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Abstract On solving a convex-concave bilinear saddle-point problem (SPP), there have been many works
studying the complexity results of first-order methods. These results are all about upper complexity bounds,
which can determine at most how many efforts would guarantee a solution of desired accuracy. In this paper,
we pursue the opposite direction by deriving lower complexity bounds of first-order methods on large-scale
SPPs. Our results apply to the methods whose iterates are in the linear span of past first-order information,
as well as more general methods that produce their iterates in an arbitrary manner based on first-order
information. We first work on the affinely constrained smooth convex optimization that is a special case
of SPP. Different from gradient method on unconstrained problems, we show that first-order methods on
affinely constrained problems generally cannot be accelerated from the known convergence rate O(1/t) to
O(1/t2), and in addition, O(1/t) is optimal for convex problems. Moreover, we prove that for strongly convex
problems, O(1/t2) is the best possible convergence rate, while it is known that gradient methods can have
linear convergence on unconstrained problems. Then we extend these results to general SPPs. It turns out
that our lower complexity bounds match with several established upper complexity bounds in the literature,
and thus they are tight and indicate the optimality of several existing first-order methods.

Keywords Convex optimization, saddle point problems, first-order methods, information-based complexity,
lower complexity bound
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1 Introduction

In recent years, first-order methods have been particularly popular partly due to the huge scale of many mod-
ern applications. These methods only access the function value and gradient information of the underlying
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problems, and possibly also other “simple” operations. For example, on solving the constrained optimization
problem f∗ := minx∈X f(x), the projected gradient (PG) method

x(t+1) ← ProjX(x(t) − α∇f(x(t)))

is a first-order method if ProjX is easy to evaluate such as projection onto a box constraint set. For convex
problems, if ∇f is Lipschitz continuous and α is appropriately chosen, the PG method can have convergence
rate in the order of 1

t
, namely, f(x(t))− f∗ = O(1

t
), where t is the number of gradient evaluations. Through

smart extrapolation, the rate can be improved to O( 1
t2
); see [3, 35]. In addition, there exists an instance

showing that the order 1
t2

cannot be further improved [33] and thus is optimal.

In this paper, we consider the bilinear saddle-point problem (SPP):

min
x∈X

max
y∈Y

f(x) + 〈Ax− b,y〉 − g(y). (1)

Here, X ⊆ Rn and Y ⊆ Rm are closed convex sets, f : Rn → R and g : Rm → R are closed convex functions,
A ∈ Rm×n, and b ∈ Rm. We assume that the function f is differentiable, and ∇f is Lipschitz continuous
with respect to a norm ‖ · ‖, namely, there is a constant Lf > 0 such that

‖∇f(x1)−∇f(x2)‖∗ ≤ Lf‖x1 − x2‖, ∀x1,x2 ∈ X, (2)

where ‖ · ‖∗ denotes the dual norm of ‖ · ‖. In addition, we assume that g is simple such that its proximal
mapping can be easily computed. The scale of the problem is large, and it is expensive to form the Hessian
of f and solve or project onto a linear system of size m× n. Two optimization problems are associated with
(1). One is called the primal problem

φ∗ := min
x∈X

{

φ(x) := f(x) + max
y∈Y
〈Ax− b,y〉 − g(y)

}

, (3)

and the other is the dual problem

ψ∗ := max
y∈Y

{

ψ(y) := −g(y) + min
x∈X
〈Ax− b,y〉+ f(x)

}

. (4)

The weak duality always holds, i.e.,

ψ∗ ≤ φ∗. (5)

Under certain mild assumptions (e.g., X and Y are compact [37]), the above inequality becomes an equality,
namely, the strong duality holds.

Many applications can be formulated into an SPP. For instance, it includes as special cases all affinely
constrained smooth convex optimization problems. To see this, let Y = Rm and g ≡ 0. Then maxy〈Ax −
b,y〉 = 0 if Ax = b and ∞ otherwise, and thus (3) becomes

f∗ := min
x∈X

{

f(x), s.t. Ax = b
}

. (6)
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1.1 Main goal

We aim at answering the following question:

For any first-order method, what is the best possible performance on solving a general SPP?

More precisely, our goal is to study the lower information-based complexity bound of first-order methods on
solving the class of problems that can be formulated into (1). In the literature, all existing works about first-
order methods on solving saddle-point problems only provide upper complexity bounds. Establishing lower
complexity bounds is important because they can tell us whether the existing methods are improvable and
also because they can guide us to design “optimal” algorithms that have the best performance. To achieve
this goal, we will construct worst-case SPP instances such that the complexity result of a first-order method
to reach a desired accuracy is lower bounded by a problem-dependent quantity.

In the above question, we say an iterative algorithm for solving (1) is a first-order method if it accesses
the information of the function f and the matrix A through a first-order oracle, denoted by O : Rn×Rm →
Rn × Rm × Rn. For an inquiry on any point (x,y) ∈ Rn × Rm, the oracle returns

O(x,y) :=
(

∇f(x),Ax,A⊤y
)

. (7)

Given an initial point (x(0),y(0)), a first-order method M for solving SPPs, at the t-th iteration, calls the
oracle on (x(t),y(t)) to collect the oracle informationO(x(t),y(t)) and then obtains a new point (x(t+1),y(t+1))
by a rule It. The complete methodM can be described by the initial point (x(0),y(0)) ∈ X×Y and a sequence
of rules {It}∞t=0 such that

(

x(t+1),y(t+1), x̄(t+1), ȳ(t+1)
)

= It
(

θ;O(x(0),y(0)), . . . ,O(x(t),y(t))
)

, ∀ t ≥ 0, (8)

where (x(t),y(t)) ∈ X × Y denotes the inquiry point, and (x̄(t), ȳ(t)) ∈ X × Y is the approximate solution
output by the method. Note that we allowM to possess the complete knowledge of the rest information in
an SPP, e.g., the sets X and Y , the function g, the vector b, and the Lipschitz constant Lf and its associated
norm. We use θ for all the rest information.

As an example of the first-order method in (8), we consider (6) and the linearized augmented Lagrangian
method (LALM) with iterative updates:

x(t+1) = ProjX

(

x(t) − 1

η

(

∇f(x(t)) +A⊤(λ(t) + r(t))
)

)

, (9a)

λ
(t+1) = λ

(t) + r(t+1), (9b)

where η > 0 is a stepsize parameter, and r(t) = Ax(t) − b. As a special case, assume that X = Rn, x(0) = 0
and λ

(0) = 0. In such special case it is easy to observe that λ
(t) =

∑t
j=1 r

(j), ∀ t ≥ 0, where we have used
the convention

j2
∑

j=j1

r(j) = 0, if j1 > j2.

Hence, the update in (9a) becomes exactly

x(t+1) = −1

η





t
∑

j=0

(

∇f(x(j)) +A⊤r(j)
)

+A⊤
t
∑

j=1

r(j)



 , ∀ t ≥ 0. (10)

Let O(u,v) = (∇f(u),Au,A⊤v) and u(0) = 0 and v(0) = 0. We define the rules {Ik}∞k=0 as follows:
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1. I0 :
(

θ;O(u(0),v(0))
)

7→ (u(1),v(1), ū(1), v̄(1)) is given by

ū(1) = u(1) = 0, v̄(1) = v(1) = Au(0) − b;

2. For any k ≥ 1, I2k−1 :
(

θ;O(u(0),v(0)), . . . ,O(u(2k−1),v(2k−1))
)

7→ (u(2k),v(2k), ū(2k), v̄(2k)) is given by

ū(2k) = u(2k) = −1

η





k
∑

j=1

(

∇f(u(2j−2)) +A⊤v(2j−1)
)

+A⊤
k
∑

j=2

v2j−1



 ,

v̄(2k) = v(2k) = Au(2k−2) − b;

3. For any k ≥ 1, I2k :
(

θ;O(u(0),v(0)), . . . ,O(u(2k),v(2k))
)

7→ (u(2k+1),v(2k+1), ū(2k+1), v̄(2k+1)) is given
by

ū(2k+1) = u(2k+1) = −1

η





k
∑

j=1

(

∇f(u(2j−2)) +A⊤v(2j−1)
)

+A⊤
k
∑

j=2

v2j−1



 ,

v̄(2k+1) = v(2k+1) = Au(2k) − b.

In the above defined rules, we update u by every odd-numbered rule and v by every even-numbered rule.
Through comparing the above rules and (10), it is not difficult to verify that u(2k) = x(k) and v(2k+1) = r(k)

for any k ≥ 0. Therefore, the LALM can be described as (8).
Note that the above description satisfies Assumption 1 below, namely, x(t+1) in (10) is a linear combina-

tion of all previous first-order information ∇f(x(j)) and A⊤r(j). However, for general X , the description in
(9) may not fall into the above linear span description, and we need use the description in (8).

Existing works (e.g., [12, 39]) show that in t iterations, the LALM for (6) can generate an O(1
t
)-optimal

solution x̄, namely, |f(x̄)− f(x∗)| = O(1
t
) and ‖Ax̄− b‖ = O(1

t
). In addition, by smoothing technique, [34]

gives a first-order method for the problem (3) and establishes its O(1
t
) convergence rate result. We will show

that different from the projected gradient method, the order 1
t
generally cannot be improved to 1

t2
, and in

addition it is optimal.

1.2 Main results

We consider both convex and strongly convex cases. Here, without specifying details, we state the main
results that are obtained in this paper. The following theorem gives the lower complexity bounds for affinely
constrained problems in the form of (6).

Theorem 1 (lower complexity bounds for affinely constrained problems) Let m ≤ n and t < m
4 −2

be positive integers, and Lf > 0. For any first-order methodM that is described in (8), there exists a problem

instance in the form of (6) such that ∇f is Lf -Lipschitz continuous, the instance has a primal-dual solution

(x∗,y∗), and

∣

∣f(x̄(t))− f(x∗)
∣

∣ ≥ 3Lf‖x∗‖2
128(2t+ 5)2

+

√
3‖A‖ · ‖x∗‖ · ‖y∗‖

8(2t+ 5)
,

‖Ax̄(t) − b‖ ≥
√
3‖A‖ · ‖x∗‖
4
√
2(2t+ 5)

.
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where x̄(t) is the approximate solution output by M. In addition, given µ > 0, there exists an instance of

(6) such that f is µ-strongly convex, the instance has a primal-dual solution (x∗,y∗), and

‖x̄(t) − x∗‖2 ≥ 5‖A‖2 · ‖y∗‖2
256µ2(2t+ 5)2

,

For a general convex-concave bilinear saddle-point problem (1), we obtain lower complexity bound results
as summarized by the theorem below.

Theorem 2 (lower complexity bounds for bilinear saddle-point problems) Let m ≤ n and t < m
4 −2

be positive integers, and Lf > 0. For any first-order methodM that is described in (8), there exists a problem

instance in the form of (1) such that ∇f is Lf -Lipschitz continuous, X and Y are Euclidean balls with radii

RX and RY respectively, and

φ(x̄(t))− ψ(ȳ(t)) ≥ LfR
2
X

16(4t+ 9)2
+

(√
2 + 2

4

)

‖A‖RXRY

4t+ 9
,

where φ and ψ are the associated primal and dual objective functions in (3) and (4), and (x̄(t), ȳ(t)) is the

approximate solution output by M. In addition, given µ > 0, there exists an instance of (1) such that f is

µ-strongly convex, X and Y are Euclidean balls with radii RX and RY respectively, and

φ(x̄(t))− ψ(ȳ(t)) ≥ 5‖A‖2R2
Y

512µ(4t+ 9)2
.

Comparing to upper complexity bounds of several existing first-order methods, we find that our lower
complexity bounds are tight, up to the difference of constant multiples or logarithmic term.

1.3 Literature review

Among existing works on complexity analysis of numerical methods, many more are about showing upper
complexity bounds instead of lower bounds. Usually, the upper complexity bounds are established on solving
problems with specific structures. They are important because they can tell the users at most how many
efforts would guarantee a desired solution. On the contrary, lower complexity bounds, which were first studied
in the seminal work [30], are usually information-based and shown on solving a general class of problems.
Their importance lies in telling if a certain numerical method can still be improved for a general purpose
and also in guiding the algorithm designers to make “optimal” methods. Although there are not many works
along this line, each of them sets a base for designing numerical approaches. Below we review these lower
complexity bound results on different classes of problems.

Proximal gradient methods.On solving convex problems in the form of F ∗ := minx{F (x) := f(x)+g(x)},
the proximal gradient method (PGM) iteratively updates the estimated solution by acquiring information
of ∇f and proxηg at certain points, where the proximal mapping of a function h is defined as

proxh(z) = argmin
x

h(x) +
1

2
‖x− z‖2.

For the class of problems that have Lf -Lipschitz continuous ∇f , the lower bound has been established
in [14,30,31,33]. For example, [33, Theorem 2.1.7] establishes a lower convergence rate bound: F (x̄(t))−F ∗ ≥
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3Lf‖x(0)−x
∗‖2

32(t+1)2 , where x̄(t) is the approximate solution output by PGM after t iterations, and x∗ is one optimal

solution. In addition, setting η = 1
Lf

, [3,35] show that the PGM can achieve O(Lf/t
2) convergence rate, and

more precisely, F (x̄(t)) − F ∗ ≤ 2Lf‖x(0)−x
∗‖2

(t+1)2 . Comparing the lower and upper bounds, one can easily see

that they differ only by a constant multiple. Hence, the lower bound is tight in terms of the dependence on
t, Lf , and ‖x(0) − x∗‖, and also the method given in [3, 35] is optimal among all methods that only access
the information of ∇f and proxηg.

For the class of problems where f has Lf -Lipschitz continuous gradient and also is µ strongly convex,
the lower bound has been established in [30–33]. For example, [33, Theorem 2.1.13] establishes a lower

convergence rate bound: F (x̄(t))− F ∗ ≥ µ‖x(0)−x
∗‖2

2

(

√
κ−1√
κ+1

)2t
, where κ =

Lf

µ
denotes the condition number.

In addition, assuming the knowledge of µ and Lf , [35, Theorem 6] shows the convergence rate: F (x̄(t))−F ∗ ≤
Lf‖x(0)−x

∗‖2

4

(

1 + 1√
2κ

)−2t
. Note that both lower and upper bounds are linear, and they have the same

dependence on ‖x(0) − x∗‖ and κ. In this sense, the lower bound is tight, and the method is optimal.

Inexact gradient methods. On the convex problem f∗ := minx f(x) for which only inexact approximation
of∇f is available, there have been several studies on the corresponding lower complexity bound. For example,
on solving the convex stochastic program f∗ := minx{f(x) := Eξfξ(x)}, the stochastic gradient method
(SGM) performs iterative update to the solution by accessing the stochastic approximation of subgradient
∇̃f at a certain point. For the class of problems whose f is Lipschitz continuous, [30, 33] show that to find
an ε-optimal solution x̄, i.e., f(x̄) − f∗ ≤ ε, the algorithm needs to run O(1/ε2) iterations. On the other
hand, as shown in [29], the order 1/ε2 is achievable with appropriate setting of algorithm parameters. Hence,
the lower complexity bound O(1/ε2) is tight, and the stochastic gradient method is optimal on finding an
approximate solution to the convex stochastic program. Further study of lower complexity bound of inexact
gradient methods is also performed in [8]. When f(x) has a special finite-sum structure, the lower complexity
bound of randomized gradient method is studied in [1, 25, 38].

Primal-dual first-order methods.On an affinely constrained problem (6) or the more general saddle-point
problem (1), many works have studied primal-dual first-order methods, e.g., [4,5,7,10–12,15,17,23,36,40,42].
To obtain an ε-optimal solution in a certain measure, an O(1/ε) complexity result is established by many of
them for convex problems. In addition, for strongly convex cases, an improved result of O(1/

√
ε) has been

shown in a few works such as [13, 15, 40, 41]. All these results are about upper complexity bounds and none
about lower bounds. Hence, it is unclear if these methods achieve the optimal order of convergence. Our
results will fill the missing part and can be used to determine the optimality of these existing algorithms.

Others. In adddition to the above list of lower complexity bounds, there are also a few results on special
types of problems. The lower complexity bound of subgradient methods for uniformly convex optimization
has been studied in [19]. Under the assumption that an algorithm has access to gradient information and
is only allowed to perform linear optimization (instead of computing a projection), the lower complexity
bounds have been studied in [18,20]. The lower complexity bounds of oblivious algorithms are studied in [2],
where the way to generate new iterates by the algorithms are restricted. The lower complexity bound of
stochastic gradient algorithms that preserves local privacy is studied in [9].

1.4 Notation and outline

We use bold lower-case letters x,y, c, . . . for vectors and bold upper-case letters A,Q, . . . for matrices. For
any vector x ∈ Rn, we use xi to denote its i-th component. When describing an algorithm, we use x(k) for
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the k-th iterate. A⊤ denotes the transpose of a matrix A. We use 0 for all-zero vector and 1 for all-one
vector, and we use O for an zero matrix and I for the identity matrix. Their sizes will be specified by a
subscript, if necessary, and otherwise are clear from the context. ej,p = [0, . . . , 0, 1, 0, . . . , 0]⊤ ∈ Rp denotes
the j-th standard basis vector in Rp. We use Z++ for the set of positive integers and Sn+ for the set of all
n× n symmetric positive semidefinite matrices. Without further specification, ‖ · ‖ is used for the Euclidean
norm of a vector and the spectral norm of a matrix.

The rest of the paper is organized as follows. In section 2, for affinely constrained problems, we present
lower complexity bounds of first-order methods that satisfy a linear span requirement. We drop the linear
span assumption in section 3 and show lower complexity bounds of first-order methods that are described
in (8). Section 4 is about the bilinear saddle-point problems. Lower complexity bounds are established
there for first-order methods described in (8). In section 5, we show the tightness of the established lower
complexity bounds by comparing them with existing upper complexity bounds. Finally, section 6 proposes
a few interesting topics for future work and concludes the paper.

2 Lower complexity bounds under linear span assumption for affinely constrained problems

In this and the next sections, we study lower complexity bounds of first-order methods on solving the affinely
constrained problem (6). Our approach is to design a “hard” problem instance such that the convergence
speed of any first-order method is lower bounded. The designed instances are convex quadratic programs in
the form of

f∗ := min
x∈Rn

{

f(x) :=
1

2
x⊤Hx− h⊤x

}

s.t. Ax = b,

(11)

where A ∈ Rm×n, and H ∈ Sn+. Note that ∇f is Lipschitz continuous, and thus the above problem is a
special case of (6).

Throughout this section, we assume that the dimensions m,n ∈ Z++ are given and satisfy m ≤ n, and
that a fixed positive integer number k < m

2 is specified. Our lower complexity analysis will be based on the
performance of the k-th iterate of a first-order method on solving the designed instance. It should be noted
that the assumption k < m

2 is valid if the problem dimensions m and n are very big and we do not run too
many iterations of the algorithm.

To have a relatively simple start, we focus on a special class of first-order methods in this section. More
precisely, we make the following assumption.

Assumption 1 (linear span) The iterate sequence {x(t)}∞t=0 satisfies x(0) = 0 and

x(t) ∈ span
{

∇f(x(0)),A⊤r(0),∇f(x(1)),A⊤r(1), . . . ,∇f(x(t−1)),A⊤r(t−1)
}

, t ≥ 1,

where r = Ax− b denotes the residual.

In the context, we refer to the above assumption as the linear span assumption. It is easy to see that if
X = Rn, then the LALM with updates in (9) satisfies this assumption. In addition, it is not difficult to find
rules {It}∞t=0 such that the iterate sequence {x(t)} in Assumption 1 can be obtained by (8). Note that we
do not lose generality by assuming x(0) = 0, because otherwise we can consider a shifted problem

min
x

f(x− x(0)), s.t. A(x− x(0)) = b.
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It should be noted that Assumption 1 may not always hold, e.g., when there is projection involved in
the description of a first-order algorithm. The lower complexity bound analysis can be performed without
the linear span assumption, thanks to a technique introduced in [31, 32] that utilize a certain rotational
invariance of quadratic functions over a Euclidean ball. To facilitate reading, we defer the incorporation
of such a technique to section 3, where we will elaborate on the technical details and perform the lower
complexity bound analysis without Assumption 1.

2.1 Special linear constraints

In this subsection, we describe a set of special linear constraints, which will be used to study the lower
complexity bound of first-order methods satisfying Assumption 1.

We let the matrix Λ and vector c be

Λ =

[

B O
O G

]

∈ Rm×n and c =

[

12k

0

]

∈ Rm, (12)

where G ∈ R(m−2k)×(n−2k) is any matrix of full row rank such that ‖G‖ = 2, and

B :=















−1 1

. .
.
. .
.

−1 1
−1 1
1















∈ R2k×2k. (13)

All the designed “hard” instances in this paper are built upon Λ and c given in (12). Two immediate
observations regarding (12) and (13) are as follows. First, for any u := (u1, . . . , u2k)

⊤ ∈ R2k, we have

‖Bu‖2 = (u2k − u2k−1)
2 + · · ·+ (u2 − u1)2 + u21 ≤ 2(u22k + u22k−1) + · · ·+ 2(u22 + u21) + u21 ≤ 4‖u‖2,

so

‖B‖ ≤ 2. (14)

Consequently, noting ‖G‖ = 2 and the block diagonal structure of Λ, we have

‖Λ‖ = max{‖B‖, ‖G‖} = 2. (15)

Second, it is straightforward to verify that

B−1 =











1
1 1

. .
. ...

...
1 · · · 1 1











. (16)

Based on the two observations, we have the following lemma.
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Lemma 1 Let Λ and c be given in (12), and for any LA > 0, let

A =
LA

2
Λ and b =

LA

2
c. (17)

Then ‖A‖ = LA. In addition, for any vector x∗ = (x∗1, . . . , x
∗
n)

⊤ that satisfies Ax∗ = b we have

x∗i = i, for 1 ≤ i ≤ 2k.

Proof. By (15) and the definition of A in (17), we immediately have ‖A‖ = LA. To solve the linear system
Ax = b, we split x into two parts as x = (u⊤,v⊤)⊤ with u ∈ R2k and v ∈ Rn−2k. Then by the block
diagonal structure of A, we have from Ax = b and the definitions of A and b in (17) that Bu = 12k. It
follows from (16) that B is nonsingular, and thus the linear system Bu = 12k has a unique solution

u∗ = B−112k = (1, . . . , 2k)⊤, (18)

which completes the proof. �

2.2 Krylov subspaces

In this subsection, we study two Krylov subspaces that are associated with the matrix Λ and vector c
described in (12). In particular, we consider the Krylov subspaces

Ji := span{c, (ΛΛ
⊤)c, (ΛΛ

⊤)2c, . . . , (ΛΛ
⊤)ic} ⊆ Rm and Ki := Λ

⊤Ji ⊆ Rn, for i ≥ 0. (19)

As shown below in (28), restricting on the first 2k entries, the above two Krylov subspaces reduce to

Fi := span{12k,B
212k, . . . ,B

2i12k} and Ri := span{B12k, . . . ,B
2i+112k}. (20)

We first establish some important properties of Fi and Ri as follows.

Lemma 2 Let Fi and Ri be defined in (20). For any 0 ≤ i ≤ 2k − 1, we have

Fi = span{12k, e1,2k, e2,2k, . . . , ei,2k}, Ri = span{e2k−i,2k, e2k−i+1,2k, . . . , e2k,2k}, (21)

and

BRi = span{e1,2k, e2,2k, . . . , ei+1,2k} ⊆ Fi+1, (22)

where we have used the convention e0,2k = 0.

Proof. From the definition of B in (13), we have

B12k = e2k,2k,Be2k,2k = e1,2k,

Bei,2k = e2k−i+1,2k − e2k−i,2k, ∀i = 1, . . . , 2k − 1.
(23)
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Hence, from (20) and (23), it holds that

F0 =span{12k},
R0 =span{B12k} = span{e2k,2k},

BR0 =span{Be2k,2k} = span{e1,2k},
F1 =span{12k,B

212k} = span{12k, e1,2k},
R1 =span{B12k,B

312k} = span{e2k,2k,Be1,2k} = span{e2k−1,2k, e2k,2k},
BR1 =span{B212k,B

412k} = span{e1,2k,B2e1,2k} = span{e1,2k, e2,2k}.

Therefore, the results in (21) and (22) hold for i = 0 and i = 1.
Below we prove the results by induction. Assume that there is a positive integer s < 2k and (21) holds

for i = s− 1, namely,

Fs−1 = span{12k, e1,2k, e2,2k, . . . , es−1,2k}, Rs−1 = span{e2k−s+1,2k, . . . , e2k,2k}. (24)

From (23) and (24), it follows that

BRs−1 = B span{e2k−s+1,2k, . . . , e2k,2k} ⊆ span{es,2k, es−1,2k, . . . , e1,2k}. (25)

Since B is nonsingular, dim
(

BRs−1

)

= dim
(

Rs−1

)

= s. Hence, from (25) and also noting

dim
(

span{es,2k, es−1,2k, . . . , e1,2k}
)

= s,

we have

BRs−1 = span{es,2k, es−1,2k, . . . , e1,2k}.

Observing span{B212k, . . . ,B
2s12k} = BRs−1 , we conclude

Fs = span{12k,B
212k, . . . ,B

2s12k} = span{12k, e1,2k, e2,2k, . . . , es,2k}.

Through essentially the same arguments, one can use (23), the above equation, and the fact Rs = BFs to
conclude

Rs = span{e2k−s,2k, . . . , e2k,2k},

and thus we complete the proof. �

Through relating Ji (resp. Ki) to Fi (resp. Ri), we have the following result.

Lemma 3 Let Ji and Ki be defined in (19). For any 0 ≤ i ≤ 2k − 1, it holds

Ji = span{c, e1,m, e2,m, . . . , ei,m}, Ki = span{e2k−i,n, e2k−i+1,n, . . . , e2k,n}, (26)

and

ΛKi = span{e1,m, e2,m, . . . , ei+1,m} ⊆ Ji+1. (27)
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Proof. Observe that for any i = 0, . . . , 2k − 1 we have

(ΛΛ
⊤)ic =

(

B2i12k

0m−2k

)

and Λ
⊤(ΛΛ

⊤)ic =

(

B2i+112k

0n−2k

)

. (28)

Consequently, the definitions in (19) becomes

Ji = Fi × {0m−2k} and Ki = Ri × {0n−2k}.

Therefore, the results in (26) and (27) immediately follow from Lemma 2. �

Two remarks are in place for the Krylov subspaces Ki and Ji. First, by the definitions of Ki and Ji in
(19) and the relation (27), we have

ΛKi ⊆ Ji+1 and Λ
⊤Ji = Ki. (29)

Second, by (26) we have

Ki−1 ( Ki and Ji−1 ( Ji, ∀i = 1, . . . , 2k − 1. (30)

2.3 A lower complexity bound with positive LA

In this subsection, we establish a lower complexity bound of any first-order method that satisfies Assumption
1 on solving (11). Our approach is to build an instance such that the iterate x(t) ∈ Kt−1, ∀t ≤ k and then
estimate the values

min
x(t)∈Kt−1

|f(x(t))− f∗|, and min
x(t)∈Kt−1

‖Ax(t) − b‖. (31)

In the above equation, the former value is used to measure the performance of an algorithm by the objective
value difference and the latter by the feasibility error. It should be noted that the absolute value is needed
in the former measure, since it is possible that f(x(t)) < f∗ when x(t) is not a feasible point.

The following lemma specifies the conditions on (11) to guarantee x(t) ∈ Kt−1, ∀t ≤ k.
Lemma 4 Given LA ∈ R, let A and b be those in (17). Consider (11) with h ∈ K0 and H satisfying

HKt−1 ⊆ Kt for any 1 ≤ t ≤ k, where Ki is defined in (19). Then under Assumption 1, we have x(t) ∈ Kt−1

for any 1 ≤ t ≤ k.
Proof. It suffices to prove that for any t = 1, . . . , k,

span
{

∇f(x(0)),A⊤r(0),∇f(x(1)),A⊤r(1), . . . ,∇f(x(t−1)),A⊤r(t−1)
}

⊆ Kt−1. (32)

We prove the result by induction. First, since x(0) = 0, from (12) and (17) we have A⊤r(0) = −A⊤b ∈
span{e2k,n} = K0. In addition, from the condition h ∈ K0, it follows that ∇f(x(0)) = −h ∈ K0. Therefore,
(32) holds when t = 1. Assume that for a certain 1 ≤ s < k, (32) holds for t = s, and consequently

x(s) ∈ Ks−1. (33)

We go to prove the result in (32) for t = s+1, or equivalently∇f(x(s)),A⊤r(s) ∈ Ks, and finish the induction.
From (30) we have K0 ⊆ Ks. By this observation, noting x(s) ∈ Ks−1, and using the conditions h ∈ K0 and
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HKs−1 ⊆ Ks, we have ∇f(x(s)) = Hx(s)−h ∈ Ks. In addition, from (29) and (33), we have A⊤Ax(s) ∈ Ks.
Since A⊤b ∈ K0 ⊆ Ks, then A⊤r(s) = A⊤Ax(s) −A⊤b ∈ Ks. Therefore, ∇f(x(s)) and A⊤r(s) are both in
Ks, and by induction (32) holds for any 1 ≤ t ≤ k. This completes the proof. �

Based on the above lemma, we construct an instance of (11) that satisfies the conditions h ∈ K0 and
HKt−1 ⊆ Kt for any 1 ≤ t ≤ k. Given positive numbers Lf and LA, we build a quadratic program as

f∗ := min
x∈Rn

{

f(x) := Lf

(

1

2
x2k +

1

2

n
∑

i=2k+1

x2i

)}

s.t. Ax = b,

(34)

where A and b are those in (17). Clearly, (34) is a special instance of (11) with h = 0 and a diagonal H ∈ Sn+.
It is obvious to see h ∈ K0, and since H is diagonal, it is easy to verify HKt−1 ⊆ Kt for any 1 ≤ t ≤ k.
Hence from Lemma 4, we have the following results.

Lemma 5 Applying to (34) a first-order method that satisfies Assumption 1, we have x(t) ∈ Kt−1 for any

1 ≤ t ≤ k. In addition, f(x) = 0 and ∇f(x) = 0 for all x ∈ Kk−1.

Proof. The first result directly follows from Lemma 4, and the second one can be easily verified. �

The lemma below characterizes the primal-dual solution and the optimal objective value f∗ of (34).

Lemma 6 (primal-dual solution of (34)) Let Lf and LA be positive numbers. The problem instance (34)
has a unique optimal solution x∗ with a unique associated Lagrange multiplier y∗ given by

x∗i =

{

i, if 1 ≤ i ≤ 2k,

0, if i ≥ 2k + 1,
(35)

and

y∗ =
2kLf

LA





0k

1k

0



 , (36)

respectively. In addition, the optimal objective value is f∗ =
Lf

2 k
2.

Proof. Similar to the proof of Lemma 1, we split x into two parts as x = (u⊤,v⊤)⊤ with u ∈ R2k and
v ∈ Rn−2k. Then from the block structure of A, it follows that (34) is equivalent to the following two smaller
problems:

min
u

Lf

2
u2k, s.t.

LA

2
Bu =

LA

2
12k, (37)

min
v

Lf

2
‖v‖2, s.t. LA

2
Gv = 0. (38)

By Lemma 1, the former problem (37) has a unique feasible (and thus optimal) solution u∗ that is given in
(18). Clearly, the latter problem (38) has a unique solution v∗ = 0. Hence we obtain (35). Consequently,

f∗ =
Lf

2
(u∗k)

2
=
Lf

2
k2.
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To derive the corresponding Lagrange multiplier, we split the dual variable to y = (λ⊤,π⊤)⊤ with
λ ∈ R2k and π ∈ Rm−2k. It follows from the Karush-Kuhn-Tucker (KKT) optimality conditions of (37) and
the solution x∗ in (35) that

LA

2
B⊤

λ
∗ = Lfu

∗
kek,2k = Lfkek,2k, G⊤

π
∗ = 0.

Since G is full row rank, we have π∗ = 0. In addition, from (16) we have

λ
∗ =

2

LA

(

B⊤)−1
(Lfkek,2k) =

2Lf

LA

k

[

0k

1k

]

,

and (36) follows immediately. �

By Lemmas 5 and 6, we can easily estimate the values in (31) as follows.

Lemma 7 Let Lf and LA be positive numbers. For the problem instance (34), we have

min
x∈Kk−1

∣

∣f(x)− f∗∣
∣ ≥ 3Lf‖x∗‖2

32(k + 1)
+

√
6

32(k + 1)
LA‖x∗‖ · ‖y∗‖, (39a)

min
x∈Kk−1

‖Ax− b‖ ≥
√
3LA‖x∗‖

4
√
2(k + 1)

, (39b)

where (x∗,y∗) is the unique primal-dual solution pair of (34), and Kk−1 is defined in (19).

Proof. Using the formula
p
∑

i=1

i2 =
p(p+ 1)(2p+ 1)

6
(40)

and the description of x∗ in (35), we have

‖x∗‖2 =
2k
∑

i=1

i2 =
k(2k + 1)(4k + 1)

3
. (41)

For any x ∈ Kk−1, we observe from (12), (17) and (27) that Ax can only have nonzeros on its first k
components. Since the first 2k components of b all equal LA

2 , we have

‖Ax− b‖2 ≥ kL2
A

4

(41)
=

3L2
A‖x∗‖2

4(2k + 1)(4k + 1)
≥ 3L2

A‖x∗‖2
32(k + 1)2

, (42)

and hence (39b) holds.
In addition, as x ∈ Kk−1, we have from Lemma 5 that f(x) = 0. Hence, it follows from Lemma 6 that

|f(x)− f(x∗)| = f∗ =
Lfk

2

2
.

For k ≥ 1, it is easy to verify that

Lfk
2

2

(41)
=

3Lfk‖x∗‖2
2(2k + 1)(4k + 1)

≥ 3Lf‖x∗‖2
16(k + 1)

. (43)
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Also from (36), we have

‖y∗‖2 =
4L2

f

L2
A

k3, (44)

and it is not difficult to verify that

Lfk
2

2
≥

√
6

16(k + 1)
2Lfk

3
2

√

k(2k + 1)(4k + 1)√
3

=

√
6

16(k + 1)
LA‖x∗‖ · ‖y∗‖, (45)

where the second equality uses (41) and (44). Therefore, (39a) follows from (43) and (45) and the fact
max{a, b} ≥ a+b

2 , and we complete the proof. �

Using Lemmas 5 through 7 established above, we are now ready to show our first lower complexity bound
result.

Theorem 3 (lower complexity bound I under linear span assumption) Let m ≤ n be positive

integers, and Lf and LA be positive numbers. For any positive integer t < m
2 , there exists an instance of (6)

such that ∇f is Lf -Lipschitz continuous, ‖A‖ = LA, and it has a primal-dual solution (x∗,y∗). In addition,

for any algorithm on solving (6), if it satisfies Assumption 1, then we have

∣

∣f(x(t))− f(x∗)
∣

∣ ≥ 3Lf‖x∗‖2
32(t+ 1)

+

√
6

32(t+ 1)
LA‖x∗‖ · ‖y∗‖, (46a)

‖Ax(t) − b‖ ≥
√
3LA‖x∗‖

4
√
2(t+ 1)

. (46b)

Proof. Set k = t < m
2 and consider (34). Clearly, (34) is an instance of (6), its objective f has Lf -Lipschitz

continuous gradient, and ‖A‖ = LA. Its existence of a primal-dual solution is guaranteed by Lemma 6. By
Lemma 5 and also noting t = k, we have x(t) ∈ Kk−1. Hence,

∣

∣f(x(t))− f(x∗)
∣

∣ ≥ min
x∈Kk−1

∣

∣f(x)− f∗∣
∣, and ‖Ax(t) − b‖ ≥ min

x∈Kk−1

‖Ax− b‖.

Now using Lemma 7, we conclude (46a) and (46b) immediately. �

Remark 1 A few remarks are in place for the above theorem. First, by (46a) and (46b) we have |f(x(t))−f∗| ≥
O(1/t) and ‖Ax(t)−b‖ ≥ O(1/t). From the complexity point of view, given ε > 0, to compute an ε-optimal
solution x, i.e., |f(x)− f∗| ≤ ε and ‖Ax−b‖ ≤ ε, the iteration number of a first-order method is at least in
the order of 1/ε. Therefore, on solving (6), O(1/ε) is a lower complexity bound of any first-order algorithm
that satisfies Assumption 1. Second, if we consider further the dependence of the convergence result on the
norm of A, by (46a) and (46b) we have that the lower complexity bound is O(LA/ε). Finally, consider the
dependence on the Lipschitz constant Lf of the objective gradient. From (46a), the lower complexity bound
is O(Lf/ε) to ensure |f(x)−f∗| ≤ ε. It is well known that the complexity result of optimal proximal gradient

methods (c.f. [3,35]) can reach the order of
√

Lf/ε, which is smaller than Lf/ε if Lf > ε. We point out that
the bound in (46a) does not contradict to the existing results because we do not allow projection onto the
linear constraint set Ax = b. In addition, we point out that we do not restrict the size of primal and dual
solutions in the theorem. For the designed instance (34), it holds that

Lf‖x∗‖2 ≈ LA‖x∗‖ · ‖y∗‖. (47)
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Hence, the two quantities in the right hand side of (46a) are of the same order, so if we change the first

quantity to
3Lf‖x∗‖2

16(t+1)2 , we still have a valid lower bound.

However, note that the relation in (47) requires LA > 0, and thus our lower complexity bound results
in (46) do not include those for a proximal gradient method as special cases. In the next subsection, we
drop the assumption LA > 0 and design another “hard” instance that does not have the relation (47). That
instance allows us to depict a clearer picture on the dependence of the convergence results on LA and Lf ,
and the dependence coincides with the existing upper complexity bound; see (102) in section 5.

2.4 A lower complexity bound with nonnegative LA

In this subsection, we design a “hard” instance that is different from (34). By this instance, we establish a
lower complexity bound that linearly depends on

√

Lf and LA. This bound is particularly useful as Lf is big

and LA = O(
√

Lf ). However, to show the bound, we only need assume LA = O(Lf ), which allows LA = 0,
and thus our result can also cover the case for proximal gradient methods. The instance we construct is still
in the form of (11) with

H =
Lf

4

[

B⊤B
In−2k

]

∈ Rn×n,h =

(

Lf

4
+

LA

4
√
2

)

e2k,n,A =
LA

2
Λ,b =

LA

2
c, (48)

where Lf and LA are given nonnegative numbers, and B, Λ and c are those given in (13) and (12). From (14),
(15), and the block diagonal structure of H above, we have ‖H‖ = (Lf/4)‖B‖2 ≤ Lf . Therefore, (11) with
data specified in (48) provides an instance of (6) whose objective gradient ∇f is Lf -Lipschitz continuous.

Our derivation of the lower complexity bound follows exactly the same path as in the previous subsection.
Specifically, in the sequel we prove three lemmas that are similar to Lemmas 5, 6, and 7. We show in Lemma
8 below that under Assumption 1, the iterates generated by any first-order method on solving the designed
instance would satisfy x(t) ∈ Kt−1 for any 1 ≤ t ≤ k. In Lemma 9, we give a pair of optimal primal-dual
solution and also the optimal objective value of the instance. Then, in Lemma 10, we establish the lower
complexity bound by estimating the values in (31).

Lemma 8 Consider the instance of (11) with data described in (48). Under Assumption 1, we have x(t) ∈
Kt−1 for any 1 ≤ t ≤ k, where Kt−1 is defined in (19).

Proof. To prove the lemma, it suffices to verify that h ∈ K0 and HKt−1 ⊆ Kt for any 1 ≤ t ≤ k and then
apply Lemma 4. Since h is a multiple of e2k,n, from (26) we immediately have h ∈ K0. Using the definition
of H and the second line of equation in (23), one can easily verify that H span{e2k−t+1,n, . . . , e2k,n} =
span{e2k−t,n, e2k−t+1,n, . . . , e2k,n} for any 1 ≤ t ≤ k. Hence we have all the conditions required by Lemma
4, and thus x(t) ∈ Kt−1, which completes the proof. �

The next lemma gives the primal-dual solution and optimal objective value of the considered instance.

Lemma 9 Let Lf > 0 and LA ≥ 0. For the instance of (11) with data given in (48), it has a unique optimal

solution x∗ given in (35), and there is a corresponding dual solution y∗ given by

y∗i =

{

− 1
2
√
2

if 1 ≤ i ≤ 2k

0 if i ≥ 2k + 1.
(49)
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In addition, the optimal objective value is

f∗ = −
(

Lf

4
+

LA

2
√
2

)

k, (50)

and the norm of the dual solution is

‖y∗‖ =
√
k

2
. (51)

Proof. Similar to the proof of Lemma 6, we split x into two parts as x = (u⊤,v⊤)⊤ with u ∈ R2k and
v ∈ Rn−2k. Then from the block structure of H and A in (48), we obtain the following two optimization
problems with respect to u and v:

min
u

1

2
u⊤Su− s⊤u, s.t.

LA

2
Bu =

LA

2
12k, (52)

min
v

Lf

8
‖v‖2, s.t. LA

2
Gv = 0, (53)

where

S =
Lf

4
B⊤B and s =

(

Lf

4
+

LA

4
√
2

)

e2k,2k.

Since Lf > 0, (53) clearly has a unique solution v∗ = 0. If LA = 0, (52) is unconstrained, and u∗ is an
optimal solution if and only if the optimality condition Su∗ = s holds. Note Lf > 0 and B is nonsingular.
Then it is easy to verify that u∗ = (1, 2, . . . , 2k)⊤ is the unique point that satisfies the optimality condition
and thus is an optimal solution to (52). If LA > 0, then by (18), u∗ = (1, 2, . . . , 2k)⊤ is the unique feasible
and thus optimal solution of (52). Hence in both cases, we conclude u∗ is unique, and thus x∗ is unique and
given in (35). Consequently,

f∗ =
1

2
(u∗)⊤Su∗ − s⊤u∗ =

Lf

8
‖Bu∗‖2 − s⊤u∗ =

Lf

8
‖12k‖2 − s⊤u∗ = −Lf

4
k − LA

2
√
2
k.

To derive the corresponding dual variable, we split y = (λ⊤,π⊤)⊤ with λ ∈ R2k and π ∈ Rm−2k. It
follows from the KKT optimality conditions of (52) that

LA

2
B⊤

λ
∗ = Su∗ − s,

LA

2
G⊤

π
∗ =

Lf

4
v∗ = 0. (54)

Obviously, π∗ = 0 is a solution of the above second equation. In addition, from the definition of B in (13)
and u∗ = (1, 2, . . . , 2k)⊤, it is straightforward to verify

Su∗ − s =
Lf

4
B⊤Bu∗ − s =

Lf

4
B⊤12k − s =

Lf

4
e2k,2k − s = − LA

4
√
2
e2k,2k.

If LA = 0, then λ
∗ = − 1

2
√
2
12k obviously satisfies the first equation in (54). If LA > 0, we use (16), the

above result and (54) to have

λ
∗ =

2

LA

(

B⊤)−1
(− LA

4
√
2
e2k,2k) = −

1

2
√
2
12k,

Therefore, (49) follows immediately, and it is straightforward to have ‖y∗‖ =
√
k
2 . �
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Remark 2 From the above proof, we see that if LA > 0, then the dual solution y∗ is also unique and given
in (49) since G is full row rank.

Using Lemma 9, we have the following estimate.

Lemma 10 Let Lf > 0 and LA ≥ 0. Assume Lf ≥ LA. Then for the instance of (11) with data given in

(48), we have

min
x∈Kk−1

f(x)− f∗ ≥ 3Lf‖x∗‖2
128(k + 1)2

+

√
3LA‖x∗‖ · ‖y∗‖

8(k + 1)
, (55a)

min
x∈Kk−1

‖Ax− b‖ ≥
√
3LA‖x∗‖

4
√
2(k + 1)

, (55b)

where x∗ is the unique primal solution given in (35), y∗ is a corresponding dual solution given in (49), and
Kk−1 is defined in (19).

Proof. The result in (55b) holds exactly the same as that in (39b).
To prove (55a) we need to compute the minimal objective value of f(x) over Kk−1. By (26) we have

Kk−1 = span{ek+1,n, . . . , e2k,n}. Hence, for any x ∈ Kk−1, we can write it as x = (0⊤
k , z

⊤,0⊤
n−2k)

⊤ where

z ∈ Rk. Recalling (48), we have

h⊤x =

(

Lf

4
+

LA

4
√
2

)

x2k =

(

Lf

4
+

LA

4
√
2

)

zk,

x⊤Hx =
Lf

4

∥

∥

∥

∥

B

(

0k

z

)∥

∥

∥

∥

2

=
Lf

4
‖B̄z‖2,

where

B̄ :=















−1 1

. .
.
. .
.

−1 1
−1 1
1















∈ Rk×k

is a k × k submatrix of B. Therefore,

min
x∈Kk−1

f(x) = min
z∈Rk

Lf

8
‖B̄z‖2 −

(

Lf

4
+

LA

4
√
2

)

zk. (56)

Let z∗ be the optimal solution to the right hand side minimization problem in (56). Then it must satisfy the
optimality condition:

Lf

4
B̄2z∗ =

(

Lf

4
+

LA

4
√
2

)

ek,k,

which has the unique solution

z∗ =
4

Lf

(

Lf

4
+

LA

4
√
2

)

(1, . . . , k)⊤.
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Plugging z = z∗ into the right hand side of (56) yields

min
x∈Kk−1

f(x) = −1

8

(

Lf +
√
2LA +

L2
A

2Lf

)

k. (57)

From the above result and (50), we have

min
x∈Kk−1

f(x)− f∗ =
1

8

(

Lf +
√
2LA −

L2
A

2Lf

)

k ≥ 1

8

(

Lf

2
+
√
2LA

)

k. (58)

where the inequality follows from Lf ≥ LA. Moreover, using (41) and (51), we have

Lf

16
k +

√
2LA

8
k =

3Lf‖x∗‖2
16(2k + 1)(4k + 1)

+

√
6LA‖x∗‖ · ‖y∗‖

4
√

(2k + 1)(4k + 1)

≥ 3Lf‖x∗‖2
128(k + 1)2

+

√
3LA‖x∗‖ · ‖y∗‖

8(k + 1)
,

which together with (58) gives (55a) and completes the proof. �

Using Lemmas 8 through 10, we are ready to establish the following lower complexity bound results.

Theorem 4 (lower complexity bound II under linear span assumption) Let m ≤ n be positive

integers, Lf > 0, and LA ≥ 0. Assume Lf ≥ LA. For any positive integer t < m
2 , there exists an instance

of (6) such that ∇f is Lf -Lipschitz continuous, ‖A‖ = LA, and it has a primal-dual solution (x∗,y∗). In
addition, for any algorithm on solving (6), if it satisfies Assumption 1, then we have

f(x(t))− f(x∗) ≥ 3Lf‖x∗‖2
128(t+ 1)2

+

√
3LA‖x∗‖ · ‖y∗‖

8(t+ 1)
, (59a)

‖Ax(t) − b‖ ≥
√
3LA‖x∗‖

4
√
2(t+ 1)

. (59b)

Proof. Set k = t < m
2 and consider the instance (11) with data given in (48). Clearly, this instance is in the

form of (6), ∇f is Lf -Lipschitz continuous, and ‖A‖ = LA. In addition, Lemma 9 indicates that it has a
primal-dual solution (x∗,y∗). By Lemma 8 and noting t = k, we have x(t) ∈ Kk−1. Consequently,

f(x(t))− f(x∗) ≥ min
x∈Kk−1

f(x)− f∗, and ‖Ax(t) − b‖ ≥ min
x∈Kk−1

‖Ax− b‖.

Now we conclude (59a) and (59b) from Lemma 10. �

Remark 3 Let us compare the results in Theorems 3 and 4. First note that the former theorem requires
LA > 0 while the latter one only needs LA ≥ 0. As LA = 0, Theorem 4 recovers the lower complexity

bound O(
Lf‖x∗‖2

(t+1)2 ) for proximal gradient methods in [33]. Second, the lower bounds for feasibility error are

the same in the two theorems. For the objective error, both (46a) and (59a) have the term LA‖x∗‖·‖y∗‖
t+1 . If

this term dominates the other one in both inequalities, then the lower bounds in Theorems 3 and 4 are in
the same order, and their difference is that the former has an absolute value on the objective error while the

latter one does not. Thirdly, O(
Lf‖x∗‖2

(t+1)2 + LA‖x∗‖·‖y∗‖
t+1 ) has also appeared as an upper complexity bound for



Lower complexity bounds of first-order methods for convex-concave bilinear saddle-point problems 19

certain first-order methods; see [36, 40] and the inequality (102) in section 5. If ‖x∗‖ and ‖y∗‖ are regarded

as constants, the term
Lf‖x∗‖2

(t+1)2 can dominate LA‖x∗‖·‖y∗‖
t+1 for very big t only when Lf ≫ LA. In fact, we

observe that when Lf ≤ LA, the result in (59a) reduces to O(LA/t). This observation is consistent with the
result (46a) in Theorem 3. Finally, it is interesting to note that in (59a), f(x(t)) is always greater than f∗,
and it is not necessarily the case in (46a), which uses the absolute value.

2.5 A lower complexity bound for strongly convex case

In this subsection, we develop a lower complexity bound for solving (6) where f is µ-strongly convex, namely,

〈∇f(x1)−∇f(x2),x1 − x2〉 ≥ µ‖x1 − x2‖2, ∀x1,x2 ∈ Rn.

The measure we use is different from those in (31). Instead of bounding the objective and feasibility error,
we directly bound the distance of generated iterate to the unique optimal solution. Similar to the previous
two subsections, the “hard” instance we design is also a quadratic program in the form of (11). The following
theorem summarizes our result.

Theorem 5 (lower complexity bound for strongly convex case under linear span assumption)
Let m ≤ n be positive integers, µ > 0, and LA > 0. For any positive integer t < m

2 , there exists an instance

of (6) such that f is µ-strongly convex, ‖A‖ = LA, and it has a unique pair of primal-dual solution (x∗,y∗).
In addition, for any algorithm on solving (6), if it satisfies Assumption 1, then we have

‖x(t) − x∗‖2 ≥ 5L2
A‖y∗‖2

256µ2(t+ 1)2
.

Proof. Set k = t and consider an instance of (11) with H = µI, h = 0, and A and b given in (17). Clearly
f is µ-strongly convex, and ‖A‖ = LA. It is easy to verify that Lemma 4 applies to this instance, and
thus x(t) ∈ Kt−1. Also, by writing the KKT condition, we can easily verify that the system has a unique
primal-dual solution (x∗,y∗) with x∗ given in (35) and y∗ given by

y∗i =

{ µ

LA

i(4k − i+ 1), if 1 ≤ i ≤ 2k,

0, if i ≥ 2k + 1.
(60)

From the formula of Ki in (26), it follows that for any x ∈ Kk−1,

‖x− x∗‖2 ≥
k
∑

i=1

i2
(40)
=

k(k + 1)(2k + 1)

6
. (61)

Moreover, by (40) and also the formulas

p
∑

i=1

i3 =
p2(p+ 1)2

4
,

p
∑

i=1

i4 =
p(p+ 1)(2p+ 1)(3p2 + 3p− 1)

30
,
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we have from (60) that

‖y∗‖2 = µ2

L2
A

2k
∑

i=1

i2(4k − i+ 1)2

=
µ2

L2
A

(

(4k + 1)2
2k
∑

i=1

i2 − 2(4k + 1)

2k
∑

i=1

i3 +

2k
∑

i=1

i4

)

=
2k(2k + 1)(4k + 1)µ2

L2
A

(

(4k + 1)2

6
− k(2k + 1) +

12k2 + 6k − 1

30

)

=
2k(2k + 1)(4k + 1)µ2

15L2
A

(16k2 + 8k + 2).

Since t = k and x(t) ∈ Kt−1, it is not difficult to verify the desired result from (61) and the above equation,
and thus we complete the proof. �

3 Lower complexity bounds of general first-order methods for affinely constrained problems

In this section, we drop the linear span assumption (see Assumption 1) and establish lower complexity bounds
of general first-order methods described in (8) on solving (6). The key idea is to utilize certain rotational
invariance of quadratic functions and linear systems, a technique that was introduced in [31,32]. Specifically,
we use the following proposition as a main tool and then derive the lower complexity bounds by the results
obtained in the previous section.

Proposition 1 Let m ≤ n and k < m
2 be positive integers, and let Lf and LA be nonnegative numbers.

Suppose that we have an instance of (11), called original instance, where ‖H‖ ≤ Lf , and A and b are those

given in (17). Moreover, assume that H ∈ Sn+ and satisfies HK2s−1 ⊆ K2s for any s ≤ k
2 and h ∈ K0, where

Ki is defined in (19). Then we have the following results.

1. For any first-order method M that is described in (8), there exists another problem instance, called

rotated instance,

f̃∗ := min
x∈Rn

{

f̃(x), s.t. Ãx = b
}

, (62)

such that ∇f̃ is Lf -Lipschitz continuous, and ‖Ã‖ = ‖A‖. More precisely, we have

f̃(x) = f(Ux) and Ã = V⊤AU, (63)

where U and V are certain orthogonal matrices such that Uh = h and Vb = b.
2. In addition, (x∗,y∗) is a primal-dual solution to the original instance if and only if (x̂, ŷ) := (U⊤x∗,V⊤y∗)

is a primal-dual solution to the rotated instance.
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3. Furthermore, when M is applied to solve (62), for any 1 ≤ t ≤ k−4
2 , we have:

∣

∣f̃(x̄(t))− f̃∗∣
∣ ≥ min

x∈Kk−1

∣

∣f(x)− f∗∣
∣, (64)

f̃(x̄(t))− f̃∗ ≥ min
x∈Kk−1

f(x)− f∗, (65)

‖Ãx̄(t) − b‖ ≥ min
x∈Kk−1

‖Ax− b‖, (66)

‖x̄(t) − x̂‖2 ≥ min
x∈Kk−1

‖x− x∗‖2, (67)

where x̄(t) is the computed approximate solution by M.

The proof of Proposition 1 is rather technical and deferred after we present the lower complexity bound
results. Here we give a few remarks on this proposition. First, in Proposition 1 there are two problem
instances, which have been distinguished as original and rotated instances, respectively. Second, the results
in (64) through (67) establish an important relation between the original and rotated instances. Specifically,
by this relation, we are able to study the best possible performance of general first-order methods through
the linear subspace Kk−1.

3.1 Lower complexity bounds

In this subsection, we apply Proposition 1 together with Lemmas 7 and 10, and Theorem 5 to establish
the lower complexity bounds of general first-order methods on solving (6). The theorem below extends the
results in Theorem 3, and Remarks 1 and 3 also apply here.

Theorem 6 (lower complexity bound I of general first-order methods) Let 8 < m ≤ n be positive

integers, and Lf and LA be positive numbers. For any positive integer t < m
4 − 2 and any first-order method

M that is described in (8), there exists an instance of (62) such that ∇f̃ is Lf -Lipschitz continuous and

‖Ã‖ = LA. In addition, the instance has a primal-dual solution (x̂, ŷ), and

∣

∣f̃(x̄(t))− f̃∗∣
∣ ≥ 3Lf‖x̂‖2

32(2t+ 5)
+

√
6

32(2t+ 5)
LA‖x̂‖ · ‖ŷ‖,

‖Ãx̄(t) − b‖ ≥
√
3LA‖x̂‖

4
√
2(2t+ 5)

,

where x̄(t) is the approximate solution output byM.

Proof. Set k = 2t+4 < m
2 in the definition of Λ and c given in (12). Consider the problem instance (34) and

let it be the original instance. It is easy to check that the data satisfy the conditions required in Proposition
1. Hence, by items 1 and 3 of Proposition 1, there exists a rotated instance (62) such that (64) and (66) hold.
Applying Lemma 7 together with these two inequalities, we have

∣

∣f̃(x̄(t))− f̃∗∣
∣ ≥ min

x∈Kk−1

∣

∣f(x)− f∗∣
∣ ≥ 3Lf‖x∗‖2

32(k + 1)
+

√
6

32(k + 1)
LA‖x∗‖ · ‖y∗‖, (68a)

‖Ãx̄(t) − b‖ ≥ min
x∈Kk−1

‖Ax− b‖ ≥
√
3LA‖x∗‖

4
√
2(k + 1)

, (68b)
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where (x∗,y∗) is the unique pair of primal-dual solution to the original instance (34). By item 2 of Proposition
1, the rotated instance (62) also has a unique primal-dual solution (x̂, ŷ) given by x̂ = U⊤x∗ and ŷ = V⊤y∗.
Since U and V are orthogonal, it holds that ‖x∗‖ = ‖x̂‖ and ‖y∗‖ = ‖ŷ‖. Therefore, noting that k = 2t+4,
we obtain the desired results from the two inequalities in (68) and complete the proof. �

In Theorem 6, LA > 0 is required. The following theorem allows LA = 0 and extends the results in
Theorem 4 to general first-order methods.

Theorem 7 (lower complexity bound II of general first-order methods) Let 8 < m ≤ n be positive

integers, Lf > 0, and LA ≥ 0. Assume Lf ≥ LA. For any positive integer t < m
4 − 2 and any first-order

methodM that is described in (8), there exists an instance of (62) such that ∇f̃ is Lf -Lipschitz continuous

and ‖Ã‖ = LA. In addition, the instance has a primal-dual solution (x̂, ŷ), and

f̃(x̄(t))− f̃∗ ≥ 3Lf‖x̂‖2
128(2t+ 5)2

+

√
3LA‖x̂‖ · ‖ŷ‖
8(2t+ 5)

, (69a)

‖Ãx̄(t) − b‖ ≥
√
3LA‖x̂‖

4
√
2(2t+ 5)

, (69b)

where x̄(t) is the approximate solution output byM.

For strongly convex case, we below generalize Theorem 5 to any first-order method given in (8).

Theorem 8 (lower complexity bound of general first-order methods for strongly convex case)
Let 8 < m ≤ n be positive integers, and µ and LA be positive numbers. For any positive integer t < m

4 −2 and

any first-order methodM that is described in (8), there exists an instance of (62) such that f̃ is µ-strongly
convex, and ‖Ã‖ = LA. In addition, the instance has a unique primal-dual solution (x̂, ŷ), and

‖x̄(t) − x̂‖2 ≥ 5L2
A‖y∗‖2

256µ2(2t+ 5)2
, (70)

where x̄(t) is the approximate solution of output by M.

The proofs of Theorems 7 and 8 are similar to that of Theorem 6. To show Theorem 7, one can apply
(65) and (66) together with Lemma 10, and for Theorem 8, one can use (67) together with Theorem 5. We
omit the details.

3.2 Proof of Proposition 1

This subsection is dedicated to the technical details on the proof of Proposition 1. In section 4, a similar
proposition (i.e., Proposition 3) will be shown for the SPPs. Since an affinely constrained problem can
be equivalently formulated as one SPP, we conduct the analysis directly on instances of SPP. For ease of
notation, we define a specific class of SPPs as follows.

Definition 1 Given H ∈ Sn+, A ∈ Rm×n, and θ = (h,b, X, Y, 0), P (θ;H,A) denotes as one instance of (3)
with f(x) = 1

2x
⊤Hx− h⊤x and g = 0.
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If X = Rn, and Y = Rm, then P (θ;H,A) is an instance of (11). On an instance P (θ;H,A), the first-order
methodM described in (8) can be written as

(

x(t+1),y(t+1), x̄(t+1), ȳ(t+1)
)

= It
(

θ;Hx(0),Ax(0),A⊤y(0), . . . ,Hx(t),Ax(t),A⊤y(t)
)

, ∀ t ≥ 0. (71)

We start our proof with several technical lemmas. The following lemma is an elementary result of linear
subspaces and will be used several times in our analysis.

Lemma 11 Let X ( X̄ ⊆ Rp be two linear subspaces. Then for any x̄ ∈ Rp, there exists an orthogonal

matrix V ∈ Rp×p such that

Vx = x, ∀x ∈ X , and Vx̄ ∈ X̄ . (72)

Proof. If x̄ ∈ X , then we can simply choose V = I. Otherwise, we decompose x̄ = y+ z, where 0 6= y ∈ X⊥

and z ∈ X . Let s = dim(X ) and t = dim(X̄ ) > s. Assume u1, . . . ,us to be an orthonormal basis of X . We
extend it to u1, . . . ,ut, an orthonormal basis of X̄ . The desired result in (72) is then obtained by choosing
V as an orthogonal matrix such that Vui = ui, ∀ i = 1, . . . , s, and Vy = ‖y‖us+1. �

By Lemma 11, we show the results below.

Lemma 12 Given m ≤ n and k < m
2 , let Λ be the matrix in (12). Let s ≤ k

2 be a positive integer, H ∈ Sn+,

and U,Φ ∈ Rn×n and V,Ψ ∈ Rm×m be orthogonal matrices. If HK2s−1 ⊆ K2s, and

Φx = x, ∀x ∈ U⊤K2s, and Ψy = y, ∀y ∈ V⊤J2s, (73)

then for any x ∈ U⊤K2s−1 and any y ∈ V⊤J2s−1, it holds:

Ũ⊤HŨx = U⊤HUx, Ṽ⊤
ΛŨx = V⊤

ΛUx, and Ũ⊤
Λ

⊤Ṽy = U⊤
Λ

⊤Vy.

where Ũ = UΦ and Ṽ = VΨ .

Proof. Let x ∈ U⊤K2s−1 and y ∈ V⊤J2s−1. Since U and V are orthogonal, it holds that Ux ∈ K2s−1 and
Vy ∈ J2s−1. Hence, from the assumption on H, the properties of Ji and Ki in (29) and (30), and noting
2s− 1 ≤ k − 1, we have

HUx ∈ K2s, ΛUx ∈ J2s, and Λ
⊤Vy ∈ K2s−1 ( K2s,

which implies
U⊤HUx ∈ U⊤K2s, V

⊤
ΛUx ∈ V⊤J2s, and U⊤

Λ
⊤Vy ∈ U⊤K2s.

From (73), we obtain

ΦU⊤HUx = U⊤HUx, ΨV⊤
ΛUx = V⊤

ΛUx, and ΦU⊤
Λ

⊤Vy = U⊤
Λ

⊤Vy.

Because Φ and Ψ are orthogonal matrix, the above equations indicate that

Φ
⊤U⊤HUx = U⊤HUx, Ψ⊤V⊤

ΛUx = V⊤
ΛUx, and Φ

⊤U⊤
Λ

⊤Vy = U⊤
Λ

⊤Vy. (74)

Moreover, since x ∈ U⊤K2s−1 and y ∈ V⊤J2s−1, it follows from (30) that x ∈ U⊤K2s and y ∈ V⊤J2s,
and thus using (73) again and also the definition of Ũ and Ṽ, we have

Ũx = UΦx = Ux, and Ṽy = VΨy = Vy. (75)
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Therefore, we conclude that for any x ∈ U⊤K2s−1 and y ∈ V⊤J2s−1,

Ũ⊤HŨx
(75)
= Φ

⊤U⊤HUx
(74)
= U⊤HUx,

Ṽ⊤
ΛŨx

(75)
= Ψ

⊤V⊤
ΛUx

(74)
= V⊤

ΛUx,

Ũ⊤
Λ

⊤Ṽy = Φ
⊤U⊤

Λ
⊤Vy

(74)
= U⊤

Λ
⊤Vy.

Hence, we complete the proof. �

Lemma 13 Given m ≤ n and k < m
2 , let Λ and c be the matrix and vector in (12), and let h ∈ K0. Suppose

that A and b are respectively a multiple of Λ and c and H ∈ Sn+ satisfying HK2s−1 ⊆ K2s for all s ≤ k
2 .

Assume X and Y are rotational invariant convex sets. Then for any first-order methodM described in (8),
there exist orthogonal matrices U ∈ Rn×n and V ∈ Rm×m and a problem instance P (θ;U⊤HU,V⊤AU)
with θ = (h,b, X, Y, 0) such that Uh = h, Vc = c, and in addition, for any 0 ≤ t ≤ k−4

2 , whenM is applied

to solve the instance, the iterates {(x(i),y(i))}ti=0 satisfy

x(i) ∈ U⊤K2t+1, y(i) ∈ V⊤J2t+1, ∀ i = 0, . . . , t,

where K2t+1 and J2t+1 are the Krylov spaces defined in (19).

Proof. Note K0 ( K1 and J0 ( J1 from Lemma 3. Hence, by Lemma 11 there exist orthogonal matrices U0

and V0 such that

U0x = x, ∀x ∈ K0, and U0x
(0) ∈ K1

V0y = y, ∀y ∈ J0, and V0y
(0) ∈ J1.

Therefore, from the condition h ∈ K0 and c ∈ J0 by Lemma 3, we haveU0h = h andV0c = c. Consequently,
the results in the lemma hold for t = 0. Below we prove the results for any t < k−4

2 by induction.

Assume that for some 1 ≤ s < k−4
2 , the results hold for t = s−1, namely, there exist orthogonal matrices

Us−1 ∈ Rn×n and Vs−1 ∈ Rm×m such that Us−1h = h, Vs−1c = c, and whenM is applied to the instance
P (θ;U⊤

s−1HUs−1,V
⊤
s−1AUs−1), the iterates {(x(i),y(i))}s−1

i=0 satisfy

x(i) ∈ U⊤
s−1K2s−1, and y(i) ∈ V⊤

s−1J2s−1, ∀i = 0, . . . , s− 1. (76)

Suppose the next iterate obtained from M is (x(s),y(s)) ∈ X × Y . Since s < k−4
2 , it holds that 2s < k,

and from (30) we have U⊤
s−1K2s−1 ( U⊤

s−1K2s ( U⊤
s−1K2s+1 and V⊤

s−1J2s−1 ( V⊤
s−1J2s ( V⊤

s−1J2s+1. By
Lemma 11, there exist orthogonal matrices Φ ∈ Rn×n and Ψ ∈ Rm×m such that

Φx = x, ∀x ∈ U⊤
s−1K2s, and Φx(s) ∈ U⊤

s−1K2s+1,

Ψy = y, ∀y ∈ V⊤
s−1J2s, and Ψy(s) ∈ V⊤

s−1J2s+1.
(77)

Since c ∈ J2s and Vs−1c = c, we have c ∈ V⊤
s−1J2s, and thus it follows from (77) that Ψc = c. Let

Us = Us−1Φ and Vs = Vs−1Ψ . Clearly, both Us and Vs are orthogonal matrices, and because Vs−1c = c
and Ψc = c, we have Vsc = c. By a similar argument we also have Ush = h. In addition, from (77), Lemma
12, and the assumptions on H and A, it follows that for any x ∈ U⊤

s−1K2s−1 and y ∈ V⊤
s−1J2s−1,

U⊤
s HUsx = U⊤

s−1HUs−1x, V
⊤
s AUsx = V⊤

s−1AUs−1x, and U⊤
s A

⊤Vsy = U⊤
s−1A

⊤Vs−1y. (78)
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Therefore, from the induction hypothesis (76) and the equations in (78), we conclude that the first s+1
iterates obtained fromM applied to P (θ;U⊤

s HUs,V
⊤
s AUs) are exactly the same as the first s+ 1 iterates

obtained fromM applied to P (θ;U⊤
s−1HUs−1V

⊤
s−1AUs−1), because exactly the same information is used

to generate those iterates (cf. (71)). Consequently, whenM is applied to P (θ;U⊤
s HUs,V

⊤
s AUs), the first

s+ 1 iterates are (x(i),y(i)), i = 0, 1, . . . , s. Hence, from (30), (76) and (77), and also the facts Us = Us−1Φ

and Vs = Vs−1Ψ , we have

x(i) ∈ U⊤
s K2s+1, y

(i) ∈ V⊤
s J2s+1, ∀i = 0, . . . , s.

This finishes the induction and completes the proof. �

From Lemma 13, we perform another rotation to the instance and can further show that the generated
approximate solution falls into a rotated Krylov subspace.

Proposition 2 Given m ≤ n and k < m
2 , let Λ and c be the matrix and vector in (12), and let h ∈ K0.

Suppose that A and b are respectively a multiple of Λ and c and H ∈ Sn+ satisfying HK2s−1 ⊆ K2s for all

s ≤ k
2 . Assume X and Y are rotational invariant convex sets. Then for any first-order methodM described in

(8), there exist orthogonal matrices U ∈ Rn×n and V ∈ Rm×m and a problem instance P (θ;U⊤HU,V⊤AU)
with θ = (h,b, X, Y, 0) such that Uh = h, Vc = c, and in addition, for any 0 ≤ t ≤ k−4

2 , whenM is applied

to this instance, the iterates {(x(i),y(i))}ti=0 satisfy

x(i) ∈ U⊤K2t+3, y(i) ∈ V⊤J2t+3, ∀ i = 0, . . . , t,

and the output x̄(t) ∈ U⊤K2t+3.

Proof. From Lemma 13, we see that there are orthogonal matrices Ut ∈ Rn×n and Vt ∈ Rm×m and a
problem instance P (θ;U⊤

t HUt,V
⊤
t AUt), such that Uth = h, Vtc = c, and when M is applied to this

instance, the iterates {(x(i),y(i))}ti=0 satisfy

x(i) ∈ U⊤
t K2t+1, y

(i) ∈ V⊤
t J2t+1, ∀ i = 0, . . . , t. (79)

Since t ≤ k−4
2 , it holds that 2t + 3 ≤ k − 1, and from (30) we have K2t+1 ( K2t+2 ( K2t+3 and

J2t+1 ( J2t+2 ( J2t+3. Hence, by Lemma 11, there is an orthogonal matrices Φ and Ψ such that

Φx = x, ∀x ∈ U⊤
t K2t+2, Φx̄(t) ∈ U⊤

t K2t+3,

Ψy = y, ∀y ∈ V⊤
t J2t+2, Ψ ȳ(t) ∈ V⊤

t J2t+3.
(80)

Let U = UtΦ and V = VtΨ . By the same arguments as those in the proof of Lemma 13, we have that
Uh = h, Vc = c, and when M is applied to P (θ;U⊤HU,V⊤AU), the first t + 1 iterates are exactly
(x(i),y(i)), i = 0, 1, . . . , t. The desired results now follow from (79) and (80). �

Using Proposition 2, we are now ready to prove Proposition 1.

Proof.[ of Proposition 1] First note that the original instance in Proposition 1 is P (θ;H,A) with θ =
(h,b,Rn,Rm, 0). Second, the data H,A,b and h satisfy the conditions in Proposition 2. Hence, we apply
Proposition 2 to obtain an instance P (θ;U⊤HU,V⊤AU) such that Uh = h and Vb = b, where U and
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V are orthogonal matrices, and we have used the fact that b is a multiple of c. In addition, note that the
instance P (θ;U⊤HU,V⊤AU) is

min
x∈Rn

1

2
x⊤U⊤HUx− h⊤x s.t. V⊤AUx = b, (81)

which is exactly the rotated instance (62) by the definition (63) and the relations Uh = h and Vb = b. By
the KKT conditions of the original instance (11) and the rotated instance (62) or (81), it is easy to show
that the pair (x∗,y∗) is a primal-dual solution to the original instance if and only if (x̂, ŷ) = (U⊤x∗,V⊤y∗)
is a primal-dual solution to the rotated instance, and that f̃∗ = f∗.

It remains to prove the inequalities from (64) through (67). By Proposition 2, when M is applied to
the rotated instance, the approximate solution x̄(t) ∈ U⊤K2t+3, which indicates Ux̄(t) ∈ K2t+3 by the
orthogonality of U. Since t ≤ k−4

2 , we have 2t + 3 ≤ k − 1, and thus from (30), it follows that Ux̄(t) ∈
K2t+3 ⊆ Kk−1. Therefore, from (63) and the relations Uh = h and Vb = b we have

∣

∣f̃(x̄(t))− f̃∗∣
∣ =

∣

∣f(Ux̄(t))− f∗∣
∣ ≥ min

x∈Kk−1

∣

∣f(x)− f∗∣
∣,

f̃(x̄(t))− f̃∗ = f(Ux̄(t))− f∗ ≥ min
x∈Kk−1

f(x)− f∗,

‖Ãx̄(t) − b‖ = ‖A(Ux̄(t))− b‖ ≥ min
x∈Kk−1

‖Ax− b‖,

‖x̄(t) − x̂‖2 = ‖Ux̄(t) − x∗‖2 ≥ min
x∈Kk−1

‖x− x∗‖2,

and we complete the proof. �

4 Lower complexity bounds on bilinear saddle-point problems

In this section, we derive lower complexity bounds of first-order methods on solving the bilinear saddle-point
problem (1) through considering its associated primal problem (3). As we mentioned in the beginning, the
affinely constrained problem (6) is a special case of (3) if Y = Rm and g = 0. Hence, the results obtained in
previous sections also apply to (3), namely, our designed instances of (6) are also “hard” instances of (3).
However, if we require Y to be a compact set, those instances will not satisfy. On solving (1) with both X
and Y being compact, [34] gives a first-order method that can be described as (8), and it proves

0 ≤ φ(x̄(t))− ψ(ȳ(t)) ≤ 4LfD
2
X

(t+ 1)2
+

4‖A‖1,2DXDY

t+ 1
, (82)

where DX and DY are the diameters of X and Y respectively, and

‖A‖1,2 := max
‖x‖1=1,‖y‖=1

〈Ax,y〉.

It is an open question if the convergence rate in (82) can still be improved. We give instances below to show
a lower complexity bound, which is in the same form as that in (82) and differs only at the constants, and
thus the result in [34] is optimal. The ingredients in the designed “hard” SPP instances are the same as
those used in section 2.
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4.1 A special class of SPP instances and a key proposition

Similar to the previous two sections that focus on quadratic programs, we consider the SPP (1) with f being
a convex quadratic function and g = 0, and we derive the lower complexity bounds through the primal
problem (3). More precisely, let m ≤ n and k < m

2 be positive integers. We build instances of (3) that are in
the form of

φ∗ := min
x∈X

{

φ(x) := f(x) + max
y∈Y
〈b−Ax,y〉

}

, (83)

where X and Y are compact Euclidean balls, A and b are those in (17) with a certain LA ≥ 0, and
f(x) = 1

2x
⊤Hx− h⊤x with H ∈ Sn+.

On affinely constrained problems, we first derive lower complexity bounds of first-order methods under
linear span assumption in section 2 for ease of the readers’ understanding. The more technical derivation for
general first-order methods is then given in section 3. With those preparations, we now develop the lower
complexity bounds directly on the general first-order methods described in (8). The following proposition is
an extension of Proposition 1 and serves as the main tool for our analysis throughout this section.

Proposition 3 Let m ≤ n and k < m
2 be positive integers, and let Lf > 0 and LA ≥ 0. Suppose that we have

a problem instance of (83), called original instance, where X and Y are compact Euclidean balls, H ∈ Sn+
and ‖H‖ ≤ Lf , A and b are those in (17). Moreover, assume that H satisfies HK2s−1 ⊆ K2s for any s ≤ k

2
and h ∈ K0, where Ki is defined in (19). Then for any first-order method M that is described by (8), there
exists one other problem instance, called rotated instance,

φ̃∗ := min
x∈X

{

φ̃(x) := f̃(x) + max
y∈Y
〈b− Ãx,y〉

}

, (84)

such that ‖Ã‖ = ‖A‖ and f̃(x) = 1
2x

⊤H̃x− h⊤x with H̃ ∈ Sn+ and ‖H̃‖ = ‖H‖. Specifically,

f̃(x) = f(Ux) and Ã = V⊤AU, (85)

where U and V are certain orthogonal matrices such that Uh = h and Vb = b. In addition, (x∗,y∗) is a

saddle point to the original instance if and only if (x̂, ŷ) := (U⊤x∗,V⊤y∗) is a saddle point to the rotated
instance. Furthermore, when M is applied to (84), for any 0 ≤ t ≤ k−4

2 , its computed approximate solution

x̄(t) satisfies

φ̃(x̄(t))− φ̃∗ ≥ min
x∈Kk−1

φ(x) − φ∗ (86)

‖x̄(t) − x̂‖2 ≥ min
x∈Kk−1

‖x− x∗‖2. (87)

Proof. For the given data, we apply Proposition 2 to obtain an instance P (θ;U⊤HU,−V⊤AU) with θ =
(h,−b, X, Y, 0) and orthogonal matrices U and V satisfying Uh = h and Vb = b. Clearly, this gives the
rotated instance in (84).

SinceX and Y are Euclidean balls, they are invariant under orthogonal transformation, and thusUX = X
and VY = Y . By comparing (83) and (84), using (85) and the relations Uh = h and Vb = b, it is not
difficult to show that (x∗,y∗) is a saddle point to the original instance if and only if (U⊤x∗,V⊤y∗) is a
saddle point to the rotated instance, and that φ̃∗ = φ∗.
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It remains to prove the inequalities in (86) and (87). By Proposition 2, whenM is applied to the rotated
instance, the approximate solution x̄(t) ∈ U⊤K2t+3. Since t ≤ k−4

2 , we have 2t+ 3 ≤ k − 1, and hence from

(30), it follows that Ux̄(t) ∈ K2t+3 ⊆ Kk−1. Therefore, we have the desired results from (85) and complete
the proof. �

4.2 Lower complexity bounds

In this subsection, we construct “hard” instances of (83) and establish lower complexity bound results of
first-order methods on solving (1). Let m ≤ n and k < m

2 be positive integers, and let Lf > 0 and LA ≥ 0.
Our first instance is (83) with (H,h,A,b) given in (48), f(x) = 1

2x
⊤Hx− h⊤x and

X =
{

x ∈ Rn
∣

∣ ‖x‖2 ≤ R2
X = k(2k + 1)2

}

, Y =
{

y ∈ Rn
∣

∣ ‖y‖2 ≤ R2
Y = k

4

}

. (88)

Clearly the above problem is a special instance of (3). In the following lemma, we give an optimal solution
and the optimal objective value of the instance.

Lemma 14 For (83) with (H,h,A,b) given in (48) and (X,Y ) specified in (88), it has an optimal solution

x∗ given in (35) and the optimal objective value

φ∗ = −
(

Lf

4
+

LA

2
√
2

)

k.

Proof. The optimality condition (e.g., [28]) for x∗ ∈ X to solve (83) is that there exists y∗ ∈ Y such that

〈∇f(x∗)−A⊤y∗,x∗ − x〉 ≤ 0, 〈Ax∗ − b,y∗ − y〉 ≤ 0, ∀x ∈ X,y ∈ Y. (89)

Let y∗ be the vector given in (49). Note from the proof of Lemma 9, it holds that ∇f(x∗) = Hx∗−h = A⊤y∗

and Ax∗ − b = 0. Hence, (x∗,y∗) satisfies the above optimality condition. In addition, from (41) and (51),
it follows that x∗ ∈ X and y∗ ∈ Y . Therefore, x∗ is an optimal soluton, and it is straightforward to compute
φ∗ = φ(x∗) = −(Lf

4 + LA

2
√
2
)k. This completes the proof. �

In the following lemma, we compute the minimum value of φ(x) over Kk−1.

Lemma 15 Consider (83) with (H,h,A,b) given in (48) and (X,Y ) specified in (88). If Lf ≥ LA, then

min
x∈Kk−1

φ(x) − φ∗ ≥ LfR
2
X

16(2k + 1)2
+

(√
2 + 2

4

)

LARXRY

2k + 1
. (90)

Proof. Since Y is an Euclidean ball, it holds

max
y∈Y
〈b−Ax,y〉 = RY ‖Ax− b‖,

and thus the objective of (83) is

φ(x) = f(x) +RY ‖Ax− b‖. (91)
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From the first inequality in (42), we have

‖Ax− b‖2 ≥ kL2
A

4

(88)
=

L2
AR

2
X

4(2k + 1)2
. (92)

In addition, note that f(x) here is exactly the same as that discussed in Lemma 10, and thus by (57) we
have that for any x ∈ Kk−1,

f(x) ≥ −1

8

(

Lf +
√
2LA +

L2
A

2Lf

)

k. (93)

Applying (92) and (93) to (91), and noting the value of φ∗ in Lemma 14, we have for any x ∈ Kk−1 that

φ(x) − φ∗ ≥1

8

(

Lf +
√
2LA −

L2
A

2Lf

)

k +
LARXRY

2(2k + 1)

≥1

8

(

Lf

2
+
√
2LA

)

k +
LARXRY

2(2k + 1)
,

where the second inequality follows from the fact Lf ≥ LA. Rewriting the terms Lfk and LAk as

Lfk
(88)
=

LfR
2
X

(2k + 1)2
, and LAk

(88)
= LA

√
k ·
√
k = LA ·

RX

2k + 1
· 2RY =

2LARXRY

2k + 1
,

we conclude the desired result in (90). �

Using Proposition 3 and Lemma 15, we are able to show a lower complexity bound of first-order methods
on (1) as summarized in the following theorem.

Theorem 9 (lower complexity bound for SPPs) Let 8 < m ≤ n and t < m
4 − 2 be positive integers,

Lf > 0, and LA ≥ 0. Assume Lf ≥ LA. Then for any first-order methodM described in (8) on solving (1),
there exists a problem instance of (1) such that ∇f is Lf -Lipschitz continuous, ‖A‖ = LA, and X and Y
are Euclidean balls with radii RX and RY respectively. In addition,

φ(x̄(t))− ψ(ȳ(t)) ≥ LfR
2
X

16(4t+ 9)2
+

(√
2 + 2

4

)

LARXRY

4t+ 9
, (94)

where φ and ψ are the associated primal and dual objective functions, and (x̄(t), ȳ(t)) is the approximate

solution output byM.

Proof. Set k = 2t + 4 < m
2 and consider the problem instance described above (88). Note that the data

(H,h,A,b, X, Y ) satisfies the conditions required by Proposition 3. Hence, we can apply the proposition to
obtain a rotated instance (84). From (86) and Lemma 15, it follows that

φ̃(x̄(t))− φ̃∗ ≥ min
x∈Kk−1

φ(x) − φ∗ ≥ LfR
2
X

16(4t+ 9)2
+

(√
2 + 2

4

)

LARXRY

4t+ 9
. (95)

Let ψ̃ be the dual objective function of (84). Then since ȳ(t) ∈ Y , it holds ψ̃(ȳ(t)) ≤ ψ̃∗ ≤ φ̃∗, where
the second inequality follows from the weak duality. Therefore we have the desired result from (95) and by
dropping the tilde in the notation. �
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Remark 4 We make two remarks here. First, the lower bound in (94) has exactly the same form as the upper
bound in (82), and they differ only on the constants. Hence, the order of the convergence rate result in (82)
is not improvable, and one can only improve that result by possibly decreasing the constants. Second, in
Theorem 9, Lf ≥ LA is assumed. Without the assumption, the first term on the right hand side of (94)
becomes less important because it will be dominated by the second term for big t if RX and RY are regarded
as constants. In fact, assuming Lf and LA both positive but without Lf ≥ LA, we can consider the following
SPP instance

min
x∈X

max
y∈Y

f(x) + 〈b−Ax,y〉

with f(x) = Lf

(

1
2x

2
k + 1

2

∑n
i=2k+1 x

2
i

)

, (A,b) given in (17) and

X =
{

x ∈ Rn
∣

∣ ‖x‖2 ≤ R2
X = k(2k + 1)2

}

, Y =

{

y ∈ Rn

∣

∣

∣

∣

∣

‖y‖2 ≤ R2
Y =

4L2
f

L2
A

k3

}

.

It is easy to see that the associated primal problem is

φ∗ := min
x∈X

{

φ(x) := f(x) +RY ‖Ax− b‖
}

.

Let x∗ and y∗ be respectively given in (35) and (36). Then it is easy to verify the optimality conditions in
(89) hold, and in addition x∗ ∈ X and y∗ ∈ Y . Hence x∗ is the optimal primal solution, and the optimal

primal objective φ∗ =
Lfk

2

2 . From the proof of Lemma 7, we have that for any x ∈ Kk−1, f(x) = 0 and

‖Ax− b‖2 ≥ kL2
A

4 . Hence,

min
x∈Kk−1

φ(x) − φ∗ ≥
√
kLARY

2
− Lfk

2

2
=

√
kLARY

4
=
LARXRY

4(2k + 1)
≥ LfR

2
X

6(2k + 1)
.

Therefore, using Proposition 3, we can show that for t ≤ m
4 − 2, the following lower complexity bound holds:

φ(x̄(t))− ψ(ȳ(t)) ≥ max

{

LfR
2
X

6(4t+ 9)
,
LARXRY

4(4t+ 9)

}

≥ LfR
2
X

12(4t+ 9)
+
LARXRY

8(4t+ 9)
. (96)

We leave the details to the interested readers.

We finish this section by showing a lower complexity bound for SPPs when the function f(x) in (1) is
strongly convex.

Theorem 10 (lower complexity bound for SPPs with strong convexity) Let 8 < m ≤ n and

t < m
4 − 2 be positive integers, and µ and LA be positive numbers. Then for any first-order method M

described in (8), there exists a problem instance of (1) such that f is µ-strongly convex, ‖A‖ = LA, X and

Y are Euclidean balls with radii RX and RY respectively, and the associated primal problem (3) has a unique

optimal solution x̂ ∈ X. In addition,

‖x̄(t) − x̂‖2 ≥ 5L2
AR

2
Y

256µ2(4t+ 9)2
(97)

and

φ(x̄(t))− ψ(ȳ(t)) ≥ 5L2
AR

2
Y

512µ(4t+ 9)2
, (98)

where φ and ψ are the associated primal and dual objective functions, and (x̄(t), ȳ(t)) is the approximate

solution output byM.
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Proof. Set k = 2t + 4 < m
2 and consider the problem instance of (83), where f(x) = µ

2 ‖x‖2, A and b are
those in (17), and

X =
{

x ∈ Rn
∣

∣ ‖x‖2 ≤ R2
X := k(2k + 1)2

}

,

Y =

{

y ∈ Rn

∣

∣

∣

∣

‖y‖2 ≤ R2
Y :=

128µ2

15L2
A

k(k + 1)3(2k + 1)

}

.
(99)

From the proof of Theorem 5, it is easy to verify that x∗ in (35) and y∗ in (60) satisfy x∗ ∈ X , y∗ ∈ Y , and
the optimality condition in (89). Since f is strongly convex, x∗ must be the unique optimal solution to (83).
From (61) and also the definitions of X and Y in (99), it follows that

min
x∈Kk−1

‖x− x∗‖2 ≥ 5L2
AR

2
Y

256µ2(2k + 1)2
. (100)

Note that the data in the considered instance satisfy all the conditions in Proposition 3. Hence, we can apply
the proposition to obtain the corresponding rotated instance (84), which has a unique optimal solution
x̂ ∈ X . Now use (100) and (87) to obtain (97) by recalling k = 2t + 4. Moreover, by the strong convexity
and the optimality of x̂, we have

φ̃(x̄(t))− φ̃∗ ≥ µ

2
‖x̄(t) − x̂‖2,

Let ψ̃ be the corresponding dual objective function. Together with (97) and the fact ψ(ȳ(t)) ≤ ψ̃∗ ≤ φ̃∗, the
above inequality gives (98) by dropping the tilde in the notation. Therefore, we complete the proof. �

5 On the tightness of the established lower complexity bounds

In this section, we compare the established lower complexity bounds to the best known upper complexity
bounds. It turns out that the lower complexity bounds developed in this paper are tight in terms of the
order, and thus they can be used to justify the optimality of first-order methods in the literature.

5.1 Upper complexity bounds of first-order methods on affinely constrained problems

In [41], a first-order primal-dual block coordinate update method is analyzed. As there is one single block, i.e.,
applied to (6), and the initial iterate (x(0),y(0)) = (0,0), the convergence rate result about the objective [41,
eqn.(20a)] is

∣

∣f(x(t))− f∗∣
∣ ≤ 1

t

[

Lf + β‖A‖2
2

‖x∗‖2 + max
(

4‖y∗‖2, (1 + ‖y∗‖)2
)

2β

]

,

where β is a Lagrangian penalty parameter used in the algorithm. Let1

β =
max

(

2‖y∗‖, 1 + ‖y∗‖
)

‖A‖ · ‖x∗‖ .

1 Although it is impractical to set β in this way, we argue that we can find such a β theoretically and thus the result in (101)
is a valid upper bound.



32 Yuyuan Ouyang, Yangyang Xu

The above convergence rate result becomes

∣

∣f(x(t))− f∗∣
∣ ≤ 1

t

[

Lf

2
‖x∗‖2 + ‖A‖ · ‖x∗‖max

(

2‖y∗‖, 1 + ‖y∗‖
)

]

, (101)

which coincides with (46a) if ‖y∗‖ ≥ 1 except the difference of a constant multiple.

The work [36] proposes an accelerated linearized alternating direction method of multipliers (AL-ADMM).
Applying to (6), i.e., setting one block to zero, we have from one convergence rate result in [36, eqn.(2.34)]
that

f(x(t))− f∗ ≤ 2LfD
2
X

t(t+ 1)
+

2‖A‖DXDY

t+ 1
, (102)

where DX and DY are the diameters of the primal and dual feasible sets. If the size of the optimal primal
and dual solutions is assumed, then the above result coincides with that in (69a) up to the difference of a
constant multiple.

For the strongly convex case, the result in (70) indicates that given any ε > 0, to have an iterate within√
ε-neighborhood of x∗, the iterate number is at least

t =

⌈√
5LA‖y∗‖
32µ
√
ε
− 5

2

⌉

, (103)

where ⌈a⌉ denotes the smallest integer no less than a ∈ R. In [40, proof of Thm.4], it is shown that

f(x(t))− f(x∗) + 〈y∗,Ax(t) − b〉 ≤ ‖y
∗‖2

2ρ0
+ ε0, (104)

where (x∗,y∗) is a pair of primal-dual solution, and x(t) is the output of Nesterov’s optimal first-order

method applied to a penalized problem after t iterations. In addition, with ρ0 = 2‖y∗‖2

µε
and ε0 = µε

4 in

(104), [40, eqn.(49)] shows that the iteration number t satisfies:

t ≤ 2

(
√

Lf

µ
+

2LA‖y∗‖
µ
√
ε

)

(

O(1) + log
1

ε

)

. (105)

From the strong convexity of f , it follows that

f(x(t))− f(x∗) + 〈y∗,Ax(t) − b〉 ≥ µ

2
‖x(t) − x∗‖2

which together with (104) gives ‖x(t)−x∗‖2 ≤ ε. Hence, the dominant term in the upper bound (105) is the
same as that in (103) except for a log term.
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5.2 Upper complexity bounds of first-order methods on saddle-point problems

For optimization problems in the form of (3), a smoothing technique is proposed in [34]. It first approximates
the nonsmooth objective function by a smooth one and then minimizes the smooth approximation function
by an accelerated gradient method. In [34], it is shown that, if X and Y are compact with diameter DX and
DY respectively, and the total number of iterations is pre-specified to t, then the convergence rate of this
smoothing scheme applied to (3) is given in (82). Comparing the upper bound in (82) and the lower bound
in (94), we conclude that our lower complexity bound in Theorem 9 is tight in terms of the order, and that
Nesterov’s smooth scheme is an optimal method for computing approximate solutions to bilinear SPPs in
the form of (1).

Note that Theorem 9 also confirms the optimality of several follow-up works of [34]. For example, when
the algorithms in [5, 6] are applied to solve (3), their convergence rates all coincide with the lower bound
in (94) up to a constant multiple, and hence these methods are all optimal first-order methods for solving
problems in the form of (3).

In the literature, there have also been several results on either the saddle point or the variational inequality
formulation of (3) [4, 16, 26–28]. When applied to solve (3) with f ≡ 0 (and hence Lf ≤ LA), those results
all imply

φ(x(t))− φ∗ = O

(

LADXDY

t

)

,

where DX and DY are the diameters of X and Y . The above result indicates the tightness of the lower
bound in (96).

6 Concluding remarks

On finding solutions to bilinear saddle-point problems, we have established lower complexity bounds of first-
order methods that acquire problem information through a first-order oracle and are described by a sequence
of updating rules. Through designing “hard” instances of convex quadratic programming, we first show the
lower complexity bound results under a linear span assumption on solving affinely constrained problems.
Then by a rotation invariance technique, we extend the results to general first-order methods that are still
applied to affinely constrained problems. Finally, we establish the results for general first-order methods on
solving bilinear saddle-point problems with compact primal and dual feasible regions. The established lower
complexity bounds have been compared to several existing upper bound results. The comparison implies the
tightness of our bounds and optimality of a few first-order methods in the literature.

We conclude the paper with a few more remarks. First, note that for affinely constrained problems, the
feasibility residual in none of our results depends on the objective; see (59b) and (69b) for example. This
is reasonable because we can choose not to use the objective gradient though the oracle (7) provides such
information. However, towards finding an optimal solution, the objective information must be used. All
existing works (e.g., [6,23,39]) on primal-dual first-order methods have objective-dependent quantity in their
upper bounds on the feasibility error. One interesting question is how to derive a lower complexity bound of
the feasibility residual that depends on the constraint itself and also the objective. To achieve that, we would
need to enforce a minimum portion of objective information to be used in the solution update. Second, a few
existing works [21, 22, 24] have shown that if ∇f is much more expensive than matrix-vector multiplication
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Ax and A⊤y, it could be beneficial to skip computing ∇f at the cost of more Ax and/or A⊤y. This setting
is different from what we have made. In (7), we assume that one inquiry of the first-order oracle will obtain
gradient and matrix-vector multiplications simultaneously. In the future work, we will allow multiple oracles
that can return separate pieces of information, and we will pursue the lower bound of each oracle inquiry
to reach a solution with desired accuracy and also design optimal oracle-based algorithms. Thirdly, in all
our established results, we do not pre-specify the size of X and Y but allow them to be determined in
the designed instances. That is the key reason why we obtain a lower complexity bound that looks greater
than existing upper bound, e.g., by comparing (82) and (96). It is interesting to design “hard” instances to
establish similar lower complexity bound results, provided that Lf , LA and the diameters of X,Y are all
given. We leave this to the future work.
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