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In Subsection 3.2 of the paper [5], we studied the interrelations between semismooth-
ness (in the sense of Qi, Sun [7]), approximation by Newton maps (in the sense of
[4,6]) and directional differentiability. In a private communication [3], Helmut Gfr-
erer pointed out that Theorem 6 in [5] is incorrect, and he created a counterexample
showing that Proposition 2 in [5] is false.

First we present the correct statement of [5, Theorem 6]. Suppose that f is a
locally Lipschitz function from R

n to R
m (briefly f ∈ C0,1(Rn,Rm)). Let f ′(x̄; u)

be the standard directional derivative of f at x̄ in direction u, and denote by ∂CL f (x̄)
Clarke’s generalized Jacobian [1,2] of f at x̄ . For the definitions of Newton maps and
semismoothness, we refer to [5].

Theorem ([5, Theorem 6] corrected). f is semismooth at x̄ if and only if

(i) ∂CL f is a Newton map for f at x̄ , and
(ii) f ′(x̄; u) exists for each u.

Indeed, by [7, Prop. 2.1 & Thm. 2.3], semismoothness of f at x̄ implies both (i) and
(ii). On the other hand, the if-direction of the theorem follows from [7, Thm. 2.3], by
taking f ′(x̄; u) = f (x̄ + u) − f (x̄) + o(u) under (ii) into account (for the latter see,
e.g., [4, Lemma A2], [8]).

The original article can be found online at https://doi.org/10.1007/s10107-017-1194-8.
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The original version of [5, Theorem 6] included the incorrect statement that (ii)
follows from (i), while [5, Proposition 2] claimed that even a Newton-map property
weaker than (i) implies (ii). Note that in the proof of Proposition 2 in [5], the estimate
[. . . ≥ 2 if hk ≥ 0] on line 6 of page 690 is false.

We finish this corrigendum by Gfrerer’s counterexample [3]: it gives a function
f ∈ C0,1(R,R) which satisfies the Newton-map property (i), but is not directionally
differentiable and hence not semismooth.

Example Consider two real sequences ak ↓ 0, bk ↓ 0 given by

a1 := 1, bk := e−2kak, ak+1 := e−2kbk, k ≥ 1,

and the function f : R → R defined by

f (x) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x if x ≥ 1

−x + 1
k x ln

x
bk

if x ∈ [bk, ak), k ≥ 1,

x − 1
k x ln

x
ak+1

if x ∈ [ak+1, bk), k ≥ 1,

0 if x ≤ 0.

f is continuous, since for k ≥ 1,

lim
x↑ak

f (x) = lim
x↑ak

(
−x + 1

k x ln
x
bk

)
= −ak + 1

k ak ln
ak
bk

= −ak + 1
k ak2k = ak = f (ak),

lim
x↑bk

f (x) = lim
x↑bk

(
x − 1

k x ln
x

ak+1

)
= bk − 1

k bk ln
bk

ak+1
= bk − 1

k bk2k = −bk = f (bk),

while limx↓0 f (x) = 0 = f (0) because of

−x ≤ f (x) ≤ −x + 1
k x ln

ak
bk

= −x + 1
k x2k = x, x ∈ [bk, ak),

−x = x − 1
k x2k = x − 1

k x ln
bk

ak+1
≤ f (x) ≤ x, x ∈ [ak+1, bk).

f is continuously differentiable except for the points 0, ak , bk (k ≥ 1), with derivative

f ′(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if x > 1,
f (x)
x + 1

k if x ∈ (bk, ak),

f (x)
x − 1

k if x ∈ (ak+1, bk),

0 if x < 0.
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Then we have

∂CL f (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ 1, 2 ] if x = a1,
[
1 − 1

k , 1 + 1
k+1

]
if x = ak+1, k ≥ 1,

[ −1 − 1
k ,−1 + 1

k

]
if x = bk, k ≥ 1,

[−1, 1 ] if x = 0,

f ′(x) ∈ [−2, 2 ] else

and Lipschitz continuity of f . Thus, for any x < 1 and any A ∈ ∂CL f (x), one has

| f (x) − f (0) − A(x − 0)|

⎧
⎪⎪⎨

⎪⎪⎩

= x
k if x ∈ (ak+1, ak)\{bk}, k ≥ 1,

≤ x
k if x = bk or x = ak+1, k ≥ 1,

= 0 if x ≤ 0.

Hence, by definition, ∂CL f is a Newton map for f at x̄ = 0. On the other hand,

lim
k→∞

f (ak) − f (0)

ak − 0
= 1, lim

k→∞
f (bk) − f (0)

bk − 0
= −1,

and so f ′(0; 1) does not exist. Consequently, f is not semismooth at x̄ = 0.
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