CORRECTION

Series A

Correction to: Approximations and generalized Newton methods

Diethard Klatte¹ · Bernd Kummer²

Published online: 25 October 2019 © Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2019

Correction to: Math. Program., Ser. B (2018) 168:673–716 https://doi.org/10.1007/s10107-017-1194-8

In Subsection 3.2 of the paper [5], we studied the interrelations between semismoothness (in the sense of Qi, Sun [7]), approximation by Newton maps (in the sense of [4,6]) and directional differentiability. In a private communication [3], Helmut Gfrerer pointed out that Theorem 6 in [5] is incorrect, and he created a counterexample showing that Proposition 2 in [5] is false.

First we present the correct statement of [5, Theorem 6]. Suppose that f is a locally Lipschitz function from \mathbb{R}^n to \mathbb{R}^m (briefly $f \in C^{0,1}(\mathbb{R}^n, \mathbb{R}^m)$). Let $f'(\bar{x}; u)$ be the standard directional derivative of f at \bar{x} in direction u, and denote by $\partial^{CL} f(\bar{x})$ Clarke's generalized Jacobian [1,2] of f at \bar{x} . For the definitions of Newton maps and semismoothness, we refer to [5].

Theorem ([5, Theorem 6] corrected). f is semismooth at \bar{x} if and only if

(i) $\partial^{CL} f$ is a Newton map for f at \bar{x} , and

(ii) $f'(\bar{x}; u)$ exists for each u.

Indeed, by [7, Prop. 2.1 & Thm. 2.3], semismoothness of f at \bar{x} implies both (i) and (ii). On the other hand, the if-direction of the theorem follows from [7, Thm. 2.3], by taking $f'(\bar{x}; u) = f(\bar{x} + u) - f(\bar{x}) + o(u)$ under (ii) into account (for the latter see, e.g., [4, Lemma A2], [8]).

 Diethard Klatte diethard.klatte@uzh.ch
 Bernd Kummer kummer@math.hu-berlin.de

The original article can be found online at https://doi.org/10.1007/s10107-017-1194-8.

¹ IBW, Universität Zürich, Moussonstrasse 15, 8044 Zurich, Switzerland

² Institut f
ür Mathematik, Humboldt-Universit
ät zu Berlin, Unter den Linden 6, 10099 Berlin, Germany

The original version of [5, Theorem 6] included the incorrect statement that (ii) follows from (i), while [5, Proposition 2] claimed that even a Newton-map property weaker than (i) implies (ii). Note that in the proof of Proposition 2 in [5], the estimate $[... \ge 2$ if $h_k \ge 0$] on line 6 of page 690 is false.

We finish this corrigendum by Gfrerer's counterexample [3]: it gives a function $f \in C^{0,1}(\mathbb{R}, \mathbb{R})$ which satisfies the Newton-map property (i), but is not directionally differentiable and hence not semismooth.

Example Consider two real sequences $a_k \downarrow 0, b_k \downarrow 0$ given by

$$a_1 := 1, \ b_k := e^{-2k}a_k, \ a_{k+1} := e^{-2k}b_k, \ k \ge 1,$$

and the function $f : \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) := \begin{cases} x & \text{if } x \ge 1 \\ -x + \frac{1}{k}x \ln \frac{x}{b_k} & \text{if } x \in [b_k, a_k), \ k \ge 1, \\ x - \frac{1}{k}x \ln \frac{x}{a_{k+1}} & \text{if } x \in [a_{k+1}, b_k), \ k \ge 1, \\ 0 & \text{if } x \le 0. \end{cases}$$

f is continuous, since for $k \ge 1$,

 $\lim_{x \uparrow a_k} f(x) = \lim_{x \uparrow a_k} \left(-x + \frac{1}{k} x \ln \frac{x}{b_k} \right) = -a_k + \frac{1}{k} a_k \ln \frac{a_k}{b_k} = -a_k + \frac{1}{k} a_k 2k = a_k = f(a_k),$ $\lim_{x \uparrow b_k} f(x) = \lim_{x \uparrow b_k} \left(x - \frac{1}{k} x \ln \frac{x}{a_{k+1}} \right) = b_k - \frac{1}{k} b_k \ln \frac{b_k}{a_{k+1}} = b_k - \frac{1}{k} b_k 2k = -b_k = f(b_k),$

while $\lim_{x\downarrow 0} f(x) = 0 = f(0)$ because of

$$-x \le f(x) \le -x + \frac{1}{k}x \ln \frac{a_k}{b_k} = -x + \frac{1}{k}x 2k = x, \ x \in [b_k, a_k),$$

$$-x = x - \frac{1}{k}x 2k = x - \frac{1}{k}x \ln \frac{b_k}{a_{k+1}} \le f(x) \le x, \ x \in [a_{k+1}, b_k).$$

f is continuously differentiable except for the points 0, a_k , b_k ($k \ge 1$), with derivative

$$f'(x) = \begin{cases} 1 & \text{if } x > 1, \\ \frac{f(x)}{x} + \frac{1}{k} & \text{if } x \in (b_k, a_k), \\ \frac{f(x)}{x} - \frac{1}{k} & \text{if } x \in (a_{k+1}, b_k), \\ 0 & \text{if } x < 0. \end{cases}$$

Deringer

Then we have

$$\partial^{CL} f(x) = \begin{cases} [1,2] & \text{if } x = a_1, \\ \left[1 - \frac{1}{k}, 1 + \frac{1}{k+1}\right] & \text{if } x = a_{k+1}, \ k \ge 1, \\ \left[-1 - \frac{1}{k}, -1 + \frac{1}{k}\right] & \text{if } x = b_k, \ k \ge 1, \\ \left[-1,1\right] & \text{if } x = 0, \\ f'(x) \in [-2,2] & \text{else} \end{cases}$$

and Lipschitz continuity of f. Thus, for any x < 1 and any $A \in \partial^{CL} f(x)$, one has

$$|f(x) - f(0) - A(x - 0)| \begin{cases} = \frac{x}{k} & \text{if } x \in (a_{k+1}, a_k) \setminus \{b_k\}, \ k \ge 1, \\ \le \frac{x}{k} & \text{if } x = b_k \text{ or } x = a_{k+1}, \ k \ge 1, \\ = 0 & \text{if } x \le 0. \end{cases}$$

Hence, by definition, $\partial^{CL} f$ is a Newton map for f at $\bar{x} = 0$. On the other hand,

$$\lim_{k \to \infty} \frac{f(a_k) - f(0)}{a_k - 0} = 1, \quad \lim_{k \to \infty} \frac{f(b_k) - f(0)}{b_k - 0} = -1,$$

and so f'(0; 1) does not exist. Consequently, f is not semismooth at $\bar{x} = 0$.

References

- 1. Clarke, F.H.: On the inverse function theorem. Pac. J. Math. 64, 97-102 (1976)
- 2. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)
- 3. Gfrerer, H.: Private Communication (2019)
- Klatte, D., Kummer, B.: Nonsmooth Equations in Optimization—Regularity, Calculus, Methods and Applications. Kluwer Academic Publication, Dordrecht (2002)
- Klatte, D., Kummer, B.: Approximations and generalized Newton methods. Math. Program. Ser. B 168, 673–716 (2018)
- Kummer, B.: Newton's method based on generalized derivatives for nonsmooth functions: convergence analysis. In: Oettli, W., Pallaschke, D. (eds.) Advances in Optimization, pp. 171–194. Springer, Berlin (1992)
- 7. Qi, L., Sun, L.: A nonsmooth version of Newton's method. Math. Program. 58, 353-367 (1993)
- 8. Shapiro, A.: On concepts of directional differentiability. J. Optim. Theory Appl. 66, 477–487 (1990)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.