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Abstract
We present a Branch-and-Cut algorithm for a class of nonlinear chance-constrained
mathematical optimization problems with a finite number of scenarios. Unsatisfied
scenarios can enter a recovery mode. This class corresponds to problems that can be
reformulated as deterministic convexmixed-integer nonlinear programming problems
with indicator variables and continuous scenario variables, but the size of the refor-
mulation is large and quickly becomes impractical as the number of scenarios grows.
TheBranch-and-Cut algorithm is based on an implicit Benders decomposition scheme,
wherewegenerate cutting planes as outer approximation cuts from the projection of the
feasible region on suitable subspaces. The size of the master problem in our scheme is
much smaller than the deterministic reformulation of the chance-constrained problem.
We apply the Branch-and-Cut algorithm to the mid-term hydro scheduling problem,
for which we propose a chance-constrained formulation. A computational study using
data from ten hydroplants in Greece shows that the proposed methodology solves
instances faster than applying a general-purpose solver for convex mixed-integer non-
linear programming problems to the deterministic reformulation, and scales much
better with the number of scenarios.
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1 Introduction

Mathematical programming is an invaluable tool for optimal decision-making that
was initially developed in a deterministic setting. However, early studies on prob-
lems with probabilistic (i.e., nondeterministic) constraints have appeared since
the late 1950s, see, e.g., [1,2]. In a problem with probabilistic constraints, the
formulation involves a (vector-valued) random variable that parametrizes the fea-
sible region of the problem; the decision-maker specifies a probability α, and
the solution to the problem must optimize a given objective function subject to
being inside the feasible region for a set of realizations of the random variable
that occurs with probability at least 1 − α. The interpretation is that a solu-
tion that does not belong to the feasible region is undesirable, and we want
this event to happen with a probability at most α. This type of problem is
called a chance-constrained mathematical programming problem in the literature
[1].

Without loss of generality, a chance-constrained mathematical program can be
expressed as

max{cx : Pr(x ∈ Cx (w)) ≥ 1 − α, x ∈ X}, (CCP)

where w is a random variable, Cx (w) is a set that depends on the realization of w

(the set of probabilistic constraints), and X is a set that is described by deterministic
constraints [2]. We use the subscript Cx to emphasize the fact that, given w, Cx (w) is
described in terms of the x variables only; this notation will be useful in subsequent
parts of the paper. A considerable simplification of the problem is that in whichCx (w)

is described by a set of constraints and Pr(x ∈ Cx (w)) takes into account the violation
of constraints one at a time, instead of considering the joint probability of x ∈ Cx (w),
which is more difficult. Chance-constrained mathematical programming problems
find applications in many different contexts, see, e.g., [3–5]. The formulation (CCP)
allows for two-stage problems with recourse actions, because the sets Cx (w) can
be the projection of higher-dimensional sets. This paper discusses the case where
recourse actions are allowed and we are interested in the joint probability of x ∈
Cx (w).

A generalization of (CCP) is that in which unsatisfied scenarios can enter
a recovery mode: in this case, whenever x /∈ Cx (w), a cost that depends on
the magnitude of the infeasibility has to be paid. The interpretation of such a
model is that the normal mode of operation is when x ∈ Cx (w), and we want
this to happen with probability at least 1 − α, but whenever we fall outside
this situation we are interested in minimizing the cost associated with recover-
ing a normal-mode operation. This problem has been studied in [6], where a
cost for the normal-mode operation is also considered. If we denote by ϕ(x, w)

the objective function contribution of satisfied scenarios, and by ϕ̄(x, w) the
objective function contribution of unsatisfied scenarios, we obtain the following
formulation:
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Nonlinear chance-constrained problems with applications… 407

max{cx + Pr(x ∈ Cx (w))E[ϕ(x, w)|x ∈ Cx (w)] (CCPR-OBJ)

+ Pr(x /∈ Cx (w))E[ϕ̄(x, w)|x /∈ Cx (w)] :
Pr(x ∈ Cx (w)) ≥ 1 − α, x ∈ X}.

For example, in an energy scheduling problem such as the one discussed later
in this paper, the recovery mode could represent the situation in which the pro-
duction quotas set by the government are not met, or the user demand is not
satisfied. In these cases, the system operator may have to meet the requirements
buying energy from a third-party producer, which should only happen with low
probability and would have an associated cost. The methodology discussed in
this paper applies to (CCPR-OBJ) and therefore to (CCP), which is a special
case.

If uncertainty affects only the right-hand side values of the systemof inequalities that
defines the feasible region, under certain assumptions it is possible to derive a tractable
reformulation of (CCP), e.g., [7,8]. Amore general case is considered when the uncer-
tainty can affect all parts of the system of inequalities describing Cx (w). Under this
more general setting, we need additional assumptions to deal with (CCPR-OBJ). In
particular, assume that:

(A1) the sample space, denoted as Ω , is discrete and finite, and in particular Ω =
{wi : i = 1, . . . , k}.

We should note that the assumption of discrete and finite sample space, while restric-
tive, includes a large number of practically relevant situations: typically, forecasts
of future events cannot be too detailed and a general distribution can be truncated
and discretized if necessary. Furthermore, even in the case that discretization and
truncation cannot be applied, one can typically obtain good solutions and approxi-
mation bounds for a problem that requires general distributions via sample-average
approximation [9]. From now on, we indeed assume Ω = {wi : i = 1, . . . , k}. The
realizations w1, . . . , wk are typically called scenarios. Let pi = Pr(w = wi ). We can
then introduce indicator variables zi for each set Cx (w

i ), and write (CCPR-OBJ) in
the following equivalent form:

max cx + Pr(x ∈ Cx (w))E[ϕ(x, w)|x ∈ Cx (w)]
Pr(x /∈ Cx (w))E[ϕ̄(x, w)|x /∈ Cx (w)]

s.t.: x ∈ X
i = 1, . . . , k zi = 0 ⇔ x ∈ Cx (w

i )
k∑

i=1

pi zi ≤ α

i = 1, . . . , k zi ∈ {0, 1}.
To simplify this problem, we make an additional assumption:

(A2) ϕ(x, wi ) ≥ ϕ̄(x, wi ) ∀x ∈ X ∩ Cx (w
i ), i = 1, . . . , k.

This implies that whenever x ∈ Cx (w
i ), the normal-mode objective function con-

tribution ϕ(x, wi ) is to be preferred to the recovery-mode contribution ϕ̄(x, wi ).
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The assumption is verified, e.g., whenever ϕ represents a nonnegative revenue and
ϕ̄ represents a cost, i.e., a nonpositive value. Assumption (A2) ensures that we do
not have to worry about two-stage consistency [10]. Given (A2), we can replace
zi = 0⇔ x ∈ Cx (w

i ) with zi = 0⇒ x ∈ Cx (w
i ). To bring the problem to a standard

form that simplifies our exposition, let n be the dimension of x in (CCPR-OBJ);
augment the vector x with two continuous variables per scenario, say xn+i and
xn+k+i for scenario i = 1, . . . , k, and augment c with two copies of the vector
(p1, . . . , pk). Then, without loss of generality we can assume that Cx (w

i ) sub-
sumes the constraints xn+i ≤ ϕ((x1, . . . , xn), wi ), xn+k+i ≤ 0, and introduce the
set C̄x (w

i ) := {x ∈ R
n+2k : xn+i ≤ 0, xn+k+i ≤ ϕ̄((x1, . . . , xn), wi )}. It is then

easy to see that (CCPR-OBJ) can be written as follows, where the vectors x, c of
(CCPR-OBJ) can be recovered as the first n components of x and c below:

max cx
s.t.: x ∈ X

i = 1, . . . , k zi = 0 ⇒ x ∈ Cx (w
i )

i = 1, . . . , k zi = 1 ⇒ x ∈ C̄x (w
i )

k∑

i=1

pi zi ≤ α

i = 1, . . . , k zi ∈ {0, 1}.

(CCPR)

Our third and final assumption allows us to obtain a deterministic reformulation of
(CCPR), using integer programming techniques:

(A3) all the Cx (w
i )’s and C̄x (w

i )’s share the same recession cone.

Apossible reformulation is accomplished by defining a problemwith all the constraints
of each of the Cx (w

i ) and C̄x (w
i ), and using a binary variable zi for each wi to acti-

vate/deactivate the corresponding constraints via big-M coefficients. Assumption (A3)
is necessary because the recession cone of the deterministic equivalent formulation,
and the recession cone of (CCPR), might be different otherwise. Indeed, the recession
cone of (CCPR) is the union, over all feasible combinations of zi , of the intersection
of the recession cones of the sets Cx (w

i ), C̄x (w
i ) that are “active”, as determined by

the zi variables. On the other hand, it is known that in the deterministic equivalent of
(CCPR), formulated using big-M constraints to activate/deactivate sets, the recession
cones of “inactive” sets cannot be deactivated, hence the only unbounded directions
are those that belong to all the setsCx (w

i ), C̄x (w
i ) at the same time (see [11]). This is

clearly not the same as the recession cone of (CCPR), unless the sufficient condition
(A3) holds. We remark that different, possibly approximate, reformulations of (CCP)
or (CCPR) have been discussed in the literature, e.g., [12–14], but none of them yields
an exact algorithm under the assumptions of the present paper.

Unsurprisingly, the size of the problems obtained with the indicator-variable refor-
mulation is unmanageable in most practically relevant situations, and moreover, the
relaxations of mathematical programs with this type of indicator variables tend to be
very weak, leading to poor performance of solution methods (see, e.g., [15]). How-
ever, under relatively mild assumptions it is possible to perform implicit solution of
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the reformulated problem. The idea is to keep the indicator variables, but avoid the
classical on/off reformulation of the constraints that involves them. Then, a Branch-
and-Cut algorithm [16] can be applied to the problem (CCPR), setting up a master
problem of the form maxx,z{cx : x ∈ X , z ∈ {0, 1}k,∑k

i=1 pi zi ≤ α}. Whenever the
solution of the master problem x̂ does not satisfy the constraints of (CCPR), cuts are
generated for the sets Cx (w

i ) and C̄x (w
i ), depending on the values of the indicator

variables. The cuts are then added to the master problem. This basic idea yields an
exact algorithm for (CCPR), and it has been successfully applied to different types
of problems [6,17]. However, the literature mainly focuses on the case where all of
the constraints are linear and all the original variables are continuous. While there are
a few studies on linear problems with integer variables and certain classes of inte-
ger two-stage problems, e.g., [18,19], they are limited to specific problem structures,
thus, the methods proposed cannot be applied in general. The classical decomposi-
tion approach for two-stage nonlinear problems is generalized Benders decomposition
[20], but it has the drawback of requiring separability and/or knowledge of the problem
structure to be practically viable; for these reasons, to the best of our knowledge it
has not been embedded in an automated, general-purpose (i.e., problem-independent)
decomposition scheme for this class of problems so far.

In this paper we consider the case where the sets Cx (w
i ), C̄x (w

i ) are described
by finitely many convex, potentially nonlinear inequalities, and propose a finitely
convergent Branch-and-Cut algorithm. The cutting planes that we generate can be
obtained as outer approximation cuts [21] and are therefore linear, as opposed to
the generalized Benders cuts of [20], which can be nonlinear in general. Our cut
generation algorithm is much simpler than the generalized Benders procedure: it has
fewer assumptions, in particular it does not require separability of the first and second
stage variables or knowledge of the gradients, and it can be automated. The main
application studied in this paper is the scheduling of a hydro valley in a mid-term
horizon [3,22–24]. We propose a chance-constrained quantile optimization model
for this problem that is equivalent to the minimization of the Value-at-Risk (see,
e.g., [25]), and perform a case study on the scheduling of a 10-plant hydro valley
in Greece, using a mix of historical and realistically generated data. In addition, we
consider a problem formulationwith step price functions that involves binary variables
in the sets Cx (w

i ), and apply the Branch-and-Cut algorithm to solve the continuous
relaxation and to generate primal bounds as a heuristic. Computational experiments
show that our approach is able to solve large instances obtained from data of [22] very
effectively, with speedups that are often of several orders of magnitude. We remark
that our formulation of the hydro scheduling problem is an instance of (CCP) rather
than the more general (CCPR) because we do not take into account recovery costs, but
of course this is allowed by the algorithm that we propose, by dropping constraints
and auxiliary variables related to ϕ̄(x, wi ), C̄x (w

i ) in (CCPR).
This paper has therefore the following contributions. First, we propose a Branch-

and-Cut algorithm for the nonlinear convex (CCPR), which is a generalization of
(CCP), and show that it finitely converges under mild assumptions. Despite its con-
ceptual simplicity, our algorithm extends the approach of [6] in two ways: assumption
(A2) of [6,17], imposing polyhedrality of the scenario problems, is replaced by the
weaker assumption of nonlinear convex scenario problems, and assumption (B1) of [6],
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imposing relatively complete recourse on the recovery scenario problems, is dropped.
On the other hand, assumption (B2) in [6] imposes essentially the opposite of (A2) of
the present paper, and for this reason [6] has to consider a threshold policy to determine
when to operate the recovery mode, see [6, Sect. 2.2.2]. Both models find their appli-
cation in specific situations: we discuss this at the end of Sect. 2.1. Second, we show
that the outer approximation cuts that we use are a linearization of generalized Benders
cuts from a particular choice of dual variables, but they yield several advantages over
generalized Benders cuts. Third, we provide an extensive computational evaluation on
an important energy scheduling problem, showing the practical effectiveness of our
approach and its scalability with respect to the number of scenarios.

This paper is organized as follows. Section 2 describes the decomposition approach
with the associated Branch-and-Cut algorithm, discussing separating inequalities and
their properties. Section 3 formalizes a mathematical model for the hydro schedul-
ing problem. Section 4 contains a computational evaluation of several algorithms
on instances of increasing difficulty derived from our case study, and discusses the
numerical results. Finally, some conclusions are drawn in Sect. 5.

2 Decomposition algorithm for (CCPR)

Under assumptions (A1)–(A3), we discussed in Sect. 1 how to obtain a deterministic
equivalent formulation for (CCPR) using binary variables. We now introduce this
mathematical model for the linear case, to explain the basic ideas and notation before
transitioning to the nonlinear convex case, which is the focus of this paper.

In terms of notation, we denote by x the decision variables of (CCPR), by yi the
recourse variables for scenario wi , by ȳi the recovery variables for scenario wi [i.e.,
variables that are used to model the set C̄x (w

i )], and by z binary variables with the
property that zi = 0 ⇒ x ∈ Cx (w

i ), zi = 1 ⇒ x ∈ C̄x (w
i ). Let X = {x : Ax ≤ b},

Cx (w
i ) = {x : ∃yi Ai x + Hi yi ≤ bi }, C̄x (w

i ) = {x : ∃ȳi Āi x + H̄ i yi ≤ b̄i }.
Here and throughout the paper, integrality requirements on the set X can be handled
in a straightforward manner within the same framework at the cost of additional
computational complexity, but our discussion refers to the case where all variables are
continuous. Then, (CCPR) can be formulated as follows:

max cx
s.t.: Ax ≤ b

A1x + H1y1 ≤ b1 + M1z1
Ā1x + H̄1 ȳ1 ≤ b̄1 + M̄1(1 − z1)
...

. . .
...

Akx + Hk yk ≤ bk + Mkzk
Āk x + H̄ k ȳk ≤ b̄k + M̄k(1 − zk)

p1z1 + . . . + pkzk ≤ α

z1 . . . zk, ∈ {0, 1}.

(1)
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In this formulation,Mi and M̄i are vectors of large enough constants so that for all fea-
sible x , there exist yi , ȳi such that Ai x+Hi yi ≤ bi +Mi , and Āi x+ H̄ i ȳi ≤ b̄i + M̄i .
In other words, the big-M values deactivate sets of constraints based on the values
of the variables zi . Because of assumption (A3), we are guaranteed that there exist
finite values Mi , M̄i with this property. The constraint

∑k
i=1 pi zi ≤ α ensures that

the probability associated with unsatisfied scenarios is at most α, thereby model-
ing the chance constraint. The formulation (1) is a two-stage problem with recourse
where there is no objective function contribution associated with the recourse vari-
ables, therefore the second-stage problems are feasibility problems. Our discussion
in Sect. 1 shows how (CCPR-OBJ) can be brought to this form, enlarging the
vector of first-stage variables x if necessary. Problem (1) is a mixed-integer lin-
ear programming problem (MILP) that naturally leads to a Benders decomposition
algorithm, and this is the approach followed, e.g., by [6] for (CCPR), and [17] for
(CCP).

This paper studies the case where the scenario subproblems are convex sets
described as follows:

Cx,y(w
i ) = {(x, yi ) : gij (x, yi ) ≤ 0, j = 1, . . . ,mi }

C̄x,y(w
i ) = {(x, ȳi ) : ḡij (x, ȳi ) ≤ 0, j = 1, . . . , m̄i }
Cx = ProjxCx,y(w

i )

C̄x = Projx C̄x,y(w
i ).

In the above expression and in the rest of this paper, Projx indicates the projection of a
set onto the space of the x variables, i.e., ProjxCx,y(w

i ) := {x : ∃(x, y) ∈ Cx,y(w
i )}.

For all i , we write the vector functions gi (x, yi ) = (gi1(x, y
i ), . . . , gimi

(x, yi ))T ,
ḡi (x, yi ) = (ḡi1(x, ȳ

i ), . . . , ḡim̄i
(x, ȳi ))T . For ease of notationwekeep the assumption

that X = {x : Ax ≤ b}, but this does not affect our development and the generalization
to the case where X is a general convex set, possibly with the addition of integrality
requirements, is straightforward. If all the Cx (w

i ) have the same recession cone,
we can write a mixed-integer nonlinear programming (MINLP) model for (CCP) as
follows:

max cx
s.t.: Ax ≤ b

g1(x, y1) ≤ M1z1
ḡ1(x, ȳ1) ≤ M̄1(1 − z1)

...
. . .

...

gk(x, yk) ≤ Mkzk
ḡk(x, ȳk) ≤ M̄k(1 − zk)

p1z1 + . . . + pkzk ≤ α

z1 . . . zk, ∈ {0, 1}.

(2)

Assuming the functions gij , ḡ
i
j are convex, (2) is a convex MINLP in the sense that it

has a convex continuous relaxation.
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2.1 Overview of the approach

Solving directly the MINLP model (2) can be impractical, therefore we follow a
decomposition approach whereby we define a master problem with the constraints
defining x ∈ X , and 2k scenario subproblems, one for each normal-mode scenario
and one for each recovery-mode scenario, involving scenario-dependent constraints.
Using the notation introduced in the previous section, x̂ is feasible for scenario i if
x̂ ∈ Cx (w

i ), and is feasible for the recovery-mode scenario i if x̂ ∈ C̄x (w
i ). Since

Cx (w
i ), C̄x (w

i ) have the same structure, from now on our discussion focuses on the
sets Cx (w

i ), but clearly it also applies to the sets C̄x (w
i ).

The basic idea we exploit is to generate solutions for the master problem, and if
they are not feasible for enough scenarios to satisfy the joint chance constraint, we cut
them off. This is essentially a Benders decomposition approach applied to (2). In the
linear case (1), the solution to the master problem can be cut off by means of textbook
Benders cuts. In the nonlinear case (2),we can use generalizedBenders cuts. This paper
advocates a particular choice of outer approximation cuts, that are linearizations of
Benders cuts and present several advantages: this will be the subject of Sect. 2.2; the
relationship with generalized Benders decomposition [20] is discussed in Sect. 2.4.

Instead of applying a pureBenders decomposition approach to (2), we use aBranch-
and-Cut approach adapted from [17], where the linear case is considered and therefore
applies to (1) rather than (2). However, the steps of the algorithm remain the same, as
this is essentially implicit Benders decomposition: we do not solve the master problem
to (integral) optimality, but apply Branch-and-Cut and separate Benders cuts at every
node with an integral solution. The algorithm uses a separation routine for the scenario
subproblems (to be satisfied, in the nonlinear case, with tolerance εc), combined with
the variables z. A basic version of the algorithm is given by Algorithm 1.

It is not difficult to see that this algorithm can be applied even if the sets Cx (w
i ) are

nonlinear provided that we have access to a separation routine, although termination
is in general not guaranteed. We remark that we could employ a nonlinear separating
inequality rather than a hyperplane in steps 7 and 11 of Algorithm 1, as is done in
generalized Benders decomposition [20]. However, linear inequalities have several
computational advantages, and allow for an easy lifting procedure of the coefficients
on the z variables following [17].Wewill revisit this topic in Sect. 2.4 froma theoretical
point of view, whereas a discussion of lifting on the z variables is given in Sect. 4.1;
notice that lifting does not affect the general scheme of the algorithm.

Algorithm 1 has some similarities with the LP/NLP-BB approach of [26] and the
Hybrid approach of [27], in the sense that all these methodologies involve a Branch-
and-Cut algorithm where additional outer approximation inequalities are computed at
nodes of the tree with integer solution. However, a fundamental difference exists: the
algorithms of [26,27] as applied to (2) would work with a relaxation of the feasible
region that includes all the decision variables, using NLP subproblems to construct
outer approximation cuts fixing the integer variables. In the case of Algorithm 1, the
master contains a subset of decision variables and is not directly aware of the recourse
variables yi or the recovery variables ȳi . Therefore, we work on a projection of the
feasible region of (2), and some integer and continuous variables (z and x) are fixed
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Algorithm 1 Decomposition Algorithm
1: Set up a master problem of the form

max cx
s.t.: Ax ≤ b∑k

i=1 pi zi ≤ α

z ∈ {0, 1}k .

⎫
⎪⎪⎬

⎪⎪⎭
(3)

2: repeat
3: Apply Branch and Bound on (3), i.e.: select an active node; solve continuous relaxation; if the node

is not pruned, branch.
4: At every node of the tree with solution (x̂, ẑ), ẑ ∈ {0, 1}k , do the following:
5: for i = 1, . . . , k do
6: for ẑi = 0 and �x̄ ∈ Cx (w

i ) : ‖x̄ − x̂‖ ≤ εc do
7: Separate x̂ from Cx (w

i ) via an inequality γ x ≤ β.
8: Add inequality γ x ≤ β + Mzi to the master problem (3).
9: end for
10: for ẑi = 1 and �x̄ ∈ C̄x (w

i ) : ‖x̄ − x̂‖ ≤ εc do
11: Separate x̂ from C̄x (w

i ) via an inequality γ x ≤ β.
12: Add inequality γ x ≤ β + M(1 − zi ) to the master problem (3).
13: end for
14: end for
15: If (x̂, ẑ) is still feasible, update incumbent (lower bound).
16: until no more nodes to be explored

to obtain outer approximation cuts. It can be easily seen that the sequence of points
generated by the algorithm is not necessarily the same.

We now come back to the discussion of our assumption (A2) as compared to (B2)
in [6], which, at the intersection of the normal-mode and recovery problems, assumes
the opposite. We claim that both assumptions are reasonable, depending on the appli-
cation. Computational experiments in [6] use a model in which the recovery problems
are equal to the normal-mode problemswith additional actions that penalize constraint
violations. Since the feasible region of each recovery problem is a superset of the feasi-
ble region of the corresponding normal-mode problem, the objective function value of
each recovery problem is at least as large as that of the normal-mode problem, for fixed
first-stage variables. In this case, (B2) in [6] holds. In our paper, (A2) imposes that, at
the intersection of the normal and recovery problems, the objective function value of
the latter problem is not larger than that of the former, for fixed first-stage variables.
This situation occurs when costs are incurred in the recoverymode, that can be avoided
in the normal-mode problem. For example, in a hydro scheduling model the normal-
mode problem may correspond to meeting the demand by power production, and the
recovery problem may correspond to not meeting the demand by power production,
and requires paying a penalty or activating a contract for buying electricity from an
external supplier, incurring an additional cost. This is allowed by our assumption (A2),
but not by (B2) in [6]. We remark that even if (A2) implies that we always choose to
operate in normal mode if the first-stage variables x allow, this does not necessarily
mean that the chance constraint is trivially satisfied: since we optimize the total profit
in (CCPR), it is easy to see that it may still be profitable to violate some scenarios,
thereby operating them in recoverymode, to obtain larger profits in satisfied scenarios.
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2.2 Separation algorithm

In this section we provide a separation algorithm for step 7 of Algorithm 1 in the
setting of this paper, i.e., convex scenario problems. The same development applies to
step 11. For ease of notation, we drop the dependence onw and refer toCx,y,Cx as the
subproblems associated with a particular realization of w, i.e., a scenario. Therefore,
for a given scenario i , we can write

Cx,y = {(x, y) : g j (x, y) ≤ 0, j = 1, . . . , d} (4)

where g j (x, y) is convex for all j . [Note that for scenario i , system (4) would have
been Cx,y(w

i ) = {(x, yi ) : gij (x, yi ) ≤ 0, j = 1, . . . ,mi }, i.e., d = mi .] Given a
solution for the master problem x̂ , we need to answer the question: does there exist ŷ
such that (x̂ , ŷ) ∈ Cx,y? If such ŷ does not exist, wemust find a separating hyperplane:
this is the purpose of the separation routine.

Notice that the master problem involves the x variables only. For this reason, the
separation routine must find a cut in the x space. One approach to do so is given by
generalized Benders decomposition [20]. Here we advocate a simpler approach that
allows computation of a separating hyperplane under mild conditions; we discuss its
relationship with generalized Benders decomposition in Sect. 2.4.

Define the problem

min
(x,y)∈Cx,y

1

2
‖x − x̂‖2x , (PROJ)

where by ‖ · ‖x we denote the Euclidean distance in the x space only. If x̂ /∈ Cx , the
optimal value of (PROJ) must be strictly greater than 0.

Theorem 1 Let Cx,y be a closed set such that Cx = ProjxCx,y is convex, and x̂ /∈ Cx .
Let (x̄ , ȳ) be the optimal solution to (PROJ) with positive objective function value.
Then, the hyperplane

(x̂ − x̄)T (x − x̄) ≤ 0

separates x̂ from Cx . This hyperplane is the deepest valid cut that separates x̂ from
Cx , if depth is computed in 	2-norm.

Proof Let 	∗ > 0 the optimal objective function value of (PROJ). Because Cx,y is
closed,Cx is closed, and convex by assumption. Therefore, there exists a unique vector
v that minimizes ‖v − x̂‖ over all v ∈ Cx . By definition of (PROJ), v = x̄ . Then, we
can apply the projection theorem (see, e.g., [28, Prop. B.11 (b)]) to obtain

(x̂ − x̄)T (x − x̄) ≤ 0 ∀x ∈ Cx .

Hence, this hyperplane is valid forCx , and it separates x̂ because ‖x̂ − x̄‖2 = 2	∗ > 0
by hypothesis. To show that it is the deepest valid cut, notice that ‖x̂ − x̄‖x = √

2	∗.
Any cut that cuts x̂ by more than

√
2	∗ in Euclidean distance computed in the x space

would cut x̄ off, forsaking validity. 
�
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x2

Cx,y

x̂ProjxCx,y

y

x1

arg min
(x,y)∈Cx,y

(x̂, 0) − (x, y) x

Fig. 1 Separating hyperplane

We remark that the convexity assumption about Cx in Theorem 1 is always verified
wheneverCx,y is convex. A sketch of the main elements of Theorem 1 can be found in
Fig. 1. It is evident that the inequalities described inTheorem1 are outer approximation
cuts. Outer approximation was introduced by [21] and has proven to be an extremely
useful tool in mixed-integer convex programming [27,29,30]. Outer approximation is
used to separate a point not belonging to a convex set from the convex set itself, and
typically the point and the set live in the same space. In this paper, we apply outer
approximation to separate a point from the projection of a set on a lower-dimensional
space, and we do not have an explicit description of such projection: for this reason, to
obtain the separating inequality we perform an optimization in the higher-dimensional
space, and the result is the outer approximation cut that would have been obtained if
we had the explicit description of the projection.

The only assumption in Theorem 1 is that Cx,y projects to a closed convex set:
we do not even require constraint qualification (see Proposition 1 in Sect. 2.4 for a
more precise characterization of the separating inequalitywhen constraint qualification
holds) or that Cx,y is defined by a finite number of inequalities. However, to find the
hyperplane we must be able to solve (PROJ), which is an optimization problem over
Cx,y : the difficulty of separation depends on the difficulty of optimizing over Cx,y . In
particular, since we assume that Cx,y is described as a set of (continuous) nonlinear
convex constraints, the separation can be carried out in polynomial time.

2.3 Termination of the Branch-and-Cut algorithm

We now show that Algorithm 1, combined with the separation routine that generates
the cut (x̂ − x̄)T (x − x̄) ≤ 0 as in Theorem 1, terminates under mild assumptions.

Theorem [31, Sect. 2] considers a continuous convex function G(x) defined on
a compact convex set X such that, at every point x̂ ∈ X , there exists an (n + 1)-
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dimensional hyperplane that intersects the boundary of the epigraph of G, and does
not cut its interior. As in [31], we denote such hyperplane by r = p(x; x̂), and call it
an extreme support to the graph of G(x) at x̂ . Given a cost vector c, if ‖∇x p(x; x̂)‖ is
bounded by a constant and x̂h defines a sequence of points such that cx̂h = min{cx |x ∈
Xh}, h = 0, 1, . . . , where X0 = X and Xh = Xh−1 ∩ {x |p(x, x̂h−1) ≤ 0}, then the
sequence {x̂h} contains a subsequence that converges to a point ξ in X with G(ξ) ≤ 0.

Let us define dist(Cx (w
i ),Cx (w

j )) := min{‖xi − x j‖ : xi ∈ Cx (w
i ), x j ∈

Cx (w
j )} and dist(xi ,Cx (w

j )) := min{‖xi − x j‖ : x j ∈ Cx (w
j )}. We are ready to

prove the following theorem.

Theorem 2 Consider a problem of the form (CCPR), where X is compact and convex,
Cx (w)and C̄x (w)are closedand convex sets for allw = w1, . . . , wk , andassumptions
(A1)−(A3) are satisfied.Given any εc > 0, assume that for every i, j = 1, . . . , k, i �=
j : Cx (w

i ) ∩ Cx (w
j ) = ∅, we have dist(Cx (w

i ),Cx (w
j )) > 2εc. Similarly, if

C̄x (w
i )∩Cx (w

j ) = ∅ then dist(C̄x (w
i ),Cx (w

j )) > 2εc, and if C̄x (w
i )∩C̄x (w

j ) = ∅
then dist(C̄x (w

i ), C̄x (w
j )) > 2εc. Assume further that we have an algorithm to solve

(PROJ) to optimality. Then, the following holds:

(i) If (CCPR) admits an optimal solution, after a finite number of iterations Algorithm
1 returns x̂, ẑ such that:

(x̂, ẑ) ∈ argmax cx
s.t.: x ∈ X

i = 1, . . . , k zi = 0 ⇒ dist(x̂,Cx (w
i )) ≤ εc

i = 1, . . . , k zi = 1 ⇒ dist(x̂, C̄x (w
i )) ≤ εc

k∑

i=1

pi zi ≤ α

i = 1, . . . , k zi ∈ {0, 1}.

(5)

(ii) If (CCPR) is infeasible, after a finite number of iterations Algorithm 1 returns
“infeasible”.

Proof It is clear that branching on the z variables does not exclude any feasible solution,
and the inequalities added to the master problem (3) are valid. We therefore need to
show two facts: first, that the algorithm terminates after a finite number of iterations;
and second, that the algorithm correctly returns “infeasible” or an optimal solution [as
defined in conditions (5)].

Because the number of binary variables zi is k < ∞, a Branch-and-Bound algo-
rithm on zi trivially processes a finite number of values for the z variables. We show
that for any binary assignment of the z variables, the separation routine stops gener-
ating cuts after a finite number of iterations. Note that termination of the separation
algorithm is guaranteed in the setting of [17] because Cx,y(w

i ) is a polyhedron and
the paper considers only inequalities corresponding to extreme points of the Benders
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cut generating problem, which are finite in number. In the context of the present paper,
it must be proven.

Claim for every ẑ ∈ {0, 1}k , the separation routine of Theorem 1 requires a finite
number of inequalities to converge to a point x̂ such that for every ẑi = 0 we have
dist(x̂,Cx (w

i )) ≤ εc, and for every ẑi = 1 we have dist(x̂, C̄x (w
i )) ≤ εc.

Proof of the claim For ease of notation, we dropwi and discuss a generic setCx,y with
projection Cx , as the argument is the same for all Cx (w

i ) and C̄x (w
i ). We apply the

convergence result of Theorem [31, Sect. 2] as follows. Let X be the set defined by the
feasible region of the master problem, and define G(x) = minx̃∈Cx ‖x − x̃‖, i.e., the
distance function from the convex set Cx . Therefore, G(x) is convex. By convexity,
an extreme support of G(x) exists at each point of X , and its gradient is bounded by
definition of G(x). We have G(x) = 0 ⇔ x ∈ Cx , G(x) > 0 ⇔ x /∈ Cx . Given
x̂ ∈ X , x̂ /∈ Cx , define x̄ = argminx̃∈Cx ‖x̂ − x̃‖, so that G(x̂) = ‖x̂ − x̄‖. An
extreme support y = p(x, x̂) to G(x) at x̂ is

y = G(x̂) + ∇G(x̂)T (x − x̂) = ‖x̂ − x̄‖ + (x̂ − x̄)

‖x̂ − x̄‖ (x − x̂).

Then, writing the last occurrence of x̂ in the expression above as x̄ + x̂ − x̄ , and
performing algebraic manipulations, we see the expression p(x, x̂) ≤ 0 reads as:

(x̂ − x̄)(x − x̄) ≤ 0,

which is exactly the condition we use to (iteratively) separate x̂ . Since the inequalities
that we generate satisfy the conditions of Theorem [31, Sect. 2], we can apply that
result to show that there exists a (sub)sequence of points x̂h converging to a point ξ

in X , G(ξ) ≤ 0, i.e., ξ ∈ Cx . By definition of convergence, for every εc there exists
an integer v such that after v inequalities ‖x̂ − ξ‖ ≤ εc. Because this is true for any
Cx (w

i ), C̄x (w
i ), it is also true for the intersection

⋂
i :ẑi=0 Cx (w

i ) ∩ ⋂
i :ẑi=1 C̄x (w

i ),
after a number of iterations that is determined by the last set to satisfy the convergence
condition. This concludes the proof of the claim.

Applying the same arguments as those in the proof of convergence in [17], the
claim then ensures finite convergence of Algorithm 1. More specifically, since X is a
compact, (CCPR) is either infeasible or admits an optimum.We analyze the two cases
separately:

(i) If (CCPR) is infeasible, there is no assignment of the z variables for which the
corresponding active sets Cx (w

i ), C̄x (w
i ) have nonempty intersection. The case

X = ∅ is trivial so assume for the sakeof contradiction that X �= ∅ andAlgorithm1
terminates returning a solution x̂, ẑ. Then, x̂ has distance≤ εc from the feasible set
of a sufficient number of scenarios, i.e., enough to satisfy the chance constraint as
modeled by

∑k
i=1 pi zi ≤ α. Since (CCPR) is infeasible, there must exist indices

i, j, i �= j such that ẑi = 0, ẑ j = 0 andCx (w
i )∩Cx (w

j ) = ∅ (respectively, ẑi =
1, ẑ j = 0 and C̄x (w

i )∩Cx (w
j ) = ∅, or ẑi = 1, ẑ j = 1 and C̄x (w

i )∩ C̄x (w
j ) =

∅). However, by assumption, the setsCx (w
i ),Cx (w

j ) [resp., C̄x (w
i ),Cx (w

j ), or
Cx (w

i ),Cx (w
j )] have distance strictly greater than 2εc. This implies that there
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exists no point with distance at most εc from all the satisfied scenarios. By the
preceding claim, the sequence of points explored byAlgorithm 1must converge to
a point with distance at most εc from Cx (w

i ) ∀i : ẑi = 0 and C̄x (w
i ) ∀i : ẑi = 1

within a finite number of iterations. But since no such point exists, the cuts added
to the master problem must yield an infeasible subsystem within a finite number
of iterations: this is a contradiction.

(ii) If (CCPR) admits an optimal solution, there exists an assignment ẑ for the z
variables forwhich the correspondings active setsCx (w

i ), C̄x (w
i ) have nonempty

intersection. Therefore, for z = ẑ the set of points with distance at most εc from
each of the feasible sets of active scenarios is nonempty, implying that the feasible
region of (5) is nonempty. By the above claim, after a finite number of iterations
we converge to a point within the feasible region of (5). Standard arguments for
the correctness of Branch-and-Bound guarantee that we determine an argmax of
such problem in finite time. 
�

Besides (A1)–(A3), Theorem2 imposes the additional “separation assumption” that
for all i, j = 1, . . . , k : Cx (w

i ) ∩ Cx (w
j ) = ∅ then dist(Cx (w

i ),Cx (w
j )) > 2εc;

and similarly for the sets C̄x (w
i ). This assumption is necessary, as can be seen from

the following pathological example:
min |x |
s.t.: x ∈ [−100, 100]

z1 = 0 ⇒ x ∈ [−100,−εc]
z2 = 0 ⇒ x ∈ [+εc, 100]

1
2 z1 + 1

2 z2 ≤ 1
4

z1, z2 ∈ {0, 1}.

(6)

In this problem, which has the form (CCPR), both scenarios have to be satisfied. The
problem is infeasible for any εc > 0, it does not satisfy the “separation assumption”,
and Algorithm 1 would (incorrectly) return x̂ = 0 as a solution.

We remark that the statement of Theorem 2 is somewhat weaker than showing
convergence to a point with distance at most εc from an optimal solution of (CCPR).
Indeed, in theory it is possible that Algorithm 1 returns a point with distance at most
εc from each active scenario set, but the distance from the feasible region of (CCPR),
which is the intersection of several scenario sets, is arbitrarily larger. This is mostly
a theoretical issue: such a situation can happen only if the problem is extremely ill-
conditioned. From a computational point of view, a small convergence tolerance εc
typically ensures satisfactory results. To ensure stronger convergence properties, we
can modify Algorithm 1 inserting, after line 13, the following additional separation
condition:

if �x̄ ∈
(⋂

i :ẑi=0 Cx (w
i ) ∩ ⋂

i :ẑi=1 C̄x (w
i )

)
: ‖x̄ − x̂‖ ≤ εc then

Separate x̂ from
(⋂

i :ẑi=0 Cx (w
i ) ∩ ⋂

i :ẑi=1 C̄x (w
i )

)
via an inequality γ x ≤ β.

Add inequality γ x ≤ β+∑
i :ẑi=0 Mzi +∑

i :ẑi=1 M(1−zi ) to themaster problem
(3).

end if
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Notice that these additional steps only affect the algorithm in case x̂ is close to the
feasible set of each of the active scenarios, but is not close to their intersection; fur-
thermore, the generated cuts are only active for a single realization of the z vector. It is
straightforward to modify the proof of Theorem 2 using the additional steps to prove
convergence to a point with distance at most εc from the feasible region of (CCPR).
However, we implement Algorithm 1 as initially described because the extra steps are
unlikely to bring any practical benefit, therefore we do not pursue this extension in
detail.

2.4 Comparison with generalized Benders cuts

This section investigates the relationship between the separation approachwe advocate
and generalized Benders decomposition [20], which applies to the same class of prob-
lems studied in this paper, namely those that can be formulated as (2). Here we only
discuss the case where the second-stage problems are feasibility problems, following
our formulation in Sect. 1. The result in [20] assumes that a “dual adequate” algorithm
to solve the scenario subproblems is available, that is, if the problem is infeasible a
dual certificate of infeasibility can be computed. In its computational considerations
it remarks that “it appears necessary” to assume additional properties on the structure
of the problem, namely, that the function

L(x, μ) = min
(x̃,ỹ)∈Cx,y :x̃=x

μT g(x̃, ỹ) (7)

can be easily computed for all x ∈ X , μ ∈ R
m, μ ≥ 0. In particular this means

that we should be able to find an analytical expression for such function. This can be
done in some specific situations, for example if the nonlinear constraint functions are
separable in x and y (see, e.g., [32,33]), but may be difficult in general if the solution
to the minimization problem over y depends on x . Even when that is the case, one
issue remains: in the approach of [20] these functions are the Benders cut added to
the master problem, and they have the form of the constraints g(x, y). If the g(x, y)
are nonlinear, we are left in the unfortunate situation of possibly adding nonlinear
constraints to the master problem. The nonlinear cuts could be stronger than linear
inequalities, but are computationally less attractive and would not allow us to use the
existing well-developed machinery for linear inequalities, such as mixing techniques
[34]. Of course, one could simply linearize a generalized Benders cut: we show that
this is in fact exactly what is happening.

Proposition 1 Assume that a constraint qualification holds, and for a given x̂ /∈ Cx

let (x̄, ȳ) be the optimal solution to (PROJ), μ̄ be the corresponding KKT multipliers.
Then, the cut

(x̂ − x̄)T (x − x̄) ≤ 0

is the linearization of a generalized Benders cut obtained from x̂ with multipliers μ̄.

Proof A generalized Benders cut has the form L(x, μ) ≤ 0, where L(x, μ) is defined
as in (7). Since μ̄ is the vector of optimal KKT multipliers and x̂ /∈ Cx , we have
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L(x̂, μ̄) > 0 and μ̄ ≥ 0; see [20]. Using KKT conditions, we see that the hyperplane(∑
j∈I μ̄ j∇g j (x̄, ȳ)

)T
((x, y) − (x̄, ȳ)) = (x̂ − x̄)T (x − x̄) ≤ 0 is supporting for

∑
j∈I μ̄ j g j (x, y) at (x̄, ȳ), so

∑
j∈I μ̄ j g j (x, y) ≥ (x̂ − x̄)T (x − x̄) for all (x, y) ∈

Cx,y because the left-hand side expression is convex. Let 	∗ > 0 be the optimal
objective function value of (PROJ). It follows that

min
y

∑

j∈I
μ̄ j g j (x̂, y) ≥ (x̂ − x̄)T (x̂ − x̄) = 2	∗ > 0.

This shows that the multipliers μ̄ yield a violated generalized Benders cut. Further-
more,

∑
j∈I μ̄ j g j (x̄, y) ≥ (x̂ − x̄)T (x̄ − x̄) = 0 for all y, and

∑
j∈I μ̄ j g j (x̄, ȳ) = 0

by complementary slackness, hence ȳ ∈ argminy
∑

j∈I μ̄ j g j (x̄, y). It follows that

(x̂ − x̄)T (x − x̄) is the tangent plane to L(x, μ̄) at the point x̄ . 
�
The fact that outer approximation cuts are linearizations of generalized Benders

cuts is well known: since every nonnegative combination of the constraints g j can
be considered a generalized Benders cut, every valid linear inequality for Cx is a
linearization of a generalized Benders cut. As remarked in [26, Sect. 3.1], aggregating
linearizations to the constraints using optimal dual multipliers simplifies the cut, and
the unfixed variables disappear from the cut expression.

It is important to remark that our way of generating cuts is conceptually simpler
than applying generalized Benders decomposition, and it has some clear advantages.
In fact, let μ̄ ≥ 0 be any vector of dual variables that gives rise to a violated generalized
Benders cut, i.e., L(x, μ̄) > 0. Since the expression L(x, μ̄) ≤ 0 is a convex function
when taken as a function of x [it is the minimum over ỹ of a nonnegative linear
combination of convex functions, see (7)], any tangent hyperplane is a valid inequality.
The approach of [20] requires the dual variables μ̄ only, but in order to compute a
tangent hyperplane, we additionally need a point at which the linearization is obtained.
To this end, [26] proposes a hierarchy of points, where the weakest one is analogous to
the ECP method [35] and does not require solving a subproblem, while the strongest
one obtains the point by solving the NLP relaxation of the current node. Notice that
in our context, because no value for y is initially known, it seems that solving an NLP
subproblem to generate the point is a better approach. Furthermore, if the point at
which the linearization is generated does not belong to Cx,y the tangent hyperplane
may not be supporting for Cx , hence it would be dominated by some other valid
inequality.

Example 1 Consider the set Cx,y defined by the following constraints:

x2 + x + y2 − y ≤ 0.5

x2 + xy + y2 ≤ 1.

The feasible region is depicted in Fig. 2. Suppose that x̂ = 1 is the value of x provided
by the master problem. Note that x̂ /∈ Cx : there exists no y that satisfies x2 + x +
y2 − y ≤ 0.5 for x̂ = 1. The method we propose solves (PROJ) to find the point
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Fig. 2 Example of generalized
Benders cuts, and their
linearization

x2 + xy + y2 ≤ 1

y

x

x2 + x+ y2 − y ≤ 0.5

x ≥ −1.32

x ≤ 0.5

x ≤ 0.65

x̂

(0.5, 0.5) and the dual variables μ̄1 = 0.5, μ̄2 = 0. Linearizing the cut obtained
with these dual variables at the point (0.5, 0.5) yields the cut x ≤ 0.5. However, a
generalized Benders cut could be derived from a different vector of the dual variables,
e.g., μ̄1 = 1, μ̄2 = 1. These yield the cut L(x, μ̄) ≤ 0 with expression:

min
y

(2x2 + x + 2y2 − y + xy − 1.5) ≤ 0.

Note that the minimum on the left-hand side cannot be computed independently of x ,
because the problem at hand is not separable. Nonetheless, for this toy problem one
can easily find that the minimizer is y = (1− x)/4. Given this value for y, substituting
into the expression above yields the nonlinear cut:

15x2/8 + 5x/4 − 13/8 ≤ 0.

This cut is not only nonlinear, but it also cuts x̂ by a smaller among than the previously
computed cut: one can easily check that this generalized Benders cut is equivalent to
−1.3222 ≤ x ≤ 0.6555 in the x space, which cuts off x̂ by 0.3445, whereas the cut
computed with the dual variables μ̄1 = 0.5, μ̄2 = 0 cuts off x̂ by 0.5, see Fig. 2. 
�

In principle, our projection approach to generate a separating inequality can also
be applied in the case where Cx,y is a polyhedron, and it yields violated Benders cuts
from a particular choice of dual variables. The most commonly approach used in the
literature is instead to obtain the dual variables by minimizing the largest constraint
violation, which corresponds to a specific truncation of the unbounded dual rays (see
[36]). The standard approach guarantees that all the inequalities are generated from
extreme points of the dual polyhedron, whereas our projection approachmay construct
a Benders cut from dual variables that are not extreme, in which case the cut would
not be extreme either, i.e., it could be obtained as a combination of extreme Benders
cuts.
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3 (CCP) for mid-term hydro scheduling

We apply the decomposition algorithm for nonlinear chance-constrained problem of
Sect. 2 to the hydro scheduling problem that we describe next. Our formulation is an
instance of (CCP), which is a special case of (CCPR).

A central problem in power generation systems is that of optimally planning
resource utilization in the mid and long term and in the presence of uncertainty. Hydro
power production networks usually consist of several reservoir systems, often inter-
connected, which are operated on a yearly basis: it is common to have seasonal cycles
for demand and inflows, which can be out of phase by a few months, i.e., inflow peaks
typically precede demand peaks.

The mid-term hydro scheduling problem refers to the problem of planning produc-
tion over a period of several months. To be effective, such planning must take into
account uncertainty affecting rainfall, energy price and demand, aswell as the complex
and nonlinear power production functions. A commonly used approach in practice is
to rely on deterministic optimization tools and on the experience of domain experts to
deal with the uncertainty, because of the sheer difficulty of incorporating uncertainty
into themodel.Many deterministic approaches can be found in the literature, e.g., [37].
More recently, methodologies that can take into account the uncertainty in the model
have appeared, such as [22–24]. There has been little work on chance-constrained
formulation for the mid-term hydro scheduling problem: some notable papers are
[38,39]. The related unit commitment problem, widely studied in the literature, has
sometimes been tackled with chance-constrained approaches, e.g., [40,41], but even
in the case of unit commitment, chance-constrained optimization approaches are the
least commonly used in the literature, due to their difficulty [42, Sect. 4.4].

The problem studied in this paper can be described as follows: there are n
hydroplants, each one associated with a reservoir. The water in each reservoir can
be used to obtain energy through the power plant. Our goal is to define a mid-term
production plan, that is, howmuch water to release in each period from each reservoir,
over a time horizon of several months, in order to maximize a profit function. The
profit depends on the amount of energy obtained and on the market price, assuming
that the amount of energy sold influences the final price. In each time period, the total
quantity of water in the reservoirs must satisfy some lower and upper bounds. All the
water that is not released in period t is available at t + 1, in addition to the natural
water inflow from rivers, precipitations and seasonal snow melting. The definition of
a production plan faces two sources of uncertainty, namely: the natural water inflow,
and the energy price on the market.

3.1 Choice of the objective function

When the problem takes into account a long time span, the decision-maker is typically
interested in the optimal present-time (i.e., first stage) decisions: future decisions can
be adjusted depending on the evolution of the market and the context. Consequently,
we consider a problem formulation with recourse, where in our case, the recourse
actions are simply all the decision taken at time periods t > 1.
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It is important to remark that the profit for the generating company is a function of
the first-stage decisions and the scenario, i.e., the realization of w. Thus, in order to
formulate the objective function of the problem,wemust decidewhatmeasure of profit
we are interested in. Widely used choices when optimizing an uncertain profit are the
expected profit and the worst-case profit. Our approach draws from the financial risk
management literature: we use a measure of profit related to the well-known Value-
at-Risk [25], which allows the decision-maker to determine the trade-off between risk
and returns. In particular, given 0 ≤ α < 1, our objective function is the maximization
of the α-quantile of the profit. We now show how this relates to Value-at-Risk.

Letϕ(x, wi )be the profit that canbeobtained in scenariowi withfirst-stage decision
variables x ; notice that given x and wi , the value of ϕ(x, wi ) can be computed by
solving a deterministic optimization problem. Define the random variable ϕx : Ω →
R, ϕx (w) = ϕ(x, w). Since ϕx is a random variable that measures the profit, we define
the loss as Lx = −ϕx . The α-Value-at-Risk is defined as

VaRα(Lx ) = inf{	 ∈ R : Pr(Lx > 	) ≤ 1 − α}.

It is easy to show via algebraic manipulations that:

min
x

VaR1−α(Lx ) = max
x

sup{q ∈ R : Pr(ϕx ≥ q) ≥ 1 − α} = max
x

Qα(ϕx ),

where Qα is the α-quantile. In other words, our choice of objective function, i.e.,
maximizing the α-quantile of the profit, is equivalent to minimizing the (1 − α)-
Value-at-Risk of the loss. We remark that our decomposition scheme can also be
applied to the case in which the objective function contains a penalization for not
satisfying some of the scenario constraints (e.g., not meeting a production quota), but
we did not pursue further study of this type of objective function.

3.2 Optimizationmodel

We consider a multi-period planning problem with T periods (indexed by t =
1, . . . , T ), where all information regarding period 1 is deterministically known, while
the remaining periods are subject to uncertainty. We consider uncertainty with respect
to inflows and energy market prices, and we model the uncertainty by defining a finite
number of inflow and energy market scenarios, each one with an associated probabil-
ity of realization. Our objective in a deterministic setting would be to maximize the
profit obtained by selling energy on the energymarket. Electrical energy is obtained by
transforming the potential energy of the water when, during each period, the water is
released from the reservoirs. There are n reservoirs in total, indexed by h = 1, . . . , n.
We denote by xth the amount of water released in period t from reservoir h, and bywth

the water level of reservoir h at the end of the period (w0h is a parameter denoting the
initial water level). Parameter fth denotes the natural water inflow in period t at reser-
voir h. The water released from reservoir h is transformed into an amount of energy
that depends on a nonlinear function gh(w, x). Energy obtained this way, denoted as
eth for period t and reservoir h, is sold on the market; since hydro power production
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has in general a large capacity, we assume to influence the market price, according to
a price function πt (·) that depends on the total amount of electrical energy we sell at
period t , namely, et = ∑n

h=1 eth . In the deterministic setting, the hydro scheduling
problem described above is modeled by the following nonlinear program:

max
T∑

t=1

πt (et )et (8)

s.t.: w(t−1)h − xth + fth ≥ wth t = 1, . . . , T , h = 1, . . . , n (9)

0 ≤ xth ≤ uth t = 1, . . . , T , h = 1, . . . , n (10)

qth ≤ wth ≤ Qth t = 1, . . . , T , h = 1, . . . , n (11)

eth ≤ gh(wth, xth) t = 1, . . . , T , h = 1, . . . , n (12)

dt ≤ et ≤ mt t = 1, . . . , T (13)

et =
n∑

h=1

eth t = 1, . . . , T . (14)

The objective function (8) maximizes the profit obtained by selling the transformed
energy. Constraint (9) is an inventory constraint that defines the water balance between
consecutive periods: since water can be released without obtaining energy (spillage),
we have an inequality. Constraints (10) and (11) impose lower and upper bounds on the
quantity ofwater used for transforming energy and on thewater levels in the reservoirs,
respectively. Constraints (12) define the relation between the released water and the
obtained electrical energy at a specific plant h. Finally, (13) defines lower and upper
bounds on the amount of obtained electrical energy. Notice that the above problem is
convex assuming that gh is concave.

To model uncertainty, [22] assumes that forecasts for aggregated demand and pre-
cipitations are available as discrete random variables. The optimization occurs over a
relatively long period of time (i.e., twelve months), therefore it would be unrealistic to
assume temporal independence of demand and precipitations, and the assumption in
[22] is that the realization of the random variables at any time period depends on the
realization in the previous time period. We follow the approach of [22]. This yields
a scenario tree, where a scenario is a realization of the random parameters over the
entire time period, i.e., a sample path. A scenario tree starts from the root node at the
first period and, for each possible realization of the random parameters, branches into
a node at the next period. The branching continues up to the leaves of the tree, whose
number corresponds to the number of scenarios k.

3.3 Decomposition

We decompose the full optimization problem into a master problem and k scenario
subproblems. Each scenario subproblem i includes decision variables xiht , and has a
feasible region defined by (9)–(13). In addition, we link the profit in each scenario to
an overall measure of profit in the master problem by introducing a master variable ψ

that is maximized, and defining the following additional constraints:
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ψ ≤
T∑

t=1

π i
t (et )et i = 1, . . . , k. (15)

Hence, a specific scenario is satisfied given the decision variables in themaster (energy
obtained in the first time period, and measure of profit ψ) if not only constraints (9)–
(13) can be satisfied for subsequent time periods, but also the total profit for the scenario
is not smaller than ψ . Since the master maximizes the profit that can be obtained by
satisfying a subset of scenarios having associated probability not smaller than 1 − α,
this is equivalent to optimizing the α-quantile of the profit.

Following [22], we assume that all scenarios have an associated probability of
1/k (modifying the formulation to allow for nonuniform scenario probabilities is
straightforward), and the joint chance constraints are equivalent to imposing that at
least k − p scenarios are satisfied, where p = �αk�. Nonanticipativity constraints are
enforced by the master, guaranteeing that for all t , decisions up to period t are the
same for all sample paths that are identical up to t . Given two scenario indices i and
r , define τ(i, r) as the largest time period index such that the sample path realizations
of scenarios i and r are identical up to it. We can then write the initial master problem
(before addition of outer approximation cuts) as the following MILP:

maxψ (16)

s.t.:
∑

i=1,...,k

zi ≤ p, (17)

xith = xrth, i = 1, . . . , k − 1, r = i + 1, . . . , k, t ≤ τ(i, r), h = 1, . . . , n

(18)

0 ≤ xith ≤ uth t = 1, . . . , T − 1, i = 1, . . . , k, h = 1, . . . , n (19)

zi ∈ {0, 1} i = 1, . . . , k. (20)

where (17) is the joint probability constraint, constraints (18) express nonanticipativity,
constraints (19) impose bounds on the quantity of water released. We remark that in
practice we do not explicitly write constraints (18), because we keep only one copy of
the x variables for all sample paths identical up to a given period, implicitly performing
the substitution. This is conceptually equivalent and reduces the size of the problem.

3.3.1 Electricity generation functions

The transformation of the water potential energy into electrical energy is described in
terms of nonlinear power functions vh(w, ẋ) that depends on the water flow and water
level w at reservoir h. We assume that the water flow and level are constant within
each time period, and that the amount of electrical energy obtained during a given
period is directly proportional to the length of the period θt . Hence, we can write

gh(wth, xth) = vh(wth, xth/θt )θt . (21)
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Several alternatives are proposed in the literature regarding the shape of vh(w, ẋ), see
e.g., [43–47]. These alternatives depend on the characteristics of each power plant as
well as the level of detail that is required by the considered application, and typically
must be experimentally evaluated.

A common family of power functions consider power as a polynomial expression
of the flow: vh = σ + νx/θt + μ(x/θt )2 + ρ(x/θt )3 + ξ(x/θt )4 + · · · , where the
values of the coefficients σ, ν, μ, ρ, ξ, . . . , when specified, accurately describe the
characteristics of several real-world plants. The value of these parameters is not a
constant, but it is instead read or interpolated from a table, and depends on the water
level w (see, e.g., [48]). In our computational study we consider two families of
power functions having increasing level of detail and yielding increasingly challenging
optimization models.

– As a first power function we consider a fourth-degree polynomial with ν >

0;μ, ξ < 0; ρ = 0 thus obtaining a concave function. We also assume the water
level w to vary between bounds that allow us to consider the function parameters
as fixed, and we then disregard the dependence of the power function from water
level. We then have:

v′
h(x) = σ + νx/θt + μ(x/θt )

2 + ξ(x/θt )
4. (22)

– As a second power function we consider a quadratic expression of the flow. Since
the value of parameters σ , θ , ρ is approximately linear in the water level w, we
make this dependence explicit in the power function, thus obtaining:

v′′
h (w, x) = (w + η)[σ + νx/θt + μ(x/θt )

2], (23)

where η is an additional parameter to be experimentally tuned. Given the value of
the parameters used in the experiments, this function is neither convex nor concave.

3.3.2 Demand and price function

The electrical energy produced can be sold on the electricitymarket at themarket price;
since we are considering a hydro power producer with a large capacity, the producer
influences the market price, i.e., the market price depends on the amount of energy that
it sells. We consider two alternatives to describe the price-quantity relation: a simple
relationship is obtained by linearizing the step (staircase) price-quantity functions of
[22]. A finer description of the market effect of a large power producer can be obtained
by using nonincreasing step functions, as in [22]. However, modeling a step function
requires binary variables in the scenario subproblems. In this case, the decomposition
method we propose can only be applied to solve the continuous relaxation of the
problem, and we additionally need a way to construct primal bounds: this will be
discussed in Sect. 4.3. We now provide more details on the two above alternatives for
the cost function.

– Using a nonincreasing linear price-quantity function, the profit-quantity relation
in Eq. (8) is expressed by a quadratic concave function of the energy, that is (recall
that et = ∑n

h=1 eth):
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πt (et )et = (π1t et + π0t )et . (24)

– Using a step price-quantity function with two steps, the profit-quantity relation in
Eq. (8) is expressed by:

πt (et )et ≤ π1t et t = 1, . . . , T (25)

πt (et )et ≤ π2t et + (π1t − π2t )m1t yt t = 1, . . . , T (26)

et ≤ m1t yt + m2t (1 − yt ) t = 1, . . . , T (27)

yt ∈ {0, 1}, t = 1, . . . , T (28)

wherem1t is the maximum amount of energy that can be sold at price π1t in period
t ,m2t (> m1t ) is the maximum (overall) amount of energy that can be sold at price
π2t (< π1t ) in period t , and yt is a binary variable indicating whether the amount
of energy sold is ≤ m1t (yt = 1) or > m1t (yt = 0).

3.4 Data

The computational evaluation presented in this paper considers a case study based on
the data from [22], which describes a hydro system configuration comprising 10major
hydroplants of the Greek power system, for a production capacity of 2720 MW. As in
[22], we consider a three period configuration covering 12 months. The choice of the
time periods is based on the Greek hydrological and load demand patterns, where high
inflows are observed in winter and spring, and a load peak is observed in summer:
the first period is the month of October, the second period goes from November to
February, and the third period from March to September. Inflows and demand curves
are computed based on historical data; we refer the reader to [22] for details. The
first time period is deterministic, as previously mentioned; in [22], a scenario tree
comprising 90 scenarios is obtained by considering 5 inflow realizations coupled with
3 demand realizations at the second time period, and 3 inflow realizations coupled
with 2 demand realizations at the third time period.

4 Computational experiments

In this section we report on the experimental results obtained with the Branch-and-Cut
algorithm when solving decomposable chance-constrained problems. We first test the
algorithm on the instances discussed in Sect. 3 by considering the concave power
function (22) and the first formulation for the price function presented in Sect. 3.3.2.
This yields convex subproblems and a quadratic relationship between profit and sold
energy described by (24). Since we are not aware of any specialized solution method
for the class of problems that we consider, we compare the algorithm performance
with the direct solution of the large MINLP (2) using a general purpose solver for
convex MINLPs. Subsequently, in Sect. 4.3 we experiment results on the instances
with the nonconvex power function (23) and the step price function formulation (25)–
(28), for which we apply our approach as a heuristic to solve the continuous relaxation
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of the problem and to construct feasible integer solutions. The objective of these
experiments is twofold: on the one hand, they are intended to assess the algorithmic
performance of the method we propose; on the other hand, they allow us to evaluate
our modeling approach for mid-term hydro scheduling problems, determining the size
of the instances that can successfully be dealt with, and highlighting the trade-off
between profit and robustness of the solution.

4.1 Implementation details

We implemented the Branch-and-Cut algorithm within the IBM ILOG CPLEX 12.6
MILP solver, and solved the convex subproblems with IPOPT 3.12 [49] using the
interface provided by BONMIN [27]. In our implementation, CPLEX manages the
branching tree of the master problem, and returns the control to a user-written callback
function when the solution associated with a tree node is integer feasible.

Within the callback function, we define a separation problem (PROJ) for those
scenarios i having associated variable zi = 0, i.e., the scenarios whose constraints
must be satisfied. Problems (PROJ) are then solved by IPOPT. If the optimal solution
of problem (PROJ) has a strictly positive value for some scenario j , that is, the current
master solution x̂ violates the constraints of scenario j , then we derive a (single)
valid cut γ x ≤ β separating x̂ from the feasible region of scenario j , as explained in
Sect. 2.2.

Then, we consider adding the obtained cut to the master problem in two alternative
ways:

bigM The cut is directly added to the master problem in the form γ x ≤ β +Mz j .
We compute the value for the M coefficient as: M = ∑

l:γl>0 γlul − β, where l
denotes the index of the x variables in the cut and ul is the associated upper bound
in the master problem;
lifting The cut is lifted by computing valid coefficients for the zi variables corre-
sponding to other scenarios, i.e., i �= j , as suggested by [17].

In the second case, for every i wefirst compute theminimumvalueβi thatmakes the
inequality valid for the corresponding scenario wi , solving the optimization problem:

βi = max{γ x |x ∈ X ∩ Cx (w
i )}. (29)

Assuming the βi values for i = 1, . . . , k are sorted by non-decreasing order, we
consider the first p+1 scenarios (recall p = �αk�), and we obtain the following valid
inequalities (see [17, Lemma 1]):

γ x + (βi − βp+1)zi ≤ βi , i = 1, . . . , p. (30)

From this basic set of inequalities, one could obtain stronger star inequalities (see [50]).
The basic idea is that, given an ordered subset T = {t1, t2, . . . , tl} of {1, . . . , p}, one
can derive the following star inequality, where βtl+1 = βp+1 (see [17] for further
details):
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γ x +
l∑

i=1

(βti − βti+1))zi ≤ βt1 . (31)

Since the star inequalities (31) are in exponential number, they need to be separated.
Separation can be performed by solving a longest path problem in an acyclic digraph.
However, since we are separating integer solutions in the z variables, the most violated
inequality by a solution (x̂, z) is exactly the inequality (30) associated with the first
ti in the ordering such that zti = 0. Thus, in our implementation we add precisely the
inequalities (30).

Notice that since in our specific application separation for C̄x (w
i ) is not necessary,

to ensure correctness of the Branch-and-Cut algorithm it is sufficient to find one
violated scenario i having associated variable zi = 0, and to add the cut obtained by
solving the (PROJ) problem to the master problem: alternatively, all scenarios having
associated variable zi = 0 are satisfied, and the node does not have to be processed
further. In our implementation we considered the following alternatives to determine
how and when to perform separation:

sepAll Separation is performed at integer-feasible solutions in the Branch-and-Cut
search for each scenario i having associated variable zi = 0;
sepGroup Scenarios are partitioned in subsets, where each subset includes those
scenarios of the scenario tree having a common ancestor at the second time period
(i.e., the corresponding sample paths are equal up to that point in time). Separation
is performed at integer-feasible solutions in the Branch-and-Cut search for each
group, until a violated scenario i in the group having associated variable zi = 0 is
found.

The rationale for sepGroup is that scenarios in the same group have common decision
variables at the second time period, hence a cut for one of these scenarios might
change the primal solution for all scenarios in the same group.We tested two additional
strategies that turned out to have poor computational performance, hence we describe
them briefly below, but we will not report the corresponding results:

sep1 Separation is performed at integer-feasible solutions in the Branch-and-Cut
search until the first violated scenario i having associated variable zi = 0 is found.
sepFrac We attempt to separate cuts at fractional solutions (i.e., LP solutions for
the nodes of theBranch-and-Cut search) usingoneof the other strategiesmentioned
above.

Both sep1 and sepFrac were ineffective for the same reason: these two strategies
increase the number of separation rounds, and, as it will be seen in the next section,
the vast majority of the CPU time is already spent in the solution of the nonlinear
separation subproblems, therefore increasing in the number of separation rounds is an
issue.

Concerning the large MINLP (2), we solve with BONMIN and the embedded
nonlinear solver IPOPT 3.12. For each constraint of the MINLP formulation to be
activated/deactivated by the associated z variable, we compute the smallest value of
the M coefficient using the bounds on the x variables and the maximum profit that
can be obtained in the scenarios by releasing the associated water quantities.
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4.2 Computational performance with linear price function

The data from [22] includes 10 hydroplants and a scenario tree with 90 equiprobable
scenarios. From this data,we construct 5 smaller configurationswith a number of plants
chosen from the set {1, 2, 5, 7, 10}. In each subproblem, the number of variables is
9n+ 5 and the number of constraints is 6n+ 5, where n is the number of hydroplants.
For each configuration, we can specify the robustness of the solution: we consider
values of the probability α starting from α = 0.5 and decreasing by 0.1 down to
α = 0.1 (the computed solution must satisfy scenarios with associated probability of
at least 1−α). In the discussion about the performance of the hydroplants in Sect. 4.4
we additionally report results for α = 0.05, but they are not included here as they do
not provide further insight. Furthermore, for 10 hydroplants and all values of α, we
considered four simplified scenario trees that contain 30, 48, 60 or 72 scenarios, and
four larger scenario trees that contain 150, 180, 225 or 270 scenarios. We therefore
obtain 65 instances of varying difficulty. All experiments are performed on a single
node of a cluster containing machines equipped with an Intel Xeon E3-1220 processor
clocked at 3.10 GHz and 8 GB RAM.

We performed preliminary computational experiments on four variants of the
Branch-and-Cut algorithm that are obtained by combining the separation procedures
sepAll and sepGroup with the bigM and lifting procedures to add cuts to the mas-
ter problem. According to preliminary experiments, the sepAll-bigM variant of our
Branch-and-Cut algorithm is the fastest version on average, and we take it as our
reference.

We briefly discuss its performance, especially compared to the other variants. The
number of Branch-and-Bound nodes for sepAll-bigM is fairly small (about 500 on
average on the whole set of instances), and almost all the computation time is spent
solving NLPs (on average, 125,000 NLPs per instance). Most of the separation itera-
tions occur at the root node of the Branch-and-Cut algorithm (approximately 3/4 on
average). We observe that many separation rounds are performed at each node where
separation occurs. In the majority of the cases, when several mixed-integer solutions
are produced at the same node each new mixed-integer solution differs from the pre-
vious one only in its continuous components. Only occasionally a new mixed-integer
solution has different values for the z variables, unless of course the separation is
performed at different nodes of the Branch-and-Bound tree. This behavior can be
explained by recalling that the master problem (16)–(20) is not aware of the nonlin-
ear dynamics of the scenario subproblems, therefore a good approximation must be
constructed by means of several linear cuts, even when the integer variables are fixed.
Results with sepGroup-bigM are similar, with a small increase in the number of NLPs
solved, and a corresponding increase of computing time.

Concerning the lifting cuts, we note that given a cut γ x ≤ β obtained for some
scenario i , computing the lifting is computationally expensive due to the solution of
several additional NLPs. This additional effort would be justified only if lifted cuts
were able to significantly reduce the number of cut separation iterations with respect
to bigM cuts. In our experiments this is not the case: although the number of Branch-
and-Bound nodes is slightly reduced, the average number of separation iterations is
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Fig. 3 Performance profiles for
65 instances (linear price
function)

of similar magnitude. As a consequence, sepAll-lifting and sepGroup-lifting solve
approximately 10 times more NLPs and the CPU time increases accordingly. The
ineffectiveness of lifted cuts can be explained in connection to the specific structure
of the scenario tree we consider: when solving the optimization problem (29) for
a given scenario i and a given hyperplane γ x , only a subset of the variables with
nonzero coefficient in γ appears in nontrivial constraints (i.e., not bound constraints)
for scenario i . Hence, the lifting procedure is rarely able to produce stronger cuts. The
same observation on the weak computational performance of the mixing inequalities
generated by an analogous lifting procedure is reported in [51], where a chance-
constrained formulation is studied as well.

The computational performance of BONMIN’s NLP-based Branch-and-Bound
algorithm, applied directly to the MINLP (2), is also evaluated on all 65 problem
instances. The time limit for BONMIN is set to 10 h. In Fig. 3 we report the perfor-
mance profile for the sepAll-bigM Branch-and-Cut algorithm and BONMIN, for the
whole set of instances. The Branch-and-Cut algorithm can solve all instances, while
BONMIN hits the time limit in 10 cases. In addition, the profiles clearly show the
better performance of the proposed approach compared to the direct solution of the
large MINLP (2).

Before reporting detailed computational results comparing the two approaches,
we remark that we tried to solve the MINLP (2) with additional solvers based on
other solution methods, namely, the BONMIN Outer Approximation algorithm, the
BONMIN hybrid algorithm and the FilMINT [26] Branch-and-Cut algorithm. None
of the mentioned solvers could consistently handle the MINLP (2), and all solvers
were plagued by severe numerical issues; as a consequence, they could correctly solve
only small instances or instances with simplified nonlinear functions, and we decided
to exclude them from our evaluation.

In Table 1 we report detailed results for a subset of instances of increasing com-
plexity, comparing sepAll-bigM with BONMIN Branch and Bound. All instances in
the table have 90 scenarios, as in the original application from [22]. The table reports
the number of hydroplants and the level of risk α in the first two columns. Subsequent
columns report the results obtained by theBranch-and-Cut algorithm, namely: the total
number of Branch-and-Bound nodes (third column), number of Branch-and-Bound
nodes at which separation is performed (fourth column), total computing time and
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fraction of time spent in the nonlinear separation subproblems (fifth and sixth column
respectively), number of nonlinear programs solved (seventh column), number of cuts
added to the master problem (eighth column). The last two columns report the perfor-
mance of BONMINBranch-and-Bound, indicating the total CPU time and the number
of Branch-and-Bound nodes. The Branch-and-Cut algorithm solves all instances in
less than 30 min, and the number of Branch-and-Bound nodes is under control, never
exceeding 1000. Instances with a smaller number of hydroplants appear easier for the
Branch-and-Cut algorithm: the solution time grows approximately linearly with the
number of plants, while the level of risk α has little effect. Solution times with BON-
MIN are much more unpredictable, being faster than our Branch-and-Cut on some
instances and slower on others, up to an order of magnitude.

In Table 2we report results for instances with 10 hydroplants and a growing number
of scenarios, up to 270 (as reported in the first column). Solution of the MINLP (2)
via BONMIN’s Branch-and-Bound algorithm is faster than our Branch-and-Cut when
the number of scenarios is small, but the Branch-and-Cut scales much better. With
225 or 270 scenarios, BONMIN times out in most cases while the Branch-and-Cut
decomposition approach solves all problems.

4.3 Computational performance with step price function

We now study the performance of the proposed solution methodology when applied
as a heuristic to the problem with the nonconvex generation function (23) and the step
price function modeled in (25)–(28), which requires binary variables. Our approach
consists of two parts. First, we apply the Branch-and-Cut algorithm to solve the con-
tinuous relaxation of the chance-constrained problem in a heuristic manner. Then we
restart the Branch-and-Cut algorithm, keeping the pool of generated cuts and enforc-
ing integrality requirements for scenario subproblems in the cut generation process,
i.e., when solving (PROJ). This way, the Branch-and-Cut algorithm converges to an
integer solution, although not necessarily an optimal one. More specifically, there
are two reasons why this approach may generate cuts that are not valid and there-
fore return a suboptimal solution. The first reason is that the continuous relaxation
of (PROJ) is nonconvex when using generation function (23), precisely because of
Eq. (23). “Appendix A” shows that the projections Cx (w

i ) of the feasible regions of
the scenario subproblems are convex for all i , therefore the first assumption of The-
orem 2 is satisfied; however, the last assumption is not, because we attempt to solve
the nonconvex problem (PROJ) with IPOPT, which may not yield a globally optimal
solution. Whenever the solution returned by IPOPT is not the global optimum, the
corresponding outer approximation cuts may not be valid. The second reason why the
cuts may not be valid is that in the second phase we enforce integrality for the binary
variables of the scenario subproblems when solving (PROJ) to generate a cut.

In our experiments, this approach always yields matching (heuristic) lower and
upper bounds. We remark that this is not guaranteed in general, but the following
features of our application may explain why this is the case:

– In each scenario subproblem, when the quantity of energy sold in period t falls in
the first step of the step price function (larger price for a limited amount of energy),
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integrality of the associated yt variable is automatically attained because of the
objective function’s direction, i.e., profit maximization;

– In the master problem, the maximization of a quantile of the profit implies that the
objective function value is given by the minimum profit among satisfied scenarios.
The scenario attaining minimum profit is likely to involve a limited amount of
water flow, thus a limited energy production that falls in the first step of the step
price function. Not only such a scenario may have an integral solution to the
continuous relaxation, but we may also expect binding cuts in the master problem
to be obtained from scenarios where integrality constraints are satisfied.

Results for the integer case and a comparison with the BONMIN Branch-and-Bound
performance are reported in Table 3. Notice that here BONMIN is used as a heuristic,
using the recommended “B-BB” setting for nonconvex problems [52]. We tried the
global solver Couenne as well [53], but its performance was worse than BONMIN,
always reaching the time limit and not yielding upper bound improvements.

The columns associated with the Branch-and-Cut algorithm include the (heuristic)
lower and upper bound computation. On average, computing the upper bound takes
39.5% of the computing time, and generates 78.6% of the cuts. BONMIN times out
on the majority of the instances, and is up to two orders of magnitude slower than our
approach on the instances that it can solve. Our decomposition approach always finds
solutions of comparable quality on instances onwhich BONMIN terminates (the profit
of the solution found by Branch-and-Cut are is at most 0.83% lower than BONMIN).
For the other instances, Branch-and-Cut takes less than 15 min to find solutions that
are up to 5.5% better than those found by BONMIN in 10 h.

4.4 The effect of˛ on the profit

We now discuss the trade-off between profit and risk allowed by our chance-
constrained formulation for the mid-term hydro scheduling problem. The results
discussed here are obtained with generation function (22) and the linear price func-
tion, see Sect. 3.3.2. Figure 4 shows, for several configurations of the system (1 to 10
hydroplants), the objective function value (quantile of the profit) of the solutions as a
function of the level of risk α, restricted to the case of 90 scenarios. This allows the
decision maker to easily evaluate not only the (minimum) profit they can obtain for a
specified value of the risk, but also what profit they could expect by accepting a larger
or smaller uncertainty. Of course, the objective function value obtained with a given
α corresponds to the minimum profit that can be achieved with probability 1− α, but
the solution may be infeasible with probability α. In this section, α = 0.05 is included
in the comparison besides the α values tested above.

Once the problem is optimally solved for a specific level of riskα, the decisionmaker
can also evaluate the distribution of the profits associated with the different scenarios.
Indeed, a solution to the master problem specifies a value for the flow variables: this
allows us to compute the associated profit for all satisfied scenarios, and also for
those unsatisfied scenarios for which the flow variables define a physically feasible
solution [i.e., those scenarios for which the water balance constraints are satisfied,
but constraints (15) are not]. Figure 5 depicts the inverse distribution function of the

123



Nonlinear chance-constrained problems with applications… 437

Ta
bl
e
3

C
om

pa
ri
so
n
be
tw

ee
n
se
pA

ll-
bi
gM

an
d
B
O
N
M
IN

B
ra
nc
h
an
d
B
ou

nd
on

co
nfi

gu
ra
tio

ns
w
ith

10
hy

dr
op

la
nt
s
an
d
30

,4
8,
60

,7
2,
an
d
90

sc
en
ar
io
s
(s
te
p
pr
ic
e
fu
nc
tio

n)

#
Sc
en
.

α
B
ra
nc
h
an
d
cu
t

M
IN

L
P

B
&
B
no
de
s

Se
p.

no
de
s

T
im

e
(s
)

%
T
im

e
(M

I)
N
L
P

(M
I)
N
L
P
so
lv
ed

A
dd
ed

cu
ts

So
l.
va
lu
e

T
im

e
(s
)

N
od
es

So
l.
va
lu
e

30
0.
1

2
2

38
.4

10
0

17
88

41
9

67
4.
7

27
2.
2

19
5

67
5.
8

30
0.
2

10
4

13
1.
1

99
.8

39
93

10
65

81
5.
9

21
8.
2

26
8

81
5.
9

30
0.
3

21
6

16
8.
8

99
.9

43
92

10
38

83
8.
9

21
39

.5
0

36
02

84
2.
6

30
0.
4

18
4

24
8.
3

99
.7

85
43

15
41

87
2.
0

27
13

.2
0

41
37

87
2.
8

30
0.
5

8
6

10
9

99
.9

33
00

86
5

10
61

.9
22

8.
1

22
9

10
62

.4

48
0.
1

31
5

49
4.
9

99
.7

14
,4
82

23
19

61
8.
2

10
,7
09

.1
0

67
24

62
2.
3

48
0.
2

42
6

39
6.
7

99
.6

17
,4
85

26
25

66
6.
3

t.l
.

16
,8
38

65
7.
4

48
0.
3

60
11

67
9.
4

99
.5

29
,2
03

37
47

70
5.
9

t.l
.

23
,4
53

71
5.
0

48
0.
4

73
11

42
2.
8

99
.5

21
,3
96

27
53

73
0.
5

t.l
.

21
,5
17

73
0.
8

48
0.
5

8
3

10
5

99
.8

31
43

89
7

99
0.
9

50
8.
7

37
2

99
9.
1

60
0.
1

4
3

22
0.
2

99
.9

10
,4
24

17
89

55
6.
6

45
08

.2
0

30
00

55
7.
8

60
0.
2

39
7

47
5.
3

99
.7

22
,9
94

35
88

63
8.
3

t.l
.

23
,9
61

62
7.
3

60
0.
3

93
10

70
8.
1

99
.4

27
,9
92

40
96

68
2.
5

t.l
.

23
,5
82

68
2.
5

60
0.
4

16
5

17
66

0.
2

99
.3

27
,6
61

36
96

72
7.
7

t.l
.

20
,9
94

71
5.
0

60
0.
5

78
8

13
2.
5

99
.8

85
15

16
31

81
0.
3

t.l
.

23
,6
48

79
2.
0

72
0.
1

39
7

31
1.
9

99
.8

16
,2
60

28
84

55
6.
9

t.l
.

95
84

54
7.
2

72
0.
2

11
8

11
66

3.
9

99
.4

34
,0
44

44
50

61
4.
1

t.l
.

89
20

59
5.
3

72
0.
3

13
7

12
81

4.
7

99
.4

27
,2
80

38
81

66
1.
0

t.l
.

10
,6
80

64
4.
1

72
0.
4

13
5

12
70

1.
5

99
.5

26
,2
91

34
66

68
6.
6

t.l
.

12
,0
87

67
7.
2

72
0.
5

17
9

15
65

5.
2

99
.3

25
,6
32

38
44

73
4.
7

t.l
.

20
,0
70

73
0.
8

90
0.
1

19
4

26
6

99
.8

12
,1
65

21
44

50
9.
3

58
90

.2
0

22
26

51
0.
0

90
0.
2

56
7

47
6

99
.7

20
,4
77

27
96

55
4.
8

t.l
.

14
,7
75

52
4.
2

123



438 A. Lodi et al.

Ta
bl
e
3

co
nt
in
ue
d

#
Sc
en
.

α
B
ra
nc
h
an
d
cu
t

M
IN

L
P

B
&
B
no
de
s

Se
p.

no
de
s

T
im

e
(s
)

%
T
im

e
(M

I)
N
L
P

(M
I)
N
L
P
so
lv
ed

A
dd
ed

cu
ts

So
l.
va
lu
e

T
im

e
(s
)

N
od
es

So
l.
va
lu
e

90
0.
3

11
3

10
62

2.
2

99
.3

29
,4
69

40
41

61
8.
2

t.l
.

14
,0
27

61
2.
9

90
0.
4

34
0

20
90

3.
3

99
.2

35
,8
38

47
93

67
1.
5

t.l
.

13
,9
22

66
6.
2

90
0.
5

10
6

12
64

7.
9

99
.3

25
,1
36

39
33

72
7.
7

t.l
.

15
,8
33

71
5.
6

123



Nonlinear chance-constrained problems with applications… 439

Fig. 4 Trade-off between profit
in eM and level of risk: the
x-axis reports the risk level α,
and the y-axis the corresponding
objective function value

Fig. 5 Inverse distribution
function of the profit

profit for the case of 10 hydroplants. We remark that here, and in the computation
of expected profits below, we cannot evaluate the profit for solution that violates the
water conservation constraints. In this cases we adopt a conservative approach and
assume that the profit is zero; this allows us to compute a lower bound on the profit
increase that can be expected relative to the case α = 0. The solution obtained with
α = 0 (all scenarios are satisfied) achieves a profit that is consistently below the other
solutions, except for scenarios when the other solutions are infeasible. As expected,
there is a spike in each curve when the value on the x-axis corresponds to the level
of risk α being optimized. It is interesting to observe that even a risk-averse solution
(α = 0.05) achieves a profit that is relatively similar to the least risk-averse solution
(α = 0.5), although in the most favorable scenarios (right part of the graph), α = 0.5
typically yields better profit thanα = 0.05.On the other hand, for themost unfavorable
scenarios (left part of the graph), the solutions with α = 0.05 and α = 0.1 perform
better than with α = 0.5.

Table 4 reports the expected profit and the standard deviation of the solutions
corresponding to the tested values of α, still under the conservative assumption that no
profit is earned in infeasible scenarios.We can see that relaxing some of the constraints
with small probability (≤ 0.05) yields an increase of the expected profit by 6.9% as
compared to the solution with α = 0. Allowing constraint violations with probability
of 30% and higher produces infeasible solutions in a larger number of scenarios,
and the corresponding lack of profit decreases the expected gain. When α is very
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Table 4 Expected profit in eM
(second column) and standard
deviation (third column) for
different values of α

α E[ϕ] σ

0.00 672.4 201.6

0.05 718.9 202.9

0.10 700.4 271.1

0.20 719.0 228.3

0.30 699.1 272.7

0.40 691.1 293.3

0.50 660.1 320.5

large (α = 0.5), the solution obtained is infeasible for many scenarios, leading to an
expected profit that could be up to 1.9% lower than the conservative solution with
α = 0, and with a much higher standard deviation.

Summarizing, our computational experiments indicate that introducing a moderate
amount of flexibility in the formulation, namely by allowing some constraints to be
violated with small probability (0.05), can increase the expected profit by a signifi-
cant amount. However, there are diminishing returns of increasing α, and when the
allowed probability of violating the constraints becomes too large, the resulting trade-
off between risk and rewards seems to be unfavorable, yielding a drop and a much
higher standard deviation in the expected profit.

5 Conclusions

We have proposed a Branch-and-Cut algorithm for a class of nonlinear chance-
constrained mathematical optimization problems with a finite number of scenarios.
The algorithm is based on an implicit Benders decomposition scheme, where we gen-
erate cutting planes as outer approximation constraints from the projection of the
feasible region on suitable subspaces.

The algorithm has been theoretically analyzed and computationally evaluated on a
mid-term hydro scheduling problem by using data from ten hydroplants in Greece.We
have shown that the proposed methodology is capable of solving larger instances than
applying a general-purpose solver for convex mixed-integer nonlinear programming
problems to the deterministic reformulation, and scales much better with the number
of scenarios.

From an economic standpoint, our numerical experiments have shown that the
introduction of a small amount of flexibility in the formulation, by allowing constraints
to be violated with a joint probability ≤ 5%, increases the expected profit by 6.9% on
our dataset.
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A Analysis of the nonconvex formulation for scenario subproblems

In this “Appendix” we analyze the set Cx (w
i ) when using the nonconvex generation

function (23) for the scenario subproblems. More specifically, we show that this set
satisfies the convexity assumption of Theorem 2.

Recall that in the language of this paper, Cx (w
i ) = ProjxCx,y(w

i ), and Cx,y(w
i )

is defined by the constraints (8)–(14), with decision variables labeled xth, wth, eth in
the formulation. As discussed in Sect. 2, the master problem is only aware of variables
xth . We therefore have to show that the projection of (8)–(14) onto the space of xth is
a convex set [while the variables labeled wth, eth are the y component of Cx,y(w

i )].
It is sufficient to show that this is true for a single constraint of the form (12), because
all the remaining constraints are linear, and each of the Tn constraints (12) involves a
different set of variables xth, wth, eth .

Using the generation function (23), constraint (12) can be written as follows:

f (x, w, e) = e + w(ax2 − bx) + cx2 − dx ≤ 0, (32)

where all coefficients a, b, c, d are positive in our data.Here,we dropped the subscripts
from xth, wth, eth for ease of exposition. Define F := {(x, w, e) : f (x, w, e) ≤ 0}.
Since the function e + w(ax2 − bx) + cx2 − dx is not convex in its arguments
x, w, e, we show convexity of Projx F directly using the definition. Consider two
points x1, x2 ∈ Projx F , and we want to show x3 := λx1+ (1−λ)x2 ∈ Projx F for any
λ ∈ [0, 1]. We will show it under the additional conditions 0 ≤ x ≤ b

a , w ≥ 0, both of
which are satisfied by the data used in our experiments (we only consider nonnegative
water levels, and the coefficients a, b in the problem data are such that b

a is larger than
the upper bound on x).

By convexity of the expression ax2 − bx for a ≥ 0, we have ax23 − bx3 ≤ λ(ax21 −
bx1) + (1− λ)(ax22 − bx2) and cx23 − dx3 ≤ λ(cx21 − dx1) + (1− λ)(cx22 − dx2) for
any λ ∈ [0, 1]. Choose w3 = max{w1, w2} ≥ 0, e3 = min{e1, e2}. Then we have:

f (x3, w3, e3) = e3 + w3(ax
2
3 − bx3) + cx23 − dx3

≤ e3 + w3[λ(ax21 − bx1) + (1 − λ)(ax22 − bx2)]
+ λ(cx21 − dx1) + (1 − λ)(cx22 − dx2)

= e3 + λ[w3(ax
2
1 − bx1) + cx21 − dx1]

+ (1 − λ)[w3(ax
2
2 − bx2) + cx22 − dx2]

≤ e3 + λ[w1(ax
2
1 − bx1) + cx21 − dx1]

+ (1 − λ)[w2(ax
2
2 − bx2) + cx22 − dx2],
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where for the last inequality we used w3(ax21 − bx1) ≤ w1(ax21 − bx1) (because
w3 ≥ w1 and ax21 − bx1 ≤ 0, since 0 ≤ x ≤ b

a ), and for similar reasons, w3(ax22 −
bx2) ≤ w2(ax22 − bx2). Now consider the case w1(ax21 − bx1) + cx21 − dx1 ≥
w2(ax22 − bx1) + cx22 − dx2 first. Then we have:

f (x3, w3, e3) ≤ e3 + λ[w1(ax
2
1 − bx1) + cx21 − dx1]

+ (1 − λ)[w2(ax
2
2 − bx1) + cx22 − dx2]

≤ e3 + w1(ax
2
1 − bx1) + cx21 − dx1

≤ e1 + w1(ax
2
1 − bx1) + cx21 − dx1 ≤ 0,

where for the second inequality we used (1 − λ)[w2(ax22 − bx1) + cx22 − dx2] ≤
(1 − λ)[w1(ax21 − bx1) + cx21 − dx1] since 1 − λ ≥ 0, and for the last inequality we
used the fact that e3 = min{e1, e2} ≤ e1.

The case w1(ax21 − bx1) + cx21 − dx1 < w2(ax22 − bx1) + cx22 − dx2 is almost
identical and yields

f (x3, w3, e3) ≤ min{e1, e2} + w2(ax
2
2 − bx2) + cx22 − dx2

≤ e2 + w2(ax
2
2 − bx2) + cx22 − dx2 ≤ 0.

This shows that x3 ∈ Projx F for any λ ∈ [0, 1], thereby proving convexity of Projx F
and of the projection of the feasible set (8)–(14) with generation function (23). As a
consequence, the first assumption of Theorem 2 is satisfied.
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