × q, 

we have

0 ≤ F M, 𝒯n − n − m
n F M, 𝒯n − m = 1

n ∑
i ∈ 𝒯n\ℐn − m

l Xi, yi, M ≤ m(K − 1)(1 − s)
n <

ϵ1
2 + 2δ .

Therefore,

min
M ∈ Δ−

F M, 𝒯n − min
M ∈ Δ+

F M, 𝒯n − min
M ∈ Δ−

F M,  Tn, m + min
M ∈ Δ+

F M, Tn, m ≤
ϵ1

1 + δ ,

and

min
M ∈ Δ−

F M, Tn, m − min
M ∈ Δ+

F M, Tn, m >
ϵ1δ

1 + δ > 0.

The last inequality reveals that M ∈ Δ+ and thus the classifier would not break down when 

m ≤ nϵ1/[2(1 + δ)(K − 1)(1 − s)] observations are contaminated. Finally, the proof is 

complete by setting δ → 0. ◻

A.4 Derivation of Eq. (2): The dual problem

Lemma 5

For a p × q real matrix A, the subdifferential of the nuclear norm ∥·∥* is given as

∂ A
*

= UAVA
⊤ + Z Z ∈ ℝp × q, UA

⊤Z = 0, ZVA = 0, Z 2 ≤ 1 ,
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where UAΣAVA
⊤ is the SVD of A, and ∂ stands for the operator of subgradients.

Lemma 6

Suppose that X ∈ ℝp × q, ∂G(X) = ρX − P + τ∂∥X∥*, where P ∈ ℝp × q is a constant matrix 

w.r.t. X. Let the SVD of P be

P = U0Σ0V0
⊤ + U1Σ1V1

⊤,

where Σ0 contains the singular values of P which are greater than τ, and Σ1 contains the rest. 

Then, we have 0 ∈ ∂G(X*), where X* = ρ−1𝒟τ(P) = ρ−1U0 Σ0 − τI V0
⊤.

Lemma 6 can be verified by using Lemma 5 with Z = τ−1U1Σ1V0
⊤.

Now we derive the dual problem (2) of (1). As in the classical SVM, by setting C = (Nλ)−1, 

we can rewrite (1) into the following form:

min
M, b, ξ

1
2 tr  M⊤M + τ M

*
+ C ∑

i = 1

N
ξi

s.t ξi ≥ 0,  yi  tr  M⊤Xi + b ≥ 1 − ξi,  i = 1, ⋯, N .

The corresponding Lagrange function of this problem can be written as

LP(M, b, ξ, α, μ) = 1
2 tr  M⊤M + τ M

*
+ C ∑

i = 1

N
ξi

− ∑
i = 1

N
αi yi  tr  M⊤Xi + b − 1 + ξi − ∑

i = 1

N
μiξi,

(31)

where αi ≥ 0 and μi ≥ 0 are corresponding Lagrange multipliers. By setting the derivatives 

w.r.t. b and ξi of this Lagrange function to zero, we get

∑
i = 1

N
αiyi  = 0,

C − αi − μi = 0,  i = 1, ⋯, N .

Based on Lemma 6 and setting the derivative w.r.t. M to zero, we have M = 𝒟τ ∑i = 1
N αiyiXi . 

Substituting these conditions into (31), we obtain
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min
α

1
2 𝒟τ ∑

i = 1

N
αiyiXi

F

2
− ∑

i = 1

N
αi

s.t 0 ≤ αi ≤ C; i = 1, …, N, ∑
i = 1

N
αiyi = 0.

This gives us the dual problem (2) of (1).
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Fig. 1. 
Classification error rates for RMSMM, SMM, and SVM on the simulated data with Scenario 

(I) and K = 2. Here, ρ stands for the percentage of data that are contaminated. SMM: [19]’s 

support matrix machine; SVM: the standard SVM applied to the stacked-up vectors.
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Fig. 2. 
Classification error rates for RMSMM, SMM, and SVM on the simulated data with Scenario 

(I). The top three panels: the case with K = 3; the bottom three panels: the case with K = 5. 

MSMM: multicategory generalization of SMM using angle-based methods; MSVM: the 

angle-based multicategory SVM [32]; RMSVM: the robust angle-based multicategory SVM 

[34].
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Fig. 3. 
Classification error rates for RMSMM, SMM, and SVM on the simulated data with Scenario 

(II). The top three panels: the case of K = 3; the bottom three panels: the case of K = 5.
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Fig. 4. 
Comparison between the ADMM and primal-dual algorithms: Primal-Dual stands for (18), 

and Proximal-Alter stands for (19) for solving the RMSMM optimization problem (5). The 

top two panels: classification error rates under Scenario (I) with σ = 0.7 and Scenario (II) 

with σ = 4 when K = 3; The bottom two panels: the corresponding computational time (in 

seconds).
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Fig. 5. 
The decrease of the RMSMM objective values with respect to the computational time under 

Scenario (II) with K = 3 and σ = 4.
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Fig. 6. 
Classification error rates for RMSMM, MSMM, RMSVM, and MSVM on the Daily and 

Sports Activities Dataset. The left and right panels present the results when the data are 

clean or contaminated, respectively.
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Fig. 7. 
Heatmaps of the first decision matrices of RMSMM (left panel) and RMSVM (right panel)
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