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Abstract

We establish lower bounds on the complexity of finding ε-stationary points of smooth, non-
convex high-dimensional functions using first-order methods. We prove that deterministic first-
order methods, even applied to arbitrarily smooth functions, cannot achieve convergence rates
in ε better than ε−8/5, which is within ε−1/15 log 1

ε of the best known rate for such methods.
Moreover, for functions with Lipschitz first and second derivatives, we prove no deterministic
first-order method can achieve convergence rates better than ε−12/7, while ε−2 is a lower bound
for functions with only Lipschitz gradient. For convex functions with Lipschitz gradient, ac-
celerated gradient descent achieves the rate ε−1 log 1

ε , showing that finding stationary points is
easier given convexity.

1 Introduction

We study the oracle complexity of finding approximate stationary points of a smooth function
f : Rd → R, that is, a point x such that

‖∇f(x)‖ ≤ ε. (1)

In Part I of this series [10], we establish the complexity of finding an ε-stationary point (1) for
algorithms that, at a query point x, have access to all derivatives of f . In contrast, in this paper
we focus on first-order methods, which only query function values and gradients.

First-order methods are important in large-scale optimization for many reasons. Perhaps the two
most salient are that each iteration is often inexpensive, and that on many problems, the number of
iterations grows slowly (or not at all) with the problem dimension d. From a theoretical perspective,
the latter property is captured by dimension-free convergence rates, where the worst case iteration
count depends polynomially on the desired accuracy and measures of function regularity but has no
explicit dependence on d. In non-convex optimization problems, regularity often comes by assuming
bounded function value at the initial point x(0), i.e. f(x(0)) − infx f(x) ≤ ∆ for some ∆ > 0, and
that ∇f is L1-Lipschitz continuous. Under these conditions, classical gradient descent finds an
ε-stationary point in 2L1∆ε−2 iterations [18], a dimension-free guarantee.

Developing first-order methods for finding stationary points of non-convex functions with im-
proved dimension-free rates of convergence is an area of active research [8, 1, 9, 2]. Under the addi-
tional assumption of Lipschitz second derivatives, we [8] and Agarwal et al. [1] propose randomized
first-order methods with nearly dimension free rate ε−7/4 log d

ε (ignoring other problem-dependant
constants). In a later paper [9], we propose a deterministic accelerated gradient-based method with
complexity ε−7/4 log 1

ε , and under the further assumption of that f has Lipschitz third derivatives,

we show the same method attains rates of ε−5/3 log 1
ε . This raises the main question we address in

this paper: how much further can this ε dependence can be improved, and what Lipschitz continuity
assumptions are necessary?
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Oracle f has Lipschitz Upper bound Lower bound Gap

Gen. pth-order derivative O
(
ε−(p+1)/p

)
[5] Ω

(
ε−(p+1)/p

)
Part I O(1)

F.O. gradient and Hessian Õ
(
ε−7/4

)
[9] Ω

(
ε−12/7

)
Thm. 2 Õ

(
ε−1/28

)
F.O. qth derivative ∀q ≤ p, p ≥ 3 Õ

(
ε−5/3

)
[9] Ω

(
ε−8/5

)
Thm. 2 Õ

(
ε−1/15

)
F.O. gradient + f convex Õ

(
ε−1
)

Prop. 2 Ω
(
ε−1
)

Thm. 1 Õ (1)

Table 1. The number of iterations required to find ε-stationary points of high dimensional functions
f , where f(x(0)) − infx f(x) ≤ O(1). The first column indexes the type of oracle access: general
(all derivatives) or first-order (function value and gradient). In the first row, deterministic pth-
order methods achieve the upper bounds, and the lower bounds apply to all randomized methods of
arbitrary order. In the other rows, the lower bounds apply to all deterministic first-order methods,
and such methods achieve the upper bounds.

1.1 Our contributions

In Table 1 we summarize our results, along with corresponding known upper bounds. We establish
lower bounds on the worst-case oracle complexity of finding ε-stationary points, where algorithms
may access f only through queries to an information oracle, that returns the value and some
number of (or potentially all) derivatives of f at the queried point. A lower bound Tε means that
for every algorithm A, there exists a function f in the allowed function class (e.g. functions with
f(x(0)) − infx f(x) ≤ ∆ and L1-Lipschitz gradient) for which A requires at least Tε oracle queries
before returning an ε-stationary point of f .

In Part I [10] of this series we prove that no algorithm, even one given all derivatives of f
at each iteration, can improve on the ε−2 rate of gradient descent for the class of functions with
bounded initial value and Lipschitz continuous gradient. Therefore, in distinction with the convex
case, acceleration of gradient descent for non-convex optimization [9] fundamentally depends on
higher-order smoothness assumptions. We further show that, for the class of functions with pth
order Lipschitz derivatives, no method can improve the rate ε−(p+1)/p achieved by a pth-order
method [5]. However, this does not get at the crux of the issue we consider here—what is the best
possible rate for first-order methods, given that higher-order derivatives are Lipschitz?

In this paper we show that the ε-dependencies we establish in our work [9] are almost tight.
More precisely, consider the function class with Lp-Lipschitz derivatives for all q ∈ {1, . . . , p},
where p ∈ N; for this class there does not exist a deterministic first-order algorithm with iteration
complexity better than ε−8/5. If p = 2 this complexity lower bound strengthens to ε−12/7. In the
following diagram, we compare the exponents of 1/ε in our lower bounds and known upper bounds
(smaller is better).
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methods
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Thus, we establish two separations. First, no deterministic first-order method can achieve the rate
of convergence ε−3/2 of Newton’s method. Second, the rate ε−5/3 log 1

ε we achieve [9] requires the
assumption of Lipschitz third derivatives, as first-order methods assuming only Lipschitz Hessian
must compute at least ε−12/7 function values and gradients to find an ε-stationary point. We also
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show that the optimal rate for finding ε-stationary points of convex functions with bounded initial
value (i.e. f(x(0))− infx f(x) ≤ ∆) and L1-Lipschitz gradient is Θ̃(

√
L1∆ε−1).1 Finding stationary

points is thus fundamentally easier for convex functions.
The starting point of our development is Nesterov’s [18, § 2.1.2] “worst function in the world,”

fNesterov(x) :=
1

2
(x1 − 1)2 +

1

2

d−1∑
i=1

(xi − xi+1)2, (2)

which is instrumental in proving lower bounds for convex optimization [18, 23, 4] due to its “chain-
like” structure. We establish our ε−1 lower bound for finding stationary points of convex functions
by making a minor modification to the construction (2). To prove our larger lower bounds for
non-convex functions, we augment fNesterov with a non-convex separable function

∑d
i=1 Υ(xi), with

Υ : R→ R carefully chosen to render Nesterov’s “worst function” even worse.

Paper organization Throughout, we use Pi.k to reference an item k of Part I of this se-
quence [10], as we build off of many ideas there. In Section 2 we briefly summarize our framework
(Sections Pi.2 and Pi.3). Section 3 begins the new analysis and contains lower bounds for finding
stationary points of convex functions. In Section 4 we construct our hard non-convex instance,
while in Section 5 we use this function to establish our main result: a lower bound on the complex-
ity of finding stationary points using deterministic first-order methods. In Sections 6 we discuss
some difficulties in sharpening or extending our lower bounds. Section 7 concludes by situating our
work in the current literature and reflecting on its implications for future research.

Notation Before continuing, we provide the conventions we adopt throughout the paper; our
notation mirrors Part I [10], so we describe it only briefly. For a sequence of vectors, subscripts

denote coordinate index, while parenthesized superscripts denote element index, i.e. x
(i)
j is the

jth coordinate of the ith entry in the sequence {x(t)}t∈N. For any p ≥ 1 and p times continuously
differentiable f : Rd → R, we let∇pf(x) denote the symmetric tensor of pth order partial derivatives
of f at point x. We let 〈·, ·〉 be the Euclidean inner product on tensors, defined for order k tensors
T and M by 〈T,M〉 =

∑
i1,...,ik

Ti1,...,ikMi1,...,ik . We use ⊗ to denote the Kronecker product and

⊗kd denote d× · · · × d, k times, so that T ∈ R⊗kd denotes an order k tensor.
For a vector v ∈ Rd we let ‖v‖ :=

√
〈v, v〉 denote the Euclidean (`2) norm of v. For a tensor

T ∈ R⊗kd, the `2-operator norm of T is ‖T‖op := sup‖v(i)‖≤1〈v
(1)⊗· · ·⊗v(k), T 〉, where we recall [24]

that if T is symmetric then ‖T‖op = sup‖v‖=1 |〈v⊗k, T 〉| where v⊗k denotes the k-th Kronecker power
of v. For vectors the `2 and `2-operator norms are identical.

For any n ∈ N, we let [n] := {1, . . . , n} denote the set of positive integers less than or equal to
n. We let C∞ denote the set of infinitely differentiable functions. We denote the ith standard basis
vector by e(i), and let Id ∈ Rd×d denote the d× d identity matrix; we drop the subscript d when it
is clear from context. For any set S and functions g, h : S → [0,∞) we write g . h or g = O(h)
if there exists a numerical constant c < ∞ such that g(s) ≤ c · h(s) for every s ∈ S. We write
g = Õ (h) if g . h log(h+ 2).

1 Given a bound ‖x(0) − x?‖ ≤ D where x? ∈ argmin f , as is standard for convex optimization, the optimal rate

is Θ̃(
√
L1Dε

−1/2) [19]. The two rates are not directly comparable.
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2 A framework for lower bounds

For ease of reference, this section provides a condensed version of Sections Pi.2 and Pi.3 of the
first part of this series [10] that lays out the notation, concepts and strategy we use to prove lower
bounds. Here, we are deliberately brief; see [10] for motivation, intuition and background for our
definitions, as well as exposition of randomized and higher-order methods.

2.1 Function classes

Typically, one designs optimization algorithms for certain classes of appropriately regular func-
tions [18, 6, 17]. We thus focus on two notions of regularity that have been important for both
convex and non-convex optimization: Lipschitzian properties of derivatives and bounds on func-
tion value. A function f : Rd → R has Lp-Lipschitz pth order derivatives if it is p times con-
tinuously differentiable, and for every x ∈ Rd and v ∈ Rd, ‖v‖ = 1, the directional projection
t 7→ fx,v(t) := f(x+ t · v) of f satisfies∣∣∣f (p)

x,v (t)− f (p)
x,v (t′)

∣∣∣ ≤ Lp ∣∣t− t′∣∣ for t, t′ ∈ R,

where f
(p)
x,v (·) is the pth derivative of t 7→ fx,v(t). We occasionally refer to a function with Lipschitz

pth order derivatives as pth-order smooth.

Definition 1. Let p ≥ 1, ∆ > 0 and Lp > 0. Then the set

Fp(∆, Lp)

denotes the union, over d ∈ N, of the collection of C∞ functions f : Rd → R with Lp-Lipschitz pth
derivative and f(0)− infx f(x) ≤ ∆. For positive ∆ and L1, . . . , Lp we define

F1:p(∆, L1, ..., Lp) :=
⋂
q≤p
Fq(∆, Lq).

The function classes Fp(∆, Lp) include functions on Rd for all d ∈ N, following the established
practice of studying “dimension free” problems [17, 18, 10].

We also require the following important invariance notion [17, Ch. 7.2].

Definition 2 (Orthogonal invariance). A class of functions F is orthogonally invariant if for every
f ∈ F , f : Rd → R, and every matrix U ∈ Rd′×d such that U>U = Id, the function fU : Rd′ → R
defined by fU (x) = f(U>x) belongs to F .

Every function class we consider is orthogonally invariant.

2.2 Algorithm classes

For any dimension d ∈ N, an algorithm A (also referred to as a method or procedure) maps functions
f : Rd → R to a sequence of iterates in Rd; that is, A is defined separately for every finite d. We let

A[f ] = {x(t)}∞t=1

denote the sequence x(t) ∈ Rd of iterates that A generates when operating on f . Throughout this
paper, we focus on first-order deterministic algorithms. Such an algorithm A is one that, operating
on f : Rd → R, produces iterates of the form

x(i) = A(i)
(
f(x(1)),∇f(x(1)), . . . , f(x(i−1)),∇f(x(i−1))

)
for i ∈ N,
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where A(i) : Rd(i−1)+i → Rd is measurable (the dependence on dimension d is implicit). We denote

the collection of first-order deterministic algorithms by A(1)
det.

Key to our development are zero-respecting algorithms (see Sec. Pi.2.2 for more information).
For v ∈ Rd we let supp {v} := {i ∈ [d] | vi 6= 0} denote the support (non-zero indices) of v. Then
we say that the sequence x(1), x(2), . . . is first-order zero-respecting with respect to f if

supp
{
x(t)
}
⊆
⋃
s<t

supp
{
∇f(x(s))

}
for each t ∈ N. (3)

The definition (3) says that x
(t)
i = 0 whenever the partial derivatives of f with respect to coordinate

xi are zero for all preceding iterations. Extending the definition (3) in the obvious way, an algorithm
A is first-order zero-respecting if for any f : Rd → R, the iterate sequence A[f ] is zero-respecting

with respect to f . The set A(1)
zr comprises all such first-order algorithms.

2.3 Complexity measures

For a sequence {x(t)}t∈N we define the complexity of the sequence {x(t)}t∈N on f by

Tε
(
{x(t)}t∈N, f

)
:= inf

{
t ∈ N |

∥∥∇f(x(t))
∥∥ ≤ ε} ,

the index of the first element in {x(t)}t∈N that is an ε-stationary point of f . The complexity of
algorithm A on f is simply the complexity of the sequence A[f ] on f , so we define

Tε
(
A, f

)
:= Tε

(
A[f ], f

)
.

We define the complexity of algorithm class A on function class F as

Tε
(
A,F

)
:= inf

A∈A
sup
f∈F

Tε
(
A, f

)
. (4)

Table 1 provides upper and lower bounds on the quantity (4) for different choices of A and F . For

example, gradient descent guarantees Tε
(
A(1)

det ∩ A
(1)
zr ,F1(∆, L1)

)
≤ 2∆L1ε

−2.

2.4 How to show a lower bound

The last step in our preliminaries is to give an overview of our proof strategy; this is an abbreviated
version of Section Pi.3. There, we abstract classical techniques for lower bounds in convex opti-
mization [17, 18], presenting a generic method for proving lower bounds on deterministic methods
(of any order) applied to functions in any orthogonally invariant class.

Our starting point is what we call a zero-chain, which distills the “chain-like” structure of
Nesterov’s construction (2).

Definition 3. A function f : Rd → R is a first-order zero-chain if for every x ∈ Rd,

supp {x} ⊆ {1, . . . , i− 1} implies supp {∇f(x)} ⊂ {1, . . . , i}.

In Definition Pi.3 [10], we extend zero-chains to higher orders; in our terminology Nesterov’s
function (2) is a first-order zero-chain, but not a second-order zero-chain. A first-order zero-chain
limits the rate that zero-respecting algorithms acquire information from derivatives, forcing them
to “discover” coordinates one by one, as the following observation makes clear.
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Observation 1. Let f : Rd → R be a first-order zero-chain and let x(1) = 0, x(2), . . . be a first-order

zero-respecting sequence with respect to f . Then x
(t)
j = 0 for j ≥ t and all t ≤ d.

The important insight, essentially due to Nemirovski and Yudin [17] is that by using a resisting
oracle [17, 18] that can adversarially rotate the function f , any lower bound for zero-respecting
algorithms implies an identical bound for all deterministic algorithms:

Proposition 1. Let F be an orthogonally invariant function class. Then

Tε
(
A(1)

det,F
)
≥ Tε

(
A(1)

zr ,F
)
.

See Proposition Pi.1 for a more general version of this result.
With this proposition, our strategy, inspired by Nesterov [18], becomes clear. To prove a lower

bound on first-order deterministic algorithms for a function class F , we find fε : RT → R such that
(i) fε is a first-order zero-chain, (ii) fε ∈ F , and (iii) ‖∇fε(x)‖ > ε for every x such that xT = 0.

Then for A ∈ A(1)
zr and {x(t)}t∈N = A[f ], Observation 1 shows that x

(t)
T = 0 for t ≤ T , and the

large gradient property (iii) guarantees the non-stationarity
∥∥∇fε(x(t))

∥∥ > ε for all t ≤ T . We
immediately obtain the complexity lower bound

Tε
(
A(1)

zr ,F
)

= inf
A∈A(1)

zr

sup
f∈F

Tε
(
A, f

)
≥ inf

A∈A(1)
zr

Tε
(
A, fε

)
> T.

This strategy highlights the importance of “dimension freedom,” because we take the dimension of
fε to be at least T , which must thus grow inversely with ε.

3 Lower bounds for finding stationary points of convex functions

While for convex optimization guarantees of small gradients are atypical topics of study, we nonethe-
less begin by considering the complexity of finding stationary points of smooth convex functions.
This serves two purposes. First, it is a baseline for finding stationary points in the non-convex
setting; based on algorithmic upper bounds due to Nesterov [19], we see that convexity makes this
task fundamentally easier. Second, our lower bound construction for convex problems underpins
our construction and analysis for general smooth (non-convex) functions in the sequel, allowing
us to demonstrate our techniques in a simpler setting. Of course, in convex optimization, it is
typically more useful to find points x with small optimality gap, f(x) ≤ infz f(z) + ε. Convexity
allows efficient algorithms for guaranteeing such optimality, and typically one ignores questions of
the magnitude of the gradient in favor of small optimality or duality gaps [6]. Nonetheless, in some
situations—such as certifying (near) dual feasibility or small constraint residuals in primal-dual or
operator splitting algorithms [e.g. 7]—achieving small gradients is important.

We proceed as follows. In Section 3.1 we define the class of convex functions under consideration
and a quadratic subclass. In Section 3.2, we construct a hard quadratic instance, and verify its key
properties. Finally, in Section 3.3, we state, discuss and prove our lower bounds.

3.1 Convex function classes

The collections of functions we consider are the following.

Definition 4. Let L1 > 0 and ∆ > 0. The set

K1 (∆, L1)

6



denotes the union, over d ∈ N, of the collections of C∞ convex functions f : Rd → R with L1-
Lipschitz gradient and f(0)− infx f(x) ≤ ∆. Additionally,

Q (∆, L1) ⊂ K1 (∆, L1)

is the set of convex quadratic functions satisfying the above conditions.

Our results, following Nemirovski and Yudin [17] and Nesterov [18], demonstrate that for deter-
ministic first-order methods, the class Q (∆, L1) is “hard enough,” in that it provides nearly sharp
lower bounds for first-order methods, which immediately apply to K1 (∆, L1) and F1(∆, L1). We
also have Q (∆, L1) = F1:p(∆, L1, 0, . . . , 0) or any p ≥ 2.

In addition to functions restricted by initial optimality gap, we consider the following initial
distance-based definition.

Definition 5. Let D > 0 and L1 > 0. The set

Kdist
1 (D,L1)

denotes the union, over d ∈ N, of the collections of C∞ convex functions f : Rd → R with L1-
Lipschitz gradient satisfying ‖x?‖ ≤ D for all x? ∈ argminx f(x). Additionally,

Qdist (D,L1) ⊂ Kdist
1 (D,L1)

is the set of convex quadratic functions satisfying the above conditions.

Standard convergence results in (smooth) convex optimization [e.g. 18] apply to functions with
bounded domain, i.e. f ∈ Kdist

1 (D,L1) rather than K1 (∆, L1). This is for good reason: for any
pair ∆, L1, any ε < ∆, any first-order zero-respecting or deterministic algorithm A, and any T ∈ N,
there exists a function f ∈ Q (∆, L1) with L1-Lipschitz gradient such for {x(t)}t∈N = A[f ] we have

inf
t∈N

{
t | f(x(t)) ≤ inf

x
f(x) + ε

}
> T.

(See Appendix A.2, Lemma 6 for a proof of this claim.) Since this holds for any T ∈ N and
ε < ∆, making even the slightest function value improvement to functions in Q (∆, L1) may take
arbitrarily long. Thus, when we consider the function classes of Definition 4, we can only hope to
give convergence guarantees in terms of stationarity—as is common in the non-convex case.

3.2 The worst function in the (convex) world

We now constructing the functions that are difficult for any zero-respecting first-order method. For
parameters T ∈ N and α ≤ 1 we define the (unscaled) hard function f̂T,α : RT → R by

f̂T,α(x) =
α

2
(x1 − 1)2 +

1

2

T−1∑
i=1

(xi − xi+1)2. (5)

For α = 1, f̂T,1 this is Nesterov’s “worst function in the world” [18, § 2.1.2]. The parameter
α allows us to control f(0) and thus provides a degree of freedom in satisfying the constraint
f(0)− infx f(x) ≤ ∆ for our lower bounds. By inspection,

f̂T,α(x) =
1

2
x>Lx− b>x+

α

2

7



where

L =


1 + α −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 1

 ∈ RT×T (6)

is the unnormalized graph Laplacian of the simple path on T vertices (see [13]) plus the term α in
the position L11, and b = αe(1).

Let us now verify that f̂T,α meets the three requirements of our lower bound strategy.

Lemma 1. For all T ∈ N and α ≤ 1, f̂T,α has the following properties.

i. Zero-chain f̂T,α is a first-order zero-chain.

ii. Membership in function class

(a) f̂T,α has 4-Lipschitz continuous gradient.

(b) f̂T,α(0)− infx∈RT f̂T,α(x) = α/2.

(c) The unique minimizer of f̂T,α(x) is x? = 1, and ‖x?‖ =
√
T .

iii. Large gradient For every x ∈ RT such that xT = 0, ‖∇f̂T,α(x)‖ >
(
T − 1 + 1

α

)−3/2
.

Proof. Part i is immediate from Definition 3, since for every i ∈ [d], ∇if̂T,α(x) = 0 whenever

xi−1 = xi = xi+1 = 0. Part ii is also immediate, as f̂T,α(1) = infx f̂T,α(x) = 0, and ‖L‖op ≤ 4 (apply

the triangle inequity to ‖Lv‖). To establish part iii, we calculate the minimum value of ‖∇f̂T,α(x)‖2
obtainable by any vector x ∈ RT with xT = 0. Letting M = L[IT−1 0T−1]> ∈ RT×(T−1) be
the matrix L of (6) with its last column removed and recalling b = αe(1), this becomes the least
squares problem, whose solutions is the squared norm of the projection of b to the (one-dimensional)
nullspace of M>:

inf
x∈RT ,xT=0

∥∥∥∇f̂T,α(x)
∥∥∥2

= inf
v∈RT−1

‖Mv − b‖2 = b>
(
IT −M(M>M)−1M>

)
b =

(
z>b

)2
, (7)

where z ∈ RT is the unique (up to sign) unit-norm solution to M>z = 0. A calculation shows that

zj =
j − 1 + 1

α√∑T
i=1(i− 1 + 1

α)2
.

Substituting z and b into Eq. (7), we have that xT = 0 implies∥∥∥∇f̂T,α(x)
∥∥∥2
≥ 1∑T

i=1(i− 1 + 1
α)2

>
1

(T − 1 + 1
α)3

,

giving the result.

8



3.3 Scaling argument and final bound

With our hard instance in place, we provide our lower bounds for finding stationary points of convex
functions. We note that the lower bound for the class Qdist (D,L1) also follows from the standard
lower bounds on finding ε-suboptimal points, since for every q ∈ Qdist (D,L1) an ε-stationary point
is also εD-suboptimal.

Theorem 1. Let ε,∆, D, and L1 be positive. Then

Tε
(
A(1)

det,K1 (∆, L1)
)
≥ Tε

(
A(1)

zr ,Q (∆, L1)
)
≥
√
L1∆

4
ε−1, (8a)

and

Tε
(
A(1)

det,K
dist
1 (D,L1)

)
≥ Tε

(
A(1)

zr ,Qdist (D,L1)
)
≥
√
L1D

2
ε−1/2. (8b)

Let us discuss Theorem 1 briefly. Nesterov [19] shows that for any f ∈ Kdist
1 (D,L1), acceler-

ated gradient descent applied to a regularized version of f yields a point x satisfying ‖∇f(x)‖ ≤ ε
after at most O(

√
L1Dε

−1/2 log L1D
ε ) iterations. For f ∈ K1 (∆, L1), a similar technique to Nes-

terov’s, which we provide for completeness in Appendix A.1, yields an upper complexity bound of
O(
√
L1∆ε−1 log L1∆

ε2
). Thus, to within logarithmic factors both bounds of Theorem 1 are sharp.

It is illustrative to compare Theorem 1 to our results for non-convex but smooth functions, and
we do so in detail in Sec. 7.1. The comparison shows that finding stationary points of smooth
convex functions with first-order methods is fundamentally easier than finding stationary points of
non-convex functions, even with higher-order smoothness and using higher-order methods.

While we prove our lower bounds for the algorithm classes A(1)
det and A(1)

zr , similar lower bounds
apply to the collection Arand of all randomized algorithms based on arbitrarily high-order deriva-
tives, when applied to worst-case functions from function class K1 (∆, L1). While this is not our
focus here, using the techniques of Woodworth and Srebro [23] and Section Pi.5, it is possible to
construct a distribution P on K1 (∆, L1) such that for any A ∈ Arand, with high probability over
f ∼ P we have Tε

(
A, f

)
&
√
L1∆ε−1. That is, neither randomization nor higher-order derivative

information can improve performance on K1 (∆, L1). Such an extension fails for Q (∆, L1), as New-
ton’s method finds the global minimizer of every f ∈ Q (∆, L1) in one step. We know of no tight
lower bounds on the complexity of randomized first-order methods for Q (∆, L1).

3.4 Proof of Theorem 1

As we outline in Section 2.4, we establish our lower bounds by constructing a zero-chain f : RT → R
such that f ∈ Q (∆, L1) (or Qdist (D,L1)), and that ‖∇f(x)‖ > ε for any x such that xT = 0. By

Observation 1 we immediately have that for every A ∈ A(1)
zr , the iterates {x(t)}t∈N = A[f ] produced

by A operating on f satisfy x
(t)
T = 0 for every t ≤ T and hence ‖∇f(x(t))‖ > ε. Consequently,

inf
A∈A(1)

zr
Tε
(
A, f

)
≥ 1 + T , which implies lower bounds on the required quantities by means of

Q (∆, L1) ⊂ K1 (∆, L1) and Proposition 1.
To define the difficult zero-chain f , we scale f̂T,α using two scalar parameters λ, σ > 0, which

we determine later, defining
f(x) := λσ2f̂T,α(x/σ).

We use the parameter λ > 0 to control the first-order smoothness of f , as ∇2f(x) = λ∇2f̂T,α(x/σ),
while the parameter σ controls the lower bound on ‖∇f(x)‖ for xT = 0. We first show how to

9



choose σ, depending on T , ε, α, and λ. By Lemma 1.iii, for every x with xT = 0 we have

‖∇f(x)‖ = λσ
∥∥∥∇f̂T,α(x)

∥∥∥ > λσ

(T − 1 + 1
α)3/2

.

Setting

σ =
1

λ

(
T − 1 +

1

α

)3/2

ε,

guarantees ‖∇f(x)‖ > ε for any x such that xT = 0 and hence ‖∇f(x(t))‖ > ε for all t ≤ T .
All that remains is to choose λ, T , and α to guarantee that f belongs to the appropriate

quadratic class. By Lemma 1.ii, f has 4λ Lipschitz gradient, so we take

λ = L1/4

and guarantee that f has L1-Lipschitz gradient. To guarantee that f ∈ Q (∆, L1), Lemma 1.ii
yields

f(0)− inf
x
f(x) = λσ2α/2 =

2α

L1

(
T − 1 +

1

α

)3

ε2,

where we have substituted our choice of σ and λ in the final equality. Defining

α = 1/T ≤ 1 we obtain f(0)− inf
x
f(x) ≤ 16T 2ε2/L1,

so to guarantee f(0)− infx f(x) ≤ ∆, it suffices to choose

T =

⌊√
L1∆

4
ε−1

⌋
.

This gives the first part (8a) of the theorem. For inequality (8b), we must have f ∈ Qdist (D,L1).
Let x? = σ1 denote the minimizer of f , so that

‖x?‖ = σ
√
T =

4

L1

(
T − 1 +

1

α

)3/2

ε
√
T ,

where again we have substituted our choices of σ and λ in the final equality. Consequently, to
guarantee ‖x?‖ ≤ D it suffices to take

α = 1 and T =

⌊√
L1D

2
ε−1/2

⌋
,

giving the bound (8b).

4 Constructing the non-convex hard instance

We now relax the assumption of convexity, and design a first-order zero-chain that provides bounds
stronger than those of Theorem Pi.2, when we restrict the algorithm class to first-order methods.
The basis of our construction is the convex zero-chain (5), which we augment with non-convexity
to strengthen the gradient lower bound in Lemma 1.iii, while ensuring that all derivatives remain

10



Figure 1. Hard instance for first-order methods. Left: the non-convexity Υr (top) and its derivative
(bottom), for different values of r. Right: Contour plot of a two-dimensional cross-section of the hard
instance f̄T,µ,r.

Lipschitz continuous. With this in mind, for each T ∈ N, we define the unscaled hard instance
f̄T,µ,r : RT+1 → R as

f̄T,µ,r(x) =

√
µ

2
(x1 − 1)2 +

1

2

T∑
i=1

(xi+1 − xi)2 + µ
T∑
i=1

Υr(xi). (9)

where the non-convex function Υr : R→ R, parameterized by r ≥ 1, is

Υr(x) = 120

∫ x

1

t2(t− 1)

1 + (t/r)2
dt. (10)

We illustrate the construction f̄T,µ,r in Figure 1; it is the sum of the convex hard instance (5)
(with α =

√
µ) and a separable non-convex function. In the following lemma, which we prove in

Appendix B.1, we list the important properties of Υr.

Lemma 2. The function Υr satisfies the following.

i. We have Υ′r(0) = Υ′r(1) = 0

ii. For all x ≤ 1, Υ′r(x) ≤ 0, and for all x ≥ 1, Υ′r(x) ≥ 0.

iii. For all x ∈ R we have Υr(x) ≥ Υr(1) = 0, and for all r, Υr(0) ≤ 10.

iv. For every r ≥ 1, Υ′r(x) < −1 for every x ∈ (−∞,−0.1] ∪ [0.1, 0.9]

v. For every r ≥ 1 and every p ≥ 1, the p-th order derivatives of Υr are r3−p`p-Lipschitz contin-
uous, where `p ≤ exp(3

2p log p+ cp) for a numerical constant c <∞.

Before formally stating the properties of f̄T,µ,r, we provide a high-level explanation of the choice
of Υr. First, a necessary and sufficient condition for f̄T,µ,r to be a first-order zero-chain is that
Υ′r(0) = 0. Second, examining the proof Lemma 1.iii we see that the gradient of the quadratic chain
is smallest for vectors x with entries x1, x2, ..., xT that slowly decrease from 1 to 0. We design Υr

to “punish” such slowly varying vectors, by demanding that Υ′r(x) be large for any x far from both
0 and 1 (Lemma 2.iv); this is the key to improving Lemma 1.iii and the most important property

11



of Υr. Third, for every finite r all the derivatives of Υr are Lipschitz, and as r increases f̄T,µ,r
converges to a quartic polynomial; in the limit r = ∞ we have Υ∞(x) = 30x4 − 40x3 + 10. This
allows us to establish that Lipschitz continuity of derivatives beyond the third does not alter the
ε dependence of our bounds. However, we cannot simply use Υ∞, as its first three derivatives are
unbounded. Lastly, we place the minimum of Υr(x) at x = 1, so that the all-ones vector is the
global minimizer of f̄T,µ,r, and f̄T,µ,r(1) = 0; this is simply convenient for our analysis.

With our considerations explained, we verify the three components of our general strategy: f
is a first-order zero-chain, belongs to the relevant function classes, and has large gradient whenever
xT = 0. We begin with the zero-chain property, which follows trivially from Lemma 2.i.

Observation 2. For any T ∈ N, and positive µ and r, f̄T,µ,r is a first-order zero-chain.

Crucially, f̄T,µ,r is only a first-order zero-chain (see Definition Pi.3); were it a second-order zero-
chain, the resulting lower bounds would apply to second-order algorithms as well, where Newton’s
method achieves the rate ε−3/2 [20], which is strictly better than all of our lower bounds. We next
show that any point x for which xT = xT+1 = 0 has large gradient. This is the core technical result
of our analysis.

Lemma 3. Let r ≥ 1 and µ ≤ 1. For any x ∈ RT+1 such that xT = xT+1 = 0,∥∥∇f̄T,µ,r(x)
∥∥ > µ3/4/4.

We defer the full proof of this lemma to Appendix B.2 and sketch its main idea here. We may
view any vector meeting the conditions of the lemma as a sequence going from x0 := 1 to xT = 0.
Every such sequence must have a “transition region”, which we define roughly as the subsequence
starting after the last i such that xi >

9
10 and ending at the first (subsequent) j such that xj <

1
10

(see Figure 2). Letting m ∈ {1, . . . , T} denote the length of this subsequence and ignoring constant
factors, we establish that∥∥∇f̄T,µ,r(x)

∥∥ ≥ max
{

(m+ 1/
√
µ)−3/2 , µ

√
m
}
.

The (m+ 1/
√
µ)−3/2 bound comes from the quadratic chain in f̄T,µ,r, which has large gradient for

any sequence x with sharp transitions; this is essentially Lemma 1.iii with T = m and α =
√
µ.

The µ
√
m bound is due to the non-convex Υr terms in f̄T,µ,r, which by Lemma 2.iv contribute a

term of magnitude µ to every entry of ∇f̄T,µ,r in the transition region. These two bounds intersect
at m ≈ 1/

√
µ, so the gradient has norm at least µ3/4 for every value of m.

Finally, we list the boundedness properties of our construction.

Lemma 4. The function f̄T,µ,r satisfies the following.

i. f̄T,µ,r(0)− infx f̄T,µ,r(x) ≤
√
µ

2 + 10µT

ii. For µ ≤ 1, r ≥ 1 and every p ≥ 1, the p-th order derivatives of f̄T,µ,r are (1(p=1) + r3−pµ)`p-

Lipschitz continuous, where `p ≤ e
3p
2

log p+cp for a numerical constant c <∞.

Proof. The first part of the lemma follows from Lemma 2, which shows that infx f̄T,µ,r(x) =
f̄T,µ,r(1) = 0, while f̄T,µ,r(0) =

√
µ/2 + TµΥr(0) ≤ √µ/2 + 10µT . The second part of the lemma

follows directly from Lemma 2.v and that the quadratic chain f(x) =
√
µ

2 (x1−1)2+ 1
2

∑
i(xi−xi+1)2

has 4-Lipschitz gradient and 0-Lipschitz higher order derivatives.
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Figure 2. Illustration of the “transition region” concept used to prove Lemma 3. Each plot shows
the entries of a vector x ∈ RT+1 that satisfies xT = xT+1 = 0, with entries of x belonging to the
transition region marked in blue. Short transitions (left) incur large gradients due to the convex
quadratic term in f̄T,µ,r, while long transitions (right) incur large gradients to the non-convex Υr

terms and part 4 of Lemma 2.

5 Lower bounds for first-order methods

We now give our main result: lower bounds for the complexity of finding ε-stationary using the

class A(1)
det∪A

(1)
zr of first-order deterministic and/or zero-respecting algorithms, applied to functions

in the class
F1:p(∆, L1, ..., Lp) :=

⋂
q≤p
Fq(∆, Lq)

containing all functions f : Rd → R, d ∈ N, such that f(0)− infx f(x) ≤ ∆ and ∇qf is Lq-Lipschitz
continuous for 1 ≤ q ≤ p.

Theorem 2. There exist numerical constants c, C ∈ R+ and `q ≤ e
3q
2

log q+Cq for every q ∈ N such
that the following lower bound holds. Let p ≥ 2, p ∈ N, and let ∆, L1, L2, . . . , Lp, ε be positive.
Assume additionally that ε ≤ (Lq1/Lq)

1/(q−1) for each q ∈ {2, . . . , p}. Then

Tε
(
A(1)

det ∪ A
(1)
zr ,F1:p(∆, L1, ..., Lp)

)
≥ c ·∆ · min

q ∈{2,...,p}

{(
L1

`1

) 3
5
− 2

5(q−1)
(
Lq
`q

) 2
5(q−1)

}
ε−8/5.

Moreover, for p = 2,

Tε
(
A(1)

det ∪ A
(1)
zr ,F1:2(∆, L1, L2)

)
≥ c ·∆

(
L1

`1

) 3
7
(
L2

`2

) 2
7

ε−12/7.

We prove Theorem 2 in Section 5.2 to come, providing a brief overview of the argument here,
and then providing some discussion. In the proof, we construct the hard instance f : RT+1 → R
as f(x) = λσ2f̄T,µ,r(x/σ), where we must choose the parameters λ, σ > 0 as well as µ, r, and T to

guarantee that f is (a) hard to optimize, i.e. Tε
(
A, f

)
> T for every A ∈ A(1)

zr , and (b) meets the
smoothness and boundedness requirements of the function class.

We begin by sketching the argument for p = 2. In this case, we may take r = 1, λ ∝ L1 and
µ ∝ L2σ/λ. This choice guarantees that f has L1-Lipschitz gradient and L2-Lipschitz Hessian when
µ ≤ 1, which we later verify using the assumption ε ≤ L2

1/L2. We then use Observation 2, Lemma 3
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and Observation 1 to show that Tε
(
A, f

)
≥ T + 1 for every A ∈ A(1)

zr whenever λσµ3/4/4 ≥ ε, and

conclude that σ may scale as λ1/7ε4/7 (since µ ∝ L2σ/λ). By Lemma 4.i we have

f(0)− inf
x
f(x) ≤ λ√µσ2/2 + 10λµσ2T,

so we can take T ∝ ∆/(λµσ2) ∝ ∆/(L2σ
3) to guarantee f(0) − infx f(x) ≤ ∆, where we as-

sume without loss of generality that λ
√
µσ2 ≤ ∆ (otherwise Theorem 1 dominates our bound).

Substituting the expressions for σ, µ and λ into the expression for T gives the result for p = 2.
For p ≥ 3 we require a more careful argument, as we must simultaneously handle all orders of

smoothness. To do so, we let µ = µ̄σ2/λ and r = r̄/σ, and show how to take r̄ and µ̄ independently
of ε (depending only on L1, . . . , Lp). This allows us to obtain identical ε-dependence for all p ≥ 3.

To better understand the theorem, we give a few additional remarks.

Near-achievability of the lower bounds In the paper [9], we propose the method “convex
until proven guilty,” which augments Nesterov’s accelerated gradient method with implicit negative
curvature descent. For the function classes F1:2(∆, L1, L2) and F1:3(∆, L1, L2, L3), it achieves

rates of convergence Õ(∆L
1/2
1 L

1/4
2 ε−7/4) and Õ(∆L

1/2
1 L

1/6
3 ε−5/3), respectively. These results nearly

match our lower bounds in Theorem 2; in the case of p = 2, the gap (in terms of ε) is of order

ε−
1
28 log 1

ε , while for p ≥ 3, the gap is of order ε−
1
15 log 1

ε . See further discussion in Sec. 7.1.

Choice of function class The focus on the more restricted function classes F1:p(∆, L1, ..., Lp)—
rather than the classes Fp(∆, Lp) we study in Part I [10]—makes our lower bounds stronger, and it
is necessary for non-trivial results, since for any p ≥ 2 and ∆, Lp > 0, the class Fp(∆, Lp) contains
functions impossible for first-order methods. Indeed, the class Q (∆, L1) of ∆-bounded L1-smooth
convex quadratics is a subset of Fp(∆, Lp) for any L1 <∞ and Lp > 0. Therefore, by Theorem 1,

Tε
(
A(1)

det ∪ A
(1)
zr ,Fp(∆, Lp)

)
≥ sup

L1<∞
Tε
(
A(1)

det ∪ A
(1)
zr ,Q (∆, L1)

)
≥ sup

L1<∞

√
L1∆

4
ε−1 =∞.

We thus limit our scope to functions with smooth lower order derivatives.

Conditions on the accuracy ε In Theorem 2 we require that εq−1 ≤ Lq1/Lq for all q ∈ {2, . . . , p}.
For each q, we may rewrite this as L

1/q
q ∆ε−(1+q)/q ≤ L1∆ε−2. In other words, these conditions

ensure that qth order regularization-based methods have stronger convergence guarantees than
gradient descent [5, 10].

The case p = 1 We state our bounds in Theorem 2 for p ≥ 2. It is possible to use the construc-
tion (9) to prove a lower bound of O(∆L1ε

−2) on the time necessary for a deterministic first-order
algorithm to find an ε-stationary point for the class F1(∆, L1). As Theorem Pi.2 shows this lower
bound holds for all randomized high-order algorithms, we do not pursue this.

The case p = 3 We can slightly strengthen our lower bound in the case p = 3, making it
independent of L2 for sufficiently small ε. To achieve this we set r = 1 in the definition of Υr, take
λµ ∝ L3σ

2, and argue that that the resulting construction has O(σ)-Lipschitz continuous Hessian,
and σ tends to zero as ε → 0. For sufficiently small ε, we can then replace the minimum over

q ∈ {2, 3} in the first claim of Theorem 2 with L
2/5
1 L

1/5
3 ε−8/5.

The commentary on Theorem Pi.1 in Section Pi.4.2 is relevant also to Theorem 2. In particular,

it provides discussion of the polynomial scaling of `
1/q
q in q.
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5.1 Lower bounds based on distance to optimality

For convex optimization problems, typical convergence guarantees depend on the distance of the
initial point to the globally optimal set argminx f(x); the dependence on this distance may be
polynomial for general convex optimization problems [17, 18], while for smooth and strongly convex
problems, the convergence guarantees depend only logarithmically on it. In the non-convex case, we
can provide lower bounds that depend on the distance rather than the gap ∆ := f(x(0))− infx f(x).
To that end, we consider the class

Fdist
1:p (D,L1, ..., Lp)

functions with Lq-Lipschitz qth derivatives (for each q ∈ [p]) and all global minima x? satisfying
‖x?‖ ≤ D. We obtain the bound, analogously to our results in Section Pi.6, by “hiding” a sharp
global minimum near the origin.

To state the theorem, we require an additional piece of notation. Let Bε(∆, L1, . . . , Lp) be the

lower bound Theorem 2 provides on Tε
(
Adet ∪ A

(1)
zr ,F1:p(∆, L1, ..., Lp)

)
, so

Tε
(
Adet ∪ A

(1)
zr ,F1:p(∆, L1, ..., Lp)

)
≥ Bε(∆, L1, . . . , Lp),

where we take Bε = 1 if ε > 0 is larger than the settings Theorem 2 requires. Then by a reduction
from our lower bounds on the complexity of F1:p(∆, L1, ..., Lp), we obtain the following result.

Theorem 3. There exists a numerical constant c <∞ such that the following lower bound holds.
Let p ≥ 2, p ∈ N, and let D,L1, L2, . . . , Lp, and ε be positive. Then

Tε
(
A(1)

det ∪ A
(1)
zr ,Fdist

1:p (D,L1, ..., Lp)
)
≥ Bε

(
min
q∈[p]

{
Lq

2˜̀
q

Dq+1

}
,
L1

2
,
L2

2
, . . . ,

Lp
2

)
,

where ˜̀
q ≤ exp(cq log q + c).

We prove Theorem 3 in Appendix B.3. Theorem 3 shows that the lower bounds of Theorem 2
apply almost identically (to constant factors), except that we replace the function gap ∆ in the
lower bound with the quantity minq∈[p] LqD

q+1. As the dependence of the lower bound on ε does
not change, distance-based assumptions seem unlikely to help in the design of efficient optimization
algorithms for non-convex functions.

5.2 Proof of Theorem 2

We have five parameters with which to scale our hard function; the function f̄T,µ,r requires definition
of the dimension T ∈ N, multiplier µ ≤ 1 on the Υr terms, and scalar r ≥ 1 that trades between
higher order (r =∞) smoothness and lower order (r = 1) smoothness of Υr. We additionally scale
the function with λ > 0 and a perspective term σ > 0, defining

f(x) := λσ2f̄T,µ,r (x/σ) . (11)

We must choose these parameters to guarantee the membership

f ∈ F1:p(∆, L1, ..., Lp).

This containment requires both bounded function values and derivatives, for which we can provide
sufficient conditions. Recall the definition `p ≤ e

3
2
p log p+cp from Lemma 4 of the smoothness con-

stant of f̄T,µ,r. Then by Lemma 4.ii, to guarantee that f has Lq-Lipschitz qth order derivatives for
every q ∈ [p] it suffices to choose λ, r, σ, and µ such that

(1(q=1) + r3−qσ1−qµ)`qλ ≤ Lq for every q ∈ [p]. (12)
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For the bounded values constraint f(0)− infx f(x) ≤ ∆, by Lemma 4.i it suffices to take

T =

⌊
∆− λ√µσ2/2

10λµσ2

⌋
(13)

Thus, so long as we choose the constants µ, σ, λ, r to satisfy inequality (12), the preceding choice
of T guarantees f ∈ F1:p(∆, L1, ..., Lp).

With this membership guaranteed, we consider the choices for λ, µ, and σ such that after T
iterations of a zero respecting first-order method, we have ‖∇f(x)‖ ≥ ε. Indeed, Observations 2
and 1 imply that if x(1) = 0, x(2), . . . are the sequence of iterates produced by applying any zero-

respecting (first-order) method to f , then x
(t)
T = x

(t)
T+1 = 0 for all t ≤ T . Lemma 3 implies that

‖∇f̄T,µ,r
(
x(t)/σ

)
‖ > µ3/4/4 for any such iterate. Therefore, if we choose λ > 0, µ ≤ 1, and σ > 0

such that
λµ3/4σ ≥ 4ε, (14)

then ‖∇f
(
x(t)
)
‖ = λσ‖∇f̄T (x(t)/σ)‖ > λµ3/4σ/4 ≥ ε for all t ≤ T . We thus obtain the guarantee

Tε
(
A(1)

zr ,F1:p(∆, L1, ..., Lp)
)
≥ inf

A∈A(1)
zr

Tε
(
A, f

)
≥ T + 1 ≥

∆− λ√µσ2/2

10λµσ2
. (15)

The same bound for the class A(1)
det then follows from Proposition 1. Our strategy is now the

obvious one: we select λ > 0, 0 < µ ≤ 1, r ≥ 1, and σ > 0 to satisfy the function membership
constraints (12) and the large gradient guarantee (14). Substituting our choices into the boud (15)
will then yield the lower bound in the theorem. We begin with the general case p ≥ 2 and later
provide a tighter construction for p = 2.

General smoothness orders To simplify the derivation, we define, for any q ∈ [p]

L̄q := Lq/¯̀
q where ¯̀

q :=

{
2`1 q = 1

max
{
`q, 4

q−1 (2`1)q
}

q > 1,
(16)

where we note that ¯̀
q ≤ e

3
2
q log q+cq for some numerical constant c < ∞, as `q ≤ e

3
2
q log q+cq for a

(possibly different) numerical constant. In order to further simplify our calculations, we then define

λ = L̄1, µ̄ :=
λµ

σ2
and r̄ := σr. (17)

Substituting these definitions into the constraints (12), we see that our choice of ¯̀
1 = 2`1 implies

that the constraint (12) holds whenever

r̄3−qµ̄ ≤ L̄q for all q ∈ [p]. (18)

We choose r̄ and µ̄ to guarantee that f is appropriately smooth; in the sequel, we will choose σ
and λ so that the gradient bound condition (14) holds. In this sense, we may choose r̄ and µ̄
without consideration of ε. Taking r̄ = (L̄1/µ̄)1/2 guarantees the inequality (18) holds for q = 1.
Substituting this choice into the identical inequality for q ∈ {2, . . . , p} shows that we must have

µ̄(q−1)/2 ≤ L̄qL̄(q−3)/2
1 for each such q. Thus, the choice

µ̄ = L̄1 min
q∈{2,...,p}

(
L̄q/L̄1

)2/(q−1)
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satisfies inequality (18), and consequently, the smoothness condition (12) as well. We may therefore
write µ̄ and r̄ as

µ̄ = L̄1

(
L̄q?/L̄1

) 2
q?−1 and r̄ =

(
L̄1/L̄q?

) 1
q?−1 , where q? := argmin

q∈{2,...,p}

(
L̄q/L̄1

) 1
q−1 .

It remains to choose λ, σ, depending on ε, to guarantee our gradient lower bound condition (14)
holds, i.e. 4ε ≤ λµ3/4σ = λ1/4µ̄3/4σ5/2. We thus set

σ =
[
4L̄−1

1

(
L̄q?/L̄1

)− 3
2(q?−1) ε

]2/5

.

We can now substitute back into our definitions r = r̄/σ and µ = µ̄σ2/λ in Eq. (17) and verify
that r ≥ 1 and µ ≤ 1. For r, we have

r =
r̄

σ
=

(
L̄
q?/(q?−1)
1

4L̄
1/(q?−1)
q? ε

)2/5

=

(
¯̀
q?

4q?−1 ¯̀q?
1

) 2
5(q?−1)

(
L
q?/(q?−1)
1

L
1/(q?−1)
q? ε

)2/5

≥ 1,

where the last transition uses ¯̀
q? ≥ 4q

?−1 ¯̀q?
1 by the definition (16), and we used the assumption in

the theorem statement that ε ≤ Lq
?/(q?−1)

1 /L
1/(q?−1)
q? . Similarly, our choice of µ satisfies

µ =
µ̄σ2

λ
=

(
4q
?−1 ¯̀q?

1
¯̀
q?

) 4
5(q?−1)

(
L

1/(q?−1)
q? ε

L
q?/(q?−1)
1

)4/5

≤ 1.

We now consider two cases; λ
√
µσ2 ≤ ∆ and λ

√
µσ2 > ∆. In the first case (which holds for

sufficiently small ε), we substitute our choices of σ, λ and µ into the time lower bound (15),

T + 1 ≥
∆− λ√µσ2/2

10λµσ2

(i)

≥ ∆

20λµσ2
=

∆

20µ̄σ4
=

∆L̄
3
5
1

[(
L̄q?/L̄1

) 1
q?−1

] 2
5

20 · 48/5 · ε8/5

=
∆

20 · 48/5
· min
q ∈{2,...,p}

{(
L1/¯̀

1

) 3
5
− 2

5(q−1)
(
Lq/¯̀

q

) 2
5(q−1)

}
ε−8/5,

which is the desired bound, where in step (i) we made use of λ
√
µσ2 ≤ ∆. When λ

√
µσ2 > ∆, we

show that the above bound is in fact smaller than the convex lower bound in Theorem 1. Indeed,
substituting in our choices of λ, µ and σ, we see that λ

√
µσ2 > ∆ implies

∆ < L̄
3/2
1

(
L̄q?/L̄1

) 1
q?−1

[
4L̄−1

1

(
L̄q?/L̄1

)− 3
2(q?−1) ε

]6/5

= 4
6
5 L̄
− 1

5
1

(
L̄q?/L̄1

)− 4
5(q?−1) ε

6
5 .

Taking a square root and substituting to our lower bound gives

∆L̄
3
5
1

[(
L̄q?/L̄1

) 1
q?−1

] 2
5

20 · 48/5 · ε8/5
< (80 · ¯̀1/2

1 )−1

√
∆L1

ε
,

and therefore (recalling that Q (∆, L1) ⊂ F1:p(∆, L1, ..., Lp) and that ¯̀
1 ≥ 8), by Thm. 1 we have

Tε
(
A(1)

zr ,F1:p(∆, L1, ..., Lp)
)
≥ Tε

(
A(1)

zr ,Q (∆, L1)
)
≥
√

∆L1

4ε
≥

∆L̄
3
5
1

[(
L̄q?/L̄1

) 1
q?−1

] 2
5

20 · 48/5 · ε8/5
,

completing the proof in the general case.
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Functions with Lipschitz Hessian For p = 2, we keep the definitions (16) but replace the
particular rescaling choices (17) with

λ = L̄1 , µ =
L̄2σ

λ
and r = 1.

Using µ ≤ 1, the above parameter setting satisfies inequality (12); f has Lq-Lipschitz qth-order

derivatives for q = 1, 2. To satisfy the gradient lower bound (14), i.e. 4ε ≤ λµ3/4σ = L̄
1/4
1 L̄

3/4
2 σ7/4,

we set

σ =
[
4L̄
−1/4
1 L̄

−3/4
2 ε

]4/7
.

We can substitute into the definition µ = L̄2σ
λ to verify that µ ≤ 1:

µ =
L̄2σ

λ
=

(
42−1

(
¯̀
1

)2
`2

)4/7(
L2ε

L2
1

)4/7

≤ 1

by the definition (16) of ¯̀
p and the assumption ε ≤ L2

1/L2. As in the general case, we first assume
λ
√
µσ2 ≤ ∆, where substituting into (15) yields the desired lower bound

T + 1 ≥
∆− λ√µσ2/2

10λµσ2
≥ ∆

20λµσ2
=

∆

20L̄2σ3
=

∆L̄
3
7
1 L̄

2
7
2

20 · 412/7 · ε12/7
.

If λ
√
µσ2 ≤ ∆ does not hold, we have

∆ < L̄
1/2
1 L̄

1/2
2

[
4L̄
−1/4
1 L̄

−3/4
2 ε

] 4
7
· 5
2
< 4

10
7 L̄
− 1

7
1 L̄

− 2
7

2 ε
10
7 .

Taking a square root and substituting to our lower bound gives

∆L̄
3
7
1 L̄

2
7
2

20 · 412/7 · ε12/7
< (20 · ¯̀1/2

1 )−1

√
∆L1

ε
< Tε

(
A(1)

zr ,Q (∆, L1)
)
≤ Tε

(
A(1)

zr ,F1:2(∆, L1, L2)
)
,

due to Theorem 1, establishing the case p = 2.

6 The challenge of strengthening Theorem 2

The lower bounds in Theorem 2 leave two avenues for improvement. The first is tightening our
ε−12/7 and ε−8/5 lower bounds to match the known upper bounds of ε−7/4 and ε−5/3, for p = 2
and p = 3, respectively. The second improvement is to extend our lower bounds to randomized
algorithms, as we did for the case of full derivative information in Section Pi.5. We discuss each of
these in turn.

6.1 Tightness of lower bound construction

The core of our first-order lower bounds is Lemma 3, which establishes a lower bound of the form
‖f̄T,µ,r(x)‖ > µ3/4/4 for vectors x such that xT = xT+1 = 0 (i.e. any point that a first-order zero-
respecting method can produce after T iterations), where f̄T,µ,r is our unscaled hard instance (see
definition (9)). Here we consider a slightly more general form,

f̃T,α,µ(x) := α · Λ(x1 − 1) +
T∑
i=1

Λ(xi+1 − xi) + µ
T∑
i=1

Υ̃(xi), (19)
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where Λ : R → R and Υ̃ : R → R are C∞, and we assume T ∈ N, α > 0, and 0 < µ ≤ 1. The
chain f̄T,µ,r corresponds to the special case α =

√
µ, Λ(x) = x2/2 and Υ̃(x) = Υr(x) (defined in

Eq. (10)).
We claim that if we can show that the norm of∇f̃T,α,µ(x) is not too large for some x ∈ RT+1 with

xT = xT+1 = 0, then our lower bound cannot be improved. More concretely, suppose that for every
T , µ ≤ 1 and α ≤ 1 we could find x ∈ RT+1 such that xT = xT+1 = 0, and ‖∇f̄T,µ,r(x)‖ ≤ Cµ3/4 for
some constant C independent of T, r and µ, matching Lemma 3 to a constant. We can then trace
the scaling arguments in the proof of Theorem 2 “in reverse,” showing that any choice of T, λ, µ, σ
and r for which the function f(x) = λσ2f̃T,α,µ(x/σ) satisfies both (i) f ∈ F1:p(∆, L1, ..., Lp) and (ii)
‖∇f(x)‖ > ε for all x such that xT = xT+1 = 0, we have T ≤ c · ε−8/5 for p ≥ 3 and T ≤ c · ε−12/7

for p = 2, where c is some problem-dependent constant independent of ε.
The next lemma, whose proof we provide in Appendix B.4, shows such gradient norm upper

bound for constructions of the form (19).

Lemma 5. Let T ∈ N, 0 < α ≤ 1, µ ∈ [T−2, 1] and f̃T,α,µ be defined as in (19), with Λ and Υ̃
satisfying

Λ′(0) = Υ̃′(0) = 0 and Λ′ is 1-Lipschitz continuous and max
z∈[0,1]

|Υ̃′(z)| ≤ G,

for G > 0 independent of T, α and µ. Then there exists x ∈ RT+1 such that xT = xT+1 = 0 and∥∥∥∇f̃T,α,µ(x)
∥∥∥ < Cµ3/4,

where C ≤ 27 +
√

3G.

Let us discuss the lemma. The condition that Λ′(0) = Υ̃′(0) = 0 is essential for any zero-
chain-based proof, as otherwise f̃T,α,µ is not a first-order zero-chain (if α = 1 then we may have

Λ′(0) 6= 0; Lemma 5 holds in this case as well). The requirement that the multiplier µ ≥ 1/T 2 on Υ̃
is also benign, as in our proofs require µ & 1/

√
T � 1/T 2 (further decreasing µ weakens the lower

bound as it makes f̃T,α,µ too smooth; inspection of the scaling argument in the proof of Theorem 2
shows this rigorously). The function Λ must have Lipschitz derivatives with parameter independent
of µ, T , as otherwise f̃T,α,µ cannot be scaled to meet the smoothness requirements. Finally, the

requirement maxz∈[0,1] |Υ̃′(z)| < ∞ holds for every C∞ function. Moreover, a calculation shows it

holds with G =
√

10`3 independent of r for every Υr that satisfies Lemma 2.
Summarizing, tightening our lower bounds seems to require a construction that is not of the

form (19). This does not eliminate more general (non-convex) interactions, e.g. of the form
Λ(xi, xi+1) rather than Λ(xi+1 − xi). The proof technique of Lemma 3 should provide useful
“sanity checks” when considering alternative constructions.

6.2 A bound for randomized algorithms

In Section Pi.5 we extend our lower bound for Tε
(
Adet ∪ Azr,Fp(∆, Lp)

)
to the broader class of

randomized algorithms Arand with access to all derivatives at query point x. We do this by making
our hard function insensitive: the individual “linking” terms Ψ(xi)Φ(xi+1) are identically zero for
xi near 0. A natural question is whether the same methodology (originally proposed in [23]) can

extend Theorem 2 to the class of randomized first-order algorithms, A(1)
rand. Direct application of

that technique cannot work in our case, for a simple reason: it applies to randomized algorithms of
any order. In other words, if we modify our hard instance construction (9) to be a robust zero-chain

19



(Definition Pi.4), any lower bounds it implies hold for all algorithms in Arand, where ε−(p+1)/p rates
are achievable, so we could not provide sharper lower bounds than Theorem Pi.2.

Nevertheless, the ideas introduced in Section Pi.5 might still be of use. Specifically, consider a
modification of the construction (9) where Υr(x) is identically zero for sufficiently small x, say |x| <
0.05, while still satisfying Lemma 2, thus making the non-convex component of f̄T,µ,r insensitive. As
explained above, also making the convex quadratic component of f̄T,µ,r insensitive (as Woodworth
and Srebro [23] do) is unworkable in our setting, as it results in a robust zero-chain equally hard for
all high-order algorithms. Instead, we may keep the quadratic component unchanged—and hence
sensitive—and try to carry out the proof of Lemma Pi.4. Doing so, we see that the inductive
argument allows us to ignore the insensitive non-convex component of f̄T,µ,r, leaving us to contend
only with the (randomly rotated) quadratic chain. Thus, the difficulty here appears closely related
to proving a lower bound for randomized first-order methods applied for optimization of convex
quadratics. Such lower bounds remain elusive, and we believe finding them is an important open
problem.

7 Concluding remarks

Here we situate our work in the literature, discuss its implications, and provide a few possible
extensions.

7.1 Commentary on our results

In conjunction with known upper bounds, our lower bounds characterize the optimal rates for
finding stationary points. Our lower bounds are sharp to within constant factors for algorithms
with full derivative information [10], and (perhaps) slightly loose for first-order algorithms. These
characterizations yield a few insights.

First-order methods vs. high-order methods For the class F1(∆, L1) of L1-smooth func-
tions, first-order methods—specifically gradient descent—attain the optimal rate L1∆ε−2; no higher-
order randomized method can attain improved performance over the entire function class. The
intuition here is that F1(∆, L1) contains functions whose Hessian and higher order derivatives may
vary arbitrarily sharply, and providing no useful information for optimization.

When higher-order derivatives are also Lipschitz continuous the picture changes fundamentally:
there is a strict separation between (deterministic) second-order and first-order methods. In partic-
ular, cubic regularization of Newton’s method [20] achieves ε dependence ε−3/2 for functions with
Lipschitz Hessian, while no deterministic first-order method can have better time complexity than
ε−8/5, regardless of how many derivatives are Lipschitz. Note that when the Hessian is Lipschitz,
our definition of first-order algorithms allows for algorithms that rely on Hessian-vector products,
as they can be estimated to arbitrary accuracy in two gradient evaluations.

The effect of high-order smoothness on first-order methods For F1:2(∆, L1, L2), the class
of functions with Lipschitz gradient and Hessian, our lower bound scales as ε−12/7, while for the
class F1:3(∆, L1, L2, L3) of functions with Lipschitz third order derivative our “convex until proven
guilty” method [9] achieves the rate ε−5/3 log 1

ε . As 5
3 <

12
7 , this proves a separation between the

optimal rate for first-order methods with second- and third-order smoothness.
In contrast, orders of smoothness beyond the third offer limited room for improvement in ε

dependence; the lower bound ε−8/5 holds for all function classes F1:p(∆, L1, ..., Lp) with p ≥ 3,
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while the method [9] does not enjoy improved guarantees with Lipschitz fourth-order derivatives.
The “robustness” of the lower bound to higher-order smoothness stems from the fact that our
hard instance f̄T,µ,r becomes a quartic polynomial in the limit r → ∞, and we choose r inversely
proportional to ε. As we discuss in [9, Lemma 4], our guarantee ε−5/3 log 1

ε cannot improve using
fourth-order smoothness because of symmetries in the fourth-order Taylor expansion. Quartic
polynomials thus appear to play a central role in the complexity of first-order methods for smooth
optimization.

Convex vs. non-convex functions Our results show that convexity makes finding station-
ary points fundamentally—and significantly—easier. For first-order methods and functions with
bounded initial sub-optimality, the rate ε−1 log 1

ε is achievable for first-order smooth convex func-

tions, while the lower bound ε−8/5 holds for non-convex functions with arbitrarily high-order
smoothness. For methods using higher-order derivatives, our lower bounds [10] for finding sta-
tionary points of non-convex functions are ε−(p+1)/p → ε−1 as the order p of smoothness grows.
However, similar to Appendix A.1, the results [4, 16] can show that for convex functions with
Lipschitz Hessian, a second-order method achieves the strictly better rate ε−6/7 log 1

ε .
Another striking difference between convex and non-convex functions is the effect of replacing

the bound on the initial function value (i.e. f(x(0)) − infx f(x) ≤ ∆) with a bound on the initial
distance to the global minimizer x? (i.e.

∥∥x(0) − x?
∥∥ ≤ D). For non-convex function classes, we

show lower bounds with the same ε dependence regardless of which type of bound is used. In
contrast, for convex function the optimal rates scale as

√
∆ε−1 and

√
Dε−1/2, again a gap in ε

dependence. The rates are not directly comparable; one can construct families of functions where
D grows with the dimension while ∆ remains constant.

Returning to ∆-value-bounded function classes, we see one more large difference between the
convex and non-convex case; convex rates scale as

√
∆ while all the non-convex rates scale linearly

with ∆. This arises from fundamental differences in the convergence “mechanism” for convex
and non-convex optimization. The analysis of non-convex optimization schemes typically [18, 20,
11, 19, 9] revolves around a progress argument, where one shows that, as long as ‖∇f(x(t))‖ >
ε, the guarantee f(x(t+1)) ≤ f(x(t)) − pε holds for some quantity pε (e.g. for gradient descent
pε = ε2/(2L1)). The number of iterations to find an ε-stationary point xs is therefore at most
[f(x(0)) − f(xs)]/pε ≤ ∆/pε, which scales linearly in ∆. By our lower bounds, such progress
arguments are, in a sense, optimal. Conversely, in convex optimization we may control either
the gap f(x(t)) − f(x?) or the distance

∥∥x(t) − x?
∥∥, and this interplay (see Appendix A.1) allows

stronger arguments than those based purely on function progress.

7.2 Further research

Closing the gap in first-order bounds There exists a gap in polynomial ε dependence be-
tween our lower bounds (Theorem 2) and the best known upper bounds [9] for first-order methods
with higher-order smoothness. We do not believe the upper bounds of [9] are improvable by dif-
ferent analysis or by any algorithmic change that maintains the general structure of alternating
between accelerated gradient descent and negative curvature exploitation. In conjunction with our
arguments in Section 6.1 about the structure of our lower bounds, resolution of the optimal rate
will likely provide either a method with a substantially different approach to accelerating gradient
descent in the smooth non-convex setting or a new lower bound construction.

Finite sum and stochastic problems Smooth, non-convex, finite-sum and stochastic opti-
mization problems are important, arising (for example) in the training of neural networks. This
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motivates the design and analysis of efficient methods for finding stationary points in such prob-
lems, and researchers have successfully developed variance reduction and acceleration techniques
for these settings [21, 3, 15, 2]. However, no corresponding lower bounds are available. Woodworth
and Srebro [23], show how to establish lower bounds for convex finite sum problems. Combined
with the developments in our paper, we believe their techniques should extend to finding stationary
points of non-convex problems. An important conclusion of [23] is that randomized selection of
the component function is crucial to efficient convergence: in contrast to our results, they show a
separation between deterministic and randomized finite sum complexity.

Second-order stationary points Approximate stationary points are not always close to local
minima, and so it is interesting to consider stronger convergence guarantees. Second-order sta-
tionarity (also known as the second-order necessary condition for local optimality) is the most
popular example; for a function f , a point x is (ε1, ε2)-second-order stationary if ‖∇f(x)‖ ≤ ε1
and ∇2f(x) � −ε2I. Efficient first-order methods for finding second-order stationary points ex-
ist [1, 8, 14]. Moreover, it is possible to generically transform methods for finding ε-stationary
points into methods that find (ε, O(εs))-second-order stationary points, for some 0 < s < 1, with-
out changing the ε dependence of the complexity [9, Appendix C], but such modifications introduce
dependence logarithmic in the problem dimension d.

Clearly, lower bounds for finding ε1-stationary points also apply to finding (ε1, ε2)-second-order
stationary points. However, attaining second-order stationarity with first-order methods is funda-
mentally more difficult than attaining only stationarity. There are no dimension-free guarantees:
the results of Simchowitz et al. [22] imply Ω(log d) dimension dependence for all randomized first-
order algorithms that escape saddle points. Moreover, for deterministic first-order algorithms it is
easy to construct a resisting oracle that forces Ω(d) dimension dependence (consider f(Rx) with
f(x) = −x2

1 and adversarially chosen rotation R), implying strong separation between deterministic
and randomized first-order methods for finding second-order stationary points. It will be interesting
to investigate such issues further.
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A Additional results for convex functions

A.1 An upper bound for finding stationary points of value-bounded functions

Here we give a first-order method that finds ε-stationary points of a function f ∈ K1 (∆, L1) in
O(
√
L1∆ε−1 log L1∆

ε2
) iterations. The method consists of Nesterov’s accelerated gradient descent

(AGD) applied on the sum of f and a standard quadratic regularizer.
Our starting point is AGD for strongly convex functions; a function f is σ-strongly convex if

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
σ

2
‖y − x‖2 ,

for every x, y in the domain of f . Let AGDσ,L1 ∈ A
(1)
zr ∩ A(1)

det be the accelerated gradient scheme
developed in [18, §2.2.1] for σ-strongly convex functions with L1-Lipschitz gradient, initialized at
x(1) = 0 (the exact step size scheme is not important). Adapting [18, Thm. 2.2.2] to our notation,
for any σ-strongly-convex f with L1-Lipschitz gradient and (unique) global minimizer x?f , the

iterates {x(t)}t∈N = AGDσ,L1 [f ] of AGD satisfy

f(x(t))− f(x?f ) ≤ (1−
√
σ/L1)t−1L1

∥∥x?f∥∥2
and f(x(t)) ≤ f(0) for every t ∈ N. (20)

Moreover, for any such f we have ‖∇f(x)‖2 ≤ 2L1(f(x)− f(x?f )) [6, Eq. (9.14)], and consequently

‖∇f(x(t))‖ ≤ (1−
√
σ/L1)(t−1)/2L1

∥∥x?f∥∥ for every t ∈ N.

Using our complexity notation, we may rewrite this as

Tε
(
AGDσ,L1 , f

)
≤ 1 + 2

√
L1

σ
log+

(
L1‖x?f‖

ε

)
, (21)

with log+(x) := max{0, log x}.
Now suppose that f is convex with L1-Lipschitz gradient but not necessarily strongly-convex.

We can add strong convexity to f by means of a proximal term; for any σ > 0, the function

fσ(x) := f(x) +
σ

2
‖x‖2

is σ-strongly-convex with (L1 + σ)-Lipschitz gradient. With this in mind, we define a proximal
version of AGD as follows,

PAGDσ,L1 [f ] := AGDσ,L1+σ[fσ] = AGDσ,L1+σ

[
f(·) +

σ

2
‖·‖2

]
.

With a careful choice of σ, PAGDσ,L1 achieves the desired upper bound.

Proposition 2. Let ∆, L1 and ε be positive, and let σ = ε2

3∆ . Then, algorithm PAGDσ,L1 ∈ A
(1)
det

satisfies

Tε
(
A(1)

det,K1 (∆, L1)
)
≤ sup

f∈K1(∆,L1)
Tε
(
PAGDσ,L1 , f

)
≤ 1 + 5

√
L1∆

ε
log+

(
25L1∆

ε2

)
.

Proof. For any f ∈ K1 (∆, L1), recall that fσ(x) := f(x) + σ
2 ‖x‖

2 and let

{x(t)}t∈N = PAGDσ,L1 [f ] = AGDσ,L1+σ[fσ]
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be the sequence of iterates PAGDσ,L1 produces on f . Then by guarantee (21), we have∥∥∥∇fσ(x(T ))
∥∥∥ ≤ ε/6 (22)

for some T such that

T ≤ 1 + 2

√
1 +

L1

σ
log+

(
6(L1 + σ)‖x?fσ‖

ε

)
. (23)

For any point y such that fσ(y) = f(y) + σ
2 ‖y‖

2 ≤ fσ(0) = f(0), we have

‖y‖2 ≤ 2(f(0)− f(y))

σ
≤ 2(f(0)− infx f(x))

σ
≤ 2∆

σ
.

Clearly, fσ(x?fσ) ≤ fσ(0) and by guarantee (20) we also have fσ(x(T )) ≤ fσ(0). Consequently,

max
{
‖x(T )‖, ‖x?fσ‖

}
≤
√

2∆

σ
, (24)

and so

‖∇f(x(T ))‖ = ‖∇fσ(x(T ))− σ · x(T )‖ ≤ ‖∇fσ(x(T ))‖+ σ‖x(T )‖
(i)

≤ ε

6
+
√

2σ∆
(ii)

≤ ε.

In inequality (i) we substituted bounds (22) and (24), and in (ii) we used σ = ε2/(3∆). We conclude
that Tε

(
PAGDσ,L1 , f

)
≤ T , and substituting (24) and the definition of σ into (23) we have

T ≤ 1 + 2

√
1 +

3L1∆

ε2
log+

(
6

√
2

3
+

6
√

6L1∆

ε2

)
.

Without loss of generality, we may assume 2L1∆
ε2
≥ 1, as otherwise Tε

(
PAGDσ,L1 , f

)
= 1. We thus

simplify the expression slightly to obtain the proposition.

A.2 The impossibility of approximate optimality without a bounded domain

Lemma 6. Let L1,∆ > 0 and ε < ∆. For any first-order algorithm A ∈ A(1)
det∪A

(1)
zr and any T ∈ N,

there exists a function f ∈ Q (∆, L1) such that the iterates {x(t)}t∈N = A[f ] satisfy

inf
t∈N

{
t | f(x(t)) ≤ inf

x
f(x) + ε

}
> T.

Proof. By Proposition 1 it suffices to consider A ∈ A(1)
zr (see additional discussion of the generality

of Proposition 1 in Section Pi.3.3). Consider the function f : RT → R,

f(x) = λ

[
(σ − βx1)2 +

T−1∑
i=1

(xi − βxi+1)2

]
, (25)

where 0 < β < 1, and we take

λ :=
L1

2(1 + 2β + β2)
and σ :=

√
∆

λ
.
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Since f(x) is of the form λ ‖Ax− b‖2 where ‖A‖op ≤ 1+β, we have
∥∥∇2f(x)

∥∥
op
≤ 2λ ‖A‖2op for every

x ∈ RT and therefore f has 2λ(1+2β+β2)-Lipschitz gradient. Additionally, f satisfies infx f(x) = 0
and f(0) = λσ2, ans so the above choices of λ and σ guarantee that f ∈ Q (∆, L1). Moreover, f is

a a first-order zero-chain (Definition 3), and thus for any A ∈ A(1)
zr and {x(t)}t∈N = A[f ], we have

x
(t)
T = 0 for t ≤ T (Observation 1). Therefore, it suffices to show that f(x) > infy f(y)+ ε whenever
xT = 0.

We make the following inductive claim: if f(x) ≤ infy f(y) + ε = ε, then

∣∣xi − σβ−i∣∣ ≤ i∑
j=1

β−j
√
ε

λ
<

β−i

1− β

√
ε

λ
(26)

for all i ≤ T . Indeed, each term in the sum (25) defining f is non-negative, so for the base case of
the induction i = 1, we have λ(σ − βx1)2 ≤ ε, or

∣∣x1 − σβ−1
∣∣ ≤ β−1

√
ε/λ. For i < T , assuming

that xi satisfies the bound (26), we have that λ(xi − βxi+1)2 ≤ ε, which implies

∣∣∣xi+1 − σβ−(i+1)
∣∣∣ ≤ ∣∣xi+1 − β−1xi

∣∣+ β−1
∣∣xi − σβ−i∣∣ ≤ β−1

√
ε

λ
+

i∑
j=1

β−(j+1)

√
ε

λ
=

i+1∑
j=1

β−j
√
ε

λ
,

which is the desired claim (26) for xi+1.
The bound (26) implies xi 6= 0 for all i ≤ T whenever σ ≥ (1−β)−1

√
ε/λ. Therefore, we choose

β to satisfy σ = (1− β)−1
√
ε/λ, that is

β := 1−
√

ε

λσ2
= 1−

√
ε

∆
,

for which 0 < β < 1 since we assume ε < ∆. Thus, we guarantee that when xT = 0 we must have
f(x) > infy f(y) + ε, giving the result.

B Technical results

B.1 Proof of Lemma 2

Lemma 2. The function Υr satisfies the following.

i. We have Υ′r(0) = Υ′r(1) = 0

ii. For all x ≤ 1, Υ′r(x) ≤ 0, and for all x ≥ 1, Υ′r(x) ≥ 0.

iii. For all x ∈ R we have Υr(x) ≥ Υr(1) = 0, and for all r, Υr(0) ≤ 10.

iv. For every r ≥ 1, Υ′r(x) < −1 for every x ∈ (−∞,−0.1] ∪ [0.1, 0.9]

v. For every r ≥ 1 and every p ≥ 1, the p-th order derivatives of Υr are r3−p`p-Lipschitz contin-
uous, where `p ≤ exp(3

2p log p+ cp) for a numerical constant c <∞.

Proof. Parts i and ii are evident from inspection, as

Υ′r(x) = 120
x2(x− 1)

1 + (x/r)2
.
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To see the part iii, note that Υr is non-increasing for every x < 1 and non-decreasing for every
x > 1 and therefore x = 1 is its global minimum. That Υr(1) = 0 is immediate from its definition,

and, for every r, Υr(0) = 120
∫ 1

0
t2(1−t)

1+(t/r)2
dt ≤ 120

∫ 1
0 t

2(1 − t)dt = 10. To see part iv, note that

|Υ′r(x)| ≥ |Υ′1(x)| for every r ≥ 1, and a calculation shows |Υ′1(x)| > 1 for x ∈ (−∞,−0.1]∪[0.1, 0.9]
(see Figure 1).

To see the fifth part of the claim, note that

Υ′r(x) = 120r2(x− 1)

(
1− 1

1 + (x/r)2

)
= 120

[
r2(x− 1)− r3ϕ1(x/r) + r2ϕ2(x/r)

]
,

where the functions ϕ1 and ϕ2 are ϕ1(ξ) = ξ/(1 + ξ2) and ϕ2(ξ) = 1/(1 + ξ2). We thus bound the
derivatives of ϕ1 and ϕ2. We begin with ϕ2, which we can write as the composition ϕ2(x) = (h◦g)(x)
where h(x) = 1

x and g(x) = 1+x2. Let Pk,2 denote the collection of all partitions of {1, . . . , k} where
each element of the partition has at most 2 indices. That is, if P ∈ Pk,2, then P = (S1, . . . , Sl) for
some l ≤ k, the Si are disjoint, 1 ≤ |Si| ≤ 2, and ∪iSi = [k]. The cardinality |Pk,2| is the number of
matchings in the complete graph on k vertices, or the kth telephone number, which has bound [12,
Lemma 2]

|Pk,2| ≤ exp

(
k

2
log k + k log 2

)
.

We may then apply Faà di Bruno’s formula for the chain rule to obtain

ϕ
(k)
2 (x) =

∑
P∈Pk

h(|P |)(g(x))
∏
S∈P

g(|S|)(x) =
∑

P∈Pk,2

(−1)|P |
(|P | − 1)!

(1 + x2)|P |
(2x)C1(P )2C2(P ),

where Ci(P ) denotes the number of sets in P with precisely i elements. Of course, we have
|x|C1(P )/(1 + x2)|P | ≤ 1, and thus

|ϕ(k)
2 (x)| ≤

∑
P∈Pk,2

(|P | − 1)!2|P | ≤ |Pk,2| · (k − 1)! · 2k ≤ e
3k
2

log k+2k log 2.

The proof of the upper bound on ϕ
(k)
1 (x) is similar (2ϕ1(x) = d

dx [(ĥ ◦ g)(x)] with ĥ(x) = log x and
g as defined above), so for every r ≥ 1 and p ≥ 1, the p+ 1-th derivative of Υr has the bound

|Υ(p+1)
r (x)| ≤ 120

[
r21(p=1) + r3−p|ϕ(p)

1 (x/r)|+ r2−p|ϕ(p)
2 (x/r)|

]
≤ 120r3−pe

3
2

log p+cp,

where c <∞ is a numerical constant.

B.2 Proof of Lemma 3

Lemma 3. Let r ≥ 1 and µ ≤ 1. For any x ∈ RT+1 such that xT = xT+1 = 0,∥∥∇f̄T,µ,r(x)
∥∥ > µ3/4/4.

Proof. Throughout the proof, we fix x ∈ RT+1 such that xT = xT+1 = 0; for convenience in
notation, we define x0 := 1. Our strategy is to carefully pick two indices i1 ∈ {0, . . . , T − 1} and

i2 ∈ {i1 + 1, . . . , T}, such that
∥∥∇f̄T,µ,r(x)

∥∥2 ≥
∑i2

i=i1+1

∣∣∇if̄T,µ,r(x)
∣∣2 > (µ3/4/4)2. We call the set

of indices from i1 + 1 to i2 the transition region, and construct it as follows.

Let i1 ≥ 0 be the largest i such that xi > 0.9,
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Figure 3. The transition region (27) in the proof of Lemma 3. Each plot shows the entries of a
vector x ∈ RT+1 that satisfies xT = xT+1 = 0. The entries of x belonging to the transition region
Itrans are blue.

so that xj ≤ 0.9 for every j > i. Note that i1 = 0 when xi ≤ 0.9 for every i ∈ [T + 1]. This is a
somewhat special case due to the coefficient

√
µ ≤ 1 of the first “link” in the quadratic chain term

in (9). To handle it cleanly we define

α :=

{
1 i1 > 0
√
µ i1 = 0.

Continuing with construction of the transition region, we make the following definition.

Let i′2 ≤ T be the smallest j such that j > i1 and xj < 0.1,

and let m′ = i′2−i1, so m′ ≥ 1. Roughly, our transition region consists of the m′ indices i1+1, . . . , i′2,
but for technical reasons we attach to it the following decreasing ‘tail’.

Let i2 be the smallest k such that k ≥ i′2 and xk+1 ≥ xk − 0.2
m′−1+1/α1(xk>−0.1).

With these definitions, i2 is well-defined and 0 ≤ i1 < i2 ≤ T , since xT+1 − xT = 0. We denote the
transition region and associated length by

Itrans := {i1 + 1, . . . , i2} and m := i2 − i1 ≥ 1. (27)

We illustrate our definition of the transition region in Figure 3.
Let us describe the transition region. In the “head” of the region, we have 0.1 ≤ xi ≤ 0.9 for

every i ∈ {i1 + 1, . . . , i′2 − 1}; a total of m′−1 indices. The “tail” of the transition region is strictly
decreasing, xi2 < xi2−1 < · · · < xi′2 . Moreover, for any j ∈ {i′2 + 1, . . . i2 − 1} such that xj > −0.1,
the decrease is rapid; xj < xj−1 − 0.2/(m′ − 1 + 1/α). This descriptions leads us to the following
technical properties.

Lemma 7. Let the transition region Itrans be defined as above (27). Then

i. xi1 > 0.9 > 0.1 > xi2 and −xi2 +
(
m− 1 + α−1

)
(xi2+1 − xi2) > −0.3.

ii. Υ′r (xi) ≤ 0 for every i ∈ Itrans, and Υ′r (xi) < −1 for at least
(
m− α−1

)
/2 indices in Itrans.
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We defer the proof of the lemma to the end of this section, continuing the proof assuming it.
We now lower bound ‖∇f̄T,µ,r(x)‖. For notational convenience, define gi = µΥ′r (xi), and

recalling that xT = xT+1 = 0, we see that the norm of the gradient of f̄T,µ,r is

∥∥∇f̄T,µ,r (x)
∥∥2

= ((1 +
√
µ)x1 −

√
µ− x2 + g1)2 +

T∑
i=1

(2xi − xi−1 − xi+1 + gi)
2

≥ ((1 + α)xi1+1 − αxi1 − xi1+2 + gi1+1)2 +

i2∑
i=i1+2

(2xi − xi−1 − xi+1 + gi)
2 , (28)

where we made use of the notation α := 1 if i1 > 0 and α :=
√
µ if i1 = 0. We obtain a lower

bound for the final sum of m squares (28) by fixing xi1 , xi2 , and gi1+1, . . . , gi2 , then minimizing the
quadratic form explicitly over the m− 1 variables xi1+1, . . . , xi2−1. We obtain

∥∥∇f̄T,µ,r (x)
∥∥2 ≥ inf

v∈Rm−1

{
((1 + α)v1 − αxi1 − v2 + gi1+1)2 +

m−2∑
j=2

(2vj − vj−1 − vj+1 + gi1+j)
2

+ (2vm−1 − vm−2 − xi2 + gi2−1)2 + (2xi2 − vm − xi2+1 + gi2)2
}

= inf
v∈Rm−1

‖Av − b‖2 = b>
(
I −A

(
A>A

)−1
A>
)
b =

(
z>b

)2
,

where the matrix A and vector b have definitions

A =



1 + α −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

−1


∈ Rm×(m−1) and b =



αxi1 − gi1+1

−gi1+2
...

−gi2−2

xi2 − gi2−1

−2xi2 + xi2+1 − gi2


∈ Rm,

and z ∈ Rm is a unit-norm solution to A>z = 0. The vector z ∈ Rm with

zj =
j − 1 + 1

α√∑m
i=1(i− 1 + 1

α)2

is such a solution. Thus∥∥∇f̄T,µ,r (x)
∥∥2

≥

(
xi1 −

∑m
j=1

(
j − 1 + 1

α

)
· gi1+j +

(
m− 2 + 1

α

)
· xi2 +

(
m− 1 + 1

α

)
(−2xi2 + xi2+1)

)2

∑m
i=1(i− 1 + 1

α)2

=
1∑m

i=1(i− 1 + 1
α)2

(
xi1 − xi2 +

(
m− 1 +

1

α

)
(xi2+1 − xi2)−

m∑
j=1

(
j − 1 +

1

α

)
· gi1+j

)2

. (29)

We now bring to bear the properties of the transition region Lemma 7 supplies. By Lemma 7.i,

xi1 − xi2 + (m− 1 + α−1) (xi2+1 − xi2) ≥ 0.9− 0.3 =
3

5
, (30)
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and by Lemma 7.ii, using 1 ≤ α−1 ≤ 1/
√
µ,

−
m∑
j=1

(j − 1 + α−1)gi1+j ≥ µ
(m−α−1)/2∑

j=1

(j − 1 + α−1) ≥ µ

8

[
m2 − 1

α2

]
+

≥ 1

8

[
µm2 − 1

]
+
. (31)

Substituting
∑m

i=1

(
i− 1 + α−1

)2 ≤ 1
2m
(
m+ 1/

√
µ
) (
m+ 2/

√
µ
)

and the bounds (30) and (31)
into the gradient lower bound (29), we have that

∥∥∇f̄T,µ,r (x)
∥∥ ≥ µ3/4 · ζ(m

√
µ) where ζ(t) :=

√
2

t(t+ 1)(t+ 2)

(
3

5
+

1

8

[
t2 − 1

]
+

)
.

A quick computation reveals that inft>0 ζ(t) ≈ 0.28 > 1/4, which gives the result.

Proof of Lemma 7. We have by definition that xi1 > 0.9 and xi2 ≤ xi′2 < 0.1. To see that

−xi2 +
(
m− 1 + α−1

)
(xi2+1 − xi2) ≥ −0.3

holds, consider the two cases that xi2 ≤ −0.1 or xi2 > −0.1. In the first case that xi2 ≤ −0.1, by
definition xi2+1 ≥ xi2 so −xi2 +

(
m− 1 + α−1

)
(xi2+1 − xi2) > 0.1 > −0.3. The second case that

xi2 > −0.1 is a bit more subtle. By definition of the sequence xi2 , . . . , xi′2 , we have

− 0.1 < xi2 < xi2−1 −
0.2

m′ − 1 + 1
α

< · · · ≤ xi′2 −
0.2

m′ − 1 + 1
α

(i2 − i′2) < 0.1− 0.2
m−m′

m′ − 1 + 1
α

. (32)

Combining this bound on xi2 and the inequality xi2+1 ≥ xi2 − 0.2
m′−1+1/α due to the construction of

i2, we obtain

−xi2 +
(
m− 1 + α−1

)
(xi2+1 − xi2) > −0.1 + 0.2

m−m′

m′ − 1 + 1
α

− 0.2
m− 1 + 1

α

m′ − 1 + 1
α

= −0.3.

We note for the proof of property ii that the chain of inequalities (32) is possible only for m ≤
2m′ − 1 + 1/α, which implies there are at most m′ − 1 + 1/α indices i ∈ Itrans such that |xi| < 0.1.

The first part of property ii follows from Lemma 2.ii, since xi ≤ 0.9 ≤ 1 for every i ∈ Itrans. To
see that the second part of the property holds, let N be the number of indices in i ∈ Itrans for which
Υ′r (xi) < −1. By Lemma 2.iv and the fact that 0.1 ≤ xi ≤ 0.9 for every i ∈ {i1 + 1, . . . , i′2 − 1},
N ≥ m′−1. Moreover, since there can be at most m′−1+1/α indices i ∈ Itrans for which |xi| < 0.1,
N ≥ m− (m′ − 1 + 1/α). Averaging the two lower bounds gives N ≥ (m− 1/α) /2.

B.3 Proof of Theorem 3

Theorem 3. There exists a numerical constant c <∞ such that the following lower bound holds.
Let p ≥ 2, p ∈ N, and let D,L1, L2, . . . , Lp, and ε be positive. Then

Tε
(
A(1)

det ∪ A
(1)
zr ,Fdist

1:p (D,L1, ..., Lp)
)
≥ Bε

(
min
q∈[p]

{
Lq

2˜̀
q

Dq+1

}
,
L1

2
,
L2

2
, . . . ,

Lp
2

)
,

where ˜̀
q ≤ exp(cq log q + c).

31



Proof. The proof builds off of those of Theorems 2 and Pi.3. We begin by recalling the following
bump function construction

h̄T (x) := Ψ

(
1− 25

2

∥∥∥x− 4

5
e(T )

∥∥∥2
)

where Ψ(t) := e · exp

(
− 1

[2t− 1]2+

)
. (33)

Adding a scaled version of −h̄T to our hard instance construction allows us to “plant” a global
minimum that is both close to the origin and essentially invisible to zero-respecting method. For
convenience, we restate Lemma Pi.12,

Lemma 8. The function h̄T satisfies the following.

i. For all x ∈ RT we have h̄T (x) ∈ [0, 1], and h̄T (0.8e(T )) = 1.

ii. On the set {x ∈ Rd | xT ≤ 3
5} ∪ {x | ‖x‖ ≥ 1}, we have h̄T (x) = 0.

iii. For every p ≥ 1, the pth order derivative of h̄T is ˜̀
p-Lipschitz continuous, where ˜̀

p ≤ ecp log p+c

for a numerical constant c <∞.

With this lemma in place, we follow the broad outline of the proof of Theorem 2, with modifi-
cations to make sure the norm of the minimizers of f is small. Indeed, letting λ, σ > 0, we define
our scaled hard instance f : RT+2 → R by

f(x) = λσ2f̄T,µ,r (x1/σ, . . . , xT+1/σ)− λ̃h̄T+2 (x/D) , (34)

that is, the hard instance we construct in Theorem 2 minus a scaled bump function (33). For
every p ∈ N, we set the parameters λ, σ, µ and r as in the proof of Theorem 2, so that we satisfy
inequality (12) except we replace Lq with Lq/2 for every q ∈ [p] (including in the definitions of
λ, σ, µ). Thus, as in inequality (12), for each q ∈ N the function f0(x) := λσ2f̄T,µ,r (x/σ) has Lq/2-
Lipschitz qth order derivative and satisfies ‖∇f0(x)‖ > ε for all x ∈ RT+1 with xT = xT+1 = 0. By
Lemma 8.iii, setting

λ̃ = min
q∈[p]

1

2˜̀
q

LqD
q+1 (35)

guarantees that the function x 7→ −λ̃ · h̄T+2(x/D) also has Lq/2-Lipschitz qth order derivatives, so
that overall, for each q ∈ [p] the function f defined in Eq. (34) has Lq-Lipschitz qth order derivative.

We note that by Lemma 8.ii, h̄T+2(x) is identically 0 at a neighborhood of any x with xT+2 = 0,

which immediate implies that h̄T+2 and f are zero-chains. Therefore for any A ∈ A(1)
zr producing

iterates x(1) = 0, x(2), x(3), . . . when operating on f , we have x
(t)
T = x

(t)
T+1 = x

(t)
T+2 = 0 for any t ≤ T .

Thus, by our choices of λ, σ, µ and r,
∥∥∇f(x(t))

∥∥ =
∥∥∇f0(x(t))

∥∥ > ε for every t ≤ T , and so

Tε
(
A(1)

zr ,Fdist
1:p (D,L1, ..., Lp)

)
≥ inf

A∈A(1)
zr

Tε
(
A, f

)
≥ T + 1.

To establish that f ∈ Fdist
1:p (D,L1, ..., Lp), it remains to show that every global minimizer of f

has norm at most D. Let x? denote a global minimizer of f , and temporarily assume that

f
(

0.8D · e(T+2)
)
< 0, (36)

Therefore, f(x?) < f
(
0.8D · e(T+2)

)
< 0 and h̄T+2(x?/D) 6= 0, as otherwise we have the con-

tradiction f(x?) = λσ2f̄T,µ,r(x
?/σ) ≥ 0. By the definition (33), h̄T+2(x?/D) 6= 0 implies that
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1− 25
2

∥∥x?/D − 0.8e(T+2)
∥∥2 ≥ 0.5, and therefore ‖x?‖ ≤ D. To verify the assumed inequality (36),

we use Lemma 8.i to obtain

f
(

0.8D · e(T+2)
)

= λσ2 · f̄T,µ,r (0)− λ̃ · h̄T+2

(
0.8 · e(T+2)

)
=
λ
√
µσ2

2
+ 10λσ2µT − λ̃.

Therefore, if we set

T =

⌊
λ̃− λ√µσ2/2

10λµσ2

⌋
(37)

then inequality (36) holds and ‖x?‖ ≤ D, and so f ∈ Fdist
1:p (D,L1, ..., Lp). Comparing the set-

ting (37) of T above to the setting (13) of T in the proof of Theorem 2, we see they are identical
except that we replace the term ∆ in (13) with λ̃ := minq∈[p](2˜̀

q)
−1LqD

q+1. Thus, mimicking the
proof of Theorem 2 after the step (13), mutatis mutandis, yields the result.

B.4 Proof of Lemma 5

Lemma 5. Let T ∈ N, 0 < α ≤ 1, µ ∈ [T−2, 1] and f̃T,α,µ be defined as in (19), with Λ and Υ̃
satisfying

Λ′(0) = Υ̃′(0) = 0 and Λ′ is 1-Lipschitz continuous and max
z∈[0,1]

|Υ̃′(z)| ≤ G,

for G > 0 independent of T, α and µ. Then there exists x ∈ RT+1 such that xT = xT+1 = 0 and∥∥∥∇f̃T,α,µ(x)
∥∥∥ < Cµ3/4,

where C ≤ 27 +
√

3G.

Proof. We construct x as follows. We let x1 = 1, and for n > 1 let (with x0 := 1),

xn = xn−1 − (xn−2 − xn−1)− δn−1 = 1−
n−1∑
i=1

i∑
j=1

δi ,

where we take

δn =
1

m(m+ 1)


1 n ≤ m
0 n = m+ 1 or n > 2m+ 1

−1 m+ 1 < n ≤ 2m+ 1

for some m ∈ N which we will later determine. The elements of ∇f̃T,α,µ are given by

∇nf̃T,α,µ(x) = Λ′(xn − xn−1)− Λ′(xn+1 − xn) + µΥ̃′(xn),

where for n = 1 we used x1 = 1 and Λ′(0) = 0 to write α · Λ′(x1 − 1) = 0 = Λ′(x1 − 1). Since Λ′ is
1-Lipschitz, we have∣∣Λ′(xn − xn−1)− Λ′(xn+1 − xn)

∣∣ ≤ |(xn − xn−1)− (xn+1 − xn)| = |δn| .

Moreover, one can readily verify that xn ∈ [0, 1] for every n and that xn = 0 for every n > 2m+ 1.

Therefore, using using Υ̃′(0) = 0 and maxz∈[0,1] |Υ̃′(z)| ≤ G we have that
∣∣∣Υ̃′(xn)

∣∣∣ ≤ G · 1(n≤2m+1),

which gives the overall bound∣∣∣∇nf̃T,α,µ(x)
∣∣∣ ≤ |δn|+ µ

∣∣∣Υ̃(xn)
∣∣∣ ≤ ( 1

m2
+Gµ

)
1(n≤2m+1),
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and thus, ∥∥∥∇f̃T,α,µ(x)
∥∥∥ ≤ √2m+ 1

(
m−2 +Gµ

)
≤
√

3
(
m−3/2 +

√
mGµ

)
.

Taking m =
⌈

1
3
√
µ

⌉
, we have

∥∥∥∇f̃T,α,µ(x)
∥∥∥ ≤ √3

(⌈
1

3
√
µ

⌉−3/2

+G

⌈
1

3
√
µ

⌉1/2

µ

)
≤
(

27 +
√

3G
)
µ3/4,

where we have used
⌈
1/(3
√
µ)
⌉
≤ 1/

√
µ since µ ≤ 1. Thus,

∥∥∥∇f̃T,α,µ(x)
∥∥∥ ≤ Cµ3/4 holds for

C = 27 +
√

3G. For T ≥ 8, since µ ≥ T−2, we have 2m + 1 ≤ 2 dT/3e + 1 < T and therefore
xT = xT+1 = 0 holds as required (since xn = 0 for every n > 2m+1). In the edge case T ≤ 8 we have

µ ≥ T−2 ≥ 1/64 and therefore x = 0 yields
∥∥∥∇f̃T,α,µ(x)

∥∥∥ = α ≤ 1 ≤ 27 · (1/64)3/4 ≤ Cµ3/4.
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