
Run-and-Inspect Method for Nonconvex Optimization and Global
Optimality Bounds for R-Local Minimizers

Yifan Chen · Yuejiao Sun · Wotao Yin

Abstract Many optimization algorithms converge to stationary points. When the underlying problem
is nonconvex, they may get trapped at local minimizers and occasionally stagnate near saddle points.
We propose the Run-and-Inspect Method, which adds an “inspect” phase to existing algorithms that
helps escape from non-global stationary points. The inspection samples a set of points in a radius R
around the current point. When a sample point yields a sufficient decrease in the objective, we resume
an existing algorithm from that point. If no sufficient decrease is found, the current point is called an
approximate R-local minimizer. We show that an R-local minimizer is globally optimal, up to a specific
error depending on R, if the objective function can be implicitly decomposed into a smooth convex
function plus a restricted function that is possibly nonconvex, nonsmooth. Therefore, for such nonconvex
objective functions, verifying global optimality is fundamentally easier. For high-dimensional problems, we
introduce blockwise inspections to overcome the curse of dimensionality while still maintaining optimality
bounds up to a factor equal to the number of blocks. Our method performs well on a set of artificial and
realistic nonconvex problems by coupling with gradient descent, coordinate descent, EM, and prox-linear
algorithms.

Keywords R-local minimizer, Run-and-Inspect Method, nonconvex optimization, global minimum,
global optimality

Mathematics Subject Classification (2000) 90C26 · 90C30 · 49M30 · 65K05

1 Introduction

This paper introduces and analyzes R-local minimizers in a class of nonconvex optimization and develops
a Run-and-Inspect Method to find them.

Consider a possibly nonconvex minimization problem:

minimizeF (x) ≡ F (x1, ..., xs), (1)

where the variable x ∈ Rn can be decomposed into s blocks x1, ..., xs, s ≥ 1. We assume xi ∈ Rni .
We call a point x̄ an R-local minimizer for some R > 0 if it attains the minimum of F within the ball

with center x̄ and radius R.

This work of Y. Chen is supported in part by Tsinghua Xuetang Mathematics Program and Top Open Program for his
short-term visit to UCLA. The work of Y. Sun and W. Yin is supported in part by NSF grant DMS-1720237 and ONR
grant N000141712162.

Yifan Chen
Department of Mathematical Sciences, Tsinghua University, Beijing, China.
E-mail: chenyifan14@mails.tsinghua.edu.cn

Yuejiao Sun · Wotao Yin
Department of Mathematics, University of California, Los Angeles, CA 90095.
E-mail: sunyj /wotaoyin@math.ucla.edu

ar
X

iv
:1

71
1.

08
17

2v
2

 [
m

at
h.

O
C

]
 2

9
Ju

n
20

18

2 Yifan Chen et al.

In nonconvex minimization, it is relatively cheap to find a local minimizer but difficult to obtain a
global minimizer. For a given R > 0, the difficulty of finding an R-local minimizer lies between those
two. Informally, they have the following relationships: for any R > 0,

F is convex ⇒
{local minimizers} = {R-local minimizers} = {global minimizers};
F is nonconvex ⇒
{local minimizers} ⊇ {R-local minimizers} ⊇ {global minimizers}.

We are interested in nonconvex problems for which the last “⊇” holds with “=,” indicating that any
R-local minimizer (for a sufficiently large R) is global. This is possible, for example, if F is the sum of a
quadratic function and a sinusoidal oscillation:

F (x) =
x2

2
+ a sin

(
bπ(x− 1

2b
)

)
+ a, (2)

where x ∈ R and a, b ∈ R. The range of oscillation is specified by amplitude a and frequency b
2 . We use

− 1
2b to shift its phase so that the minimizer of F is x∗ = 0. We also add a to level the minimal objective

at F (x∗) = 0.
An example of (2) with a = 0.3 and b = 3 is depicted in Figure 1.

-3 -2 -1 0 1 2 3

0

1

2

3

4

5

6

Fig. 1 F (x) in (2) with a = 0.3, b = 3.

Observe that F has many local minimizers, and its only global minimizer is x∗ = 0. Near each local
minimizer x̄, we look for an escape point x ∈ [x̄ − R, x̄ + R] such that f(x) < f(x̄). We claim that by
taking R ≥ min{2

√
a, 2

b}, such an escape point exists for every local minimizer x̄ except x̄ = x∗.

Proposition 1 Consider minimizing F in (2). If R ≥ min{2
√
a, 2

b}, then the only point x̄ that satisfies
the condition

F (x̄) = min
{
F (x) : x ∈ [x̄−R, x̄+R]

}
(3)

is the global minimizer x∗ = 0.

Proof Suppose x̄ 6= 0. Without loss of generality we can further assume x̄ > 0. Recall the global minimizer
is x∗ = 0.
i) If x̄ ≤ 2

√
a, then x∗ ∈ [x̄−R, x̄+R] gives F (x̄) = 0, so x̄ is the global minimizer. Otherwise, we have

F (x̄− 2
√
a) < F (x̄). Indeed,

F (x̄− 2
√
a)− F (x̄) ≤ (x̄− 2

√
a)2

2
− x̄2

2
+ 2a = 2

√
a(2
√
a− x̄) < 0.

Run-and-Inspect Method and R-local minimizers 3

However, since x̄− 2
√
a ∈ [x̄−R, x̄+R], (3) fails to hold; contradiction.

ii) Similar to part i) above, if x̄ ≤ 2
b , then x̄ is the global minimizer. Otherwise, we have

F (x̄− 2
b)− F (x̄) =

(x̄− 2
b)2

2
− x̄2

2
< 0.

This leads to the contradiction similar to part i). ut

Proposition 1 indicates that we can find x∗ of this problem by locating an approximate local minimizer
x̄k (using a proper algorithm) and then inspecting a small region near x̄k (e.g., by sampling a set of
points). Once the inspection finds a point x such that f(x) < f(x̄k), resume the algorithm from x and
let it find the next approximate local minimizer x̄k+1 such that f(x̄k+1) ≤ f(x). Alternate such running
and inspection steps until, at a local minimizer x̄K , the inspection fails to find a better point nearby.
Then, x̄K must be an approximate global solution. We call this procedure the Run-and-Inspect Method.

The coupling of “run” and “inspect” is simple and flexible because, no matter which point the “run”
phase generates, being it a saddle point, local minimizer, or global minimizer, the “inspect” phase will
either improve upon it or verify its optimality. Because saddle points are easier to escape from than a
non-global local minimizer, hereafter, we ignore saddle points in our discussion. Related saddle-point
avoiding algorithms are reviewed below along with other literature.

Sample-based inspection works in low dimensions. However, it suffers from the curse of dimensionality,
as the number of points will increase exponentially with the dimension. For high-dimensional problems,
the cost will be prohibitive. To address this issue, we define the blockwise R-local minimizer and break
the inspection into s blocks of low dimensions: x = [xT1 xT2 · · · xTs]T where xi ∈ Rni . We call a point x̄ a
blockwise R-local minimizer, where R = [R1 R2 · · · Rs]T > 0, if it satisfies

F (x̄1, ..., x̄i, ..., x̄s) ≤ min
xi∈B(x̄i,Ri)

F (x̄1, ..., xi, ..., x̄s), ∀1 ≤ i ≤ s, (4)

where B(x,R) is a closed ball with center x and radius R. To locate a blockwise R-local minimizer, the
inspection is applied to every block while fixing the others. Its cost grows linearly in the number of blocks
when the size of every block is fixed.

This paper studies R-local and blockwise R-local minimizers and develop their global optimality
bounds for a class of function F that is the sum of a smooth, strongly convex function and a restricted
nonconvex function. (Our analysis assumes a property weaker than strong convexity.) Roughly speaking,
the landscape of F is convex at a coarse level, and it can have many local minima. (Arguably, if the
landscape of F is overall nonconvex, minimizing F is fundamentally difficult.)

This decomposition is implicit and only used to prove bounds. Our Run-and-Inspect Method, which
does not use the decomposition, can still provably find a solution that has a bounded distance to a global
minimizer and an objective value that is bounded by the global minimum. Both bounds can be zero with
a finite R.

The radius R affects theoretical bounds, solution quality, and inspection cost. If R is very small, the
inspections will be cheap, but the solution returned by our method will be less likely to be global. On
the other hand, an excessive large R leads to expensive inspection and is unnecessary since the goal of
inspection is to escape local minima rather than decrease the objective. Theoretically, Theorem 3 indicates
a proper choice R = 2

√
β/L, where β, L are parameters of the functions in the implicit decomposition.

Furthermore, if R is larger than a certain threshold given in Theorem 4, then x̄ returned by our method
must be a global minimizer. However, as these value and threshold are associated with the implicit
decomposition, they are typically unavailable to the user.

One can imagine that a good practical choice of R would be the radius of the global-minimum valley,
assuming this valley is larger than all other local-minimum valleys. This choice is hard to guess, too.
Another choice of R is roughly inversely proportional to ‖∇f‖, where f is the smooth convex component
in the implicit decomposition of F . It is possible to estimate ‖∇f‖ using an area maximum of ‖∇F‖,
which itself requires a radius of sampling, unfortunately. (‖∇F‖ is zero at any local minimizer, so its
local value is useless.) However, this result indicates that local minimizers that are far from the global
minimizer are easier to escape from.

4 Yifan Chen et al.

We empirically observe that it is both fast and reliable to use a large R and sample the ball B(x̄, R)
outside-in, for example, to sample on a set of rings of radius R,R − ∆R,R − 2∆R, . . . > 0. In most
cases, a point on the first couple of rings is quickly found, and we escape to that point. The smallest
ring is almost never sampled except when x̄ is already an (approximate) global minimizer. Although
the final inspection around a global minimizer is generally unavoidable, global minimizers in problems
such as compressed sensing and matrix decomposition can be identified without inspection because they
have the desired structure or attained a lower bound to the objective value. Anyway, it appears that
choosing R is ad hoc but not difficult. Throughout our numerical experiments, we use R = O(1) and
obtain excellent results consistently.

The exposition of this paper is limited to deterministic methods though it is possible to apply stochas-
tic techniques. We can undoubtedly adopt stochastic approximation in the “run” phase when, for example,
the objective function has a large-sum structure. Also, if the problem has a coordinate-friendly struc-
ture [16], we can randomly choose a coordinate, or a block of coordinates, to update each time. Another
direction worth pursuing is stochastic sampling during the “inspect” phase. These stochastic techniques
are attractive in specific settings, but we focus on non-stochastic techniques and global guarantees in this
paper.

1.1 Related work

1.1.1 No spurious local minimum

For certain nonconvex problems, a local minimum is always global or good enough. Examples include
tensor decomposition [6], matrix completion [7], phase retrieval [22], and dictionary learning [21] under
proper assumptions. When those assumptions are violated to a moderate amount, spurious local minima
may appear and be possibly easy to escape. We will inspect them in our future work.

1.1.2 First-order methods, derivative-free method, and trust-region method

For nonconvex optimization, there has been recent work on first-order methods that can guarantee
convergence to a stationary point. Examples include the block coordinate update method [25], ADMM
for nonconvex optimization [23], the accelerated gradient algorithm [8], the stochastic variance reduction
method [18], and so on.

Because the “inspect” phase of our method uses a radius, it is seemingly related to the trust-region
method [3,12] and derivative-free method [4], both of which also use a radius at each step. However, the
latter methods are not specifically designed to escape from a non-global local minimizer.

1.1.3 Avoiding saddle points

A recent line of work aims to avoid saddle points and converge to an ε-second-order stationary point x̄
that satisfies

‖∇F (x̄)‖ ≤ ε and λmin(∇2F (x̄)) ≥ −√ρε, (5)

where ρ is the Lipschitz constant of ∇2F (x). Their assumption is the strict saddle property, that is, a
point satisfying (5) for some ρ > 0 and ε > 0 must be an approximate local minimizer. On the algorithmic
side, there are second-order algorithms [13,15] and first-order stochastic methods [6,9,14] that can escape
saddle points. The second-order algorithms use Hessian information and thus are more expensive at each
iteration in high dimensions. Our method can also avoid saddle points.

Run-and-Inspect Method and R-local minimizers 5

1.1.4 Simulated annealing

Simulated annealing (SA) [11] is a classical method in global optimization, and thermodynamic princi-
ples can interpret it. SA uses a Markov chain with a stationary distribution ∼ e−

F (x)

T , where T is the
temperature parameter. By decreasing T , the distribution tends to concentrate on the global minimizer
of F (x). However, it is difficult to know exactly when it converges, and the convergence rate can be
extremely slow.

SA can be also viewed as a method that samples the Gibbs distribution using Markov-Chain Monte
Carlo (MCMC). Hence, we can apply SA in the “inspection” of our method. SA will generate more
samples in a preferred area that are more likely to contain a better point, which once found will stop the
inspection. Apparently, because of the hit-and-run nature of our inspection, we do not need to wait for
the SA dynamic to converge.

1.1.5 Flat minima in the training of neural networks

Training a (deep) neural network involves nonconvex optimization. We do not necessarily need to find a
global minimizer. A local minimizer will suffice if it generalizes well to data not used in training. There
are many recent attempts [1,2,19] that investigate the optimization landscapes and propose methods to
find local minima sitting in “rather flat valleys.”

Paper [1] uses entropy-SGD iteration to favor flatter minima. It can be seen as a PDE-based smoothing
technique [2], which shows that the optimization landscape becomes flatter after smoothing. It makes
the theoretical analysis easier and provides explanations for many interesting phenomena in deep neural
networks. But, as [24] has suggested, a better non-local quantity is required to go further.

1.2 Notation

Throughout the paper, ‖ · ‖ denotes the Euclidean norm. Boldface lower-case letters (e.g., x) denote
vectors. However, when a vector is a block in a larger vector, it is represented with a lower-case letter
with a subscript, e.g., xi.

1.3 Organization

The rest of this paper is organized as follows. Section 2 presents the main analysis of R-local and blockwise
R-local minimizers, and then introduces the Run-and-Inspect Method. Section 3 presents numerical
results of our Run-and-Inspect method. Finally, Section 4 concludes this paper.

2 Main Results

In sections 2.1–2.3, we develop theoretical guarantees for our R-local and R-local minimizers for a class
of nonconvex problems. Then, in section 2.4, we design algorithms to find those minimizers.

2.1 Global optimality bounds

In this section, we investigate an approach toward deriving error bounds for a point with certain prop-
erties.

Consider problem (1), and let x∗ denote one of its global minimizers. A global minimizer owns many
nice properties. Finding a global minimizer is equivalent to finding a point satisfying all these properties.
Clearly, it is easier to develop algorithms that aim at finding a point x̄ satisfying only some of those
properties. An example is that when F is everywhere differentiable, ∇F (x∗) = 0 is a necessary optimality
condition. So, many first-order algorithms that produce a sequence xk such that ‖∇F (xk)‖ → 0 may

6 Yifan Chen et al.

converge to a global minimizer. Below, we focus on choosing the properties of x∗ so that a point x̄
satisfying the same properties will enjoy bounds on F (x̄) − F (x∗) and ‖x̄ − x∗‖. Of course, proper
assumptions on F are needed, which we will make as we proceed.

Let us use Q to represent a certain set of properties of x∗, and define

SQ = {x : x satisfies property Q}, (6)

which includes x∗. For any point x̄ that also belongs to the set, we have

F (x̄)− F (x∗) ≤ max
x,y∈SQ

F (x)− F (y)

and

‖x̄− x∗‖ ≤ diam(SQ),

where diam(SQ) stands for the diameter of the set SQ. Hence, the problem of constructing an error
bound reduces to analyzing the set SQ under certain assumptions on F .

As an example, consider a µ-strongly convex and differentiable F and a simple choice of Q as
‖∇F (x)‖ ≤ δ with δ > 0. This choice is admissible since ‖∇F (x∗)‖ = 0 ≤ δ. For this choice, we
have

F (x̄)− F (x∗) ≤ ‖∇F (x̄)‖2

2µ
≤ δ2

2µ
,

and
‖x̄− x∗‖ ≤ ‖∇F (x̄)‖

µ
≤ δ

µ
,

where the first “≤” in both bounds follows from the strong convexity of F .
We now restrict F to the implicit decomposition

F (x) = f(x) + r(x). (7)

We use the term “implicit” because this decomposition is only used for analysis, not required by our
Run-and-Inspect Method. Define the sets of the global minimizers of F and f as, respectively,

χ∗ := {x : F (x) = min
y
F (y)},

χ∗f := {x : f(x) = min
y
f(y)}.

Below we make three assumptions on (7). The first and third assumptions are used throughout this
section. Only some of our results require the second assumption.

Assumption 1 f(x) is differentiable, and ∇f(x) is L-Lipschitz continuous.

Assumption 2 f(x) satisfies the Polyak-Łojasiewicz (PL) inequality [17] with µ > 0:

1

2
‖∇f(x)‖2 ≥ µ(f(x)− f(x∗)), ∀x ∈ Rn, x∗ ∈ χ∗f . (8)

Given a point x, we define its projection

xP := argmin
x∗∈χ∗f

{‖x∗ − x‖}.

Then, the PL inequality (8) yields the quadratic growth (QG) condition [10]:

f(x)− f(x∗) = f(x)− f(xP) ≥ µ

2
‖x− xP‖2, ∀x ∈ Rn. (9)

Clearly, (8) and (9) together imply

‖∇f(x)‖ ≥ µ‖x− xP‖. (10)

Assumption 2 ensures that the gradient of f bounds its objective error.

Run-and-Inspect Method and R-local minimizers 7

Assumption 3 r(x) satisfies |r(x)− r(y)| ≤ α‖x− y‖+ 2β in which α, β ≥ 0 are constants.

Assumption 3 implies that r is overall α-Lipschitz continuous with additional oscillations up to 2β. In
the implicit decomposition (7), though r can cause F to have non-global local minimizers, its impact on
the overall landscape of f is limited. For example, the `pp (0 < p < 1) penalty in compressed sensing is
used to induce sparsity of solutions. It is nonconvex and satisfies our assumption

||x|p − |y|p| ≤
∣∣|x| − |y|∣∣p ≤ p|x− y|+ 1− p, x, y ∈ R.

In fact, many sparsity-induced penalties satisfy Assumption 3. Many of them are sharp near 0 and thus
not Lipschitz there. In Assumption 3, β models their variation near 0 and α controls their increase
elsewhere.

In section 2.2, we will show that every x∗ ∈ χ∗ satisfies ‖∇f(x∗)‖ ≤ δ for a universal δ that depends
on α, β, L. So, we choose the condition

Q : ‖∇f(x)‖ ≤ δ. (11)

To derive the error bound, we introduce yet another assumption:

Assumption 4 The set χ∗f is bounded. That is, there exists M ≥ 0 such that, for any x,y ∈ χ∗f , we
have ‖x− y‖ ≤M .

When f has a unique global minimizer, we have M = 0 in Assumption 4.

Theorem 2 Take Assumptions 1, 2 and 3, and assume that all points in χ∗ have property Q in (11).
Then, the following properties hold for every x̄ ∈ SQ:

1. F (x̄)− F ∗ ≤ δ2

2µ + 2β, if α = 0 in Assumption 3;

2. d(x̄, χ∗) ≤ 2δ
µ +M and F (x̄)− F ∗ ≤ δ2+2αδ

µ + αM + 2β, if α ≥ 0 and Assumption 4 holds.

Proof To show part 1, we have

F (x̄)− F ∗ = (f(x̄)− f(x∗)) + (r(x̄)− r(x∗)) ≤ max
x∈Rn

(f(x̄)− f(x)) + 2β

(8)
≤ ‖∇f(x̄)‖2

2µ
+ 2β ≤ δ2

2µ
+ 2β.

Part 2: Since f satisfies the PL inequality (8) and x̄ ∈ SQ, we have

d(x̄, χ∗f)
(10)
≤ ‖∇f(x̄)‖

µ

(11)
≤ δ

µ
.

By choosing an x∗ ∈ χ∗ and noticing x∗ ∈ SQ, we also have d(x∗, χ∗f) ≤ δ
µ and thus

d(x̄, χ∗) ≤ d(x̄, χ∗f) +M + d(x∗, χ∗f) ≤ 2δ

µ
+M.

Below we let x̄P and x∗P, respectively, denote the projections of x̄ and x∗ onto the set χ∗f . Since f(x̄P) =
f(x∗P), we obtain

F (x̄)− F ∗ = (f(x̄)− f(x̄P)) +
(
f(x∗P)− f(x∗)

)
+
(
r(x̄)− r(x∗)

)
≤ ‖∇f(x̄)‖2

2µ
+
‖∇f(x∗)‖2

2µ
+ α‖x̄− x∗‖+ 2β

≤ δ2 + 2αδ

µ
+ αM + 2β. ut

In the theorem above, we have constructed global optimality bounds for x̄ obeying Q. In the next two
subsections, we show that R-local minimizers, which include global minimizers, do obey Q under mild
conditions. Hence, the bounds apply to any R-local minimizer.

8 Yifan Chen et al.

2.2 R-local minimizers

In this section, we define and analyze R-local minimizers. We discuss its blockwise version in section 2.3.
Throughout this subsection, we assume that R ∈ (0,∞], and B(x, R) is a closed ball centered at x with
radius R.

Definition 1 The point x̄ is called a standard R-local minimizer of F if it satisfies

F (x̄) = min
x∈B(x̄,R)

F (x). (12)

Obviously an R-local minimizer is a local minimizer, and when R = ∞, it is a global minimizer. Con-
versely, a global minimizer is always an R-local minimizer.

We first bound the gradient of f at an R-local minimizer so that Q in (11) is satisfied.

Theorem 3 Suppose, in (7), f and r satisfy Assumptions 1 and 3. Then, a point x̄ obeys Q in (11)
with δ given in the following two cases:

1. δ = α if r is differentiable with α ≥ 0 and β = 0 in (3) and x̄ is a stationary point of F ;
2. δ = α+ max{4β

R , 2
√
βL} if x̄ is a standard R-local minimizer of F .

Proof Under the conditions in part 1, we have β = 0 and ∇F (x̄) = 0, so ‖∇f(x̄)‖ = ‖∇r(x̄)‖ ≤ α = δ.
Hence, Q is satisfied.

Under the conditions in part 2, x̄ is an R-local minimizer of F ; hence,

min
x∈B(x̄,R)

{f(x)− f(x̄) + r(x)− r(x̄)} ≥ 0,

a)⇒ min
x∈B(x̄,R)

{2β + α‖x− x̄‖+ 〈∇f(x̄),x− x̄〉+
L

2
‖x− x̄‖2} ≥ 0,

b)⇔ min
x∈B(x̄,R)

{2β + (α− ‖∇f(x̄)‖)‖x− x̄‖+
L

2
‖x− x̄‖2} ≥ 0, (13)

where a) is due to the assumption on r and that ∇f(x) is L-Lipschitz continuous; b) is because, as ‖x−x̄‖
is fixed, the minimum is attained with x−x̄

‖x−x̄‖ = − ∇f(x)
‖∇f(x)‖ . If ‖∇f(x)‖ ≤ α, Q is immediately satisfied.

Now assume ‖∇f(x)‖ > α. To simplify (13), we only need to minimize a quadratic function of ‖x − x̄‖
over [0, R]. Hence, the objective equals{

2β + (α− ‖∇f(x̄)‖)R+ L
2R

2, if R ≤ ‖∇f(x̄)‖−α
L ,

2β − (‖∇f(x̄)‖−α)2

2L , otherwise.
(14)

If R ≤ ‖∇f(x̄)‖−α
L , from 2β + (α− ‖∇f(x̄)‖)R+ L

2R
2 ≥ 0, we get

‖∇f(x̄)‖ ≤ α+
2β

R
+
LR

2
≤ α+

2β

R
+
‖∇f(x̄)‖ − α

2

⇒ ‖∇f(x̄)‖ ≤ α+
4β

R
.

Otherwise, from 2β − (‖∇f(x̄)‖−α)2

2L ≥ 0, we get

‖∇f(x̄)‖ ≤ α+ 2
√
βL.

Combining both cases, we have ‖∇f(x̄)‖ ≤ α+ max{4β
R , 2
√
βL} = δ and thus Q. ut

The next result is a consequence of part 2 of the theorem above. It presents the values of R that ensure
the escape from a non-global local minimizer. In addition, more distant local minimizers x are easier to
escape in the sense that R is roughly inversely proportional to ‖∇f(x)‖.

Corollary 1 Let x be a local minimizer of F and ‖∇f(x)‖ > α+2
√
βL. As long as either R > 4β

‖∇f(x)‖−α

or R ≥ 2
√
β/L, there exists y ∈ B(x, R) such that F (y) < F (x).

Run-and-Inspect Method and R-local minimizers 9

Proof Assume that the result does not hold. Then, x is an R-local minimizer of F . Applying part
2 of Theorem 3, we get ‖∇F (x)‖ ≤ δ = α + max{4β

R , 2
√
βL}. Combining this with the assumption

‖∇f(x)‖ > α+ 2
√
βL, we obtain

α+ 2
√
βL < ‖∇f(x)‖ ≤ α+ max{4β

R
, 2
√
βL},

from which we conclude 2
√
βL < 4β

R and ‖∇f(x)‖ ≤ α+ 4β
R ; We have reached a contradiction. ut

We can further increase R to ensure that any R-local minimizer x̄ is a global minimizer.

Theorem 4 Under Assumptions 1, 2 and 3 and R ≥ 2
√
β/L, we have d(x̄, χ∗) ≤ 2α+2

√
βL

µ +M for any

R-local minimizer x̄. Therefore, if R ≥ 2α+2
√
βL

µ +M , any R-local minimizer x̄ is a global minimizer.

Proof According to Theorem 2, part 2, and Theorem 3, part 2,

d(x̄, χ∗) ≤ 2
δ

µ
+M ≤ 2

α+ 2
√
βL

µ
+M,

where, for the latter inequality, we have used R ≥ 2
√
β/L and thus max{4β/R, 2

√
βL} = 2

√
βL. By

convex analysis on f , we have µ ≤ L. Using it with α ≥ 0 and M ≥ 0, we further get 2α+2
√
βL

µ + M ≥
4
√
βL/µ ≥ 4

√
βL/L ≥ 2

√
β/L. Therefore, if R ≥ 2α+2

√
βL

µ + M , then there exists x∗ ∈ χ∗ such that
x∗ ∈ B(x̄, R). Being an R-local minimizer means x̄ satisfies F (x̄) ≤ F (x∗), so x̄ is a global minimizer. ut

Remark 1 Since the decomposition (7) is implicit, the constants in our analysis are difficult to estimate
in practice. However, if we have a rough estimate of the distance between the global minimizer and its
nearby local minimizers, then this distance appears to be a good empirical choice for R.

2.3 Blockwise R-local minimizers

In this section, we focus on problem (1). This blockwise structure of F motivates us to consider block-
wise algorithms. Suppose R ∈ Rs and R = (R1, ..., Rs) ≥ 0. When we fix all blocks but xi, we write
F (x̄1, ..., xi, ..., x̄s) as F (xi, x̄−i).

Definition 2 A point x̄ is called a blockwise R-local minimizer of F if it satisfies

F (x̄i, x̄−i) = min
xi∈B(x̄i,Ri)

F (xi, x̄−i), 1 ≤ i ≤ s,

where F (x̄) = F (x̄i, x̄−i).

When R =∞, x̄ is known as a Nash equilibrium point of F .
We can obtain similar estimates on the gradient of f for blockwise R-local minimizers. Recall that

SQ = {x : ‖∇f(x)‖ ≤ δ}.

Theorem 5 Suppose f and r satisfy Assumptions 1 and 3. If x̄ is a blockwise R-local minimizer of F ,
then x̄ ∈ SQ (i.e, the property Q is met) for δ = ‖v‖ := (

∑
|v2
i |)

1
2 where vi := α + max{ 4β

Ri
, 2
√
βL},

1 ≤ i ≤ s.

Proof x̄i is an Ri-local minimizer of F (xi, x̄−i). Since F (xi, x̄−i) = f(xi, x̄−i)+r(xi, x̄−i) and f(xi, x̄−i)
and r(xi, x̄−i) satisfy Assumption 1 and Assumption 3, Theorem 3 shows that ‖∇if(x̄i, x̄−i)‖ ≤ α +
max{ 4β

Ri
, 2
√
βL} = vi. Hence ‖∇f(x̄)‖ ≤ ‖v‖. ut

Remark 2 We can also obtain a simplified version of Theorem 5, which is

‖∇f(x̄)‖ ≤ δ :=
√
s

(
α+ max{ 4β

miniRi
, 2
√
βL}

)
.

The main difference between the standar and blockwise estimates is the extra factor
√
s in the latter.

10 Yifan Chen et al.

Remark 3 Since we can set R =∞, our results apply to Nash equilibrium points.

Generalized from Corollary 1, the following result provides estimates of Ri for escaping from non-
global local minimizers. The estimates are smaller when ∇if are larger.

Corollary 2 Let x be a local minimizer of F and ‖∇if(xi,x−i)‖ > α + 2
√
βL for some i. As long as

Ri >
4β

‖∇if(xi,x−i)‖−α , there exists y ∈ B(xi, Ri), such that F (y,x−i) < F (xi,x−i).

The theorem below, which follows from Theorems 2 and 5, bounds the distance of an R-local minimizer
to the set of global minimizers. We do not have a vector R to ensure the global optimality of x̄ due to
the blockwise limitation. Of course, after reaching x̄, if we switch to standard (non-blockwise) inspection
to obtain an standard R-local minimizer, we will be able to apply Theorem 4.

Theorem 6 Suppose f and r satisfy Assumptions 1–3. If x̄ is a blockwise R-local minimizer of F , then

d(x̄, χ∗) ≤ 2
√
s

µ

(
α+ max{ 4β

miniRi
, 2
√
βL}

)
+M.

2.4 Run-and-Inspect Method

In this section, we introduce our Run-and-Inspect Method. The “run” phase can use any algorithm that
monotonically converges to an approximate stationary point. When the algorithm stops at either an
approximate local minimizer or a saddle point, our method starts its “inspection” phase, which either
moves to a strictly better point or verifies that the current point is an approximate (blockwise) R-local
minimizer.

2.4.1 Approximate R-local minimizers

We define approximate R-local minimizers. Since an R-local minimizer is a special case of a blockwise
R-local minimizer, we only deal with the latter. Let x = [xT1 · · ·xTs]T . A point x̄ is called a blockwise
R-local minimizer of F up to η = [η1 · · · ηs]T ≥ 0 if it satisfies

F (x̄i, x̄−i) ≤ min
xi∈B(x̄i,Ri)

F (xi, x̄−i) + ηi, 1 ≤ i ≤ s;

when s = 1, we say x̄ is an R-local minimizer of F up to η. It is easy to modify the proof of Theorem 3
to get:

Theorem 7 Suppose f and r satisfy Assumptions 1 and 3. Then x̄ ∈ SQ if x̄ is a blockwise R-local
minimizer of F up to η and δ ≥ ‖v‖ := (

∑
|v2
i |)

1
2 for vi = α+ max{4β+2ηi

Ri
,
√

(4β + 2ηi)L}, 1 ≤ i ≤ s.

Whenever the condition x̄ ∈ SQ holds, our previous results for blockwise R-local minimizers are appli-
cable.

2.4.2 Algorithms

Now we present two algorithms based on our Run-and-Inspect Method. Suppose that we have imple-
mented an algorithm and it returns a point x̄. For simplicity let Alg denote this algorithm. To verify the
global optimality of x̄, we seek to inspect F around x̄ by sampling some points. Since a global search is
apparently too costly, the inspection is limited in a ball centered at x̄, and for high-dimensional problems,
further limited to lower-dimensional balls.

The inspection strategy is to sample some points in the ball around the current point and stop
whenever either a better point is found or it finishes the last point. By “better", we mean the objective
value decreases by at least a constant amount ν > 0. We call this ν descent threshold. If a better point is
found, we resume Alg at that point. If no better point is found, the current point is an R-local or R-local
minimizer of F up to η, where η depends on the density of sample points and the Lipschitz constant of
F in the ball.

Run-and-Inspect Method and R-local minimizers 11

Algorithm 1 Run-and-Inspect Method
1: Set k = 0 and choose x0 ∈ Rn;
2: Choose the descent threshold ν > 0;
3: loop
4: x̄k = Alg(xk);
5: Generate a set S of sample points in B(x̄k, R);
6: if there exists y ∈ S such that F (y) < F (x̄k)− ν then
7: xk+1 = y;
8: k = k + 1;
9: else
10: stop and return x̄k;
11: end if
12: end loop

If Alg is a descent method, i.e., F (x̄k) ≤ F (xk), algorithm 1 will stop and output a point x̄k
∗
within

finitely many iterations: k∗ ≤ F (x0)−F ∗
ν , where F ∗ is the global minimum of F .

The sampling step is a hit-and-run, that is, points are only sampled when they are used, and the
sampling stops whenever a better point is obtained (or all points have been used). The method of
sampling and the number of sample points can vary throughout iterations and depend on the problem
structure. In general, sampling points from the outside toward the inside is more efficient.

Here, we analyze a simple approach in which sufficiently many well-distributed points are sampled to
ensure that x̄k

∗
is an approximate R-local minimizer.

Theorem 8 Assume that f(x) is L̄-Lipschitz continuous1 in the ball B(x̄, R) and the set of sample points
S = {y1,y2, ...,ym} has density r̄, that is,

max
x∈B(x̄,R)

min
0≤j≤m

‖x− yj‖ ≤ r̄

where y0 = x̄. If

F (yj) ≥ F (x̄)− ν, j = 1, 2, . . . ,m,

then the point x̄ is an R-local minimizer of F up to η = ν + (L̄+ α)r̄ + 2β.

Proof Suppose min
x∈B(x̄,R)

F (x) is attained at x̃. Since S has density r, we have yj such that

‖f(x̃)− f(yj)‖ ≤ L̄r̄,
‖r(x̃)− r(yj)‖ ≤ αr̄ + 2β.

From F (x̄)− ν ≤ F (yj) and F (yj) = F (x̃) + (F (yj)− F (x̃)), it follows

F (x̄) ≤ min
x∈B(x̄,R)

F (x) + ν + (L̄+ α)r̄ + 2β. ut

When the dimension of x is high , it is impractical to inspect over a high-dimensional ball. This motivates
us to extend algorithm 1 to its blockwise version.

1 Do not confuse with the Lipschitz constant L of ∇f .

12 Yifan Chen et al.

Algorithm 2 Run-and-Inspect Method (blockwise version)
1: Set k = 0 and choose x0 ∈ Rn;
2: Choose the descent threshold ν > 0;
3: loop
4: x̄k = Alg(xk);
5: Generate sets Si of sample points in B(x̄ki , Ri) for i = 1, ..., s;
6: if there exist i and z ∈ Si such that F (z, x̄k−i) < F (x̄k, x̄k−i)− ν then
7: xk+1

i = z;
8: xk+1

j = x̄kj for all j 6= i;
9: k = k + 1;
10: else
11: stop and return x̄k;
12: end if
13: end loop

Algorithm 2 samples points in a block while keeping other block variables fixed. This algorithm ends
with an approximate blockwise R-local minimizer.

Theorem 9 Assume that f(xi, x̄−i) is L̄i-Lipschitz continuous in the ball B(x̄i, Ri) for 1 ≤ i ≤ s and
the set of sample points Si = {zi1, zi2, . . . , zimi}, 1 ≤ i ≤ s has blockwise-density r̄, that is,

max
xi∈B(x̄i,Ri)

min
0≤j≤mi

‖xi − zij‖ ≤ r̄, ∀1 ≤ i ≤ s,

where zi0 = x̄i. If

F (zij , x̄−i) ≥ F (x̄)− ν, j = 1, 2, . . . ,mi, i = 1, 2 . . . , s,

then x̄ is a blockwise R-local minimizer of F up to η = [η1, . . . , ηs]
T for ηi = ν + (L̄i + α)r̄ + 2β.

The proof is similar to that of Theorem 8.
The next proposition states that inspection around a point with sufficiently large partial gradient of

f ensures a sufficient descent.

Proposition 10 Assume that we sample points in the ball B(x̄i, Ri) with density r̄ ≤ Ri
2 . If ‖∇if(x̄i, x̄−i)‖ ≥

9
2Lir̄ + 3α+ 2β+ν

r̄ , then there exists at least one sampled point zi which satisfies

F (zi, x̄−i) < F (x̄)− ν. (15)

Proof Let xi = x̄i − 2 ∇if(x̄i)
‖∇if(x̄i)‖ r̄. There exists zi ∈ B(x̄i, Ri) such that ‖xi − zi‖ ≤ r̄. Then

F (zi, x̄−i) = f(zi, x̄−i) + r(zi, x̄−i) ≤ f(zi, x̄−i) + r(x̄) + 3αr̄ + 2β

≤ f(x̄) + 〈∇if(x̄i, x̄−i), zi − x̄i〉+
Li
2
‖zi − xi‖2 + r(x̄) + 3αr̄ + 2β

= F (x̄) + 〈∇if(x̄i, x̄−i), zi − xi〉+ 〈∇if(x̄i, x̄−i), xi − x̄i〉+
Li
2
‖zi − xi‖2 + 3αr̄ + 2β

≤ F (x̄)− ‖∇if(x̄i, x̄−i)‖r̄ +
9

2
Lir̄

2 + 3αr̄ + 2β

≤ F (x̄)− ν. ut

Therefore L̄i in Theorem 9 can be bounded by 9
2Lir̄ + 3α+ 2β+ν

r̄ + LiRi. And we can set

ηi = 2ν +
9

2
Lir̄

2 + 4αr̄ + 4β + LiRir̄.

This bound is not tight when Ri is very large.

Run-and-Inspect Method and R-local minimizers 13

2.5 Complexity analysis

Since Algorithm 2 generalizes Algorithm 1 to multiple blocks, we analyze the complexity of the former.
There are quite many parameters that affect the complexity results. In this analysis, we focus on

the dimension of the space d and different options to set the dimension d′ of each block, assuming
that all blocks have the same dimension d′ ≤ d and d′ evenly divides d, thus, creating exactly s =
d/d′ blocks of variables. We assume that the smoothness and strong-convexity parameters of f are
Li = L ≥ µ, respectively. Of course, L, µ affect the complexity significantly though not as much as
the dimensions (unless L, µ themselves depend on d). Assume the function r satisfies Assumption 3
with parameters α, β ∈ [0, 1). The R-local min tolerance ηi of each block i is tied to β, ν, r̄ (density
of sample points), and Ri. Based on Theorem 9 and Proposition 10 and using free parameters cν , cr̄, t

that will be tuned later, we set ν := cνβ, r̄ :=
√
cr̄β
L , Ri ≡ R := tr̄ for some t ≥ 2 and thus get

ηi ≡ η = 2ν + 9
2Lir̄

2 + 4αr̄ + 4β + LiRir̄ =
(
2cν +

(
9
2 + t

)
cr̄ + 4

)
β + 4α

√
cr̄β
L .

Remember Theorem 7 gives a bound on δ for Algorithm 2,

δ ≥
√
d

d′

(
α+ max{4β + 2η

R
,
√

(4β + 2η)L}
)

=

√
d

d′

(
α+ c1

√
βL
)
, (16)

where c1 = max{
4+2 η

β

t
√
cr̄
,
√

4 + 2 ηβ }. Using this δ, Theorem 2 produces global error bounds. We can calcu-
late that our Algorithm 2 using Ri = tr̄ will return an approximate R-local minimizer x̄ satisfying the
global error bound:

F (x̄)− F (x∗) ≤ δ2 + 2αδ

µ
+ 2β = c2

(
d

d′

(
α+ c1

√
βL
)2

µ

)
, (17)

where c2 = 1 + 2αδ + 2µβ
δ2 ≤ 4.

For simplicity, we set cr̄ = cν = 1, t = 6 and assume α <
√
βL. By (16), (17), we will get

F (x̄)− F (x∗) ≤ 4

(
d

d′

(
α+ 7.5

√
βL
)2

µ

)
(18)

Next, we take three steps to calculate the complexity of Algorithm 2:

– Since Alg is a descent algorithm and each inspection decreases the objective error by at least ν = cνβ,
with initial point x0, we need at most O

(
F (x0)−F (x∗)

cνβ

)
inspections or loops in Algorithm 2. Under

our assumption cν = 1, the number of inspections is O
(
F (x0)−F (x∗)

β

)
– In each loop, Algorithm 2 runs Alg with a complexity CAlg and perform an inspection.
– Each inspection involves at most d

d′ blocks. When inspecting each d′-dimensional block, we sample
an r̄-net. For simplicity, we just sample the points on a uniform grid. Now the space are partitioned
into many squares. The distance between the center and grid points of each square should be the
density r̄, for which the grid width needs to be 2r̄√

d′
. Hence, the volumn of each square is vd′(r̄) =(

2r̄√
d′

)d′
. The volumn of the inspection ball is Vd′(Ri) =

π
d′
2 Rd

′
i

Γ (d
′

2
+1)

. By Stirling’s formula, Γ (d
′

2 + 1) ≈
√

2π(d
′

2)
d′
2

+ 1
2 e−

d′
2 . Then the total number of the inspected points is around

Vd′(Ri)

vd′(r̄)
≈ π

d′
2 Rd

′

i
√

2π(d
′

2)
d′
2

+ 1
2 e−

d′
2

(
2r̄√
d′

)d′ =
(πe

2

) d′
2 1√

πd′

(
Ri
r̄

)d′
= eΘ(d′(log(Rir̄)+ 1

2
log(πe2))).

Using our choice R = tr̄ and 1
2 log

(
πe
2

)
≈ 0.54, we get

Vd′(Ri)

vd′(r̄)
= eΘ(d′(log(t)+0.54)),

where t = 6 under our assumption.

14 Yifan Chen et al.

The complexity of Algorithm 2 is the product of the number of loops and the complexity of each loop:

O

(
F (x0)− F (x∗)

β

d

d′
eO(d′ log(6)+0.54d′)

)
. (19)

– If we choose d′ = Θ(d), then d
d′ = Θ(1). In this case by (18), our algorithm can reach a good accuracy

of O
(

(α+7.5
√
βL)

2

µ

)
. On the other hand, the inspection complexity (19) is exponential in d.

– If we go to the other extreme by choosing d′ = Θ(1), then d
d′ = Θ(d). The complexity (19) reduce

to a polynomial in d, but the accuracy becomes worse, O
(
d

(α+7.5
√
βL)

2

µ

)
. In general, it becomes

proportional in the dimension d. Except, if the function r is very nice with α = O(1√
d

), β = O(1
d),

then the relative accuracy is still good at O (1).
– In general, we can choose d′ = Θ(dv) for v ∈ (0, 1), where the choice of v controls the tradeoff between

the accuracy and complexity.

3 Numerical experiments

In this section, we apply our Run-and-Inspect Method to a set of nonconvex problems. We admit that it is
difficult to apply our theoretical results because the implicit decomposition F = f + r with f, r satisfying
their assumptions is not known. Nonetheless, The encouraging experimental results below demonstrate
the effectiveness of our Run-and-Inspect Method on nonconvex problems even though they may not have
the decomposition.

3.1 Test example : Ackley’s function

The Ackley function is widely used for testing optimization algorithms, and in R2, it has the form

f(x, y) = −20e−0.2
√

0.5(x2+y2) − e0.5(cos 2πx+cos 2πy) + e+ 20.

Fig. 2 Landscape of Ackley’s function in R2.

The function is symmetric, and its oscillation is regular. To make it less peculiar, we modify it to an
asymmetric function:

F (x, y) = −20e−0.04(x2+y2) − e0.7(sin(xy)+sin y)+0.2 sin(x2) + 20. (20)

The function F in (20) has a lot of local minimizers, which are irregularly distributed. If we simply
use the gradient descent (GD) method without a good initial guess, it will converge to a nearby local

Run-and-Inspect Method and R-local minimizers 15

10

0
-5

0

-10

5

10

15

20

6 5 4 3 2 1 0 -1 -2
-2 -1 0 1 2 3 4 5 6

-2

-1

0

1

2

3

4

5

6

Fig. 3 Landscape and contour of F in (20).

minimizer. To escape from local minimizers, we conduct our Run-and-Inspect Method according to Al-
gorithms 1 and 2. We sample points starting from the outer of the ball toward the inner. The radius R is
set as 1 and ∆R as 0.2. Alg is GD and block-coordinate descent (BCD), and we apply two-dimensional
inspection and blockwise one-dimensional inspection to them, respectively. The step size of GD and BCD
is 1/40. The results are shown in Figures 4 and 5, respectively. Note that the “run” and “inspect” phases
can be decoupled, so a blockwise inspection can be used with either standard descent or blockwise descent
algorithms.

iteration history

-1 0 1 2 3 4 5 6
-1

0

1

2

3

4

5

6

initial point
global minimizer
GD
inspection

0 100 200 300 400 500 600 700 800 900 1000

iteration

-5

0

5

10

15

20
objective value

Fig. 4 GD iteration with 2D inspection

iteration history

-1 0 1 2 3 4 5 6
-1

0

1

2

3

4

5

6

initial point
global minimizer
BCD
block-wise inspection

0 100 200 300 400 500 600 700 800 900 1000

iteration

-5

0

5

10

15

20
objective value

Fig. 5 BCD iteration with blockwise 1D inspection

16 Yifan Chen et al.

From the figures, we can observe that blockwise inspection, which is much cheaper than standard
inspection, is good at jumping out the valleys of local minimizers. Also, the inspection usually succeeds
very quickly at the large initial value of R, so it is swift. These observations guide our design of inspection.
Although smaller values of R are sufficient to escape from local minimizers, especially those that are far
away from the global minimizer, we empirically use a rather large R and, to limit the number of sampled
points, a relatively large ∆R as well.

When an iterate is already (near) a global minimizer, there is no better point for inspection to find,
so the final inspection will go through all sample points in B(x̄, R), taking very long to complete, unlike
the rapid early inspections. In most applications, however, this seems unnecessary. If F is smooth and
strongly convex near the global minimizer x∗, we can theoretically eliminate spurious local minimizers
in B(x̄, R′) and thus search only in the smaller region B(x̄, R) \B(x̄, R′). Because the function r can be
nonsmooth in our assumption, we do not have R′ > 0. But, our future work will explore more types of r.
It is also worth mentioning that, in some applications, global minimizers can be recognized, for example,
based on they having the desired structures, achieving the minimal objective values, or attaining certain
lower bounds. If so, the final inspection can be completely avoided.

3.2 K-means clustering

Consider applying k-means clustering to a set of data {xi}ni=1 ⊂ Rd. We assume there are K clusters
{zi}Ki=1 and have the variables z = [z1, ...zK] ∈ Rd×K . The problem to solve is

min
z∈Rd×K

f(z) =
1

2n

n∑
i=1

min
1≤j≤K

‖xi − zj‖2.

A classical algorithm is the Expectation Minimization (EM) method, but it is susceptible to local mini-
mizers. We add inspections to EM to improve its results.

We test the problems in [27]. The first problem has synthetic Gaussian data in R2. A total of 4000
synthetic data points are generated according to four multivariate Gaussian distributions with 1000 points
on each, so there are four clusters. Their means and covariance matrices are:

µ1 =

[
−5
−3

]
, µ2 =

[
5
−3

]
, µ3 =

[
0
5

]
, µ4 =

[
2.5
4

]
;

Σ1 =

[
0.8 0.1
0.1 0.8

]
, Σ2 =

[
1.2 0.6
0.6 0.7

]
, Σ3 =

[
0.5 0.05
0.05 1.6

]
, Σ4 =

[
1.5 0.05
0.05 0.6

]
.

The EM algorithm is an iteration that alternates between labeling each data point (by associating it
to the nearest cluster center) and adjusting the locations of the centers. When the labels stop updating,
we start an inspection. In the above problem, the dimension of zi is two, and we apply a 2D inspection
on zi one after one with radius R = 10, step size ∆R = 2, and angle step size ∆θ = π/10. The descent
threshold is ν = 0.1.

The results are presented in Figure 6. We can see that the EM algorithm stops at a local minimizer
but, with the help of inspection, it escapes from the local minimizer and reaches the global minimizer.
This escape occurs at the first sample point in the 3rd block at radius 10 and angle θ = 7π/10. Since the
inspection succeeds on the perimeter of the search ball, it is rapid.

We also consider the Iris dataset2, which contains 150 4-D data samples from 3 clusters. We compare
the performance of the EM algorithm with and without inspection over 500 runs with their initial centers
randomly selected from the data samples. We inspect the 4-D variables one after one. Rather than
sampling the 4-D polar coordinates, which needs three angular axes, we only inspect two dimensional
balls. That is, for center i0 and radius r, the inspections sample the following points zi0 that has only
two angular variables θ1, θ2:

zinspected
i0

= zi0 + r × [cos θ1 sin θ1 cos θ2 sin θ2]T .

2 https://archive.ics.uci.edu/ml/datasets/iris

https://archive.ics.uci.edu/ml/datasets/iris

Run-and-Inspect Method and R-local minimizers 17

-8 -6 -4 -2 0 2 4 6 8 10
-6

-4

-2

0

2

4

6

8

10

Data points
Initial centers
EM without inspection
EM with inspection

0 5 10 15 20 25 30 35 40

iteration

0

2

4

6

8

10

12

14
objective value

EM without inspection
EM with inspection

Fig. 6 Synthetic Gaussian data with 4 clusters. Left: clustering result; Right: objective value in the iteration

Such inspections are very cheap yet still effective. Similar lower-dimensional inspections should be used
with high dimensional problems. We choose R = 3, ∆R = 1, ∆θ1 = ∆θ2 = π/10, and a descent threshold
ν = 10−3. The results are shown in Figures 7 and 8.

Iris histogram

0.25 0.3 0.35 0.4 0.45 0.5

objective value

0

50

100

150

200

250

300

350

400

450

500

fr
eq

ue
nc

y

EM without inspction
EM with inspection

Fig. 7 histogram of the final objective values in the 500 experiments

0
5

2

8

4

4
7

6

8

63
5

2 4

Data points
EM without inspection
EM with inspection

5 10 15 20 25 30

iteration

0.25

0.3

0.35

0.4

0.45

0.5

0.55
Iris dataset : objective value

EM without inspection
EM with inspection

Fig. 8 left: 3-D distribution of Iris data and clustering result in one trial; right: objective value in the iteration of this
trial.

18 Yifan Chen et al.

Among the 500 runs, EM gets stuck at a high objective value 0.48 for 109 times. With the help
of inspection, it manages to locate the optimal objective value around 0.263 every time. The average
radius-at-escape during the inspections is 2, and the average number of inspections is merely 1.

3.3 Nonconvex robust linear regression

In linear regression, we are given a linear model

y = 〈β,x〉+ ε,

and the data points (x1, y1), (x2, y2), . . . , (xn, yn), yi ∈ R,xi ∈ Rn. When there are outliers in the data,
robustness is necessary for the regression model. Here we consider Tukey’s bisquare loss, which is bounded,
nonconvex and defined as:

ρ(r) =


r2

0

6 {1− (1− (r/r0)2)3}, if |r| < r0,

r2
0

6 , otherwise.

The empirical loss function based on ρ is

l(β) =
1

n

n∑
i=1

ρ(yi − 〈β, xi〉).

A commonly used algorithm for this problem is the Iteratively Reweighted Least Squares (IRLS) algo-
rithm [5], which may get stuck at a local minimizer. Our Run-and-Inspect Method can help IRLS escape
from local minimizers and converge to a global minimizer. Our test uses the model

y = 5 + x+ ε,

where ε is noise. We generate xi ∼ N (0, 1), εi ∼ N (0, 0.5), i = 1, 2, . . . , 20. We also create 20% outliers
by adding extra noise generated from N (0, 5). And we use Algorithm 1 with R = 5, dR = 0.5, ν = 10−3.
For Tukey’s function, r0 is set to be 4.685. The results are shown in Figure 9.

Contour of empirical loss and optimization path

0 5 10 15

-
1

-5

0

5

10

-
2

initial point
path of iterates
inspection

-1 -0.5 0 0.5 1 1.5 2

x

0

5

10

15

20

25

30

y

Sample points and two recovered linear models

samples
without inspection
with inspection

Fig. 9 The left picture displays the contour of the empirical loss l(β) and the path of iterates. Starting from the initial
point, IRLS converges to a shallow local minimum. With the help of inspection, it escapes and then converges to the
global minimum. The right picture shows linear model obtained by IRLS with (red) and without (magenta) inspection.

Run-and-Inspect Method and R-local minimizers 19

3.4 Nonconvex compressed sensing

Given a matrix A ∈ Rm×n (m < n) and a sparse signal x ∈ Rn, we observe a vector

b = Ax.

The problem of compressed sensing aims to recover x approximately. Besides `0 and `1-norm, `p(0 < p <
1) quasi-norm is often used to induce sparse solutions. Below we use ` 1

2
and try to solve the problem

min
x∈Rn

Q(x) :=
1

2
‖Ax− b‖2 + λ‖x‖

1
2
1
2

,

by cyclic coordinate update. At iteration k, it updates the jth coordinate, where j = mod(k, n) + 1, via

xk+1
j = argmin

xj

Q(xj ,x
k
−j) (21)

= argmin
xj

1

2
ATj Ajx

2
j +ATj (Axk − b)xj + λ

√
|xj |. (22)

It has been proved in [26] that (21) has a closed-form solution. Define

Bj,µ(x) = xj − µATj (Ax− b),

Hλ, 1
2
(z) =

{
2
3z(1 + cos(2π

3 −
2
3 arccos(λ4 (|z|3)−

3
2))), if |z| >

3
√

54
4 (2λ)

2
3 ,

0, otherwise.

Then

xk+1
j = Hλµ,1/2(Bj,µ(xk)),

where µ = ‖Aj‖2. In our experiments, we choose m = 25, 50, 100 and n = 2m. The elements of A
are generated from U(0, 1√

m
) i.i.d. The vector x has 10% nonzeros with their values generated from

U(0.2, 0.8) i.i.d. Set b = Ax. Here, we apply coordinate descent with inspection (CDI), and compared
it with standard coordinate descent (CD) and half thresholding algorithm (half) [26]. For every pair of
(m,n), we choose the parameter λ = 0.05 and run 100 experiments. When the iterates stagnate at a local
minimizer x̄, we perform a blockwise inspection with each block consisting of two coordinates. Checking
all pairs of two coordinates is expensive and not necessary since x̄ is sparse. We improve the efficiency by
pairing only i, j where xi 6= 0, xj = 0. Similar to previous experiments, we sample points from the outer
of the 2D ball toward the inner. We choose R = 0.5, ∆R = 0.05. The results are presented in Table 1
and Figure 10. CDI shows a significant improvement over its competitors.

3.5 Nonconvex Sparse Logistic Regression

Logistic regression is a widely-used model for classification. Usually we are given a set of training data
{(x(i), y(i))}Ni=1, where x(i) ∈ Rd and y(i) ∈ {0, 1}. The label y is assumed to satisfy the following
conditional distribution: {

p(y = 1|x; θ) = 1
1+exp(−θTx)

,

p(y = 0|x; θ) = 1
1+exp(θTx)

,
(23)

where θ is the model parameter.
To learn θ, we minimize the negative log-likelihood function

l(θ) =
N∑
i=1

− log p(y(i)|x(i); θ),

20 Yifan Chen et al.

n, p algorithm a b c ave obj
n = 25 half 47.73% 2 2 0.0365
p = 50 CD 62.40% 25 27 0.0272

CDI 83.95% 65 69 0.0208
n = 50 half 46.43% 0 0 0.0736
p = 100 CD 76.39% 24 32 0.0443

CDI 92.34% 57 68 0.0369
n = 100 half 44.31% 0 0 0.1622
p = 200 CD 85.97% 10 18 0.0795

CDI 94.31% 54 76 0.0756

Table 1 Statistics of 100 compressed sensing problems solved by three ` 1
2
algorithms

1. half : iterative half thresholding; CD: coordinate descent; CDI: CD with inspection.
2. a is the ratio of correctly identified nonzeros to true nonzeros, averaged over the 100 tests (100% is impossible due

to noise and model error); b is the number of tests with all true nonzeros identified; c is the number of tests in
which the returned points yield lower objective values than that of the true signal (only model error, no algorithm
error). Higher a, b, c are better.

3. “ave obj” is the average of the objective values; lower is better.

0 50 100 150 200

i

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x i

Components of true signal and solutions recovered by half, CD, CDI

true signal
half
CD
CDI

Fig. 10 Comparison of the true signal x and signals recovered from half, CD, CDI.

In one experiment, CDI recovered all positions of nonzeros of x, while CD failed to recover x116, x134. The half
algorithm just got stuck at a local minizer far from x.

which is convex and differentiable. When N is relatively small, we need variable selection to avoid over-
fitting. In this test, we use the minimax concave penalty (MCP) [28]:

pMCP
λ,γ (x) =

{
λ|x| − x2

2γ , if |x| ≤ γλ,
1
2γλ

2, if |x| > γλ.

The θ-recovery model writes
min
θ
l(θ) + βpMCP

λ,γ (θ).

The penalty pMCP
λ,γ is proximable with

proxp(z) =

{
γ
γ−1Sλ(z) if |z| ≤ γλ,
z if |z| > γλ

where Sλ(z) = (|z| − λ)+ sign(z).
We apply the prox-linear (PL) algorithm to solve this problem. When it nearly converges, inspection

is then applied. We design our experiments according to [20]: we consider d = 50 and N = 200 and

Run-and-Inspect Method and R-local minimizers 21

assume the true θ∗ has K non-zero entries. In the training procedure, we generate data from i.i.d. stan-
dard Gaussian distribution, and we randomly choose K non-zero elements with i.i.d standard Gaussian
distribution to form θ∗. The labels are generated by y = 1(xT θ + w ≥ 0), where w is sampled according
to the Gaussian distribution N (0, ε2I). We use PL iteration with and without inspection to recover θ.
After that, we generate 1000 random test data points to compute the test error of the θ. We set the
parameter β = 1.5 − 0.06 ×K, λ = 1, γ = 5 and the step size 0.5 for PL iteration. For each K and ε,
we run 100 experiments and calculate the mean and variance of the results. The inspection parameters
are R = 5, ∆R = 1, and ∆θ = π/10. The sample points in inspections are similar to those in section 3.4.
The results are presented in Table 2. The objective values and test errors of PLI, the PL algorithm with
inspection, are significantly better than the native PL algorithm. On the other hand, the cost is also 3 –
6 times as high.

K, ε algorithm average #.iterations
/ #.inspections

objective value test error
mean var mean var

K = 5 PL 594 48.0 305 7.26% 1.55e-03
ε = 0.01 PLI 3430/11.43 26.8 44.9 3.79% 5.43e-04
K = 5 PL 601 52.7 409 7.81% 1.29e-03
ε = 0.1 PLI 2280/7.98 33.8 51.9 4.38% 5.43e-04
K = 10 PL 1040 43.6 87.0 8.42% 8.68e-04
ε = 0.01 PLI 2610/4.78 33.5 35.9 5.73% 5.73e-04
K = 10 PL 990 47.5 87.2 9.41% 9.88e-04
ε = 0.1 PLI 2370/3.86 36.3 40.1 5.69% 5.50e-04
K = 15 PL 1600 36.2 54.3 7.85% 8.29e-04
ε = 0.01 PLI 3010/3.21 29.2 17.5 5.77% 5.20e-04
K = 15 PL 1570 37.1 40.2 7.80% 8.30e-04
ε = 0.1 PLI 2820/2.77 30.7 16.0 6.66% 4.63e-04

Table 2 Sparse logistic regression results of 100 tests. PL is the prox-linear algorithm. PLI is the PL algorithm with
inspection. “var” is variance.

We plot the convergence history of the objective values in one trial and the recovered θ in Figure 11.
It is clear that the inspection works in learning a better θ by reaching a smaller objective value.

0 500 1000 1500 2000 2500 3000 3500 4000 4500

iteration

20

40

60

80

100

120

140

160

180
objective function

Prox-linear
Prox-linear + inspection

5 10 15 20 25 30 35 40 45 50
-1

0

1
True 3 / ||3||

5 10 15 20 25 30 35 40 45 50
-1

0

1
Learned 3 / ||3|| without inspection

5 10 15 20 25 30 35 40 45 50
-1

0

1
Learned 3 / ||3|| with inspection

Fig. 11 Sparse logistic regression result in one trial.

4 Conclusions

In this paper, we have proposed a simple and efficient method for nonconvex optimization, based on
our analysis of R-local minimizers. The method applies local inspections to escape from local minimizers

22 Yifan Chen et al.

or verify the current point is an R-local minimizer. For a function that can be implicitly decomposed
to a smooth, strongly convex function plus a restricted nonconvex functions, our method returns an
(approximate) global minimizer. Although some of the tested problems may not possess the assumed
decomposition, numerical experiments support the effectiveness of the proposed method.

Reference

1. Chaudhari, P., Choromanska, A., Soatto, S., LeCun, Y.: Entropy-SGD: Biasing gradient descent into wide valleys.
arXiv preprint arXiv:1611.01838 (2016)

2. Chaudhari, P., Oberman, A., Osher, S., Soatto, S., Carlier, G.: Deep relaxation: Partial differential equations for
optimizing deep neural networks. arXiv preprint arXiv:1704.04932 (2017)

3. Conn, A.R., Gould, N.I., Toint, P.L.: Trust region methods. SIAM (2000)
4. Conn, A.R., Scheinberg, K., Vicente, L.N.: Introduction to Derivative-Free Optimization. No. 8 in MPS-SIAM series

on optimization. Society for Industrial and Applied Mathematics / Mathematical Programming Society, Philadelphia
(2009)

5. Fox, J.: An R and S-Plus Companion to Applied Regression. Sage Publications, Thousand Oaks, Calif (2002)
6. Ge, R., Huang, F., Jin, C., Yuan, Y.: Escaping from saddle points—online stochastic gradient for tensor decompo-

sition. In: Conference on Learning Theory, pp. 797–842 (2015)
7. Ge, R., Lee, J.D., Ma, T.: Matrix completion has no spurious local minimum. In: Advances in Neural Information

Processing Systems, pp. 2973–2981 (2016)
8. Ghadimi, S., Lan, G.: Accelerated gradient methods for nonconvex nonlinear and stochastic programming. Mathe-

matical Programming 156(1-2), 59–99 (2016)
9. Jin, C., Ge, R., Netrapalli, P., Kakade, S.M., Jordan, M.I.: How to escape saddle points efficiently. arXiv preprint

arXiv:1703.00887 (2017)
10. Karimi, H., Nutini, J., Schmidt, M.: Linear convergence of gradient and proximal-gradient methods under the

Polyak-Łojasiewicz condition. arXiv:1608.04636 (2016)
11. Kirkpatrick, S., Gelatt Jr, C.D., Vecchi, M.P.: Optimization by simulated annealing. In: Spin Glass Theory and

Beyond: An Introduction to the Replica Method and Its Applications, pp. 339–348. World Scientific (1987)
12. Martínez, J.M., Raydan, M.: Cubic-regularization counterpart of a variable-norm trust-region method for uncon-

strained minimization. Journal of Global Optimization 68(2), 367–385 (2017)
13. Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Mathematical

Programming 108(1), 177–205 (2006)
14. Panageas, I., Piliouras, G.: Gradient descent converges to minimizers: The case of non-isolated critical points. CoRR,

abs/1605.00405 (2016)
15. Pascanu, R., Dauphin, Y.N., Ganguli, S., Bengio, Y.: On the saddle point problem for non-convex optimization.

arXiv preprint arXiv:1405.4604 (2014)
16. Peng, Z., Wu, T., Xu, Y., Yan, M., Yin, W.: Coordinate friendly structures, algorithms and applications. Annals of

Mathematical Sciences and Applications 1(1), 57–119 (2016)
17. Polyak, B.T.: Gradient methods for minimizing functionals. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi

Fiziki 3(4), 643–653 (1963)
18. Reddi, S.J., Hefny, A., Sra, S., Poczos, B., Smola, A.: Stochastic variance reduction for nonconvex optimization. In:

International conference on machine learning, pp. 314–323 (2016)
19. Sagun, L., Bottou, L., LeCun, Y.: Singularity of the Hessian in deep learning. arXiv preprint arXiv:1611.07476

(2016)
20. Shen, X., Gu, Y.: Nonconvex sparse logistic regression with weakly convex regularization. arXiv preprint

arXiv:1708.02059 (2017)
21. Sun, J., Qu, Q., Wright, J.: Complete dictionary recovery over the sphere. In: Sampling Theory and Applications

(SampTA), 2015 International Conference on, pp. 407–410. IEEE (2015)
22. Sun, J., Qu, Q., Wright, J.: A geometric analysis of phase retrieval. In: Information Theory (ISIT), 2016 IEEE

International Symposium on, pp. 2379–2383. IEEE (2016)
23. Wang, Y., Yin, W., Zeng, J.: Global convergence of ADMM in nonconvex nonsmooth optimization. arXiv preprint

arXiv:1511.06324 (2015)
24. Wu, L., Zhu, Z., Weinan, E.: Towards understanding generalization of deep learning: Perspective of loss landscapes.

arXiv preprint arXiv:1706.10239 (2017)
25. Xu, Y., Yin, W.: A block coordinate descent method for regularized multiconvex optimization with applications to

nonnegative tensor factorization and completion. SIAM Journal on imaging sciences 6(3), 1758–1789 (2013)
26. Xu, Z., Chang, X., Xu, F., Zhang, H.: l1/2 regularization: A thresholding representation theory and a fast solver.

IEEE Transactions on neural networks and learning systems 23(7), 1013–1027 (2012)
27. Yin, P., Pham, M., Oberman, A., Osher, S.: Stochastic backward Euler: An implicit gradient descent algorithm for

k-means clustering. arXiv preprint arXiv:1710.07746 (2017)
28. Zhang, C.H.: Nearly unbiased variable selection under minimax concave penalty. The Annals of Statistics 38(2),

894–942 (2010)

	1 Introduction
	2 Main Results
	3 Numerical experiments
	4 Conclusions

