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Abstract
In traditional two-stage mixed-integer recourse models, the expected value of the total
costs isminimized. In order to address risk-averse attitudes of decisionmakers,we con-
sider a weighted mean-risk objective instead. Conditional value-at-risk is used as our
risk measure. Integrality conditions on decision variables make the model non-convex
and hence, hard to solve. To tackle this problem, we derive convex approximation
models and corresponding error bounds, that depend on the total variations of the
density functions of the random right-hand side variables in the model. We show that
the error bounds converge to zero if these total variations go to zero. In addition, for
the special cases of totally unimodular and simple integer recourse models we derive
sharper error bounds.
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1 Introduction

Stochastic programming is a methodology for modeling optimization problems under
uncertainty. Traditionally, this uncertainty is accounted for byminimizing the expected
total costs, and thus implicitly, a neutral stance toward risk is assumed. For recurring
problems that have to be solved many times, this approach is justified by the law of
large numbers. However, in many other applications we face a single-shot problem in
which avoiding risk is desired.

In this paper, we focus on a class of models from stochastic programming that
explicitly incorporate this aversion toward risk: mean-risk models. In these models,
a weighted average of the expected total costs and a measure of risk is minimized.
Thus, a balance is struck between minimizing the cost on average and avoiding high
levels of risk. In particular, we will consider mean-risk models with two time stages,
integer decision variables, and conditional value-at-risk (CVaR) as the risk measure.
The random parameters in our model are the second-stage right-hand side and cost
vector, and the technology matrix. Moreover, a key assumption is that the random
right-hand side vector is continuously distributed. We refer to these models as two-
stage mixed-integer mean-CVaR recourse models.

Integer decision variables are often required for realistic modeling of, e.g., indivis-
ibilities or on/off decisions. However, including them in mean-CVaR recourse models
makes these models significantly harder to solve than their continuous counterparts.
Indeed, for continuous mean-CVaR recourse models, efficient solution methods are
available from the literature. These methods exploit the convexity of the objective
function. See, e.g., Ahmed [2], Miller and Ruszczyński [31], and Noyan [32] for
decomposition algorithms based on the L-shaped algorithm by Van Slyke and Wets
[52] and Rockafellar [37] for a progressive hedging algorithm.

Mixed-integer mean-CVaR recourse models, however, are generally not convex so
that the aforementioned convex optimization-based methods cannot be applied. Thus,
alternative solution methods are required for these models. Schultz and Tiedemann
[44] show that the problem can be reformulated as a large-scale mixed-integer linear
program (MILP) if the probability distributions of the random variables in the model
are discrete and finite. Based on this reformulation they propose a decomposition algo-
rithm using Lagrangean relaxation of the nonanticipativity constraints. Other authors
solve the large-scale MILP reformulation using standard MILP solvers (e.g., [47]) or
develop heuristics for specific problem settings [5]. However, these solution methods
can only solve problems of limited size.

We will take a fundamentally different approach to deal with integer decision
variables in mean-CVaR recourse models. Instead of aiming for an exact optimal
solution, we will construct approximation models with a convex objective func-
tion. The rationale of doing so is that these convex approximation models can be
solved efficiently using techniques from convex optimization, similar as continu-
ous mean-CVaR recourse models. To guarantee the performance of the resulting
approximating solutions we derive error bounds on the convex approximations.
Such convex approximations and corresponding error bounds have been derived
for risk-neutral mixed-integer stochastic programming problems; see Sect. 2.3 for
a review of them. However, to our knowledge, this is the first paper that considers
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convex approximations for mixed-integer stochastic programs in a risk-averse set-
ting.

The main contribution of this paper is that we construct convex approximations and
derive corresponding error bounds for two-stage mixed-integer mean-CVaR recourse
models. These error bounds converge to zero if the total variations of the probability
density functions of the random right-hand side variables in the model converge to
zero. Intuitively, this means that any mixed-integer mean-CVaR recourse model can
be approximated arbitrarily well by a convex approximation if the variability of the
random right-hand side variables in the model is sufficiently large. For the special
cases of totally unimodular (TU) and simple integer mean-CVaR recourse models we
perform a specialized analysis to derive tighter bounds. For the latter type of models,
it turns out that the bound is particularly small if the random right-hand side variable
in the model has a decreasing hazard rate.

The remainder of the paper is organized as follows. In Sect. 2 we formulate the
mathematical model and review the relevant literature. Next, in Sect. 3 we consider the
general setting of two-stage mixed-integer mean-CVaR recourse models and derive
convex approximations with asymptotically converging error bounds. Section 4 deals
with the special cases of TU and simple integer mean-CVaR recourse models. Sec-
tion 5 provides a discussion of the results and directions for further research. Finally,
Appendix A contains a generalization of existing risk-neutral results that we use in this
paper and Appendix B contains proofs of several lemmas, propositions, and theorems.

2 Problem formulation and literature review

2.1 Problem formulation

We consider the two-stage mixed-integer mean-CVaR recourse model

min
x∈X

{
cx + Qβ

ρ (x)
}
, (1)

where X = {x ∈ R
n1 | Ax = b} represents the set of feasible first-stage decisions

that have to be made before some random parameters ξ are known, and Q
β
ρ is the

mean-CVaR recourse function

Qβ
ρ (x) := (1 − ρ)Q(x) + ρRβ(x), x ∈ R

n1 , (2)

with weight parameter ρ ∈ [0, 1]. Here, the mean recourse function Q and the CVaR
recourse function Rβ are defined by

Q(x) := Eξ [v(ξ, x)] , x ∈ R
n1 , (3)

Rβ(x) := CVaRβ [v(ξ, x)] , x ∈ R
n1, (4)

where CVaRβ is the β-conditional value-at-risk (β ∈ (0, 1)) defined in Definition 1,
and v is the second-stage value function, defined by
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476 E. R. van Beesten, W. Romeijnders

v(ξ, x) := min
y

{
qy | Wy = h − T x, y ∈ Z

n2+ × R
n3+

}
. (5)

The second-stage decision variables y represent the recourse actions that can be taken
after the realization of ξ := (q, T , h) is known, in order to compensate for infea-
sibilities in the goal constraint T x = h. For ease of exposition, we assume that the
first-stage decision variables x are continuous. However, all results in this paper still
hold when some or all of these variables are restricted to be integer.

As an example of an application of our model, we discuss a stylized version of the
disaster relief planning problem of Alem et al. [5] in Example 1 below.

Example 1 Consider the problem of distributing relief goods (water, food, medicine,
etc.) after a natural disaster. A priori, the location and size of the disaster are naturally
uncertain. However, where to store the relief goods needs to be determined before
the disaster takes place. The goal is both to minimize the financial cost and to avoid
shortages of relief goods at locations of need. We can model this problem using a
two-stage mixed-integer mean-CVaR model.

In the first stage (before the disaster) we have to decide how many relief goods to
store at each available storage location. The first-stage costs are the cost of acquiring
these goods. When the disaster strikes, the required amount of relief goods in every
area becomes known. In the second-stage, we need to allocate vehicles to transport
goods from the different storage locations to the affected areas. The second-stage costs
consist of the cost of using these vehicles plus a penalty on any unsatisfied demand
(shortages) of relief goods. Since high shortages should be avoided, this problem
is naturally modeled using a risk-averse approach. Furthermore, note that integer
variables are needed to model the number of allocated vehicles in the second stage. �

Our goal is to construct convex approximations Q̃β
ρ of the form Q̃

β
ρ = (1−ρ)Q̃+

ρ R̃β for the mean-CVaR recourse function Q
β
ρ . Since convex approximations Q̃ of

Q are available in the literature (see Sect. 2.3), we focus on constructing convex
approximations R̃β of Rβ . As a performance guarantee, we will derive an upper
bound on

‖Qβ
ρ − Q̃β

ρ ‖∞ := sup
x∈X

|Qβ
ρ (x) − Q̃β

ρ (x)|.

Since

‖Qβ
ρ − Q̃β

ρ ‖∞ ≤ (1 − ρ)‖Q − Q̃‖∞ + ρ‖Rβ − R̃β‖∞, (6)

we will focus on deriving an upper bound on ‖Rβ − R̃β‖∞. Bounds on ‖Q − Q̃‖∞
are known from the literature. However, since these existing bounds only apply to
recourse models with randomness in the right-hand side vector h only, we generalize
them to our setting in Appendix A, where we allow q and T to be random as well.

Throughout this paper, we make the following assumptions.

Assumption 1 We assume that
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(a) the recourse is complete and sufficiently expensive, i.e., −∞ < v(ξ, x) < ∞,
for all ξ ∈ Ξ and x ∈ R

n1 , where Ξ denotes the support of ξ .
(b) the expectation of the �1 norm of ξ is finite, i.e., Eξ‖ξ‖1 < ∞, where ‖ξ‖1 :=∑n

j=1 |q j | + ∑m
i=1

∑n1
j=1 |Ti j | + ∑m

i=1 |hi |,
(c) the recourse matrix W is integer,
(d) the support Ξ of ξ can be written as Ξ = Ξq × Ξ T × Ξ h , where Ξq is finite.

Moreover, h is continuously distributed on Ξh with joint pdf f ,
(e) (q, T ) and h are pairwise independent.

Assumption 1(a)–(b) ensure that Q(x) and Rβ(x) are finite for every x ∈ R
n1 . Next,

Assumption 1(c) is required for the proof of Theorem 1. However, this assumption is
not very restrictive, since any rational matrix can be transformed into an integer one by
appropriate scaling. Assumption 1(d)–(e) restrict the random right-hand side vector h
to be continuously distributed. This is the key assumption on the random parameters
ξ in our paper. The remaining assumptions in Assumption 1(d)–(e) are for ease of
presentation; similar results as in this paper can be obtained for relaxed versions of
these assumptions. Finally, we note that we assume that the probability distribution
of ξ is known or can be accurately estimated, based on, e.g., historical data or expert
opinions.

2.2 Conditional value-at-risk

In our risk-averse stochastic programming approach, we use conditional value-at-risk
(CVaR) as the measure of risk. For probability parameter β ∈ (0, 1), the β-CVaR of
a random variable θ , written as CVaRβ [θ ], has the interpretation of the conditional
expectation of θ , given that θ is at least as large as its β-quantile. Thus, intuitively,
CVaRβ [θ ] represents the average of the 100(1 − β)% worst values of θ . We use
the minimization representation of CVaR by Rockafellar and Uryasev [38] as our
definition.

Definition 1 Let θ be a random variable and let β ∈ (0, 1) be given. Then, the β-CVaR
of θ is defined as

CVaRβ [θ ] = min
ζ∈R

{
ζ + 1

1−β
Eθ

[
(θ − ζ )+

]}
.

Our choice for CVaR is motivated by the fact that this risk measure satisfies several
desirable theoretical properties. First of all, CVaR is a coherent risk measure [38],
and thus satisfies the axiomatic properties proposed by Artzner et al. [7]. In contrast,
several popular riskmeasures such as value-at-risk violate some of these properties [1].
Second, Ogryczak and Ruszczyński [34] show that mean-CVaR recourse models are
consistent with second-order stochastic dominance, a tool that establishes a preorder
of random variables. This is relevant, since consistency with second-order stochastic
dominance is desirable for accurately modeling risk aversion [26]. Third, Schultz
and Tiedemann [44] show that mixed-integer mean-CVaR recourse models exhibit
desirable properties such as continuity and stability. Furthermore, they show that under
mild technical conditions an optimal solution to these models exist.

123



478 E. R. van Beesten, W. Romeijnders

Due to its desirable properties, CVaR is one of the most popular risk measures
in the literature on risk-averse optimization under uncertainty. For instance, it is the
most popular choice for applications in supply chain network design under uncertainty
[19]. See, e.g., [18,36,43,46–48,54] for applications of mean-CVaR recourse models
in this field. Other areas of application include disaster relief planning [5,32,33],
(energy) production planning [4,9,21,27], transportation network protection [29], and
water allocation [56]. The popularity of CVaR, and of mean-CVaR recourse models
in particular, underlines the relevance of the models studied in this paper.

2.3 Solutionmethods for risk-neutral mixed-integer recourse models

Traditional solution methods for risk-neutral mixed-integer recourse models com-
bine solution methods from deterministic mixed-integer and stochastic continuous
optimization. See, e.g., Laporte and Louveaux [25] for the integer L-shaped method,
Carøe andSchultz [12] for dual decomposition,Ahmed et al. [3] for branch-and-bound,
Sen and Higle [45] for disjunctive decomposition, and [6,8,11,16,22,35,55] for recent
work on cutting plane techniques. In general, however, these solution methods have
difficulties solving large problem instances because they aim at finding an exact opti-
mal solution. In contrast, we merely aim at finding good or near-optimal solutions to
our mixed-integer mean-CVaR recourse model by means of convex approximations.
For this reason, the remainder of this subsection is devoted to the literature on convex
approximations for the corresponding risk-neutral case.

Convexity properties of risk-neutral mixed-integer stochastic programming prob-
lems were first analyzed by Klein Haneveld et al. [23] for the special case of simple
integer recourse models. In fact, they exactly identified the probability distributions
for which the mean recourse function Q in such models is convex. For all other cases,
they derive so-called α-approximations Q̃α of Q and corresponding error bounds.
These convex approximations are extended by van der Vlerk to TU integer recourse
models [50] and mixed-integer recourse models with a single recourse constraint [51].
However, only for the latter type of model does he derive an error bound for these
convex approximations.

Recently, substantial progress has been made in deriving error bounds for con-
vex approximations of mixed-integer recourse models with multiple non-separable
recourse constraints. For example, for TU integer recourse models, Romeijnders et
al. [39] derive an error bound for the α-approximations from [50]. This error bound
depends on the total variations of the density functions of the random right-hand side
variables in the model. In particular, if these total variations are small, then the error
bound is small and hence, the convex approximation is good. This is confirmed by
numerical experiments in [42]. A tighter error bound is derived for an alternative con-
vex approximation, called the shifted LP-relaxation approximation; see [41]. In fact,
it is shown that the error bound is the best possible in a worst-case sense. The main
building blocks in the derivation of this error bound are total variation bounds for the
expectation of periodic functions.

The latest developments in this area are the extension of these convex approxima-
tions to the general case of two-stage mixed-integer recourse models. In particular,
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Romeijnders et al. [40] extend the shifted LP-relaxation approximation to this case,
while van der Laan and Romeijnders [49] generalize the α-approximations. For both
approximations, a corresponding asymptotic error bound is derived, which converges
to zero as the total variations of the density functions in the model go to zero. These
bounds are derived by exploiting asymptotic periodicity of the second-stage value
functions in combination with the total variation bounds from [41].

In this paper we generalize several results from this convex approximation literature
to the risk-averse case. In particular, in Sect. 3 we use the asymptotic periodicity of
mixed-integer value functions to derive convex approximations for general mixed-
integer mean-CVaR recourse models. Moreover, we derive error bounds for these
convex approximations using the total variation error bounds on the expectation of
periodic functions from [41]. We also use these total variation bounds in Sect. 4 in a
specialized analysis of TU integer and simple integer mean-CVaR recourse models.

2.3.1 Total variation

Similar to the error bounds for risk-neutral models from the literature, the error bounds
in this paper will depend on the total variation of the one-dimensional conditional
density functions of the random right-hand side variables in the model. Therefore,
we conclude this section by defining the notion of total variation and some related
concepts.

Definition 2 Let f : R → R be a real-valued function and let I ⊂ R be an interval.
Let Π(I ) denote the set of all finite ordered sets P = {z1, . . . , zN+1}with z1 < · · · <

zN+1 in I . Then, the total variation of f on I , denoted by |Δ| f (I ), is defined by

|Δ| f (I ) := sup
P∈Π(I )

V f (P),

where V f (P) := ∑N
i=1 | f (zi+1) − f (zi )|. We write |Δ| f := |Δ| f (R). We say that

f is of bounded variation if |Δ| f < +∞.

Since the error bounds that we derive in this paper depend on the total variations
of the one-dimensional conditional density functions of the random right-hand side
variables in the model, we assume that these conditional density functions are of
bounded variation.

Definition 3 For every i = 1, . . . ,m and t−i ∈ R
m−1, define the i th conditional

density function fi (·|t−i ) of the m-dimensional joint pdf f as

fi (ti |t−i ) =
{ f (t)

f−i (t−i )
, if f−i (t−i ) > 0,

0, if f−i (t−i ) = 0,

where f−i represents the (marginal) joint density function of h−i , the random vector
obtained by removing the i th element of h.
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Definition 4 We denote by H m the set of all m-dimensional joint pdfs f whose
conditional density functions fi (·|t−i ) are of bounded variation for all t−i ∈ R

m−1,
i = 1, . . . ,m.

3 General two-stagemixed-integer mean-CVaR recoursemodels

In this section we will derive convex approximations with corresponding error bounds
for general mixed-integer mean-CVaR recourse models. The approach is based on the
analysis by Romeijnders et al. [40] for the risk-neutral case. Although our mean-CVaR
recourse model can be reformulated as a risk-neutral recourse model, the resulting
model differs in structure from the model considered in [40]. We first lay out this
structural difference.

To reformulate our model as a risk-neutral model, note that by Definition 1,

Rβ(x) = min
ζ∈R

{
ζ + 1

1−β
Eξ

[
(v(ξ, x) − ζ )+

]}
, x ∈ R

n1 . (7)

Based on this expression we introduce a new recourse function

R∗(x, ζ ) = Eξ

[
vζ (ξ, x)

]
, x ∈ R

n1, ζ ∈ R, (8)

where vζ is the corresponding second-stage value function, defined as

vζ (ξ, x) := (v(ξ, x) − ζ )+, ξ ∈ Ξ, x ∈ R
n1 , ζ ∈ R. (9)

Using these two functions the mixed-integer mean-CVaR recourse model (1) can be
reformulated as

min
x∈X ,ζ∈R

{
cx + (1 − ρ)Q(x) + ρζ + ρ 1

1−β
R∗(x, ζ )

}
. (10)

Interpreting ζ as a first-stage variable, as suggested by [38], we observe that (10)
reduces to a risk-neutral mixed-integer recourse problem. Here, for any ξ ∈ Ξ and
x ∈ R

n1 the second-stage value function vζ can be written as

vζ (ξ, x) = min
y,η,z

{η | T x + Wy = h, η − qy − z = − ζ, y ∈ Z
n2+ × R

n3+ , η, z ∈ R+}.

Observe that the right-hand side of the constraint η − qy − z = − ζ does not
depend on h, but only on the first-stage variable ζ . This means that, in contrast with
Romeijnders et al. [40], the problem in (10) corresponds to a risk-neutralmixed-integer
recourse model in which not all right-hand side variables are random. Since the results
in [40] heavily rely on the pdfs of these (continuously distributed) random right-hand
side variables, they are not applicable to the risk-neutral reformulation above and
hence, an additional analysis is necessary. Moreover, this subtle difference in the
right-hand side has surprising consequences for the type of convex approximation that
we will derive.
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3.1 Asymptotic semi-periodicity of v�

The first step in our analysis is proving that the value function vζ is asymptotically
semi-periodic in h; see Proposition 1. By asymptotic semi-periodicity we mean that
on particular unbounded subsets of its domain, vζ is the sum of a linear and periodic
function. Gomory [17] identified this for the pure integer case and Romeijnders et al.
[40] generalized it to the mixed-integer case. In this section we use the notation of the
latter reference. We also repeat some of the definitions they introduced for the sake of
completeness.

To understand why vζ exhibits semi-periodicity, consider the LP-relaxation vLP
of the mixed-integer value function v and let q ∈ Ξq be fixed. By the basis
decomposition theorem by Walkup and Wets [53], we can identify basis matrices
Bk and corresponding polyhedral cones Λk ⊆ R

m , k ∈ Kq , such that for all
h − T x ∈ Λk , the function vLP(ξ, x) attains its value through the basis matrix Bk ,
i.e., vLP(ξ, x) = qBk (Bk)−1(h − T x). We will see that a similar result holds for
the mixed-integer value function v, but only on shifted versions Λk(dk) of the cones
Λk, k ∈ Kq .

Remark 1 Throughout this paper we omit the dependence of, e.g., Λk and dk on q.
Instead, we assume without loss of generality that the index sets Kq , q ∈ Ξq , are
disjoint, i.e., Kq1 ∩ Kq2 = ∅ for all q1, q2 ∈ Ξq with q1 
= q2. Note, however, that it
is still possible that, e.g., Bk1 = Bk2 for some k1 ∈ Kq1 , k2 ∈ Kq2 , with q1 
= q2.

Definition 5 Let Λ ⊂ R
m be a closed convex cone and let d ∈ R+ be given. Then, we

defineΛ(d) as the set of points inΛwith at least Euclidean distance d to the boundary
of Λ.

Romeijnders et al. [40] show that there exist constants dk > 0, k ∈ Kq , such that
for all h − T x ∈ Λk(dk), the mixed-integer value function v(ξ, x) attains its value
through the basis matrix Bk . That is, v(ξ, x) = qBk (Bk)−1(h − T x) + ψk(h − T x),
where the function ψk represents the “penalty” incurred from having integer decision
variables. These functions ψk are Bk-periodic on Λk(dk). It turns out that vζ exhibits
the same type of periodicity.

Definition 6 Let the function g : Rm → R
n be given and let B be an m × m matrix.

Then, g is called B-periodic if g(x) = g(x + Bl) for every x ∈ R
m and l ∈ Z

m .

Proposition 1 Consider the second-stage value function vζ from (9) for a fixed q ∈
Ξq . Then, there exist dual feasible basis matrices Bk of vLP, closed convex polyhedral
cones Λk := {t ∈ R

m | (Bk)−1t ≥ 0}, positive constants dk and rk, and Bk-periodic
functions ψk , k ∈ Kq, such that

(i) ∪K
k=1Λ

k = R
m,

(ii) (intΛk) ∩ (intΛl) = ∅ for every k, l ∈ Kq with k 
= l,
(iii) for every k ∈ Kq,

vζ (ξ, x) = (
qBk (Bk)−1(h − T x) + ψk(h − T x) − ζ

)+
, h − T x ∈ Λk(dk),

where ψk ≡ ψ l if qBk (Bk)−1 = qBl (Bl)−1,
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(iv) for every k ∈ Kq

0 ≤ ψk(s) ≤ rk, s ∈ R
m .

Proof Since W is an integer matrix by Assumption 1(c), the result follows directly
from Theorem 2.9 in [40] and the definition of vζ . ��
Proposition 1 shows that on shifted convex cones Λk(dk), the approximating value
function vζ is the positive part of the sum of a linear and a periodic function in h.
Hence, vζ is indeed asymptotically semi-periodic in h.

3.2 Convex approximations of v� and Rˇ

In this subsection we construct two convex approximations v̂ζ and ṽ
ζ
α of the second-

stage value function vζ , yielding two corresponding convex approximations R̂β and
R̃β

α of the CVaR recourse function Rβ . Moreover, we derive a characterization of the
differences vζ − v̂ζ and vζ − ṽ

ζ
α . These characterizations are used in Sect. 3.3 to derive

upper bounds on the approximation errors |Rβ − R̂β | and |Rβ − R̃β
α |.

3.2.1 Construction of the convex approximations

We will use the asymptotic periodicity of v from Proposition 1 in order to construct
two types of convex approximations of vζ . For q ∈ Ξq , k ∈ Kq , and ζ ∈ R given,
we know from Proposition 1 that

vζ (ξ, x) = (
qBk (Bk)−1(h − T x) + ψk(h − T x) − ζ

)+
, h − T x ∈ Λk(dk).

Observe that the first-stage decision vector x appears as an argument of the Bk -periodic
function ψk . This means that for h − T x ∈ Λk(dk), the function vζ (ξ, x) is periodic
in x . This periodicity is the cause of the non-convexity of vζ (ξ, x) in x . In order to
construct convex approximations of vζ , we propose two “convexifying” adjustments
to this periodic term ψk(h − T x).

Afirst convex approximationofvζ is obtainedby replacingψk by itsmeanvalueΓ k .
This results in a shifted version of the LP-relaxation with shifting constant Γ k . Hence,
we refer to this kind of approximation as the shifted LP-relaxation approximation.
Since every Bk-periodic function is also pk Im-periodic with pk := | det(Bk)| (see
[40]), we can characterize the mean value of ψk as

Γ k := p−m
k

∫ pk

0
· · ·

∫ pk

0
ψk(s)ds1 · · · dsm . (11)

Surprisingly, however, in our mean-CVaR recourse model we need to make an adjust-
ment in order to be able to derive an asymptotically converging error bound. In
particular, for k ∈ Kq with qBk = 0, we should use the mean value of (ψk − ζ )+ + ζ

instead ofΓ k . In Example 2 we illustrate in more detail why this adjustment is needed.
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To construct a second convex approximation of vζ , we replace the term T x in
the argument of ψk by a constant vector α ∈ R

m , yielding ψk(h − α). We call the
resulting approximation a generalized α-approximation; cf. [49]. This approximation
is still semi-periodic in h, and thus not convex in h. However, it is convex in x , which
is what we desire for optimization purposes.

Both approaches above yield an approximation of vζ (ξ, x) for h−T x ∈ Λk(dk) for
each k ∈ Kq . We combine these approximations by taking the pointwise maximum
over all k ∈ Kq .

Definition 7 Consider the mixed-integer value function vζ from (9) and let Bk , qBk ,
and ψk , k ∈ Kq , q ∈ Ξq , be the basis matrices, corresponding cost vectors, and
Bk-periodic functions from Proposition 1, respectively. Then, we define the shifted
LP-relaxation approximation v̂ζ of vζ by

v̂ζ (ξ, x) =
(
max
k∈Kq

{
qBk (Bk)−1(h − T x) + Γ k

ζ

}
− ζ

)+
, ξ ∈ Ξ, x ∈ R

n1 , ζ ∈ R.

where for every k ∈ Kq ,

Γ k
ζ :=

⎧
⎨

⎩

p−m
k

∫ pk
0 · · · ∫ pk

0 ψk(s)ds1 · · · dsm, if qBk 
= 0,

p−m
k

∫ pk
0 · · · ∫ pk

0 (ψk(s) − ζ )+ds1 · · · dsm + ζ, if qBk = 0,

with pk := | det(Bk)|. Moreover, for every ξ ∈ Ξ , x ∈ R
n1 , and ζ ∈ R, we define the

generalized α-approximation ṽ
ζ
α of vζ with parameter α ∈ R

m by

ṽζ
α(ξ, x) =

(
max
k∈Kq

{
qBk (Bk)−1(h − T x) + ψk(h − α)

}
− ζ

)+
.

As mentioned before, we make an adjustment to the shifted LP-relaxation approx-
imation in the case qBk = 0. Instead of using the mean value Γ k of ψk , we use the
mean value of (ψk − ζ )+ + ζ . In the example below we show that this adjustment
is necessary in order to derive error bounds that are asymptotically converging, in
the sense that they converge to zero as the total variations of the conditional density
functions of the random right-hand side variables hi , i = 1, . . . ,m, go to zero.

Example 2 Consider a mixed-integer value function v given by

v(ξ, x) = min{u | y+ − y− + u = h − x, y+, y− ∈ Z+, u ∈ R+}, ξ ∈ Ξ, x ∈ R,

where Ξq = {1}, Ξ T = {[1]}, and Ξ h = R. The LP-relaxation vLP of v equals
vLP ≡ 0, since for every ĥ := h − x ∈ R with ĥ ≥ 0 we can select y+ = ĥ, y− =
u = 0 and for ĥ < 0 we can select y− = −ĥ, y+ = u = 0. Indeed, if ĥ > 0, then y+
is the basic variable corresponding to basis matrix B1 = [1] with costs qB1 = 0 and if
ĥ < 0, then y− is the basic variable corresponding to B2 = [−1] with qB2 = 0. Since
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484 E. R. van Beesten, W. Romeijnders

the mixed-integer value function v equals v(ξ, x) = ψ(ĥ) := ĥ − �ĥ� for all ĥ ∈ R,
we have ψ1 = ψ2 = ψ and thus Γ 1 = Γ 2 = ∫ 1

0 ψ(s)ds = 1
2 .

Now suppose that we simply use Γ k (rather than Γ k
ζ ) to construct the convex

approximation

v̄ζ (ξ, x) =
(
max
k=1,2

{qBk (Bk)−1(h − x) + Γ k − ζ }
)+

= ( 1
2 − ζ

)+
, ξ ∈ Ξ, x ∈ R,

of vζ and the corresponding convex approximation R̄β(x) := minζ∈R
{
ζ +

1
1−β

R̄∗(x, ζ )
}
of Rβ , where R̄∗(x, ζ ) := Eξ

[
v̄ζ (ξ, x)

]
.Wewill show that the resulting

approximation error ‖Rβ − R̄β‖∞ is not asymptotically converging in general.
First note that for every x ∈ R we have R̄β(x) = minζ∈R

{
ζ + 1

1−β
( 12 − ζ )+

} =
CVaRβ

[ 1
2

] = 1
2 by definition of CVaR. Now, suppose that h is uniformly distributed

on the interval [0, N ], where N is a positive integer, and consider the value x = 0 for
the first-stage decision variable. Then, since h is continuously distributed we know
from [38] that Rβ(x) = CVaRβ [v(ξ, x)] = Eh[v(ξ, x) | v(ξ, x) ≥ qβ(x)], where
qβ(x) is the β-quantile of v(ξ, x) = ψ(ĥ) = h − �h�. It follows by straightforward
computation that Rβ(x) = 1 − β/2. Hence, |Rβ(x) − R̄β(x)| = | 12 − β/2|, which
is positive if β 
= 1

2 . Note that this expression does not depend on N . Hence, as N
goes to infinity (i.e., the total variation of the density function of h goes to zero), the
approximation error remains constant, i.e., it does not converge to zero asymptotically.

�
Using the approximating value functions from Definition 7, we define correspond-

ing convex approximations of the CVaR recoure function Rβ . These can be seen as
extensions of the convex approximations in [40,49] to our mean-CVaR setting.

Definition 8 Consider the CVaR recourse function Rβ from (4). We define the shifted
LP-relaxation approximation R̂β of Rβ by

R̂β(x) := min
ζ∈R

{
ζ + 1

1−β
R̂∗(x, ζ )

}
, x ∈ R

n1 ,

where R̂∗(x, ζ ) := Eξ

[
v̂ζ (ξ, x)

]
, with v̂ζ defined inDefinition 7.Moreover, we define

the generalized α-approximation R̃β
α of Rβ with parameter α ∈ R

m by

R̃β
α (x) := min

ζ∈R
{
ζ + 1

1−β
R̃∗

α(x, ζ )
}
, x ∈ R

n1 ,

where R̃∗
α(x, ζ ) := Eξ

[
ṽ

ζ
α(ξ, x)

]
, with ṽ

ζ
α defined in Definition 7.

Since the approximations fromDefinition 8 are convex, the resulting convex approx-
imation models can be solved using techniques from convex optimization. As a result,
they can be solved much more efficiently than the original (non-convex) model in
(1). This is indeed true for the generalized α-approximations, whereas for the shifted
LP-relaxation approximation some computational challenges remain.
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Convex approximations for two-stage mixed-integer mean… 485

The first computational challenge is that the shifted LP-relaxation approximation
R̂β requires computing the means Γ k

ζ for all k ∈ Kq . For special cases, such as pure
integer recourse models with a totally unimodular recourse matrix W (cf. Sect. 4),
it is possible to derive analytic expressions for these means. However, in general
they need to be approximated in practical computations. In contrast, the generalized
α-approximations only need computation of the function values ψk(h − α), which
are obtained by solving a single mixed-integer linear program, or in fact a Gomory
relaxation of this mixed-integer linear program.

The second computational challenge is that the convex approximations are defined
as the maximum over all dual feasible basis matrices Bk , k ∈ Kq , of which there are
exponentially many in general. This challenge can be overcome for both approxima-
tions by taking the optimal basis matrix of the LP-relaxation instead of the maximum,
see also [49]. This is again an approximation, but van der Laan and Romeijnders [49]
show both theoretically and using numerical experiments that it yields good results.

Finally, we remark that for computational purposes the continuously distributed
random vectors in the model need to be discretized. For instance, using Jensen [20]
and Edmundson–Madansky [14,30] lower and upper bounds or using a sample average
approximation (SAA), see [24]. However, if the discretization is fine enough, this does
not affect the quality of the convex approximations.

3.2.2 Properties of v̂� and ṽ�
˛

We now present several properties of the approximating value functions v̂ζ and ṽ
ζ
α . In

particular, we focus on the differences vζ − v̂ζ and vζ − ṽ
ζ
α , which can be interpreted

as the underlying difference functions in the approximation errors |Rβ − R̂β | and
|Rβ − R̃β

α |. Since several proofs of the results in this subsection are similar to the
proofs of corresponding results in [40] for the risk-neutral case, we postpone them to
the Appendix. Moreover, since the derivations for v̂ζ and ṽ

ζ
α are analogous, we will

avoid repetition and focus on v̂ζ in our discussions.
First we show that the difference between vζ and its shifted LP-relaxation approx-

imation v̂ζ is uniformly bounded.

Lemma 1 Consider the value function vζ from (9) and its shifted LP-relaxation
approximation v̂ζ and generalized α-approximation ṽ

ζ
α from Definition 7. Then, there

exists a constant γ > 0 such that for every ζ ∈ R,

‖vζ − v̂ζ ‖∞ ≤ γ and ‖vζ − ṽζ
α‖∞ ≤ γ.

Proof See Appendix. ��
Next, we work towards a characterization of the difference vζ − v̂ζ in terms of

periodic functions. Recall from Proposition 1 that for any given q ∈ Ξq , k ∈ Kq ,
and h − T x ∈ Λk(dk), the value of vζ (ξ, x) is generated by the dual feasible basis
matrix Bk , i.e., vζ (ξ, x) = (

qBk (Bk)−1(h−T x)+ψk(h−T x)−ζ
)+. The following

lemma shows that on a subset σ k +Λk of Λk(dk), the convex approximation v̂ζ (ξ, x)
is generated by the same basis matrix Bk .
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Lemma 2 Consider the value function vζ from (9) and its shifted LP-relaxation
approximation v̂ζ from Definition 8. Moreover, let Bk, Λk , and dk be the basis matri-
ces, cones, and scalars from Proposition 1. Then, for every q ∈ Ξq and k ∈ Kq, there
exists a vector σ k ∈ Λk(dk) such that

v̂ζ (ξ, x) = (
qBk (Bk)−1(h − T x) + Γ k

ζ − ζ
)+

, h − T x ∈ σ k + Λk,

and

ṽζ
α(ξ, x) = (

qBk (Bk)−1(h − T x) + ψk(h − α) − ζ
)+

, h − T x ∈ σ k + Λk,

Proof See Appendix. ��
Since σ k + Λk ⊆ Λk(dk), it now follows that for all h − T x ∈ σ k + Λk , both vζ and
v̂ζ are generated by the same basis matrix Bk . Using this fact, we can derive subsets
of σ k + Λk , k ∈ Kq , on which the difference vζ − v̂ζ is Bk-periodic with a mean
value of zero. In particular, if qBk 
= 0, then (using 0 ≤ ψk ≤ rk),

vζ (ξ, x) − v̂ζ (ξ, x) =
{

ψk(h − T x) − Γ k, if qBk (Bk)−1(h − T x) ≥ ζ,

0, if qBk (Bk)−1(h − T x) ≤ ζ − rk,

whereas if qBk = 0 we have (using the definition of Γ k
ζ )

vζ (ξ, x) − v̂ζ (ξ, x) = (
ψk(h − T x) − ζ

)+ − μk
ζ ,

where μk
ζ := p−m

k

∫ pk
0 · · · ∫ pk

0 (ψk(s) − ζ )+ds1 . . . dsm . Indeed the right-hand sides

above are Bk-periodic functions of h. Moreover, it can be shown that the complement
of these subsets on which vζ − v̂ζ is Bk-periodic, k ∈ Kq , is “relatively small”, in the
sense that it can be covered by finitely many hyperslices. We summarize these results
below.

Definition 9 A hyperslice in Rm is a set H of the form

H := {s ∈ R
m | b ≤ aT s ≤ b + δ},

where a ∈ R
m\{0}, b ∈ R, and δ ∈ R with δ > 0.

Proposition 2 Consider the value function vζ from (9) and its convex approximations
v̂ζ and ṽ

ζ
α from Definition 7. Then, for every q ∈ Ξq and ζ ∈ R, there exists a finite

number of closed convex polyhedral sets A j ⊆ R
m, j ∈ Jqζ , whose interiors are

mutually disjoint, such that

(i) for all h − T x ∈ A j , j ∈ Jqζ , we can write

vζ (ξ, x) − v̂ζ (ξ, x) = φ
ζ
j (h − T x), and vζ (ξ, x) − ṽζ

α(ξ, x) = φ̄
ζ
j (h − T x),
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where φ
ζ
j and φ̄

ζ
j are bounded Bk-periodic functions for some k ∈ Kq with mean

value equal to zero.
(ii) the setN q

ζ := R
m\⋃

j∈Jqζ
A j can be covered by finitely many hyperslices.

Proof See Appendix. ��

3.3 Total variation error bounds

We now derive upper bounds on the approximation errors |Rβ(x) − R̂β(x)| and
|Rβ(x) − R̃β

α (x)| using the results from Sect. 3.2.2. We outline our approach for
R̂β ; the analysis for R̃β

α is analogous.
We first derive an upper bound on |R∗(x, ζ ) − R̂∗(x, ζ )|. For every x ∈ R

n1 and
ζ ∈ R, we have by definition of R∗ and R̂∗ that

|R∗(x, ζ ) − R̂∗(x, ζ )| = ∣∣Eξ

[
vζ (ξ, x)

] − Eξ

[
v̂ζ (ξ, x)

]∣∣

≤ Eq,T

[∣∣Eh
[
vζ (ξ, x) − v̂ζ (ξ, x)

]∣∣
]

= Eq,T

[∣∣
∫

Rm

(
vζ (q, T , s, x) − v̂ζ (q, T , s, x)

)
f (s)ds

∣∣
]

,

(12)

where we use that the right-hand side vector h is independent from (q, T ) by Assump-
tion 1(e). Consider the integral over Rm in (12) for a fixed q ∈ Ξq and T ∈ Ξ T . The
main idea is to use Proposition 2 to split up this integral into integrals over two types of
subsets of Rm : subsetsA j , j ∈ Jqζ , on which the expression vζ − v̂ζ in the integrand

is a Bk-periodic function for some k ∈ Kq , and the complementN q
ζ of these subsets.

Then, the integrals over A j , j ∈ Jqζ , can be bounded using a result from [40] that
exploits periodicity in the integrand. Furthermore, the integral over the complement
set N q

ζ can be bounded using Lemma 1 and another result in [40] that provides an

upper bound on the probability P{h − T x ∈ N
q

ζ | q, T }. Together, this yields a uni-
form upper bound on |R∗(x, ζ )− R̂∗(x, ζ )|. Finally, is not hard to prove that this also
constitutes an upper bound on ‖Rβ − R̂β‖∞.

Theorem 1 Consider the CVaR recourse function Rβ from (4). Moreover, consider its
shifted LP-relaxation approximation R̂β and generalized α-approximation R̃β

α with
parameter α ∈ R

m from Definition 8. Then, there exist finite, positive constants C1
and C2 such that for all f ∈ H m we have

‖Rβ − R̂β‖∞ ≤ 1

1 − β
C1

m∑

i=1

Eh−i

[|Δ| fi (·|h−i )
]
, (13)

and

‖Rβ − R̃β
α‖∞ ≤ 1

1 − β
C2

m∑

i=1

Eh−i

[|Δ| fi (·|h−i )
]
. (14)

123



488 E. R. van Beesten, W. Romeijnders

Proof We will prove (13); the proof of (14) is completely analogous. First, we show
that ‖Rβ − R̂β‖∞ ≤ 1

1−β
‖R∗ − R̂∗‖∞. Fix x ∈ R

n1 and let ζ ∗ be the minimizer in the
minimization representation of Rβ(x) in (7). Since ζ ∗ is not necessarily optimal for
the minimization problem defining R̂β(x) in Definition 8, we have R̂β(x) − Rβ(x) ≤
1

1−β

(
R̂∗

β(x, ζ ∗) − R∗
β(x, ζ ∗)

) ≤ 1
1−β

‖R̂∗
β − R∗

β‖∞. Using an analogous argument for

the reverse difference, we obtain ‖Rβ − R̂β‖∞ ≤ 1
1−β

‖R̂∗
β − R∗

β‖∞.

Next, we derive a constant C1 such that ‖R∗ − R̂∗‖∞ ≤ C1
∑m

i=1 Eh−i[|Δ| fi (·|h−i )
]
. Let x ∈ R

n1 and ζ ∈ R be given and take (12) as a starting point.
Splitting up the integral in the right-hand side of (12) according to Proposition 2 yields

∣∣∣
∫

Rm

(
vζ (ξs, x) − v̂ζ (ξs, x)

)
f (s)ds

∣∣∣ ≤
∑

j∈Jqζ

∣∣∣
∫

T x+A j

φ
ζ
j (s − T x) f (s)ds

∣∣∣

+
∫

T x+N q
ζ

∣∣vζ (ξs, x) − v̂ζ (ξs, x)
∣∣ f (s)ds,

(15)

where we write ξs := (q, T , s), s ∈ R
m . Consider the first term in the right-hand side

of (15). Since T x + A j is a convex set and φ
j
ζ is a bounded zero-mean Bk j -periodic

function for some k j ∈ Kq , we can apply Theorem 4.13 from [40] to obtain

∣∣∣
∫

T x+A j

φ
j
ζ (s) f (s)ds

∣∣∣ ≤ 1

4
rk j | det(Bk j )|

m∑

i=1

Eh−i

[|Δ| fi (·|h−i )
]
. (16)

Next, consider the second term in the right-hand side of (15). Applying Lemma 1 to
this integral, we obtain

∫

T x+N q
ζ

∣∣vζ (ξs, x) − v̂ζ (ξs, x)
∣∣ f (s)ds ≤ γ

∫

T x+N q
ζ

f (s)ds

= γP{h − T x ∈ N
q

ζ | q, T }. (17)

By Proposition 2(ii), the set N q
ζ in the right-hand side above can be covered by

finitely many hyperslices. By Theorem 4.6 from [40], this implies that there exists a
constant Dq > 0 such that P{h − T x ∈ N

q
ζ | q, T } ≤ Dq ∑m

i=1 Eh−i

[|Δ| fi (·|h−i )
]
.

Substituting this into (17) yields

∫

N q
ζ

∣∣vζ (ξs, x) − v̂ζ (ξs, x)
∣∣ f (s)ds ≤ γ Dq

m∑

i=1

Eh−i

[|Δ| fi (·|h−i )
]
, (18)
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for some constant Dq > 0. Now, defining Cq := γ Dq + ∑
j∈Jqζ

1
4r

k j | det(Bk j )|, and
substituting (16) and (18) into (15), we obtain

∣∣∣
∫

Rm

(
vζ (ξs, x) − v̂ζ (ξs, x)

)
f (s)ds

∣∣∣ ≤ Cq
m∑

i=1

Eh−i

[|Δ| fi (·|h−i )
]
. (19)

Finally, defining C1 := maxq∈Ξq Cq and substituting (19) into (12) yields

|R∗(x, ζ ) − R̂∗(x, ζ )| ≤ Eq,T

[

Cq
m∑

i=1

Eh−i

[|Δ| fi (·|h−i )
]
]

≤ C1

m∑

i=1

Eh−i

[|Δ| fi (·|h−i )
]
.

Now, (13) follows from the inequality ‖Rβ − R̂β‖∞ ≤ 1
1−β

‖R̂∗
β − R∗

β‖∞ and the
observation that the right-hand side above does not depend on the value of x or ζ . ��

The error bounds fromTheorem1 are asymptotically converging, i.e., they converge
to zero as the total variations of the density functions of the random right-hand side
variables in the model converge to zero. For instance, for independently distributed
normal random variables this is the case if all standard deviations σi go to ∞. In fact,
Theorem 1 implies that anymixed-integer CVaR recourse function Rβ can be approx-

imated reasonably well by a convex approximation R̂β or R̃β
α if the aforementioned

total variations are small.
Interestingly, the error bounds from Theorem 1 differ from their risk-neutral coun-

terparts in Proposition 3 only by an additional factor 1
1−β

. Hence, combining these
error bounds with corresponding risk-neutral error bounds as suggested in (6) results
in an expression for the joint error bound with a similar asymptotic behavior.

4 Two-stage TU integer mean-CVaR recoursemodels

In this section we derive tighter error bounds for the special case of two-stage TU
integer mean-CVaR recourse models. That is, we consider the model from Sect. 2.1
and we make the additional assumption that the second-stage value function can be
written as

v(ξ, x) := min
ȳ

{
q̄ ȳ | W̄ ȳ ≥ h − T x, ȳ ∈ Z

n2+
}
, (20)

where W̄ is a totally unimodular matrix. This is indeed a special case of the value
function (5) from Sect. 2.1, with n3 = m, q = (q̄, 0), y = (ȳ, z), andW = [W̄ − Im],
where Im is the m × m identity matrix. We exploit the special structure of this
model to derive sharper error bounds for the shifted LP-relaxation and generalized
α-approximation than those in Theorem 1.
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4.1 Convex approximations

The TU integer structure of the value function v from (20) allows for simplified
representations of the convex approximations R̂β and R̃β

α from Definition 7. These
will be used in the proofs of the tighter error bounds in Theorem 2 and 3. We first
derive a simplified representation of v itself.

Since W̄ is a TU (and thus, integer) matrix, it follows that

v(ξ, x) = min
ȳ

{
q̄ ȳ | W̄ ȳ ≥ �h − T x�, ȳ ∈ Z

n2+
}

= min
ȳ

{
q̄ ȳ | W̄ ȳ ≥ �h − T x�, ȳ ∈ R

n2+
}
,

where the round-up operator �·� is defined element-wise for vectors. By Assump-
tion 1(a) and strong LP-duality, we obtain the dual maximization problem

v(ξ, x) = max
λ

{
λ�h − T x� | λW̄ ≤ q̄, λ ∈ R

m+
}
.

Here, the dual feasible region {λ ∈ R
m+ |λW̄ ≤ q̄} is a non-empty, bounded polyhedron

for every q ∈ Ξq , and hence it has a positive, finite number of extreme points. These
extreme points can be characterized as λk := qBk (Bk)−1, k ∈ Kq . Note that at least
one of these points is optimal in the dual problem. Hence, we can write

v(ξ, x) = max
k∈Kq

{
λk�h − T x�}. (21)

Based on (21) we can derive simplified representations of the convex approximations
R̂β and R̃β

α from Definition 7.

Lemma 3 Let Rβ(x) = CVaRβ [v(ξ, x)] be the CVaR recourse function from (4),
where v is the TU integer value function from (20). Then, the convex approximations
R̂β and R̃β

α from Definition 8 can be represented as

R̂β(x) = CVaRβ

[
v̂(ξ, x)

]
, R̃β

α (x) = CVaRβ

[
ṽα(ξ, x)

]
,

for all x ∈ R
n1 , where v̂ and ṽα are defined by

v̂(ξ, x) = max
k∈Kq

{
λk

(
h − T x + 1

2 ιm
)}

, ṽα(ξ, x) = max
k∈Kq

{
λk(�h − α� + α − T x)

}
,

for all ξ ∈ Ξ , x ∈ R
n1 , where ιm = (1, . . . , 1) ∈ R

m.

Proof Let ξ ∈ Ξ , ζ ∈ R, and x ∈ R
n1 be given and consider the function v̂ζ (ξ, x)

from Definition 7. By Example 3.4 in [40] it follows from straightforward analysis
that v̂ζ (ξ, x) = (v̂(ξ, x) − ζ )+. Then, from the definition of R̂β and the definition of
CVaR, it follows that R̂β(x) = CVaR[v̂(ξ, x)]. The proof for R̃β

α is analogous. ��

123



Convex approximations for two-stage mixed-integer mean… 491

Note that the convex approximations R̂β and R̃β
α in Lemma 3 are structurally similar

to the original CVaR recourse function R̂β , while the approximating value functions
v̂ and ṽα are structurally similar to the mixed-integer value function v in (21).

4.2 Error bounds

In this subsection we derive tight error bounds for the shifted LP-relaxation approx-
imation R̂β and the generalized α-approximation R̃β

α by exploiting the TU integer
structure of the value function v. Since the derivations for R̂β and R̃β

α are analogous,
we only discuss the derivation for the former.

Our approach to derive sharp error bounds consists of three main steps. First, in
Lemma 4 we find an upper bound on the approximation error R̂β(x)− Rβ(x) in terms
of the approximation error for a risk-neutral recourse function, under a conditional
probability distribution. Second, we apply existing results from the risk-neutral liter-
ature to this approximation error to obtain an error bound, in terms of this conditional
probability distribution. Finally, we rewrite this error bound in terms of the original
probability distribution; the resulting error bounds are presented in Theorems 2 and 3.

By definition of CVaR we have

Rβ(x) = min
ζ∈R

{
ζ + 1

1−β
Eξ [(v(ξ, x) − ζ )+]},

where an optimal argument ζ is given by the β-value-at-risk (VaR) of v(ξ, x), defined
by ζ β(x) := min

{
ζ ∈ R | P{v(ξ, x) ≤ ζ } ≥ β

}
; see [38]. By Lemma 3, the

approximation R̂β(x) has a similar representation, with the β-VaR of v̂(ξ, x) as an
optimal argument: ζ̂ β(x) := min

{
ζ ∈ R | P{v̂(ξ, x) ≤ ζ } ≥ β

}
. Note that ζ β(x) 
=

ζ̂ β(x) in general. However, since ζ β(x) is optimal for Rβ(x) and feasible for R̂β(x),
we obtain the inequality

R̂β(x) − Rβ(x) ≤ 1

1 − β
Eq,T

[
Eh

[
(v̂(ξ, x) − ζ β(x))+ − (v(ξ, x) − ζ β(x))+

]]
.

(22)

Using this inequality as a starting point, we will derive an upper bound on the approx-
imation error R̂β(x) − Rβ(x). An analogous derivation will yield an upper bound on
the reverse difference Rβ(x) − R̂β(x).

We start by deriving an upper bound on the expression

Δβ(x; q, T ) := Eh
[
(v̂(ξ, x) − ζ β(x))+ − (v(ξ, x) − ζ β(x))+

]
(23)

in the right-hand side of (22). For the sake of argument, suppose that we could remove
the positive part operators in (23). Then,wewould obtainΔβ(x; q, T ) = Eh

[
v̂(ξ, x)−

v(ξ, x)
]
. Note that this is the approximation error for a risk-neutral recourse function.

Hence, we could directly apply existing results from the risk-neutral literature [41] to
obtain an upper bound. Using this idea, we take the approach of conditioning on two
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492 E. R. van Beesten, W. Romeijnders

complementary cases. In the first case, the positive part operators indeed drop out,
while the second case reduces to zero.

Lemma 4 Let q ∈ Ξq , T ∈ Ξ T , and x ∈ R
n1 be given and consider Δβ(x; q, T )

from (23). Then,

Δβ(x; q, T ) ≤ P{v̂(ξ, x) > ζβ(x) | q, T }Eh
[
v̂(ξ, x) − v(ξ, x) | v̂(ξ, x) > ζβ(x)

]
.

Proof We take (23) as a starting point and consider the complementary cases v̂(ξ, x) >

ζβ(x) and v̂(ξ, x) ≤ ζ β(x). First, suppose that v̂(ξ, x) > ζβ(x). Then, (v̂(ξ, x) −
ζ β(x))+ = v̂(ξ, x)−ζ β(x). Using this fact and (v(ξ, x)−ζ β(x))+ ≥ v(ξ, x)−ζ β(x),
we obtain

(v̂(ξ, x) − ζ β(x))+ − (v(ξ, x) − ζ β(x))+ ≤ v̂(ξ, x) − v(ξ, x). (24)

Second, suppose that v̂(ξ, x) ≤ ζ β(x). Then, (v̂(ξ, x) − ζ β(x))+ = 0. Using
(v(ξ, x) − ζ β(x))+ ≥ 0, we get

(v̂(ξ, x) − ζ β(x))+ − (v(ξ, x) − ζ β(x))+ ≤ 0. (25)

Using (24) and (25) and defining pβ
x := P{v̂(ξ, x) > ζβ(x) | q, T } = 0, we find by

conditioning on v̂(ξ, x) > ζβ(x) and v̂(ξ, x) ≤ ζ β(x) that

Δβ(x; q, T ) ≤ pβ
x Eh

[
v̂(ξ, x) − v(ξ, x) | v̂(ξ, x) > ζβ(x)

]

+ (1 − pβ
x )Eh

[
0 | v̂(ξ, x) ≤ ζ β(x)

]
.

The result follows from the observation that the second term above equals zero. ��
Remark 2 In Lemma 4 it could be that P{v̂(ξ, x) > ζβ(x) | q, T } = 0, in which case
the conditional expectation Eh[v̂(ξ, x) − v(ξ, x) | v̂(ξ, x) > ζβ(x)] is ill-defined. In
that case, we define this conditional expectation as zero. Then, we clearly have that
Δβ(x; q, T ) ≤ 0, so Lemma 4 remains valid. �

Lemma 4 provides an upper bound on Δβ(x; q, T ) in terms of the approximation
error of a risk-neutral model under a conditional probability distribution. This means
that we can directly apply existing error bounds for risk-neutral recourse functions to
obtain an upper bound onΔβ(x; q, T ) and thus, on R̂β(x)−Rβ(x). Note, however, that
this upper bound will be in terms of the conditional pdf of h, given v̂(ξ, x) > ζβ(x).
By rewriting this upper bound in terms of the original pdf f of h, we obtain the error
bounds in Theorem 2. These uniform error bounds can be interpreted as the risk-averse
generalizations of Proposition 4 in the Appendix.

Theorem 2 Consider the CVaR recourse function Rβ from (4), where v is the TU
integer value function from (20), and consider its shifted LP-relaxation approximation
R̂β and generalized α-approximation R̃β

α from Definition 8. Then, if f ∈ H m, we
have

‖Rβ − R̂β‖∞ ≤ 1

2(1 − β)

m∑

i=1

λ̄∗
i g

(
Eh−i

[|Δ| fi (·|h−i )
])

, (26)
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‖Rβ − R̃β
α‖∞ ≤ 1

1 − β

m∑

i=1

λ̄∗
i g

(
Eh−i

[|Δ| fi (·|h−i )
])

, (27)

where for every i = 1, . . . ,m, we have λ̄∗
i := Eq [λ∗

q,i ], with λ∗
q,i := maxk∈Kq {λki },

q ∈ Ξq , and the function g : R+ → R is defined by

g(t) =
{
t/8, 0 ≤ t ≤ 4,

1 − 2/t, t > 4.
(28)

Proof See Appendix. ��
In comparison with Theorem 1, Theorem 2 provides tractable analytic expressions

(in terms of λ̄∗
i ) for the constantsC1 andC2. Using these expressions, the error bounds

from Theorem 2 are generally much tighter than those from Theorem 1. Moreover,
observe that the error bounds from Theorem 2 differ from their risk-neutral coun-
terparts in Proposition 4 only in the additional factor 1

1−β
, similar as for the error

bounds from Theorem 1 in Sect. 3. Finally, it should be noted that the error bounds
for the shifted LP-relaxation approximation R̂β are a factor 2 smaller than those for
the α-approximation R̃β

α .
It turns out that we can derive even tighter bounds by exploiting the fact that the

expectation in Lemma 4 is conditional on v̂(ξ, x) > ζβ(x). Intuitively, this means
that the (upper bound on the) approximation error R̂β(x) − Rβ(x) is only determined
by values of ξ for which v̂(ξ, x) is large. Since the TU integer approximating value
function v̂ is monotone in hi , it follows that for a given x , q, T , and h−i , this is
equivalent to hi ≥ τi for some τi ∈ R. Hence, we only need to account for the total
variation over the interval [τi ,+∞), for some appropriately defined scalar τi .

Definition 10 Let v be the second-stage value function from (20) and let v̂ and ṽα

be as in Lemma 3. Furthermore, let ζ β(x) := min
{
ζ ∈ R | P{v(ξ, x) ≤ ζ } ≥ β

}

denote the β-VaR of v(ξ, x) and similarly, let ζ̂ β(x) and ζ̃
β
α (x) denote the β-VaR

of v̂(ξ, x) and ṽα(ξ, x), respectively. Finally, let i = 1, . . . ,m, be given and define
ξ−i := (q, T , h−i ). Then, for every ξ−i ∈ Ξq × Ξ T × R

m−1, we define

τ̂
β
x,i (ξ−i ) := inf

{
hi ∈ R | (

v̂(ξ, x) > ζβ(x)
) ∨ (

v(ξ, x) > ζ̂ β(x)
)}

, and

τ̃
β,α
x,i (ξ−i ) := inf

{
hi ∈ R | (

ṽα(ξ, x) > ζβ(x)
) ∨ (

v(ξ, x) > ζ̃ β
α (x)

)}
.

Theorem 3 Consider the setting of Theorem 2 If f ∈ H m, then for every x ∈ R
n1 we

have

|Rβ(x) − R̂β(x)| ≤ 1

1 − β

m∑

i=1

Eq,T

[
λ∗
q,i g

(
Eh−i

[|Δ| fi (·|h−i )
([τ̂ β

x,i (ξ−i ), +∞)
)])]

,

(29)

|Rβ(x) − R̃β
α (x)| ≤ 2

1 − β

m∑

i=1

Eq,T

[
λ∗
q,i g

(
Eh−i

[|Δ| fi (·|h−i )
([τ̃ β,α

x,i (ξ−i ),+∞)
)])]

,

(30)
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where g is the function from Theorem 2 and for every i = 1, . . . ,m, the constants
λ∗
q,i := maxk∈Kq {λki }, q ∈ Ξq , are as in Theorem 2, and τ̂

β
x,i and τ̃

β,α
x,i are defined in

Definition 10.

Proof See Appendix. ��
Theorem 3 exploits the fact that CVaR represents the expected value of the (1 −

β) × 100% worst-case values only. As a result, the error bounds in Theorem 3 only
depend on the total variation of the conditional pdfs of h over that part of its support
that corresponds to theseworst-case values. Since this support decreases ifβ increases,
this total variation is non-increasing in β. This effect explains why, contrary to what
Theorem 1 suggests, the approximation errors |Rβ(x)− R̂β(x)| and |Rβ(x)− R̃β

α (x)|
may actually be decreasing in β. We illustrate this for the special case of simple integer
recourse models in the next subsection.

4.3 Simple integer recourse

In this subsection we study the behavior of the error bounds from Theorem 3 in the
special case of so-called one-dimensional simple integer recourse (SIR). Similar as in
the risk-neutral case [23,28,41], we can exploit the special structure of this problem to
construct a convex approximation with a sharp error bound. Surprisingly, for random
variables h with a non-increasing positive tail, the error bound depends on the hazard
rate of the distribution of h. Contrary to the bound in Theorem 1 from Sect. 3, this
error bound is not necessarily large if β↑1. This is a desirable property, since we are
generally interested in large values for the CVaR parameter β ∈ (0, 1). In fact, we
prove that for heavy-tailed distributions with a decreasing hazard rate the error bound
converges to zero if β↑1.

The one-dimensional simple integer recourse model is defined as a special case of
the TU integer recourse model defined by (20), with n2 = 1, W̄ = [1], q̄ = 1 and
T = [1]. Note that q and T are assumed to be deterministic; only the right-hand side
vector h ∈ R is random, with pdf f and cdf F . The second-stage value function can
then be written as

v(h, x) = �h − x�+, h, x ∈ R, (31)

while its convex approximations v̂ and ṽα reduce to

v̂(h, x) = (h − x + 1/2)+ and ṽα(h, x) = (�h − α� + α − x)+,

for all h, x ∈ R. Below we analyze the error bounds from Theorem 3 for these convex
approximations. However, since the bounds for R̂β and R̃β

α differ only by a factor 2,
we present the results for the shifted LP-relaxation R̂β only. We start by presenting a
simplified version of the error bound in (29) from Theorem 3.

Corollary 1 Let Rβ be the CVaR recourse function from (4), where v is the SIR value
function from (31). Moreover, let R̂β be the shifted LP-relaxation approximation from
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Definition 8. Then,

‖Rβ − R̂β‖∞ ≤ 1

1 − β
g
(
|Δ| f ([τβ,+∞)

))
, (32)

where τβ := F−1(β) − 1 and g is defined in (28).

Proof See Appendix. ��
It is not immediately clear whether the error bound in Corollary 1 is increasing or

decreasing in β. On the one hand, the fraction 1
1−β

increases in β and goes to +∞
as β↑1. On the other hand, g

(|Δ| f ([τβ,+∞)
))

decreases in β and goes to zero as
β↑1, since the left end-point τβ of the interval over which we take the total variation
of f goes to +∞. Below, we identify conditions on the tail of the pdf f under which
the error bound goes to zero as β↑1. We do so for random variables h for which the
pdf f has a positive, non-increasing right tail; see Assumption 2. This includes many
commonly-used probability distributions such as the normal, gamma, Weibull, and
lognormal distribution.

Assumption 2 The pdf f of the random variable h has a positive, non-increasing right
tail. That is, there exists a scalar z ∈ R such that f is positive and non-increasing on
[z,+∞).

Corollary 2 Consider the setting of Corollary 1 and suppose that Assumption 2 holds.
Then, for β ≥ F(z + 1), we have

‖Rβ − R̂β‖∞ ≤ f (τβ)

8(1 − β)
.

Proof Since β ≥ F(z + 1), it follows that τβ ≥ z. Since f has a non-increasing right
tail, this implies that |Δ| f ([τβ,+∞)

) = f (τβ). The result now follows from the
observation that g(t) ≤ 1/8 for all t ≥ 0. ��

The error bound from Corollary 2 is closely related to the hazard rate of h. It turns
out that the error bound (and hence, also the error itself) converges to zero if this
hazard rate goes to zero.

Definition 11 Let h be a continuous random variable with pdf f and cdf F . Then, the
hazard rate λ of h is defined as

λ(t) = f (t)

1 − F(t)
, t ∈ R.

We say h has a decreasing hazard rate if limt→∞ λ(t) = 0.

Theorem 4 Let Rβ be the CVaR recourse function from (4), where v is the SIR value
function from (31). Moreover, let R̂β be the shifted LP-relaxation approximation from
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Definition 8. Suppose that Assumption 2 holds and that h has a decreasing hazard
rate. Then,

lim
β↑1 ‖Rβ − R̂β‖∞ = 0.

Proof For β sufficiently close to 1, the condition β ≥ F(z + 1) of Corollary 2 holds.
Hence, by Corollary 2 it follows that

lim
β↑1 ‖Rβ − R̂β‖∞ ≤ 1

8 limβ↑1
f (τβ )
1−β

= 1
8 limβ↑1

f (F−1(β)−1)
1−F(F−1(β))

. (33)

Consider the limit in the right-hand side above. Performing a change of variable
t = F−1(β), and using that limβ↑1 F−1(β) = +∞, we get

lim
β↑1

f (F−1(β)−1)
1−F(F−1(β))

= lim
t→∞

f (t−1)
1−F(t) = 0,

where the last equality follows by Lemma 5 in Appendix B. Substituting this into (33)
completes the proof. ��

Theorem 4 shows that the convex approximation R̂β is good for large values of β

if h has a decreasing hazard rate. Since every distribution with a decreasing hazard
rate has a heavy tail [15], the convex approximation is good in cases where extreme
events are relatively likely to occur. Interestingly, this is precisely the situation in
which explicit modeling of risk is desired. More generally, contrary to what the error
bounds from Theorem 1 suggest, Theorem 4 provides evidence that the approximation
errors of our convex approximations need not explode as β↑1. In fact, they may even
converge to zero.

5 Summary and conclusions

We considered two-stage mean-CVaR recourse models, where the second-stage prob-
lem is a mixed-integer linear program. These models are non-convex due to the
presence of integer variables and hence, they are extremely hard to solve. Inspired
by results from the literature on corresponding risk-neutral models we construct con-
vex approximation models, which can be solved efficiently using techniques from
convex optimization. In particular, we define two types of convex approximations of
the CVaR recourse function Rβ .

In order to guarantee the performance of the resulting approximate solutions, we
derive error bounds: upper bounds on the approximation errors. These error bounds
depend on the total variations of the one-dimensional conditional density functions
of the random right-hand side variables in the model. In particular, the error bounds
converge to zero if all these total varations go to zero. This implies that all CVaR
recourse functions Rβ can be approximated arbitrarily well by a convex function if
these total variations are small enough.
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For the special case of two-stage TU integer mean-CVaR recourse models, we
derive sharper error bounds by exploiting the special structure of these problems. In
particular, for simple integer recourse models we show that the error bound is small
if the random right-hand side variable in the model has a decreasing hazard rate,
implying that its distribution is heavy-tailed. In such a situation, explicit modeling of
risk aversion is desired to accurately model the underlying practical decision problem.
Hence, our convex approximation approach works well in precisely those cases in
which risk-averse optimization is relevant.

Future research efforts may be aimed at finding sharper error bounds for other spe-
cial cases of two-stage mixed-integer mean-CVaR recourse models. Other directions
for future research include assessing the actual performance of the approximations
(compared to their error bounds) in a numerical study and constructing convex approx-
imations for mixed-integer mean-risk recourse models with other risk measures than
CVaR.
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Appendix A: Random q and T in risk-neutral models

In this appendix, we generalize error bounds for convex approximations of risk-neutral
mixed-integer recourse models to the case where also q and T are random. In the risk-
neutral literature [40,41,49], convex approximations of the mean recourse function Q
with corresponding error bounds exist, but for a setting where only the right-hand side
vector h is random.We extend these results to the case where also q and T are random.
We state these results here since we use them to prove our results in the risk-averse
setting. Hence, we make the same assumptions as in Sect. 2, i.e., h and (q, T ) are
pairwise independent, where h has a joint pdf f and q has a finite support Ξq .

Similar as in themain bodyof this paper,we consider two settings: general two-stage
mixed-integer recourse models (cf. Sect. 3) and the special case of TU integer recourse
models (cf. Sect. 4). For both classes of recourse models, we consider two types of
convex approximations of the mean recourse function Q: the shifted LP-relaxation
approximation Q̂ and the (generalized) α-approximation Q̃α .

A.1 General mixed-integer recourse

We first consider the general case of two-stage mixed-integer recourse models. Con-
sider the mean recourse function Q from (3), i.e.

Q(x) = Eξ [v(ξ, x)].
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We define two convex approximations of Q, based on the approximations in [49] and
[40].

Definition 12 Consider the general mixed-integer mean recourse function Q from
(3). We define its shifted LP-relaxation approximation Q̂ and its generalized α-
approximation Q̃α with parameter α ∈ R

m by

Q̂(x) := Eξ [v̂(ξ, x)], and Q̃α(x) := Eξ [ṽα(ξ, x)], x ∈ R
n1

respectively, where v̂ and ṽα are defined by

v̂(ξ, x) = max
k∈Kq

{
qBk (Bk)−1(h − T x) + Γ k

}
, ξ ∈ Ξ, x ∈ R

n1 ,

ṽα(ξ, x) = max
k∈Kq

{
qBk (Bk)−1(h − T x) + ψk(h − α)

}
, ξ ∈ Ξ, x ∈ R

n1 ,

where Γ k := p−m
k

∫ pk
0 · · · ∫ pk

0 ψk(s)ds1 · · · dsm , pk := | det Bk |, and Bk and ψk ,
k ∈ Kq , are as in Proposition 1.

We provide a uniform error bound for each of the two convex approximations
defined above. These bounds are generalizations of Theorem5.1 in [40] andTheorem4
in [49] to the case where also q and T are random.

Proposition 3 Consider the mean recourse function Q from (3) and its convex approx-
imations Q̂ and Q̃α from Definition 12. Then, if f ∈ H m, there exist finite, positive
constants C̄1 and C̄2 such that

‖Q − Q̂‖∞ ≤ C̄1

m∑

i=1

Eh−i [|Δ| fi (·|h−i )], (34)

‖Q − Q̃α‖∞ ≤ C̄2

m∑

i=1

Eh−i [|Δ| fi (·|h−i )]. (35)

Proof From Theorem 5.1 in [40] we know that if q and T are deterministic, then there
exists a constant Cq > 0, such that

‖Q − Q̂‖∞ ≤ Bq := Cq
m∑

i=1

Eh−i [|Δ| fi (·|h−i )].

It can indeed be shown (by going through the proofs in [40]) that this bound depends
on q but not on T , hence the notation Bq and Cq . Now let x ∈ R

n1 be given. Then,
using Jensen’s inequality, independence between (q, T ) and h, and the error bound
above, we have

|Q(x) − Q̂(x)| = ∣∣Eξ

[
v(ξ, x) − v̂(ξ, x)

]∣∣

= ∣∣Eq,T
[
Eξ |q,T [v(ξ, x) − v̂(ξ, x)]]∣∣
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≤ Eq,T

[∣∣Eh[v(ξ, x) − v̂(ξ, x)]∣∣
]

≤ Eq,T [Bq ]
≤ max

q∈Ξq
{Bq}.

Now, defining C̄1 := maxq∈Ξq {Cq}, (34) follows from the observation that this upper
bound on |Q(x)− Q̂(x)| does not depend on x . The proof of (35) is analogous, except
for the fact that we use Theorem 4 from [49] instead of Theorem 5.1 from [40]. ��
From the construction of the constants C̄1 and C̄2 in the proof, it is not hard to see that
the error bounds from Proposition 3 reduce to the existing bounds from Theorem 5.1
in [40] and Theorem 4 in [49] if q and T are deterministic.

A.2 TU integer recourse

Next, we consider the special case of two-stage TU integer recourse models. That is,
we make the additional assumption that the second-stage value function is defined as
in (20). It is not hard to show that in this case the approximating value functions v̂ and
ṽα reduce to the functions from Lemma 3 (see Example 3.4 in [40] and Example 3
in [49]).

Again, we provide an error bound for both convex approximations: Q̂ and Q̃α . This
result is a generalization of Theorems 5 and 6 from [41] to the case where also q and
T are random.

Proposition 4 Consider the mean recourse function Q(x) = Eξ [v(ξ, x)] from (3),
and assume that v has a TU integer structure, i.e., v is as in (20). Furthermore, let Q̂
and Q̃α be the convex approximations of Q from Definition 12. Then, if f ∈ H m, we
have

‖Q − Q̂‖∞ ≤ 1

2

m∑

i=1

λ̄∗
i Eh−i

[
g
(|Δ| fi (·|h−i )

)]
, (36)

‖Q − Q̃α‖∞ ≤
m∑

i=1

λ̄∗
i Eh−i

[
g
(|Δ| fi (·|h−i )

)]
, (37)

where λ̄∗
i := Eq

[
maxk∈Kq {qBk (Bk)−1ei }

]
, i = 1, . . . ,m, with ei the i th unit vector

in Rm, and g is the function from Theorem 2

Proof From Theorem 6 in [41], we know that for any q ∈ Ξq and T ∈ Ξ T , we
have

∣∣Eh
[
v(ξ, x) − v̂(ξ, x)

]∣∣ ≤ 1

2

m∑

i=1

λ∗
q,iEh−i

[
g
(|Δ| fi (·|h−i )

)]
,

where λ∗
q,i := maxk∈Kq {qBk (Bk)−1ei } depends on q but not on T . Now, (36) follows

by same line of reasoning as in the proof of Proposition 3. The proof of (37) is similar,
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but we use Theorem 5 instead of Theorem 6 from [41], resulting in an error bound
that is a factor 2 larger. ��

Appendix B: Proofs of several lemmas, propositions, and theorems

Proof of Lemma 1 Let v
ζ
LP be the LP-relaxation of vζ and fix q ∈ Ξq . Then, by e.g.,

[10,13], there exists a constant γq > 0 such that |vζ (ξ, x) − v
ζ
LP(ξ, x)| ≤ γq for all

T ∈ Ξ T , h ∈ Ξ h , x ∈ R
n1 , and ζ ∈ R. Next, we show that |vζ

LP(ξ, x)−v̂ζ (ξ, x)| ≤ r̄q
for all T ∈ Ξ T , h ∈ Ξ h , x ∈ R

n1 , and ζ ∈ R, where r̄q := maxk∈Kq rk . By definition

of v
ζ
LP and v̂ζ , we have

|vζ
LP(ξ, x) − v̂ζ (ξ, x)| =

∣∣∣
(
max
k∈Kq

{qBk (Bk)−1(h − T x)} − ζ
)+

−
(
max
k∈Kq

{qBk (Bk)−1(h − T x) + Γ k
ζ } − ζ

)+∣∣∣

≤
∣∣∣ max
k∈Kq

{qBk (Bk)−1(h − T x)} − max
k∈Kq

{qBk (Bk)−1(h − T x) + Γ k
ζ }

∣∣∣

≤ max
k∈Kq

{|Γ k
ζ |},

where the last inequality follows from Γ k
ζ ≥ 0, k ∈ Kq , ζ ∈ R. We consider two

cases. First, suppose ζ ≤ r̄q . Then, 0 ≤ Γ k
ζ ≤ r̄q for every k ∈ Kq and using the

above it follows that |vζ
LP(ξ, x) − v̂ζ (ξ, x)| ≤ r̄q . Second, suppose ζ > r̄q . Let k∗

be the maximizing index for v̂ζ (ξ, x). We consider two subcases. Firstly, suppose
that qBk∗ = 0. Then, Γ k∗

ζ = ζ and it follows that maxk∈Kq {qBk (Bk)−1(h − T x)} ≤
ζ . Hence, |vζ

LP(ξ, x) − v̂ζ (ξ, x)| = |0 − (ζ − ζ )+| = 0. Secondly, suppose that
qBk∗ 
= 0. Since Γ k

ζ ≥ Γ k for all ζ ∈ R and Γ k
ζ = Γ k if qBk 
= 0, we have

v̂ζ (ξ, x) = (
maxk∈Kq {qBk (Bk)−1(h − T x) + Γ k} − ζ

)+. Hence, similar to the

inequalities above, we have |vζ
LP(ξ, x) − v̂ζ (ξ, x)| ≤ maxk∈Kq {|Γ k |} ≤ r̄q .

Now, define γ := maxq∈Ξq {γq+r̄q}. Then, using the abovewe have ‖vζ −v̂ζ ‖∞ ≤
‖vζ − v

ζ
LP‖∞ + ‖vζ

LP − v̂ζ ‖∞ ≤ γ . The proof of ‖vζ − ṽ
ζ
α‖∞ ≤ γ is analogous. ��

Proof of Lemma 2 Let q ∈ Ξq , k ∈ Kq , and ζ ∈ R be given. We will show that there
exists σ kl ∈ Λk(dk) such that for every l 
= k and ĥ := h − T x ∈ σ kl + Λk ,

(
qBk (Bk)−1ĥ + Γ k

ζ − ζ
)+ ≥ (

qBl (Bl)−1ĥ + Γ l
ζ − ζ

)+
, ĥ ∈ σ kl + Λk . (38)

By LP-duality, we know that for the LP-relaxation vLP of v we have vLP(ξ, x) =
maxk∈Kq {qBk (Bk)−1ĥ}, where the index k ∈ Kq is optimal if ĥ ∈ Λk . Fix k, l ∈ Kq

with l 
= k. Then, the above implies that qBk (Bk)−1ĥ ≥ qBl (Bl)−1ĥ, ĥ ∈ Λk .
Suppose that qBk (Bk)−1 = qBl (Bl)−1. Then by Proposition 1(iii), ψk = ψ l . Hence,
Γ k

ζ = Γ l
ζ and (38) holds for σ kl = 0.

Next, suppose that qBk (Bk)−1 
= qBl (Bl)−1. Then, there exists some s∗ ∈ Λk(dk)
such that qBk (Bk)−1s∗ > qBl (Bl)−1s∗. Fix such an s∗. We distinguish two cases.
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First, suppose that qBl 
= 0. Then, Γ l
ζ = Γ l ≤ rl . For a large enough scalar γ ≥ 1, we

find qBk (Bk)−1(γ s∗) > qBl (Bl)−1(γ s∗) + rl . Observing that Γ k
ζ ≥ 0, this implies

that

(
qBk (Bk)−1(γ s∗) + Γ k

ζ − ζ
)+ ≥ (

qBl (Bl)−1(γ s∗) + Γ l
ζ − ζ

)+
. (39)

Second, suppose that qBl = 0. If ζ < rl , then by definition, Γ l
ζ ≤ rl and hence, (39)

holds true. Conversely, if ζ ≥ rl , then Γ l
ζ = ζ and hence, (qBl (Bl)−1(γ s∗) + Γ l

ζ −
ζ )+ = 0. It follows that (39) holds.

Combining all cases above, we conclude that (38) holds for σ kl := γ s∗. Moreover,
since s∗ ∈ Λk(dk) and γ ≥ 1, we have σ kl ∈ Λk(dk). Now, similar as in the proof of
Proposition 3.7 in [40], taking the intersection of the shifted cones σ kl+Λk , k, l ∈ Kq ,
k 
= l, yields a set σ k + Λk , where σ k ∈ Λk(dk). From the construction of this set
and (38) we conclude that v̂ζ attains its value through the basis matrix Bk for all
h − T x ∈ σ k + Λk . The proof for ṽ

ζ
α is analogous. ��

Proof of Proposition 2 We prove the result for v̂ζ ; the proof for ṽ
ζ
α is analogous. Let

q ∈ Ξq be fixed and note that for every k ∈ Kq , we have by Proposition 1, Lemma 2,
and σ k + Λk ⊆ Λk(dk) that both vζ (ξ, x) and v̂ζ (ξ, x) are generated by the same
basis matrix Bk if h − T x ∈ σ k + Λk . Using this observation we will construct sets
A j , j ∈ Jqζ , such that (i) holds.

For every k ∈ Kq we do the following. Firstly, if qBk = 0, then we define Ak :=
σ k + Λk . Then, for h − T x ∈ Ak we have vζ (ξ, x) − v̂ζ (ξ, x) = (ψk(h − T x) −
ζ )+ − p−m

k

∫ pk
0 · · · ∫ pk

0 (ψk(s) − ζ )+ds1 · · · dsm . Clearly, this is a zero-mean Bk-
periodic function of h − T x . Secondly, if qBk 
= 0, then we define the sets Ak+ :=
{s ∈ σ k +Λk | qBk (Bk)−1s ≥ ζ } andAk− := {s ∈ σ k +Λk | qBk (Bk)−1s ≤ ζ − rk}.
Then, for h − T x ∈ Ak+ , we have vζ (ξ, x) − v̂ζ (ξ, x) = ψk(h − T x) − Γ k , and for
h−T x ∈ Ak− , we have vζ (ξ, x)− v̂ζ (ξ, x) = 0. In both cases, we obtain a zero-mean
Bk-periodic function of h − T x . Now, defining the sets A j , j ∈ Jqζ , as the sets Ak ,
Ak+ , and Ak− , k ∈ Kq , described above, (i) clearly holds.

Finally, we show that for these sets A j , j ∈ Jqζ , (ii) holds. Observe that N q
ζ =

R
m\⋃

j∈Jqζ
A j = (

R
m\⋃

k∈Kq (σ k + Λk)
) ∪ ( ⋃

k∈K̄ q {s ∈ σ k + Λk | ζ − rk <

qBk (Bk)−1s < ζ }), where K̄ q := {k ∈ Kq | qBk 
= 0}. Then, by Lemma 3.9 in [40],
there exist hyperslices Hq

ik , i = 1, . . . ,m, k ∈ Kq , such thatRm\⋃
k∈Kq (σ k +Λk) ⊆⋃

k∈Kq
⋃m

i=1 H
q
ik . Moreover, defining the hyperslices H̄q

ζ,k := {s ∈ R
m | ζ − rk ≤

qBk (Bk)−1s ≤ ζ }, k ∈ K̄ q , we have
⋃

k∈K̄ q {s ∈ σ k + Λk | ζ − rk < qBk (Bk)−1s <

ζ } ⊆ ⋃
k∈Kq H̄

q
ζ,k . Hence,N

q
ζ ⊆ (⋃

k∈Kq
⋃m

i=1 Hik
)∪( ⋃

k∈K̄ q H̄
q
ζ,k

)
, i.e.,N q

ζ can
be covered by finitely many hyperslices. ��

Proof of Theorems 2 and 3 We take Lemma 4 as a starting point and we temporarily
fix q ∈ Ξq , T ∈ Ξ T , and x ∈ R

n1 . Note that the conditional expectation in Lemma 4
can be written asE

hβ
x
[v̂(q, T , hβ

x , x)−v(q, T , hβ
x , x)], where hβ

x is the random vector

defined by its joint pdf f β
x := f (·|v̂(ξ, x) > ζβ(x)). Now, applying Theorem 6 from
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[41] to the conditional expectation in Lemma 4, we obtain

Δβ(x; q, T ) ≤ 1

2

m∑

i=1

λ∗
q,iEhβ

x,−i

[
g(|Δ| f β

x,i (·|hβ
x,−i ))

]
, (40)

where hβ
x,−i denotes the random vector hβ

x without its i th element. Note that substi-
tuting (40) into (22) already provides us with an upper bound on the approximation
error R̂β(x) − Rβ(x). However, this bound is in terms of the conditional pdf f β

x . The
rest of this proof is concerned with manipulating the right-hand side of (40) such that
we end up with error bounds in terms of the original pdf f .

Consider the expected value in (40). Since g(·) is concave, it follows by Jensen’s
inequality that

E
hβ
x,−i

[
g
(|Δ| f β

x,i (·|hβ
x,−i )

)] ≤ g
(
E
hβ
x,−i

[|Δ| f β
x,i (·|hβ

x,−i )
])

. (41)

We will derive two upper bounds on the expected value in the right-hand side of (41).
Using the definition of f β

x,i (·|·), we have

E
hβ
x,−i

[
|Δ| f β

x,i (·|hβ
x,−i )

]
=

∫

Rm−1
|Δ| f β

x,i (·|t−i ) f
β
x,−i (t−i )dt−i

=
∫

Θ
β
x,−i

|Δ| f β
x (·;t−i )

f β
x,−i (t−i )

f β
x,−i (t−i )dt−i

=
∫

Θ
β
x,−i

|Δ| f β
x (·; t−i )dt−i , (42)

where Θ
β
x,−i := {

t−i ∈ R
m−1 | f β

x,−i (t−i ) > 0
}
and f β

x (·; t−i ) denotes f β
x (t)

as a function of ti . We derive two upper bounds on |Δ| f β
x (·; t−i ). Define the set

T
β
x,i (t−i ) := {

ti ∈ R | v̂(q, T , t, x) > ζβ(x)
}
. Since λk ≥ 0, k ∈ Kq , it fol-

lows by definition of v̂(ξ, x) that v̂(ξ, x) is monotonely non-decreasing and lower
semi-continuous in hi for every i = 1, . . . ,m. Hence, the set T β

x,i (t−i ) is of the form

T
β
x,i (t−i ) = (τ

β
x,i (t−i ),+∞), where τ

β
x,i (t−i ) := inf{hi ∈ R | v̂(ξ, x) > ζβ(x)}. Now,

by definition of f β
x , we have f β

x (t) = 1
pβ
x
1[

ti>τ
β
x,i (t−i )

] f (t), where pβ
x := P{v̂(ξ, x) >

ζβ(x) | q, T }. From this expression it is immediately clear that

|Δ| f β
x (·; t−i ) ≤ 1

pβ
x
|Δ| f (·; t−i ). (43)

Alternatively, using τ̂
β
x,i (t−i ) ≤ τ

β
x,i (t−i ) (by definition of τ̂

β
x,i and τ

β
x,i (t−i )), we have

|Δ| f β
x (·; t−i ) = |Δ| f β

x (·; t−i )
(
[τβ

x,i (t−i ),+∞)
)

≤ 1
pβ
x
f
(
τ

β
x,i (t−i )

) + 1
pβ
x
|Δ| f (·; t−i )

(
[τβ

x,i (t−i ),+∞)
)
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≤ 2
pβ
x
|Δ| f (·; t−i )

(
[τβ

x,i (t−i ),+∞)
)

. (44)

Hence, we have found two alternative upper bounds on |Δ| f β
x (·; t−i ).

Returning to (42), define Θ−i := {
t−i ∈ R

m−1 | f−i (t−i ) > 0
}
and observe that

Θ
β
x,−i ⊆ Θ−i . Using this fact and (43), we obtain

E
hβ
x,−i

[
|Δ| f β

x,i (·|hβ
x,−i )

]
≤ 1

pβ
x

∫

Θ−i

|Δ| f (·; t−i )dt−i

= 1
pβ
x

∫

Θ−i

|Δ| fi (·|t−i ) f−i (t−i )dt−i

≤ 1
pβ
x
Eh−i

[
|Δ| fi (·|h−i )

]
. (45)

Similarly, using (44) instead of (43) we obtain

E
hβ
x,−i

[
|Δ| f β

x,i (·|hβ
x,−i )

]
= 2

pβ
x
Eh−i

[
|Δ| fi (·|h−i )

([τβ
x,i (h−i ),+∞)

)]
. (46)

Now, combining (22), (40), (41) and (45), we obtain

R̂β(x) − Rβ(x) ≤ 1

2(1 − β)
Eq,T

[

pβ
x

m∑

i=1

λ∗
q,i g

(
1
pβ
x
Eh−i

[|Δ| fi (·|h−i )
])

]

.

Since 1
pβ
x

≥ 1 and g is non-decreasing and concave with g(0) = 0, we can move the

factor 1
pβ
x
in front of the function g to obtain an upper bound, i.e.,

R̂β(x) − Rβ(x) ≤ 1

2(1 − β)

m∑

i=1

Eq,T

[
λ∗
q,i g

(
Eh−i

[|Δ| fi (·|h−i )
])]

= 1

2(1 − β)

m∑

i=1

λ̄∗
i g

(
Eh−i

[|Δ| fi (·|h−i )
])

,

where we use the definition of λ̄∗
i and the fact that λ∗

q,i g
(
Eh−i

[|Δ| fi (·|h−i )
)
does

not depend on T . An analogous proof shows that the right-hand side above is also an
upper bound on the reverse approximation error Rβ(x) − R̂β(x). Observing that this
upper bound does not depend on x completes the proof of (26) in Theorem 2. The
proof of (29) in Theorem 3 is analogous, but instead of (45) we use (46).

Finally, the proofs of the error bounds (27) in Theorem 2 and (30) in Theorem 3
for the α-approximation R̃β

α are analogous to the proofs of (26) and (29), respectively.
The only difference is that instead of using Theorem 6 from [41], we use Theorem 5
from that reference to obtain an analogue of (40). ��
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Proof of Corollary 1 Direct application of (29) from Theorem 3 yields

|Rβ(x) − R̂β(x)| ≤ 1

1 − β
g
(
|Δ| f ([τ̂ β

x ,+∞)
))

,

where τ̂
β
x := inf

{
h ∈ R | v̂(h, x) > ζβ(x) ∨ v(h, x) > ζ̂ β(x)

}
. Here we used

that λ∗
q,i = 1, which follows directly from the dual representation of v(ξ, x) in (21)

for the simple integer case. Now, consider the definition of τ̂
β
x above. It is not hard to

verify that ζ β(x) = v(F−1(β), x) and ζ̂ β(x) = v̂(F−1(β), x). Using the definition
of v(h, x) and v̂(h, x) it follows that inf{h ∈ R | v̂(h, x) > ζβ(x)} ≥ F−1(β)−1 and
inf{h ∈ R | v(h, x) > ζ̂ β(x)} ≥ F−1(β) − 1. Substituting this into τ̂

β
x and observing

that the result does not depend on x proves (32). ��
Lemma 5 Let h be a random variable such that Assumption 2 holds. If h has a decreas-
ing hazard rate, then

lim
t→∞

f (t − 1)

1 − F(t)
= 0.

Proof Define F̄(t) := 1 − F(t), At := F̄(t − 1) − F̄(t), and Bt := F̄(t), t ∈ R. We
first show that limt→∞ F̄(t−1)

F̄(t)
= limt→∞ At+Bt

Bt
= 1. For the sake of contradiction,

suppose limt→∞ At+Bt
Bt


= 1. Since At+Bt
Bt

≥ 1 for all t ∈ R, this means that there

exists ε > 0 such that for all t0 ∈ R, there exists t ≥ t0 such that
At+Bt
Bt

≥ 1 + ε, i.e.,
At
Bt

≥ ε, i.e., Bt
At

≤ 1/ε. Let such an ε > 0, t0 ∈ R, and t ≥ max{t0, z + 1} be given.
Consider λ(t − 1) = f (t−1)

F̄(t−1)
. Since f is non-increasing on [z,+∞) by Assumption 2,

we have At = ∫ t
t−1 f (s)ds ≤ f (t − 1). Hence,

λ(t − 1) = f (t − 1)

F̄(t − 1)
≥ At

At + Bt
=

(
At + Bt

At

)−1

=
(
1 + Bt

At

)−1

≥
(
1 + 1

ε

)−1

= ε

1 + ε
.

Define ε̄ := ε
1+ε

. We have shown that for every t0 ∈ R there exists some t ≥ t0 such
that λ(t − 1) ≥ ε̄. This contradicts our assumption that limt→∞ λ(t) = 0. Hence, by

contradiction it follows that limt→∞ F̄(t−1)
F̄(t)

= 1.
Now, using the algebraic limit theorem it follows that

lim
t→∞

f (t − 1)

F̄(t)
= lim

t→∞

(
f (t − 1)

F̄(t − 1)
· F̄(t − 1)

F̄(t)

)

= lim
t→∞

f (t − 1)

F̄(t − 1)
· lim
t→∞

F̄(t − 1)

F̄(t)
= 0 · 1 = 0,

where we used the fact that h has a decreasing hazard rate. ��

123



Convex approximations for two-stage mixed-integer mean… 505

References

1. Acerbi, C., Tasche, D.: On the coherence of expected shortfall. J. Bank. Finance 26(7), 1487–1503
(2002)

2. Ahmed, S.: Convexity and decomposition of mean-risk stochastic programs. Math. Program. 106(3),
433–446 (2006)

3. Ahmed, S., Tawarmalani, M., Sahinidis, N.V.: A finite branch-and-bound algorithm for two-stage
stochastic integer programs. Math. Program. 100, 355–377 (2004)

4. Alem, D., Morabito, R.: Risk-averse two-stage stochastic programs in furniture plants. OR Spectr. 35,
773–806 (2013)

5. Alem, D., Clark, A., Moreno, A.: Stochastic network models for logistics planning in disaster relief.
Eur. J. Oper. Res. 255(1), 187–206 (2016)

6. Angulo, G., Ahmed, S., Dey, S.S.: Improving the integer L-shaped method. INFORMS J. Comput.
28(3), 483–499 (2016)

7. Artzner, P., Delbaen, F., Eber, J.M., Heath, D.: Coherent measures of risk.Math. Finance 9(3), 203–228
(1999)

8. Bansal, M., Huang, K.L., Mehrotra, S.: Tight second stage formulations in two-stage stochastic mixed
integer programs. SIAM J. Optim. 28(1), 788–819 (2018)

9. Beraldi, P., Violi, A., Carrozzino, G., Bruni, M.E.: A stochastic programming approach for the optimal
management of aggregated distributed energy resources. Comput. Oper. Res. 96, 199–211 (2018)

10. Blair, C.E., Jeroslow, R.G.: The value function of a mixed integer program: II. Discrete Math. 25(1),
7–19 (1979)

11. Bodur,M., Dash, S., Günlük, O., Luedtke, J.: Strengthened benders cuts for stochastic integer programs
with continuous recourse. INFORMS J. Comput. 29(1), 77–91 (2017)

12. Carøe, C.C., Schultz, R.: Dual decomposition in stochastic integer programming. Oper. Res. Lett. 24,
37–45 (1999)

13. Cook, W., Gerards, A.M.H., Schrijver, A., Tardos, É.: Sensitivity theorems in integer linear program-
ming. Math. Program. 34(3), 251–264 (1986)

14. Edmundson, H.: Bounds on the Expectation of a Convex Function of a Random Variable. Technical
report, The RAND Corporation (1956)

15. Foss, S., Korshunov, D., Zachary, S.: An Introduction to Heavy-Tailed and Subexponential Distribu-
tions. Springer, New York (2011)

16. Gade, D., Küçükyavuz, S., Sen, S.: Decomposition algorithms with parametric Gomory cuts for two-
stage stochastic integer programs. Math. Program. 144, 39–64 (2014)

17. Gomory, R.E.: Some polyhedra related to combinatorial problems. Linear AlgebraAppl. 2(4), 451–558
(1969)

18. Govindan, K., Fattahi, M.: Investigating risk and robustness measures for supply chain network design
under demand uncertainty: a case study of glass supply chain. Int. J. Prod. Econ. 183, 680–699 (2017)

19. Govindan, K., Fattahi, M., Keyvanshokooh, E.: Supply chain network design under uncertainty: a
comprehensive review and future research directions. Eur. J. Oper. Res. 263(1), 108–141 (2017)

20. Jensen, J.L.W.V.: Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta mathe-
matica 30, 175–193 (1906)
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