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Abstract

We analyze the convergence rate of the random reshuffling (RR) method, which is a ran-
domized first-order incremental algorithm for minimizing a finite sum of convex component
functions. RR proceeds in cycles, picking a uniformly random order (permutation) and pro-
cessing the component functions one at a time according to this order, i.e., at each cycle, each
component function is sampled without replacement from the collection. Though RR has been
numerically observed to outperform its with-replacement counterpart stochastic gradient de-
scent (SGD), characterization of its convergence rate has been a long standing open question.
In this paper, we answer this question by providing various convergence rate results for RR
and variants when the sum function is strongly convex. We first focus on quadratic component
functions and show that the expected distance of the iterates generated by RR with stepsize
αk = Θ(1/ks) for s ∈ (0, 1] converges to zero at rate O(1/ks) (with s = 1 requiring adjusting
the stepsize to the strong convexity constant). Our main result shows that when the component
functions are quadratics or smooth (with a Lipschitz assumption on the Hessian matrices), RR
with iterate averaging and a diminishing stepsize αk = Θ(1/ks) for s ∈ (1/2, 1) converges at
rate Θ(1/k2s) with probability one in the suboptimality of the objective value, thus improving
upon the Ω(1/k) rate of SGD. Our analysis draws on the theory of Polyak-Ruppert averaging
and relies on decoupling the dependent cycle gradient error into an independent term over cy-
cles and another term dominated by α2

k. This allows us to apply law of large numbers to an
appropriately weighted version of the cycle gradient errors, where the weights depend on the
stepsize. We also provide high probability convergence rate estimates that shows decay rate of
different terms and allows us to propose a modification of RR with convergence rate O( 1

k2
).

1 Introduction: First-order incremental methods

We consider the following unconstrained optimization problem where the objective function is the
sum of a large number of component functions:

min f(x) :=

m∑
i=1

fi(x) s.t. x ∈ Rn (1)

with fi : Rn → R. This problem arises in many contexts and applications including regression or
more generally parameter estimation problems (where fi(x) is the loss function representing the
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error between the output and the prediction of a parametric model) [2, 3, 5, 12], minimization of an
expected value of a function (where the expectation is taken over a finite probability distribution
or approximated by an m-sample average) [11, 34], machine learning [34, 36, 37], or distributed
optimization over networks [23,24,29].

One widely studied approach for solving problem (1) is the deterministic incremental gradient
(IG) method [4–6]. IG method is similar to the standard gradient method with the key difference
that at each iteration, the decision vector is updated incrementally by taking sequential steps along
the gradient of the component functions fi in a cyclic order. Hence, we can view each outer iteration
k as a cycle of m inner iterations: starting from initial point x0

0 ∈ Rn, for each k ≥ 0, we update the
iterate xki as

xki := xki−1 − αk∇fi(xki−1), i = 1, 2, . . . ,m, (2)

where αk > 0 is a stepsize with the convention that xk+1
0 = xkm.

Intuitively, it is clear that slow progress can be obtained if the functions that are processed
consecutively have gradients close to zero. Indeed, the performance of IG is known to be pretty
sensitive to the order functions are processed [6, Example 2.1.3]. If there is a favorable order σ
(defined as a permutation of {1, 2, . . . ,m}) that can be obtained by exploiting problem-specific
knowledge, the method can be updated to process the functions with this order instead with the
iterations:

xki := xki−1 − αk∇fσ(i)(x
k
i−1), i = 1, 2, . . . ,m. (3)

However, in general a favorable order is not known in advance, and a common approach is choosing
the indices of functions to process as independent and uniformly distributed samples from the set
{1, 2, . . . ,m}. This way no particular order is favored, making the method less vulnerable to par-
ticularly bad orders. This approach amounts to at each iteration sampling the function indices with
replacement from the set {1, 2, . . . ,m} and is called the Stochastic Gradient Descent (SGD) method,
a.k.a. Robbins-Monro algorithm [33]. SGD is strongly related to the classical field of stochastic ap-
proximation [21]. Recently it has received a lot of attention due to its applicability to large-scale
problems and became popular especially in machine learning applications (see e.g. [8, 9, 11,38]).

An alternative popular approach that works well in practice is following a mixed approach be-
tween SGD and IG, sampling the functions randomly but not allowing repetitions, that is sampling
the component functions at each iteration without-replacement, or equivalently picking a random
order at each cycle. Specifically, at each cycle k, we draw a permutation σk of {1, 2, . . . ,m} inde-
pendently and uniformly at random over the set of all permutations

Γ =
{
σ : σ is a permutation of {1, 2, . . . ,m}

}
(4)

and process the functions with this order:

xki := xki−1 − αk∇fσk(i)(x
k
i−1), i = 1, 2, . . . ,m, (5)

where αk > 0 is a stepsize. We set xk+1
0 = xkm as before and refer to {xk0} as the outer iterates. This

method is called the Random Reshuffling (RR) method [6, Section 2.1] and will be the focus of this
paper.

2 Motivation and summary of contributions

Without-replacement sampling schemes are often easier to implement efficiently compared to with-
replacement sampling schemes, guarantee that every point in the data set is touched at least once,
and often have better practical performance than their with-replacement counterparts [7, 9, 10, 17,
30, 31]. For instance, Bottou [7] empirically compares SGD and RR methods and finds that RR
converges with a rate close to ∼ 1/k2 whereas SGD is much slower achieving its min-max lower
bound of Ω(1/k) for strongly convex objective functions [1, 26]. Many other papers listed above
report a similar empirical behavior. This discrepancy in rate between RR and SGD is not only
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observed for large m but also for small m (as we illustrate in Example 3.2), and understanding it
theoretically has been a long-standing open problem [4,31].

To our knowledge, the only existing theoretical analysis for RR is given by a recent paper of
Recht and Ré [30] which focuses on least mean squared optimization and formulates a conjecture
that would prove that the expected convergence rate of RR is faster than that of SGD. Given N
arbitrary positive-definite matrices of dimension n× n, the conjecture says that products of any K
matrices chosen from this set of N matrices satisfy a non-commutative arithmetic-geometric mean
inequality for every positive integer N and every K ≤ N . This conjecture has been proven only in
some special cases (for N = 2 [30], for N = 3 [20] and when N is a multiple of 3 and K = 3 [39]).
Recht and Ré also analyze a special case of (1) (that arises when fi(x) = (aTi x− yi)2 is a quadratic
function where ai is a column vector that is randomly generated according to a random model and yi
is a scalar) and show that after a fixed amount of iterations, the upper bounds on the expected mean
square error using without-replacement sampling is smaller than that of with-replacement sampling
with high probability on most models of ai (probabilities are taken with respect to the random
data generation model). Despite these advances, there has been a lack of convergence theory for
RR that characterizes its convergence rate and explains its fast performance. Analyzing algorithms
based on without-replacement sampling such as RR is more difficult than with-replacement based
approaches such as SGD. The reason is that the underlying independence assumption for the with-
replacement sampling allows a tractable analysis with classical martingale convergence theory [22,27],
whereas without-replacement sampling introduces correlations and dependencies among the sampled
gradients and iterates that are harder to analyze [30]. The aim of our paper is to fill this theoretical
gap for the case when the objective function f in (1) is strongly convex and develop a novel algorithm
that can accelerate the convergence further. We next summarize our contributions.

We first consider the case when the component functions are quadratics. Building on the recent
convergence rate results for the cyclic IG in [19], we first present a key result (Theorem 1) that
provides an upper bound for the distance from the optimal solution of the iterates generated by an
incremental method that processes component functions with an arbitrary fixed order and uses a
stepsize Θ(1/ks) for s ∈ (0, 1]. This upper bound decays at rate O(1/ks) and depends on the strong
convexity constant of the sum function and an order dependent parameter given by a weighted
average of Hessian matrices where the weights are given by the sum of the component gradients
processed up to that point according to the given order. We use this result to show that the
distance to the optimal solution of the iterates generated by RR algorithm with stepsize Θ(1/ks),
for all s ∈ (0, 1], converges to 0 at rate O(1/ks) in expectation (where the expectation is over the
random sequence of iterates). However, we show that achieving the rate O(1/k) involves adapting
the stepsize to the strong convexity constant of the sum function.

We then consider the q-suffix averages of the iterates generated by RR for some q ∈ (0, 1]
(which is obtained by averaging the last qk iterates at iteration k) and show that with a stepsize
αk = R/(k + 1)s for s ∈ (1/2, 1) and R > 0, they converge almost surely at rate O(1/ks) to the
optimal solution. We provide an explicit characterization of the asymptotic rate constant in terms
of the averaging parameter q, the stepsize parameters R and s and the Hessian matrices and the
gradients of the component functions at the optimal solution (parts (i) and (ii) of Theorem 3).
Using strong convexity, this implies an almost sure convergence rate Θ(1/k2s) in the suboptimality
of the objective value. Our analysis views RR as a gradient descent method with random gradient
errors. The analysis of RR is complicated by the fact that the cumulative gradient error over cycles
are dependent. A key step in our proof is to decouple the cycle gradient error into a O(αk) term
independent over cycles and another term that scales as O(α2

k). This allows us to use strong law of
large numbers for a properly weighted average of the cycle error gradient sequence (where the weights
depend on the stepsize) and show almost sure convergence of the q-suffix averaged iterates. Another
key component of our analysis is to adapt the Polyak-Ruppert averaging techniques developed for
SGD [22,27] to RR.

We also provide a high probability convergence rate estimate for the distance of q-suffix averages
to the optimal solution that consists of two terms, with the first term corresponding to a 1/ks
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decay of a “bias” term (where bias is defined as the expected value of the cycle gradient errors of
RR which may be non-zero) and the second term representing a 1/k decay for 0 < q < 1 (and
log k/k decay for q = 1); see part (iii) of Theorem 3 . These results are obtained by martingale
concentration techniques. We use the characterization of the bias to estimate it with a term that
can be computed during the RR iterations. We show that subtracting the estimated bias from the
averaged RR iterates accelerates the convergence rate further, leaving only the second error term of
1/k decay in the iterates (part (iv) of Theorem 3). Based on this result, we propose a new algorithm
which we call the De-biased Random Reshuffling (DRR) method that can accelerate the asymptotic
convergence rate of RR in the suboptimality of the function values from O(1/k2s) to O(1/k2).

Finally, in Theorem 4 we show that our results in Theorem 3 extend to the more general case when
component functions are smooth (twice continuously differentiable) under a Lipschitz assumption on
the Hessian, which allows us to control the second order term in a Taylor expansion of the gradient.

Outline: The outline of the paper is as follows. In Section 3, we introduce our approach for
analyzing RR, present Polyak-Ruppert averaging and give a motivating example. Section 4 focuses
on the case when component functions are quadratics. We first present a convergence rate estimate
for IG with a fixed arbitrary order. We then focus on RR and study convergence of averaged iterates
to the optimal solution. Section 5 extends our results to smooth functions. Section 6 proposes the
DRR algorithm that can accelerate RR further. Finally, we conclude with a summary of our work
in Section 7. Some of the technical lemmas required in the details of the proofs are deferred to
Sections A, B and C of the Appendix.
Notation: We study the point-wise dominance of stochastic sequences by deterministic sequences
and use the following notation. Let xk = xk(ω) be a stochastic real-valued sequence (where ω can be
thought as the source of randomness) and yk be a real-valued deterministic sequence. We write xk =
O(yk) ⇐⇒ ∃h > 0,∃k0 such that |xk| ≤ h|yk| ∀k ≥ k0,∀ω, where h and k0 are independent of
ω (Note that the requirement is that this inequality holds for all ω, not just for almost all ω). When
xk is non-negative for every ω, given another deterministic positive sequence zk, we also introduce the
inequality version of this definition: xk ≤ yk + o(zk) ⇐⇒ ∀ε > 0,∃k0(ε) such that z−1

k |xk(ω)−
yk| ≤ ε, ∀k ≥ k0(ε),∀ω where k0 depends on ε but is independent of ω. When xk is deterministic,
these definitions reduce to the standard definitions of O(·) and o(·) for deterministic sequences. For
random xk, the only difference is that we require the constants to be independent of the choice of ω.
For example, if xk is uniformly distributed over [0, 10], we write xk = O(1). Throughout the paper,
‖ · ‖ denotes the vector or matrix 2-norm (maximum singular value).

3 Preliminaries

We consider solving problem (1) with RR method with iterations given in (5). Throughout we
assume the following:

Assumption 3.1. The sum function f(x) =
∑m
i=1 fi(x) is strongly convex, i.e., there exists a

constant c > 0 such that the function f(x)− c
2‖x‖

2 is convex on Rn.1.

Note that this assumption is on the sum function f , it does not require the convexity of the
individual component functions fi. A consequence of this assumption is that there exists a unique
optimal solution to (1) which we denote by x∗. Another consequence is that the Hessian at the
optimal solution is invertible since

H∗ := ∇2f(x∗) � cIn � 0 (6)

where In is the n× n identity matrix.

1Such functions arise naturally in support vector machines and other regularized learning algorithms or regression
problems (see e.g. [28,32,34])
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To analyze RR, we view it as a gradient method with random gradient errors and rewrite the
outer iterations (5) as

xk0 − xk+1
0

αk
= ∇f(xk0) + Ek (7)

where

Ek :=

m∑
i=1

(
∇fσk(i)(x

k
i−1)−∇fσk(i)(x

k
0)

)
(8)

is the cumulative gradient errors associated with the cycle k. This approach is similar to the analysis
of SGD, where one writes each (inner) iteration as a gradient method with error. The key difference
that simplifies the analysis of SGD is the fact that the iteration gradient errors at the current iterate
are independent (because of independent identically distributed sampling of component function
indices) allowing use of martingale central limit theorems to obtain convergence and rate results
(see e.g. [13, 16, 21, 27]). In contrast, for RR, not only are the iteration gradient errors dependent
(because of sampling a random order at cycle k coupling indices σk(i) and σk(j) for i 6= j), but also
the cycle gradient errors Ek1 and Ek2 for cycles k1 6= k2 are dependent as they both depend on the
history of the iterates. This necessitates a different line of attack for the convergence analysis of
RR.2

A key idea in our analysis is to use a recent upper bound for the convergence rate of cyclic
incremental gradient method (see [19]), which can be generalized to hold for any fixed deterministic
order. This bound implies an almost sure upper bound (in fact one that holds for all sample paths)
on the distance of the outer iterates xk0 generated by RR from the optimal solution x∗ denoted
by distk = ‖xk0 − x∗‖ (see Section 4.1). Crucially, this result implies an upper bound in expected
distance which is asymptotically m times smaller than the almost sure guarantees on the distance
of the iterates.

In analyzing RR, we will also consider the average of the outer iterate sequence given by3 x̄k :=∑k−1
j=0 x

j
0

k . We also consider averaging only the most recent iterates, i.e. at iteration k, averaging the
last qk iterates for some constant q ∈ (0, 1]:

x̄q,k :=

∑k−1
j=(1−q)k x

j
0

qk
, 0 < q ≤ 1.

The generated sequence is referred to as the q-suffix average of the sequence xk0 . For SGD, it was
shown that q-suffix averaging with 0 < q < 1 leads to better performance then averaging (which
corresponds to the q = 1 case by definition), improving the convergence rate in the suboptimality
of the function value from log k/k to 1/k [28,35]. This is in line with our results in Section 4 which
show faster rate for the 0 < q < 1 case. The parameter q can be thought as a measure of how much
memory one uses during the averaging process. We define the q-suffix average of the stepsize in a
similar way:

ᾱq,k =

∑k−1
j=(1−q)k αj

qk
, 0 < q ≤ 1. (9)

We will obtain our strongest convergence results (in the almost sure sense and with a similar
m dependence as the expected guarantees) for averaged iterate sequences with “large step sizes”, a
technique known as Polyak-Ruppert averaging, which has been used in achieving optimal rates for
SGD in a robust manner as explained next.

2There is some literature that analyzes SGD under correlated noise [21, Ch. 6], but the noise needs to have a
special structure (such as a mixing property) which does not seem to be applicable to the analysis of RR.

3It is well known that computing this (moving) average can be done efficiently in a dynamic manner by storing a
vector of length n.

5



3.1 Polyak-Ruppert averaging

SGD has a long history going back to the seminal paper of Robbins and Monro [33]. It has been
analyzed under different assumptions extensively in the stochastic approximation literature (see
e.g. [21]). For stochastic convex optimization, it has been shown that SGD has a min-max lower
bound of Ω(1/k) [1, 26]. One way of achieving this optimal 1/k rate is to use a stepsize αk = R/k
where R is a positive scalar adjusted properly to the strong convexity constant of the objective
function [13, 16, 21] but this requires the knowledge or the estimate of an accurate lower bound on
the strong convexity constant. If a lower bound is not known or cannot be estimated accurately,
the convergence can be potentially slow [25, Section 2.1]. Polyak-Ruppert averaging is a technique
that allows to get the optimal ∼ 1/k rate in an asymptotically efficient manner without the need
to adjust to the strong convexity constant. It relies on using a larger stepsize αk = R/ks (with R
an arbitrary positive constant and s ∈ (1/2, 1)) that decays slower than Θ(1/k) but then taking the
time average of the iterates to filter out the undesired oscillations arising due to the larger steps
[21,25,27].4 We will later show that the same technique allows us to get almost sure guarantees for
the averaged iterates without the need to tune the stepsize to the strong convexity constant (see
Theorems 3 and 4).

3.2 A motivating example

Before presenting our convergence analysis, we consider a simple example that highlights the differ-
ence in convergence mechanisms of SGD and RR and gives intuition on why RR is faster than SGD
asymptotically.

Example 3.2. Consider the component functions

f1(x) =
1

2
(x− 1)2, f2(x) =

1

2
(x+ 1)2 +

x2

2
(10)

with f(x) = f1(x) + f2(x) = 3
2x

2 + 1 and x∗ = 0. The outer RR iterates {xk0} satisfy

xk+1
0 = xk0 − αk

(
∇fσk(1)(x

k
0) + fσk(2)(x

k
1)
)

= xk0 − αk(∇f(xk0) + Ek), (11)

where the cycle gradient errors are given by

Ek =

{
∇f2(xk1)−∇f2(xk0) with probability 1/2, for σk = {1, 2},
∇f1(xk1)−∇f1(xk0) with probability 1/2, for σk = {2, 1}.

(12)

Plugging in the identities ∇f1(x) = x− 1, ∇f2(x) = 2x+ 1 obtained from (11) and the inner update
formula (5), we obtain

Ek = αkµ(σk)− 2αkx
k
0 (13)

where µ(σk) = −∇2fσk(2)(x
∗)∇fσk(1)(x

∗) satisfying

µ(σk) =

{
+2 with probability 1/2, for σk = {1, 2},
−1 with probability 1/2, for σk = {2, 1}.

In contrast, SGD starting from an initial point y0 leads to the iterations

yj+1 = yj − αj∇fij (yj) = yj − αj
2

(∇f(yj) + ej), (14)

4IG shows similar properties to SGD in terms of the robustness of the stepsize rules αk = R/ks. The convergence
rate (in k) is only robust to the strong convexity constant of the objective for s < 1 but not for s = 1 [19].
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where ij is an independent and identically distributed (i.i.d.) random variable with a uniform dis-
tribution over the index set {1, 2} and the gradient error ej is given by

ej =

{
−2− yj with probability 1/2, for ij = 1,

2 + yj with probability 1/2, for ij = 2.
(15)

We consider a stepsize of αk = R
ks with s = 0.75 for both algorithms. Note that for this example,

RR is globally convergent to the optimal solution x∗ = 0 with probability one, therefore xj0 → 0.5

By a similar argument, it can be shown that SGD is also convergent to the optimal solution x∗ = 0
in mean-square, i.e. E‖yj‖2 → 0 (see also e.g. [21]). Then, it follows from (15) and (13) that the

cumulative gradient error of SGD for any cycle k (defined as the cumulative sum
∑km−1
j=(k−1)m ej))

has zero expectation and Θ(1) variance whereas the gradient errors in RR are Ek = O(αk) with a
typically non-zero expectation satisfying E(Ek) = αk(1−2xk0) and an asymptotically smaller variance
O(α2

k) compared to SGD. In other words, the cycle gradient errors go to zero with probability one
for RR whereas the gradient errors in SGD are typically bounded away from zero with a positive
probability. Informally, this leads to a more accurate direction of descent for RR and is the main
reason behind the faster convergence we demonstrate for RR compared to SGD in our analysis.

We also observe that the cycle gradient error Ek given by (13) consists of the sum of two terms:
The first term is O(αk) and is independent over the cycles as the permutations σk are independent
and identically distributed whereas the second term is of smaller (second) order as xj0 → 0. We will
show later in Lemma B.4 that such a decomposition can be obtained more generally when component
functions are quadratics or they are smooth functions and will be a key step in the proof of Theorem 3.

Figure 3.2 compares the RR and SGD algorithms with averaging in terms of the histogram of
the error (distance of the averaged iterates to the optimal solution x∗). In other words, we compare

the approximation errors x̄k − x∗ and ȳk − x∗ where where ȳk :=
∑mk−1

j=0 yj

mk is the averaged SGD
iterates after k cycles (or equivalently mk inner iterations). For a fair comparison, both algorithms
are run with the same parameters using k = 500 cycles over 10000 sample paths created for the
Example (3.2) where s = 0.75. The left panel in Figure 3.2 compares the histograms of x̄k − x∗ and
ȳk − x∗ and shows that the approximation error x̄k − x∗ for RR is typically much smaller compared
to that of SGD suggesting RR has a faster convergence rate. The top panel on the right illustrates
that the scaled approximation error ks(x̄k − x∗) is concentrated around its mean (marked by the red
line) suggesting O(1/ks) convergence rate almost surely for the averaged RR iterates. On the other
hand, the bottom panel on the right shows that the distribution of k1/2(ȳk − x∗) is approximately a
standard normal distribution as predicted by the theory [27], illustrating the O(1/k1/2) convergence
rate of the averaged SGD iterates to the optimal solution x∗ in distribution. In Section 4, we will
develop the first convergence theory for RR, establishing the O(1/ks) convergence rate we observe in
the numerical experiments and show that ks(x̄k − x∗) converges almost surely to a point for which
we provide an explicit formula.

4 Quadratic component functions

We first consider quadratic component functions which allows an elegant analysis without the need to
approximate higher order terms. We will show in Section 5 that the same line of analysis extends to
smooth component function under a Lipschitz assumption on the Hessian matrices. Let fi : Rn → R
be a quadratic function of the form

fi(x) =
1

2
xTi Pix− qTi x+ ri, i = 1, 2, . . . ,m, (16)

5To see this, note that the RR iterations for this example are given by xk+1
0 = (1− 3

2
αk+2α2

k)xk0 −α2
kµ(σk) which

implies, after taking norms of both sides and using the fact that ‖µ(σk)‖ ≤ 2, distk+1 ≤ (1− 3
2
αk + 2α2

k)distk + 2α2
k.

Then, by invoking classical results for the asymptotic behavior of non-negative sequences (see e.g. [6, Appendix A.4.3],
we get distk+1 → 0. Theorem 1 also shows global convergence of RR on this example.
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Figure 1: Left panel: Comparison of the histogram of the approximation error x̄k − x∗ of the aver-
aged iterates for RR and SGD after k = 500 cycles over 10000 sample paths created for the Example
3.2 with s = 0.75. Each sample path contains 1000 gradient computations for both RR and SGD.
Right, top panel: Histogram of the scaled approximation error ks(x̄k − x∗) for RR iterates which is
concentrated around the vertical line in red. Right, bottom panel: Histogram of the scaled approx-
imation error k1/2(x̄k − x∗) for SGD which has the shape of a standard normal distribution. The
vertical blue line passing through the origin is the axis of symmetry for this distribution indicating
that this distribution is centered.
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where Pi is a symmetric n × n matrix, qi ∈ Rn is a column vector and ri is a scalar. Note that fi
has Lipschitz gradients, i.e.,

‖∇fi(y)−∇fi(z)‖ ≤ Li‖y − z‖, ∀y, z ∈ Rn,

where Li = ‖Pi‖. It follows from the triangle inequality that f has Lipschitz gradients with Lipschitz
constant at most

L :=

m∑
i=1

Li. (17)

Moreover, Assumption 3.1 implies that the Hessian matrix of the sum satisfies∇2f(x) =
∑m
i=1∇2fi(x) =∑m

i=1 Pi ≥ cIn > 0.

4.1 Convergence Rate

Our convergence analysis of RR builds on a recent upper bound for convergence rate of (determin-
istic) cyclic IG method (see [19]), which can be generalized to hold for any fixed permutation σ
of {1, 2, . . . ,m}. This result implies an upper bound (for all sample paths) on the distance to the
optimal solution of the iterates generated by RR, which is presented next.

Theorem 1. [19] Let Assumption 3.1 hold. Let fi(x) be a quadratic function of the form fi(x) =
1
2x

T
i Pix − qTi x + ri where Pi is a symmetric n × n matrix, qi ∈ Rn is a column vector and ri is a

scalar for i = 1, 2, . . . ,m. Suppose Assumption 3.1 holds. Consider the iterates {xk0} generated by
the iterations (5) with a fixed order σ and stepsize αk = R/(k + 1)s where R > 0 and s ∈ (1/2, 1).
Then6,

distk ≤
R‖µ(σ)‖

c

1

ks
+ o(

1

ks
) if 1/2 < s < 1, (18)

distk ≤
R2‖µ(σ)‖
Rc− 1

1

k
+ o(

1

k
) if s = 1 and Rc > 1, (19)

where c is the strong convexity constant of the sum function f(x) and

µ(σ) = −
∑

1≤i<j≤m

Pσ(j)∇fσ(i)(x
∗). (20)

This theorem provides an upper bound on the rate with a rate constant µ(σ) that depends on
the order σ. Note that the best rate that IG with a fixed order σ can attain in terms of upper
bounds is O(1/k) and requires a stepsize R/(k + 1) with R > 1/c (see also [19] for the lower bound
of Ω(1/k) for IG under some conditions). We next provide some upper bounds on µ(σ). We define

G∗ : = sup
1≤i≤m

‖∇fi(x∗)‖, (21)

MΓ : = sup
σ∈Γ
‖µ(σ)‖. (22)

Using Li = ‖Pi‖ for each i, it follows from the triangle inequality that

‖µ(σ)‖ ≤MΓ ≤ sup
σ∈Γ

∑
1≤i<j≤m

Lσ(j)G∗ ≤
m∑
j=1

(j − 1)Lσ(j)G∗ ≤ LmG∗ (23)

6The original result in [19] was stated for σ = {1, 2, . . . ,m} but here we translate this result into an arbitrary
permutation σ of {1, 2, . . . ,m} by noting that processing the set of functions {f1, f2, . . . , fm} with order σ is equivalent
to processing the permuted functions {fσ1 , fσ2 , . . . , fσm} with order {1, 2, . . . ,m}.
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where L is the Lipschitz constant of the gradient of f defined by (17). By replacing µ(σ) by MΓ

in Theorem 1 one can get an upper bound on the worst-case convergence rate that applies to any
choice of fixed order σ. Using a similar argument along the lines of the proof of Theorem 1 on
the convergence rate of IG, it is straightforward to show that RR never performs any slower than
this worst-case convergence rate which is the subject of the next result. The idea is to bound the
stochastic distk sequence from above point-wise. The proof is a simple exercise and is omitted due
to space considerations.

Corollary 4.1. Under the setting of Theorem 1, if σ is sampled uniformly at each cycle instead of
being kept fixed, then

distk ≤
RMΓ

c

1

ks
+ o(

1

ks
) if 1/2 < s < 1, (24)

distk ≤
R2MΓ

Rc− 1

1

k
+ o(

1

k
) if s = 1 and Rc > 1, (25)

with probability one where MΓ is deterministic and is defined by (22).

Corollary 4.1 provides a simple worst-case upper bound on the rate, however the rate constant
MΓ = supσ ‖µ(σ)‖ is pessimistic and can be thought as a worst-case performance measure that holds
for every sample path. One way to get better constants is to consider convergence in expectation, a
weaker notion of convergence compared to almost sure convergence. In the next theorem, we show
that MΓ can be improved to a typically much smaller constant ‖µ̄‖ where

µ̄ := E
(
µ(σ1)

)
=

∑
σ∈Γ µ(σ)

|Γ|
. (26)

can be thought as a measure of average performance over the choice of random permutations.

Theorem 2. Let fi(x) be a quadratic function of the form fi(x) = 1
2x

T
i Pix− qTi x+ ri, where Pi is

a symmetric n×n matrix, qi ∈ Rn is a column vector and ri is a scalar for i = 1, 2, . . . ,m. Suppose
Assumption 3.1 holds. Consider the iterates {xk0} generated by the RR iterations (5) and stepsize
αk = R/(k + 1)s where R > 0 and s ∈ (0, 1]. Then,

E (distk) ≤ R‖µ̄‖
c

1

ks
+ o(

1

ks
) if 1/2 < s < 1, (27)

E (distk) ≤ R2‖µ̄‖
Rc− 1

1

k
+ o(

1

k
) if s = 1 and Rc > 1, (28)

where the expectation is taken over the sequence of iterates, µ̄ is defined by (26).

Remark 4.2. A consequence of Lemma B.3 proved in the Appendix is that

µ̄ =
1

2

m∑
i=1

Pi∇fi(x∗). (29)

where µ̄ is defined by (26). By the triangle inequality, ‖µ̄‖ ≤
∑m
i=1 LiG∗ = LG∗ where G∗ is defined

by (21). This upper bound is m times smaller than the previous upper bound on MΓ in (23). As
an example, consider s = 1 with Rc = 2. In this case, L = O(m), c = O(m), R = O(1/m) and
‖µ̄‖ = O(m). We obtain from (28) that E (distk) = O( 1

mk ) + o(1/k). Note that, the performance
guarantee for IG from Corollary 4.1 is distk = O(1/k) + o(1/k) which is also worse than RR
by a factor of O(m). For a fair comparison with the SGD method, we consider running the SGD
iterations for j = km iterations so that both RR and SGD methods have access to the same number of
component gradients. In this case, expected distance to suboptimality for SGD with the recommended
O(1/j) stepsize is O( 1√

j
) where the hidden constants are independent of m (see e.g. [22, 27]) which
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is worse than the O(1/j) guarantees for RR when j is sufficiently large. These bounds show that
when m is small and k is large, IG could outperform SGD in theory, however SGD (and RR) are
more suitable for applications when m is large and will admit better bounds compared to IG if m is
large enough for a given k fixed7

It is also natural to ask what would happen to the rate constants and to the rate if one would
take stepsize αk = Θ(1/ks) and apply (Polyak-Ruppert) averaging to the RR iterates, especially
given the fact that O(1/ks) stepsize used in averaging does not require adjustment of the parameter
R to the strong convexity level. More generally, one could consider q-suffix averaging. In the next
section, we show that for the averaged RR iterates, similar upper bounds in (27) hold not only in
expectation but also in probability. Another benefit of averaging is that it leads to not only upper
bounds but also lower bounds which can then be leveraged to accelerate RR further as we will show
in Section 6.

4.2 Convergence rate with averaging

The following theorem characterizes the rate of convergence of the averages of iterates generated
by RR. Part (i) and (ii) of this theorem show that q-suffix averages of the RR iterates converge
at rate 1/ks to the optimal solution almost surely with a stepsize Θ(1/ks) for s ∈ (1/2, 1). By
gradient Lipschitzness, this translates into a rate of Θ(1/k2s) for the suboptimality of the objective
value. The result is based on decoupling the cycle gradient errors Ek into a Θ(αk) term independent
over the cycles and another O(α2

k) term that becomes negligible in the limit. Part (iii) is a high-
probability convergence rate estimate for the approximation error x̄q,k − x∗. The approximation
error consists of two terms, the first term bq,k which we call the “bias” term is deterministic and
decays like ∼ 1/ks. It comes from the expected value of the independent part of the gradient cycle
errors which may be different than zero. The second part is on the order of 1/k for 0 < q < 1 (and
log k/k when q = 1) and it is based on the Azuma-Hoeffding inequality for martingale concentration.

Finally, part (iv) is on estimating the bias term bq,k with another quantity b̂q,k. It shows that by
subtracting the estimated bias from the averaged iterates, we can approximate the optimal solution
x∗ up to an O(1/k) error in distances or equivalently up to an O(1/k2) error in the suboptimality
of the objective value. In Section 6, this result will be fundamental for Algorithm 1 that accelerates
the convergence of RR from Θ(1/k2s) to O(1/k2) with high probability in the suboptimality of the
objective value.

Theorem 3. Let fi(x) be a quadratic function of the form

fi(x) =
1

2
xTi Pix− qTi x+ ri

where Pi is a symmetric n×n matrix, qi ∈ Rn is a column vector and ri is a scalar for i = 1, 2, . . . ,m.
Consider the q-suffix averages x̄q,k of the RR iterates generated by the iterations (5) with stepsize
αk = R

(k+1)s where R > 0 and s ∈ ( 1
2 , 1). Suppose that Assumption 3.1 holds. Then the following

statements are true:

(i) For any 0 < q ≤ 1, the q-suffix averaged stepsize ᾱq,k defined in (9) satisfies

ᾱq,k =
aq(s)

ks
+O(

1

k
) where aq(s) =

1− (1− q)1−s

q(1− s)
R. (30)

(ii) For any 0 < q ≤ 1, we have

lim
k→∞

x̄q,k − x∗

ᾱq,k
= −H−1

∗ µ̄ a.s. (31)

7We note however that SGD upper bounds are in expectation whereas IG results are deterministic which is a
stronger notion of convergence.
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where µ̄ is given by (29), i.e., the normalized error (x̄q,k − x∗)/ᾱq,k converges to the constant
vector −H−1

∗ µ̄ almost surely where H∗ =
∑m
i=1 Pi is the Hessian matrix at the optimal solution

and µ̄ is given by (29). Then, from part (i),

lim
k→∞

ks(x̄q,k − x∗) = −aq(s)H−1
∗ µ̄ a.s. (32)

Hence, the q-suffix averaged iterates x̄q,k converge to the optimal solution x∗ with rate 1/ks

almost surely.

(iii) With probability at least 1− δ, we have

x̄q,k − x∗ = bq,k +O
(√

log(1/δ)

k

)
+

{
O
(

log k
k

)
if q = 1

O( 1
k

)
if 0 < q < 1,

where
bq,k = −ᾱq,kH−1

∗ µ̄ (33)

is deterministic, µ̄ is given by (29) and ᾱq,k is the averaged stepsize defined in (9). The
constants hidden by O(·) depend only on G∗, L,m,R, c, q and s.

(iv) Let

b̂q,k = −ᾱq,k
[ m∑
i=1

Pσk(i)

]−1 m∑
i=1

Pσk(i)∇fσk(i)(x
k
i−1)/2. (34)

where ᾱq,k is the averaged stepsize defined in (9). Then, b̂q,k = bq,k +O(α2
k). It follows from

part (ii) that with probability at least 1− δ,

(x̄q,k − b̂q,k)− x∗ = O
(√

log(1/δ)

k

)
+

{
O
(

log k
k

)
if q = 1

O( 1
k

)
if 0 < q < 1.

Proof. (i) As the stepsize sequence is monotonically decreasing, we have the bounds∫ k

(1−q)k

R

(x+ 2)s
dx ≤

k∑
j=(1−q)k

αj =

k∑
j=(1−q)k

R

(k + 1)s
≤ R+

∫ k−1

(1−q)k

R

(x+ 1)s
dx.

Dividing each term by qk, after a straightforward integration we obtain

ᾱq,k =
k1−s −

(
(1− q)k + 1

)1−s
+O(1)

(1− s)qk
R =

aq(s)

ks
+O(

1

k
).

which completes the proof.

(ii) Taking the q-suffix averages of both sides of (7), we obtain

Iq,k :=

∑k−1
j=(1−q)k (xj0 − x

j+1
0 )α−1

j

qk
=

∑k−1
j=(1−q)k∇f(xj0) + Ej

qk
. (35)

As f is a quadratic, the first order Taylor series for the gradient of f is exact:

∇f(xj0) = H∗(x
j
0 − x∗). (36)

Therefore, (35) becomes Iq,k =
∑k−1

j=(1−q)k
H∗(xj

0−x
∗)+Ej

qk which is equivalent to

Iq,k = H∗(x̄q,k − x∗) +

∑k−1
j=(1−q)k Ej

qk
= H∗(x̄q,k − x∗) + ᾱq,kYq,k (37)
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where Yq,k is defined as

Yq,k :=
1

ᾱq,k

∑k−1
j=(1−q)k Ej

qk
=

∑k−1
j=(1−q)k Ej∑k−1
j=(1−q)k αj

(38)

and can be interpreted as the (q-suffix) averaged gradient error sequence Ej normalized by the
(q-suffix) averaged stepsize sequence αj . Since H∗ is invertible by the strong convexity of f
(see (6)), we can rewrite (37) as

x̄q,k − x∗ = −H−1
∗ ᾱq,kYq,k +H−1

∗ Iq,k = −H−1
∗ ᾱq,kYq,k +

{
O( 1

k ) if 0 < q < 1

O( log k
k ) if q = 1.

(39)

where we used the inequality ‖H−1
∗ ‖ ≤ 1/c implied by (6) and Lemma B.2 from the appendix to

provide an upper bound for the second term in the first equality. Note that, as a consequence
of Lemma B.2, O(·) notation above hides a constant that depends only on the parameters
G∗, L, c,m,R, s, q and also dist0 when q = 1. Then, dividing both sides of (39) by ᾱq,k, taking
limits as k goes to infinity, using part (i) on the asymptotic behavior of ᾱq,k and the fact that
Yq,k → µ̄ a.s. from Lemma B.4, we obtain the claimed result.

(iii) By parts (i) and (iii) of Lemma B.4 from the appendix that relates the gradient error sequence
Ej to a sequence of i.i.d. variables µ(σj), for 0 < q ≤ 1,

Yq,k =

∑k−1
j=(1−q)k Ej∑k−1
j=(1−q)k αj

=

∑k−1
i=(1−q)k αjµ(σj) +O(α2

j )∑k−1
j=(1−q)k αj

. (40)

We first give a proof for q = 1, the proof for the remaining q ∈ (0, 1) case will be similar.
Assume q = 1. Plugging q = 1 and (40) into (39), we obtain

x̄1,k − x∗ = O(
log k

k
)−H−1

∗ ᾱ1,kY1,k

= O(
log k

k
)−H−1

∗

(∑k−1
j=0 αj

(
µ(σj)− µ̄

)
k

+

∑k−1
j=0 αjµ̄+O(α2

j )

k

)
= b1,k +O(

log k

k
)−H−1

∗

∑k−1
j=0 αj(µ(σj)− µ̄)

k
−H−1

∗

k−1∑
j=0

O(α2
j )

k

= b1,k +O(
log k

k
)−H−1

∗

∑k−1
j=0 αj(µ(σj)− µ̄)

k
(41)

where b1,k is defined by (33) and we used in the last step the fact that for s > 1/2

∞∑
j=0

α2
j =

∞∑
j=1

R2

j2s
= R2ζ(2s) <∞ (42)

where ζ(·) is the Riemann-Zeta function. We now study the asymptotic behavior of the last

summation term in (41) by introducing the process S1,k =
∑k−1
j=0 Zj , where Zj := αj(µ(σj)−µ̄)

and k ≥ 0 with the convention that S1,0 = 0. Equipped with this definition, (41) becomes

x̄1,k − x∗ = b1,k +O(
log k

k
)−H−1

∗
S1,k

k
. (43)

The random variables Zj are independent, centered and have an identical distribution up to
the scaling factor αj . Therefore, S1,k is a sum of centered random variables satisfying:

‖S1,k − S1,k−1‖ =
∥∥αk−1

(
µ(σk−1)− µ̄)∥∥ ≤ γk−1 := αk−1LmG∗ (44)
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where we used (70) in the last inequality (see also Lemma B.3). Then, by the Azuma-Hoeffding
inequality, for every t > 0,

P
(∥∥S1,k

k

∥∥ > t

k

)
≤ 2 exp

(
− t2

2
∑k−1
j=0 γ

2
j

)
= 2 exp

(
− t2

β

)
where β = 2

∑∞
j=0 γ

2
j < ∞ as αj is square-summable (see (42)). Note that β depends only

on G∗, L,m and the stepsize parameters R and s. It is easy to see that selecting t ≥ tδ =√
β log(2/δ) makes the right-hand side ≤ δ. Therefore for any δ > 0, with probability at least

1− δ, ∥∥S1,k

k

∥∥ ≤ √β log(2/δ)

k
(45)

which if inserted into the expression (43) completes the proof for the q = 1 case. For 0 < q < 1
case, the same line of reasoning applies except that we replace b1,k with bq,k and we can improve
the O(log k/k) term in the expression (43) to O(1/k), this is justified by (39). Then, this leads
to

x̄q,k − x∗ = bq,k +O(
1

k
)−H−1

∗
Sq,k
qk

(46)

where Sq,k :=
∑k−1
j=(1−q)k Zj = S1,k −S1,(1−q)k is the q-suffix cumulative sum (cumulative sum

of the last qk terms) of the sequence Zk. Then using (45), with probability at least 1− δ,∥∥Sq,k
k

∥∥ ≤ ‖S1,k

k

∥∥+ ‖
S1,(1−q)k

k

∥∥ ≤ 2tδ
k
. (47)

Plugging this high probability bound into (46), we conclude.

(iv) By Lemma B.1, we have max
1≤i<m

‖xki−1 − x∗‖ = O(αk). Therefore,

‖∇fσk(i)(x
k
i−1)−∇fσk(i)(x

∗)‖ = O(αk) (48)

for any i = 1, 2, . . . ,m. As a consequence,

b̂q,k = −ᾱq,kH−1
∗

m∑
i=1

Pσk(i)

(
∇fσk(i)(x

∗) +O(αk)

)

= −ᾱq,kH−1
∗

m∑
j=1

Pj∇fj(x∗) +O(α2
k) = bq,k +O(α2

k)

where in the second equality we use the fact that ᾱq,k = O(1/ks) = O(αk) implied by part (i).

5 Extension to smooth component functions

Extending our results to more general smooth functions requires obtaining similar bounds for the
cycle gradient errors which depend on the gradients and Hessian matrices of the component functions
along the inner iterates. In order to be able to control the change of gradients and Hessian matrices
along the iterates, we introduce the following assumption which has also been used to analyze
SGD [22].

Assumption 5.1. The functions fi are convex on Rn and have Lipschitz continuous second deriva-
tives, i.e. there exists a constant Ui such that

‖∇2fi(x)−∇2fi(y)‖ ≤ Ui‖x− y‖, ∀x, ∀y ∈ Rn,

for i = 1, 2, . . . ,m.
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Under this assumption, by the triangle inequality, ∇2f(·) is also Lipschitz with constant U :=∑m
i=1 Ui. When the component functions are quadratics, we have the special case with U = Ui = 0.

We will now see how this assumption makes it possible to control the change of gradients of the
component functions. Smooth functions f with Lipschitz Hessians are quadratic-like in the sense
that the first-order Taylor approximation to the gradient of f is almost affine (with a quadratic term
controlled by the parameter U) satisfying

∇f(x) = ∇f(x∗) +H∗(x− x∗) + η, ‖η‖ ≤ U

2
‖x− x∗‖2, ∀x. (49)

(see e.g. [18, Section 1.3]) The analysis of Theorem 3 (and Lemma B.4 it builds upon) considers the
U = 0 case (see e.g. (36) and (48)) applying a first-order Taylor approximation to the gradient of
the component functions at x = xk0 where ‖x−x∗‖ = ‖xk0−x∗‖ = O(αk) by Lemma B.1. Therefore,
when U 6= 0, an extra correction term η = O(α2

k) needs to be added to the analysis. However, we
show in the next theorem that this correction term does not cause a slow down in the convergence
rate (in terms of dependency in k) compared to the quadratic case because the q-suffix averages of
this O(α2

k) correction term decays like O(1/k).8

We will also need one more technical assumption that appeared in a number of papers in the
literature for analyzing incremental methods to rule out the case that the iterates diverge to infinity.
In particular, this assumption is made in [19] for generalizing Theorem 1 on the rate of deterministic
IG from quadratic functions to general smooth functions which we will be referring to.

Assumption 5.2. Iterates {xkj }j,k generated are uniformly bounded, i.e. there exists a non-empty

compact Euclidean ball X ⊂ Rn that contains all the iterates a.s.9

Equipped with these two assumptions, all the results of Theorem 3 extend naturally with minor
modifications. In particular, Pi (which is a constant Hessian matrix in the setting of Theorem 3)
needs to be replaced by ∇2fi(x

∗) or ∇2fi(x
k
i−1) depending on the context.

Theorem 4. Consider the RR iterations given by (5) with stepsize αk = R
(k+1)s where R > 0 and

s ∈ ( 1
2 , 1). Suppose that Assumptions 3.1, 5.1 and 5.2 hold. Then the following statements are true:

(i) For any 0 < q ≤ 1, limk→∞ ks(x̄q,k − x∗) = −aq(s)H−1
∗ v̄ a.s. where H∗ = ∇2f(x∗) is the

Hessian matrix at the optimal solution, aq(s) is defined by (30) and

v̄ :=
1

2

m∑
i=1

∇2fi(x
∗)∇fi(x∗). (50)

(ii) With probability at least 1− δ, we have

x̄q,k − x∗ = rq,k +O
(√

log(1/δ)

k

)
+

{
O
(

log k
k

)
if q = 1

O( 1
k

)
if 0 < q < 1,

where
rq,k = −ᾱq,kH−1

∗ v̄ (51)

is deterministic. The constants hidden by O(·) depend only on G∗, L,m,R, c, q, s and U .

(iii) Let

r̂q,k = −ᾱq,k
[ m∑
i=1

∇2fσk(i)(x
k
i−1)

]−1 m∑
i=1

∇2fσk(i)(x
k
i−1)∇fσk(i)(x

k
i−1)/2.

8This is due to the fact that the sequence α2
k is summable when s > 1/2.

9Note that if this assumption holds and if fi is three-times continuously differentiable on the compact set X , then
the third-order derivatives are bounded and Assumption 5.1 holds.
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Then, r̂q,k = rq,k +O(α2
k). It follows from part (ii) that with probability at least 1− δ,

(x̄q,k − r̂q,k)− x∗ = O
(√

log(1/δ)

k

)
+

{
O
(

log k
k

)
if q = 1

O( 1
k

)
if 0 < q < 1.

Proof. The proof techniques of Theorem 3 applies directly except that the Taylor approximation for
the gradients of the component functions will have an extra term compared to the proof of Theorem
3 (see also (49)). Also, instead of Lemmas B.2 and B.4 that apply to only quadratic functions,
their extensions Lemmas C.3 and C.4 given in the appendix are used in the proof. For the sake of
completeness, besides these changes, we also give an overview of the main modifications required for
each part of the proof:

(i) The expression (36) for the gradient should be modified to include an extra error term ηj of
the form

∇f(xj0) = H∗(x
j
0 − x∗) + ηj , ‖ηj‖ ≤

U

2
‖xj0 − x∗‖2 (52)

By Lemma C.2,
∑
j ηj ≤

U
2 ‖‖x

j
0 − x∗‖2 = O(α2

j ) therefore the sequence ηj is summable and
if averaged decays like O(1/k) without degrading the convergence rate except possibly the
constants hidden by O(·).

(ii) The same proof applies by invoking Lemma C.4 in lieu of Lemma B.4.

(iii) Instead of Lemma B.1, we use Lemma C.2. The expression (48) on the difference of gradients
needs to be adjusted as

‖∇fσk(i)(x
k
i−1)−∇fσk(i)(x

∗)−∇2fσk(i)(x
∗)(xki−1 − x∗)‖ ≤

U

2
‖xki − x∗‖2. (53)

The right-hand side is still O(α2
k) by an application of Lemma C.2 therefore the rest of the

proof applies.

6 An RR algorithm with bias removal

Part (iii) of Theorem 4 (see also part (iii) of Theorem 3) shows that if the estimate of the bias
term r̂q,k given by (51) is subtracted from the q-suffix averaged RS iterates, then the distance to
the optimal solution of the q-suffix averaged iterates becomes on the order of O(1/k) for 0 < q < 1
and on the order of O(log k/k) for q = 1 with high probability. By strong convexity, this translates
into a rate of Õ(1/k2) in the suboptimality of the objective values (where Õ ignores the logarithmic
terms in k appearing when q = 1.). We call this “subtraction operation”, bias removal. Algorithm
DRR describes how this can be implemented. In a practical implementation, the number of cycles
can be fixed in advance to a certain number K, and the estimation of the bias can be done only
once at the last (K-th) cycle (see Step (ii) of Algorithm 1) and then can be subtracted from the
averaged iterates.

The bias removal of the DRR algorithm requires an n× n matrix inversion which requires ≈ n3

arithmetic operations (if there is more structure on the Hessian of fi such as low-rankness or sparsity
this could be improved to ≈ n2), but accelerates the convergence with high-probability. For small or
moderate n, this could be done efficiently and incrementally processing the functions one at a time;
however for large n this may be impractical or infeasible limiting the applicability of this method.
Nevertheless, the expensive matrix inversion step does not need to be done at every cycle, it suffices
to do it only once at the end of the last cycle. Figure 2 compares the performance of SGD, RR and
DRR methods in terms of the histogram of the distance to the optimal solution (left panel) and
suboptimality of the objective function (right panel) on a randomly generated quadratic example

16



Algorithm 1 De-biased Random Reshuffling (DRR)

Input: Initial point x00 ∈ Rn, number of cycles K ∈ N, suffix averaging parameter q ∈ (0, 1], stepsize
parameters R > 0 and s ∈ (1/2, 1).
Initialization: x̄1,0 = 0 ∈ Rn, v̂0 = 0 ∈ Rn, ᾱ1,0 = 0 ∈ R, Ĥ0 = 0 ∈ Rn×n.

1. For each cycle k = 0, 1, 2, . . . ,K − 1:

(a) Inner iteration.

(i) Pick a permutation σk of {1, . . . ,m} uniformly at random.

(ii) For i = 1, 2, . . . ,m:
Compute xki by: xki = xki−1 − αk∇fσk(i)(x

k
i−1), αk = R

(k+1)s
.

// Precompute for the bias estimation only for the last cycle
If k = K − 1, compute v̂i and Ĥi by :

v̂i = v̂i−1 +∇2fσk(i)(x
k
i−1)∇fσk(i)(x

k
i−1)/2, Ĥi = Ĥi−1 +∇2fσk(i)(x

k
i−1)

(iii) Set outer iterate: xk+1
0 = xkm.

(b) Update the simple average of the iterates and the stepsize:

x̄1,k+1 =
k

k + 1
x̄1,k +

1

k + 1
xk0 , ᾱ1,k+1 =

k

k + 1
ᾱ1,k +

1

k + 1
αk

2. If q ∈ (0, 1), compute q-suffix averages from the simple averages:

x̄q,K =
x̄1,K − qx̄1,(1−q)K

1− q , ᾱq,K =
ᾱ1,K − qᾱ1,(1−q)K

1− q .

3. Estimate the bias by the formula (34) : b̂q,K = −ᾱq,KĤ−1
m v̂m in the last cycle.

Output: x̄q,K − b̂q,K .

with a dense Hessian matrix with parameters m = 50, n = 20. For a fair comparison, we run all
the algorithms with the same amount of CPU time. In particular, in Figure 2 we run DRR for
0.5 seconds including the bias correction step, and run RR and SGD for the same amount of time.
We observe that SGD is consistently performing the worst, whereas DRR leads often to a better
solution than RR both in terms of distances to the optimal solution and suboptimality. Figure 3
repeats the experiment with 5 seconds, we see a clearer separation between the histograms of the
RR method and the De-biased RR method. We see similar results when we run the algorithms for
different amount of times. These results show that the asymptotic performance would get better
if one removes the bias term and typically we need more cycles for the bias correction term to be
effective. The results also illustrate the results of Theorem 3 and 4 on the biasedness of the RR
iterations in the sense that asymptotically an improvement can be obtained by subtracting the bias.

7 Conclusion

We analyzed the random reshuffling (RR) method for minimizing a finite sum of convex component
functions. When the objective function is strongly convex and the component functions are smooth,
averaged RR iterates converge at rate ∼ 1/ks to the optimal solution almost surely (which translates
into a rate of 1/k2s in the suboptimality of the objective value) for a diminishing stepsize αk =
Θ(1/ks) with s ∈ (1/2, 1). This is faster than SGD’s Ω( 1

k ) rate. Viewing RR as a gradient descent
method with random gradient errors, this result builds on first showing that gradient errors Ek
satisfying Ek = O(αk) and then relating the gradient error sequence to an i.i.d sequence to which
martingale theory is applicable. Note that the gradient errors in SGD are larger with a O(1)
variance, which leads to a less accurate gradient descent direction. Beyond RR and SGD comparison,
these results also give insight into the fast convergence properties of without-replacement sampling
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strategies compared to with-replacement sampling strategies.
After characterizing the convergence rate of RR, we look into second-order terms in the asymp-

totic expansion of the averaged RR iterates and obtain high probability bounds. We use these
bounds to develop a new method that can accelerate the convergence rate of RR to O( 1

k2 ) with high
probability. Finally, we show that the O( 1

k2 ) rate can also be achieved in expectation (which is a
weaker notion of convergence with respect to convergence with high probability) for the s = 1 case
by adjusting the stepsize to the strong convexity constant of the objective properly.

A Proof of Theorem 2

Proof. Following the analysis of [19], we could write

xk+1
0 − x∗ =

(
I − αkP +O(α3

k)
)
(xk0 − x∗)− α2

kµ̂σk
+O(α3

k) (54)

where
µ̂σk

:= −
∑

1≤i<j≤m

Pσk(j)∇fσk(i)(x
k
0). (55)

We also have

‖µσk
− µ̂σk

‖ ≤
∑

1≤i<j≤m

‖Pσk(j)‖‖∇fσk(i)(x
k
0)−∇fσk(i)(x

∗)‖ ≤
∑

1≤i<j≤m

Lσk(j)Lσk(i)distk = O(distk)

where µσk
is defined by (20) with σ = σk. Plugging this into (54),

xk+1
0 − x∗ =

(
I − αkP +O(α2

k) +O(α3
k)
)
(xk0 − x∗)− α2

kµσk
+O(α3

k + α2
kdistk).

Taking norm squares of both sides in (56), taking conditional expectations and using the fact that
µσk

is bounded (see (23)), we obtain

Eσk

(
dist2

k+1

∣∣xk0) = (xk0 − x∗)T
(
I − 2αkP +O(α2

k)
)
(xk0 − x∗) + 2α2

k〈xk0 − x∗,−µ̄〉
+O(α3

kdistk + α2
kdist2

k + α4
k) (56)

where Eσk
denotes the expectation with respect to the random permutation σk and

µ̄ = Eσk
(µσk

) = Eσ1
(µσ1

) .

It follows from Cauchy-Schwartz that for any β > 0

α2
k

∥∥〈xk0 − x∗,−µ̄〉∥∥ ≤ α2
kdistk‖µ̄‖ =

(√
βα

1/2
k distk

) α3/2
k ‖µ̄‖√
β

≤ βαkdist2
k

2
+
α3
k‖µ̄‖2

2β
,

and also

α3
kdistk = α2

k (αkdistk) ≤ α4
k

2
+
α2
kdist2

k

2
.

Plugging these bounds back into (56), using the lower bound (6) on the Hessian H∗ = P and invoking
the tower property of the expectations:

E
(
dist2

k+1

)
=

(
1− αk(2c− β) +O(α2

k)
)
E
(
dist2

k

)
+ α3

k

‖µ̄‖2

β
+O(α4

k).

Plugging in αk = R/ks, it follows from Chung’s lemma [15, Lemma 4.2] that,

E
(
dist2

k+1

)
≤

{
R2‖µ̄‖2
β(2c−β)

1
k2s + o

(
1
k2s

)
if 0 < s < 1 and 2c− β > 0,

R3‖µ̄‖2
β(R(2c−β)−2)

1
k2 + o( 1

k2 ) if s = 1 and R(2c− β)− 2 > 0,
(57)
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Figure 2: Comparison of RR, Debiased-RR (DRR) and SGD when component functions are random
quadratics with m = 50, n = 20 and with simulation time 0.5 seconds over 500 sample paths. Top,
left: Histograms of distk for RR, DRR and SGD. Bottom, left: Histograms of distk for RR and DRR
only (without SGD). Top, right: Histograms of the suboptimality in objective value for RR, DRR
and SGD. Bottom, right: Histograms of the suboptimality in objective value for RR and DRR only
(without SGD).

Figure 3: Comparison of RR, De-biased-RR (DRR) and SGD. The simulation framework and pa-
rameters are the same as those in Fig. 2 except that the simulation time is 5 seconds instead for
each path. 19



Next we choose β to get the best upper bound above. This is done by choosing β = c for 0 < s < 1
and choosing β = (Rc− 1)/R for s = 1 which yields

E
(
dist2

k+1

)
≤

{
R2‖µ̄‖2
c2

1
k2s + o

(
1
k2s

)
if 0 < s < 1,

R4‖µ̄‖2
(Rc−1)2

1
k2 + o( 1

k2 ) if s = 1 and Rc− 1 > 0.
(58)

By Jensen’s inequality, we have E(distk) ≤
(
E
(
dist2

k+1

))1/2
. Therefore, by taking square roots of

both sides above in (57) we conclude.

B Technical lemmas for the proof of Theorem 3

The first lemma is on characterizing what is the worst-case distance of the all the inner iterates of
RR to the optimal solution x∗. This quantity we want to upper bound is a random variable, but
the upper bounds we obtain are deterministic holding for every sample path. This lemma is based
on Corollary 4.1 and uses the fact that the distance between the inner iterates are on the order of
the stepsize.

Lemma B.1. Under the conditions of Theorem 3 we have max
0≤i<m

‖xki − x∗‖ = O( 1
ks ). where O(·)

hides a constant that depends only on G∗, L,m, c and R.

Proof. By Corollary 4.1,

‖xk0 − x∗‖ = O(
1

ks
). (59)

where O(·) hides a constant that depends only on G∗, L,m,R and c. We have also for any 0 ≤ i < m
and k ≥ 0,

‖xki − x∗‖ ≤ ‖xk0 − x∗‖+ ‖xki − xk0‖ = ‖xk0 − x∗‖+ iαk max
`=1,...,i

‖∇fσk(`)(x
k
`−1)‖

≤ ‖xk0 − x∗‖+ (m− 1)
R

(k + 1)s
(
G∗ + max

`=1,...,i
‖∇fσk(`)(x

k
`−1)−∇fσk(`)(x

∗)‖
)

≤ ‖xk0 − x∗‖+ (m− 1)
R

(k + 1)s
(
G∗ + L max

`=1,...,i
‖xk`−1 − x∗‖

)
.

where we used the L-Lipschitzness of the gradient of f where L is given by 17. Using (59) and
applying this inequality inductively for i = 0, 1, 2, . . . ,m− 1 we conclude.

The second lemma is on characterizing how fast on average the outer iterates move (if normalized
by the stepsize) after a cycle of the RR algorithm. This is clearly related to the magnitude of the
gradients seen by the iterates and is fundamental for establishing the convergence rate of the averaged
RR iterates in Theorem 3.

Lemma B.2. Under the conditions of Theorem 3, consider the sequence

Iq,k =

∑k−1
j=(1−q)k (xj0 − x

j+1
0 )α−1

j

qk
, 0 < q ≤ 1. (60)

Then, Iq,k =

{
O
(

log k
k

)
if q = 1,

O
(

1
k

)
if 0 < q < 1.

In the former case, O(·) hides a constant that depends only

on G∗, L,m, c,R, s, q and dist0. In the latter case, the same dependency on the constants occurs
except that the dependency on dist0 can be removed.
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Proof. It follows from integration by parts that for any ` < k,

−
k−1∑
j=`

(xj0 − x
j+1
0 )α−1

j = α−1
k (xk0 − x∗)− α−1

` (x`0 − x∗)−
k−1∑
j=`

(xj+1
0 − x∗)(α−1

j+1 − α
−1
j ). (61)

Next, we investigate the asymptotic behavior of the terms on the right-hand side. A consequence of
Corollary 4.1 and the inequality 22 is that

α−1
k ‖x

k
0 − x∗‖ =

(k + 1)s

R
‖xk0 − x∗‖ ≤

LmG∗
c

+ o(1) = O(1) (62)

and therefore

|α−1
k+1 − α

−1
k |‖x

k
0 − x∗‖ =

(k + 2)s − (k + 1)s

(k + 1)s
α−1
k ‖x

k
0 − x∗‖ =

((
1 +

1

k + 1

)s − 1

)
α−1
k ‖x

k
0 − x∗‖

≤ s

k + 1
α−1
k ‖x

k
0 − x∗‖ ≤

sLmG∗
c

1

k + 1
+ o(

1

k + 1
) = O(

1

k + 1
)

where O(·) hides a constant that depends only on L,G∗, c,m and s. Then, setting ` = (1 − q)k in
(61), it follows that

∥∥ k−1∑
j=`

(xj0 − x
j+1
0 )α−1

j

∥∥ ≤ ‖α−1
k (xk0 − x∗)‖+ ‖α−1

(1−q)k(x
(1−q)k
0 − x∗)‖ (63)

+

k−1∑
j=(1−q)k

‖xj+1
0 − x∗‖|α−1

j+1 − α
−1
j |.

= O(1) + ‖α−1
(1−q)k(x

(1−q)k
0 − x∗)‖+O

( k−1∑
j=(1−q)k

1

j + 1

)
. (64)

We also have

‖α−1
(1−q)k(x

(1−q)k
0 − x∗)‖ =

{
α−1

0 dist0 if q = 1,

O(1) if 0 < q < 1,
(65)

where the second part follows from (62) with similar constants for the O(·) term. As the sequence
1
j+1 is monotonically decreasing, for any k > 0 we have the bounds

k−1∑
j=(1−q)k

1

j + 1
≤ 1

(1− q)k + 1
+

∫ k−1

(1−q)k

1

x+ 1
dx ≤

{
1 + log k if q = 1,

1 + log( 1
1−q ) if 0 < q < 1.

(66)

Note that when q = 1 this bound grows with k logarithmically whereas for q < 1 it does not grow
with k. Then, combining (64), (65) and (66) we obtain

‖Iq,k‖ ≤
∥∥∑k−1

j=` (xj0 − x
j+1
0 )α−1

j

∥∥
qk

=

{
O
(

log k
k

)
if q = 1

O
(

1
k

)
if 0 < q < 1

as desired which completes the proof.

Lemma B.3. Let σ be a random permutation of {1, 2, . . . ,m} sampled uniformly over the set of all
permutations Γ defined by (4) and µ(σ) be the vector defined by (20) that depends on σ. Then,

µ̄ = Eσ
(
µ(σ)

)
=

1

2

m∑
i=1

Pi∇fi(x∗) (67)

where Eσ denotes the expectation with respect to the random permutation σ and m̄u is defined by
(26).
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Proof. For any i 6= `, the joint distribution of (σ(i), σ(`)) is uniform over the set of all (ordered)
pairs from {1, 2, . . . ,m}. Therefore, for any i 6= `,

Eσ
[
Pσ(i)∇fσ(`)(x

∗)
]

=

m∑
i=1

m∑
i 6=j,j=1

Pi∇fj(x∗)
m(m− 1)

=

∑m
i=1 Pi

∑m
j=1∇fj(x∗)−

∑m
j=1 Pj∇fj(x∗)

m(m− 1)
= −

∑m
j=1 Pj∇fj(x∗)
m(m− 1)

where we used the fact that ∇f(x∗) =
∑m
j=1∇fj(x∗) = 0 by the first order optimality condition.

Then, by taking the expectation of (69), we obtain

Eσ(µ(σ)) = −
m∑
i=1

i−1∑
`=0

E
[
Pσ(i)∇fσ(`)(x

∗)
]

=

m∑
i=1

i−1∑
`=0

∑m
j=1 Pj∇fj(x∗)
m(m− 1)

=

∑m
j=1 Pj∇fj(x∗)

2
.

which completes the proof.

Lemma B.4. Under the conditions of Theorem 3, the following statements are true:

(i) We have
Ek = αkµ(σk) +O(α2

k), k ≥ 0, (68)

where Ek is the gradient error defined by (8), O(·) hides a constant that depends only on
G∗, L,m,R and c and

µ(σk) = −
m∑
i=1

Pσk(i)

i−1∑
`=1

∇fσk(`)(x
∗). (69)

is a sequence of i.i.d. variables where the function µ(·) is defined by (20).

(ii) For any 0 < q ≤ 1, limk→∞ Yq,k = µ̄ a.s. where Yq,k =
∑k−1

i=(1−q)k
Ej∑k−1

j=(1−q)k
αj
.

(iii) It holds that
‖µ(σk)‖ ≤ LmG∗. (70)

Proof. (i) As component functions are quadratics, (8) becomes

Ek =

m∑
i=1

Pσk(i)(x
k
i−1 − xk0) = −

m∑
i=1

Pσk(i)αk

i−1∑
`=1

∇fσk(`)(x
k
`−1).

where we can substitute

∇fσk(`)(x
k
`−1) = ∇fσk(`)(x

∗) + Pσk(`)(x
k
`−1 − x∗). (71)

Then an application of Lemma B.1 proves directly the desired result.

(ii) We introduce the normalized gradient error sequence Yj = Ej/αj . By part (i), Yj = µ(σj) +
O(αj) where µ(σj) is a sequence of i.i.d. variables. By the strong law of large numbers, we
have

lim
k→∞

∑k−1
j=0 µ(σj)

k
= Eµ(σj) = µ̄ a.s. (72)

where the last equality is by the definition of µ̄. Therefore,

lim
k→∞

∑k−1
j=0 Yj

k
= lim
k→∞

(∑k−1
j=0 µ(σj)

k
+

∑k−1
j=0 O(αj)

k

)
= µ̄ a.s.
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where we used the fact that the second term is negligible as
∑k−1
j=0 αj/k = O(k−s) → 0. As

the average of the sequence Yj converges almost surely, one can show that this implies almost
sure convergence of a weighted average of the sequence Yj as well as long as weights satisfy
certain conditions as k →∞. In particular, as the sequence {αj} is monotonically decreasing
and is non-summable, by [14, Theorem 1],

lim
k→∞

Y1,k = lim
k→∞

∑k−1
j=0 αjYj∑k−1
j=0 αj

= lim
k→∞

∑k−1
j=0 Ej∑k−1
j=0 αj

= µ̄ a.s. (73)

This completes the proof for q = 1. For 0 < q < 1, by the definition of Yq,k, we can write
Y1,k = (1− wk)Yq,k + wkY1,(1−q)k where the non-negative weights wk satisfy

wk =

∑(1−q)k−1
j=0 αj∑k−1
j=0 αj

→k→∞ (1− q)1−s < 1.

As both Y1,k and Y1,(1−q)k go to µ̄ a.s. by (73), it follows that

lim
k→∞

Yq,k = lim
k→∞

Y1,k − wkY1,(1−q)k

1− wk
= µ̄ a.s

as well for any 0 < q < 1. This completes the proof.

(iii) This is a direct consequence of the triangle inequality applied to the definition (69) with
Li = ‖Pi‖ and L =

∑m
i=1 Li.

C Techical Lemmas for the proof of Theorem 4

We first state the following result from [19] which extends Corollary 4.1 from quadratics to smooth
functions.

Corollary C.1. Under the setting of Theorem 4, then

distk ≤
RM

c

1

ks
+ o(

1

ks
),

where the right-hand side is a deterministic sequence, M := LmG∗ and G∗ is defined by (21).

Proof. The proof of Corollary 4.1 is based on Theorem 1 from [19]. This theorem admit an extension
to smooth functions with Lipschitz gradients to (see [19]), therefore by the same reasoning along the
lines of Corollary 4.1 the result follows.

Lemma C.2. Under the conditions of Theorem 4, all the conclusions of Lemma B.1 remain valid.

Proof. The proof of Lemma B.1 applies identically except that instead of Corollary 4.1 we use its
extension Corollary C.1.

Lemma C.3. Under the conditions of Theorem 4, all the conclusions of Lemma B.2 remain valid.

Proof. The proof of Lemma B.2 applies identically with the only difference that the bound on
distk = ‖xk0 − x∗‖ is obtained from Corollary C.1 instead of Corollary 4.1.

Lemma C.4. Under the conditions of Theorem 4, the following statements are true:
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(i) We have
Ek = αkv(σk) +O(α2

k), k ≥ 0, (74)

where O(·) hides a constant that depends only on G∗, L,m,R, c and U and

v(σk) = −
m−1∑
i=0

∇2fσk(i)(x
∗)

i−1∑
`=0

∇fσk(`)(x
∗).

(ii) It holds that
‖v(σk)‖ ≤ LmG∗ (75)

where

v̄ := Ev(σk) =

m∑
i=1

∇2fi(x
∗)∇fi(x∗)/2. (76)

(iii) For any 0 < q ≤ 1, limk→∞ Yq,k = v̄ with probability one where

Yq,k =

∑k−1
i=(1−q)k Ej∑k−1
j=(1−q)k αj

. (77)

Proof. For part (i), first we express Ek using the Taylor expansion and the Hessian Lipschitzness as

Ek =

m∑
i=1

(
∇2fσk(i)(x

k
0)

)
(xki−1 − xk0) +O(U‖xki−1 − xk0‖2).

= −
m∑
i=1

(
∇2fσk(i)(x

k
0)

)
(xki−1 − xk0) +O

(
α2
kU

∥∥∥∥ i−1∑
`=1

∇fσk(`)(x
k
`−1)

∥∥∥∥)
By Lemma C.2, we have ‖xk` −x∗‖ = O(αk) with probability one. Then, by the gradient and Hessian
Lipschitzness we can substitute above

∇fσk(`)(x
k
`−1) = ∇fσk(`)(x

∗) +O(αk), ∇2fσk(`)(x
k
`−1) = ∇2fσk(`)(x

∗) +O(αk).

which implies directly Equation (74). The rest of the proof for parts (ii) and (iii) is similar to the
proof of Lemma B.4 and is omitted.
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