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Abstract In this paper, we identify partial correlation information structures that
allow for simpler reformulations in evaluating the maximum expected value of
mixed integer linear programs with random objective coefficients. To this end,
assuming only the knowledge of the mean and the covariance matrix entries re-
stricted to block-diagonal patterns, we develop a reduced semidefinite program-
ming formulation, the complexity of solving which is related to characterizing a
suitable projection of the convex hull of the set {(x,xx′) : x ∈ X} where X is
the feasible region. In some cases, this lends itself to efficient representations that
result in polynomial-time solvable instances, most notably for the distribution-
ally robust appointment scheduling problem with random job durations as well as
for computing tight bounds in Project Evaluation and Review Technique (PERT)
networks and linear assignment problems. To the best of our knowledge, this is
the first example of a distributionally robust optimization formulation for ap-
pointment scheduling that permits a tight polynomial-time solvable semidefinite
programming reformulation which explicitly captures partially known correlation
information between uncertain processing times of the jobs to be scheduled.

1 Introduction

We consider decision problems where the objective involves maximizing the ex-
pected value of Z(c̃), where c̃ = (c̃1, c̃2, . . . , c̃n) is a n-dimensional real valued
random vector, such that,

Z(c̃) = max
{
c̃′x : x ∈ X

}
, (1)

and the set X is the bounded feasible region to a mixed integer linear program
(MILP):

X =
{
x ∈ Rn : Ax = b, x ≥ 0, xj ∈ Z for j ∈ I ⊆ [n]

}
.
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The set X includes the feasible region to linear optimization problems as a special
case. The distribution θ of c̃ is not always known explicitly, while many a time, only
a set P of distributions is known such that θ ∈ P. In this scenario, we are interested
in computing the quantity sup{Eθ[Z(c̃)] : θ ∈ P}, referred to as the distributionally
robust bound. In this paper, we focus on the case where only the first moment of
c̃ along with some of the second moments are specified. Applications where such
bounds have been previously studied include appointment scheduling, portfolio
management and the newsvendor problem among others. For more details, the
interested reader may refer to [4,15,6,32,24,45,31].

A precise description of the problem is provided next. Suppose that N1, . . . ,NR
form a partition of the set N = {1, . . . , n}, so that N =

⋃
rNr and Ni ∩ Nj = ∅ for

i 6= j. We use nr = |Nr| to denote the size of the subset Nr. For any vector a ∈ Rn,
let ar ∈ Rnr be the subvector formed using elements in Nr as indices. Let P(Rn)
be the set of probability distributions on Rn. Suppose that the only information
we know about the probability distribution of c̃ is the first moment specified by
E[c̃] = µ and the second moment matrices E[c̃r(c̃r)′] = Πr for r ∈ [R] = {1, . . . , R}.
In this situation, we are interested in:

Z∗ = sup
{
Eθ [Z(c̃)] : Eθ[c̃] = µ, Eθ[c̃r(c̃r)′] = Πr for r ∈ [R ], θ ∈ P(Rn)

}
, (2)

which quantifies the maximum possible expected value of Z(c̃) over all probability
distributions θ whose first and second moments are consistent with the moment
information specified for the random vector c̃. We assume that all r ∈ [R ],Πr �
µrµr ′, which is sufficient to guarantee that strong duality holds and in the resulting
dual formulations, the optimum is attained. Since R denotes the number of non-
overlapping subsets, the partition for R = n corresponds to the case where only
the mean and diagonal (variance) entries of the covariance matrix are specified.
On the other hand, R = 1 corresponds to the case where the mean and the entire
covariance matrix is specified. Hence, Πr’s denote known sub-matrices of Π which
denotes the matrix of all second moments of c̃. Thus, we relax the assumption that
the complete matrix Π is known for a fixed R > 1, but only that some entries are
known. The model studied in this paper is closest to the model analyzed in [17].
Therein, the authors studied the distributionally robust bound sup{Eθ[max c̃′x :
x ∈ X ⊂ {0, 1}n] : θ ∈ P} where multivariate marginal discrete distributions of
non-overlapping subsets of random variables are specified. While the bound is NP-
hard to compute, [17] identified two instances of the problem for subset selection
and Project Evaluation and Review (PERT) networks, where the tight bound is
computable in polynomial-time. We build on the model in [17] by allowing for
decision variables x ∈ X ⊆ Rn and considering moment-based ambiguity sets.

Notations. Let Rm×n be the set of m × n matrices with real entries, Sk be
the set of k× k symmetric matrices and Sk+ be the set of k× k symmetric positive
semidefinite (psd) matrices. We write A � 0 to denote that A is a psd matrix. For
any positive integer k, we use [k] to denote the set {1, 2, . . . , k}. For any subset I
of [k] and matrix A ∈ Rk×k, we use A[I] to denote the principal submatrix of A

formed by restricting to rows and columns whose indices are elements of the set I.
For any set E , we write conv(E) to denote the convex hull of the set E. For a closed
convex cone K, the generalized completely positive cone over K is defined as the
set of symmetric matrices that are representable as the sum of rank one matrices
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of the form:

C(K) = {A ∈ Sn : ∃b1, . . . ,bp ∈ K such that A =
∑
k∈[p]

bkb
′
k}.

For K = Rn+, C(Rn+) is the cone of completely positive matrices. The dual to this
cone is the cone of copositive matrices denoted as C∗(Rn+). More generally for
K = Rn ×Rn+, C(Rn ×Rn+) is given by

C(Rn ×Rn+) =

{[
A B′

B C

]
∈ Sn×n+ : C ∈ C(Rn+)

}
. (3)

2 Literature review

There is now a fairly significant literature on methods that either compute the
tight distributionally robust bound Z∗ or weaker upper bounds on Z∗ for mixed
integer linear optimization problems [15,6,32,24,31,46,22,9]. In general, one of the
difficulties that arises in exact formulations to compute Z∗ under moment-based
ambiguity sets is that it involves optimization over the cone of completely positive
matrices, which is typically intractable. This naturally leads to the question of
identifying specific instances for which the problem is tractable, which is our focus
in this paper. We review some of the key concepts briefly next, before discussing
the contributions in this work.

2.1 Exact Reformulations: Completely Positive Matrices and Quadratic Forms

Problem (2) for R = 1 corresponds to the case where the mean µ ∈ Rn and the
entire second moment matrix Π ∈ Sn+ is specified. The distributionally robust
bound studied in [32] is:

Z∗full(µ,Π) = sup
{
Eθ [Z(c̃)] : Eθ[c̃] = µ, Eθ[c̃c̃′] = Π, θ ∈ P(Rn)

}
. (4)

An exact reformulation of the problem is obtained in [32] by using the expected
value of the following random variables as decision variables:

E

 1
c̃

x(c̃)

 1
c̃

x(c̃)

′ ,

where x(c̃) is a randomly chosen optimal solution for the objective coefficients c̃.
For the case when the decision variables in the set I in X are binary, building on
the seminal work in [12], [32] provided an equivalent reformulation of this problem,
under mild assumptions on the set X as a generalized completely positive program
of the form:

Z∗full(µ,Π) = max
p,X,Y

trace(Y)

s.t

1 µ′ p′

µ Π Y′

p Y X

 ∈ C(R+ ×Rn ×Rn+),

a′kp = bk, ∀k ∈ [p],

a′kXak = b2k, ∀k ∈ [p],
Xjj = xj , ∀j ∈ I,

(5)
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where a′k is the kth row of the matrix A. Unfortunately, this problem is hard to
solve due to the difficulty in characterizing the generalized completely positive
cone C(R+ × Rn × Rn+). For matrices of size n ≥ 5, testing for membership in the
completely positive cone C(Rn+) is known to be NP-hard [16]. However, for n ≤ 4,
the completely positive cone of matrices coincides with the doubly nonnegative
cone of matrices DNNn = Sn+ ∩ Nn where Nn denote the set of matrices of size
n with nonnegative elements. It is straightforward to characterise the doubly non-
negative cone of matrices using psd and nonnegativity conditions and this provides
a tractable relaxation to the completely positive cone, since C(Rn+) ⊆ DNNn for all
n. The doubly nonnegative relaxation thus results in an upper bound on Z∗, which
might not be tight. There are several hierarchies of psd and nonnegative cones that
have been developed to generate tighter approximations of the completely positive
cone and the dual copositive cone including the works of [10], [11], [50], [35]. We
note that completely positive and copositive programming representations of dis-
tributionally robust optimization problems under alternative ambiguity sets such
as Wasserstein-based ambiguity sets have been recently developed in [22] and [46].

A related formulation that builds on characterizing the convex hull of quadratic
forms over the feasible region and semidefinite optimization was proposed in [31].
They established an equivalent tight formulation to compute Z∗ as follows:

Z∗full(µ,Π) = max
p,X,Y

trace(Y)

s.t

1 µ′ p′

µ Π Y′

p Y X

 � 0,(
p,X

)
∈ conv

{(
x, xx′

)
: x ∈ X

}
.

(6)

This exact formulation requires an explicit characterization of the convex hull of
quadratic forms on the feasible region. Characterising this convex hull is known to
be NP-hard for sets such as X = {0, 1}n which corresponds to characterizing the
Boolean quadric polytope (see [37], [33]). However, the approach allows for the
possibility of using valid inequalities that have been developed in deterministic
instances for the Boolean quadric polytope, to develop tighter formulations for
distributionally robust bounds in applications such as in the newsvendor problem
(see [31]). Efficient representations of the convex hull in (6) are known for some
special cases of X in low dimensions as discussed in [2] and in some special cases,
in higher dimensions as discussed in [13,47]. Identifying instances where this set
is efficiently representable remains an active area of research.

2.2 Contributions

Our contributions in the paper are the following:

1. In Section 3, we study MILPs with random objective coefficients where the first
moments are entirely known and only partial information of the second mo-
ments is provided, corresponding to non-overlapping subsets of N . We provide
a tight reformulation of the problem in the spirit of formulation (6), build-
ing on the results in [31]. However, as we show, this formulation requires psd
constraints on smaller matrices and furthermore, it involves characterizing a
suitable projection of the convex hull of the set {(x,xx′) : x ∈ X}, rather than
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the full convex hull. This provides a reduced SDP formulation for the problem
under block-diagonal patterns of covariance information.

2. We provide an application of the formulation to appointment scheduling in Sec-
tion 4.1. In the distributionally robust appointment scheduling problem with
moment-based ambiguity sets, tight polynomial-sized formulations exist only
for the mean-variance setting which corresponds to R = n, to the best of our
knowledge. On the other hand, with a full covariance matrix which corresponds
to R = 1, this problem is known to be hard to solve. By identifying an efficient
characterization of projection of the convex hull of the set {(x,xx′) : x ∈ X}
in this example, we identify a new polynomial-time solvable instance of distri-
butionally robust appointment scheduling with partial correlation information
when R = 2. We also identify polynomial-time solvable instances in the longest
path problem on PERT networks and the assignment problem with random
coefficients in Section 4.2 and Section 4.3.

3. In Section 5, we perform a detailed computational study of the proposed re-
formulation in the distributionally robust appointment scheduling application.
We compare the results with alternative formulations and help identify specific
structures of correlations where the new formulation is most valuable. Finally
we study the optimal schedules generated by various formulations including
ours.

3 Tight bounds in the presence of block-diagonal correlation information

3.1 A reduced semidefinite program

In Theorem 1 below, we identify a reduced semidefinite programming formulation
for evaluating Z∗ in which the positive semidefinite constraints are imposed only
on smaller matrices of dimensions n1, . . . , nr, instead of a larger matrix of dimen-
sion n. Moreover, Theorem 1 asserts that it is sufficient to enforce the (n2 + 3n)/2
dimensional convex hull constraint (ignoring symmetry) in (6) on a suitable selec-
tion involving only

∑
r(n

2
r + 3nr)/2 variables.

Theorem 1 Define Z∗ as the tight bound:

Z∗ = sup

{
Eθ
[
max
x∈X

c̃′x

]
: Eθ[c̃] = µ, Eθ[c̃r(c̃r)′] = Πr for r ∈ [R ], θ ∈ P(Rn)

}
.

Define Ẑ∗ as the optimal objective value of the following semidefinite program:

Ẑ∗ = max
p,Xr,Yr

R∑
r=1

trace(Yr)

s.t

 1 µr ′ pr ′

µr Πr Yr ′

pr Yr Xr

 � 0, for r ∈ [R ],

(
p, X1, . . . , XR

)
∈ conv

{(
x, x1x1′, . . . , xRxR

′
)

: x ∈ X
}
.

(7)

Then, Ẑ∗ = Z∗.
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Before proving this result, which forms the main part of this section, we discuss
some implications. In comparison to formulation (6), formulation (7) involves psd
constraints on multiple but much smaller matrices when maxr nr is smaller than n.
Furthermore, the theorem implies that only relevant projections of the convex hull
of quadratic forms require to be characterised to compute Z∗, under block-diagonal
correlation information. Such sparse characterizations have been previously ex-
ploited to identify polynomial-time solvable instances of unconstrained quadratic
0-1 optimization problems using an appropriate projection of the Boolean quadric
polytope (see [33]). As we shall see in Section 4, the new formulation allows us to
derive compact representations that results in polynomial-time solvable instances
for the distributionally robust appointment scheduling problem, as well as for com-
puting worst-case bounds in PERT networks and bounds for the linear assignment
problem with random objective.

3.2 On chordal graphs and psd completion

A key element in the proof of Theorem 1 comprises in guaranteeing the existence
of a psd matrix whose entries are partially specified. Therefore, as a preparation
towards the proof of Theorem 1, we provide a brief review of results on the psd
completion problem and a closely related notion of chordal graphs that are rele-
vant for our proofs; see, for example, [20,26] and references therein for a detailed
exposition on the psd completion problem.

We call a matrix whose entries are specified only on a subset of its positions
as a partial matrix. Suppose that A is a partial matrix. The set of positions corre-
sponding to the specified entries of A is known as the pattern of A. A completion

of the partial matrix A is simply a specification of the unspecified entries of A. If
A is a partial symmetric matrix (that is, the entry Aji is specified and is equal to
Aij whenever Aij is specified) such that every principal specified submatrix of A

is psd, then A is said to be partial psd. A psd completion of the partial psd matrix
A is said to exist if there exists a specification of the unspecified entries of A such
that the fully specified matrix is psd.

A graph is said to be chordal if any cycle of length greater than or equal to four
has a chord (see [5]). Here, a chord is simply an edge that is not part of the cycle
but connects two vertices of the cycle. As we shall note in Lemma 1 below, the
existence of a perfect elimination ordering characterizes the chordal property of a
graph. For a graph with |V | vertices, a perfect elimination ordering is an ordering
β1, . . . , β|V | of the vertices such that for every i ∈ {1, . . . , |V |−1}, the set of vertices
{βi+1, βi+2, . . . , β|V |} ∩ N (βi) form a clique, where N (v) is used to denote the set
of vertices adjacent to vertex v.

The following well-known results on chordal graphs and psd completion will
be useful in proving Theorem 1.

Lemma 1 A graph is chordal if and only if it has a perfect elimination ordering.

Lemma 2 Every partial positive semidefinite matrix with pattern denoted by a graph

G (where the vertices denote the rows (or columns) of the matrix and an edge is present

between two vertices if the corresponding entry is specified) has a positive semidefinite

completion if and only if G is a chordal graph.
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The proofs of Lemma 1 and 2 can be found, respectively, in Theorem 1, [39] and
Proposition 1 and Theorem 7, [20].

3.3 Proof of Theorem 1

Step 1: To show Z∗ ≤ Ẑ∗. It follows from the definitions of Z∗ and Z∗full(µ,Π)

in (2) and (4) that Z∗ = max{Z∗full(µ,∆) : ∆ ∈ S+
n ,∆[Nr] = Πr for r ∈ [R]}.

Therefore we have from [31, Theorem 2] (see formulation (6)) that

Z∗ = max
p,X,Y,∆

trace(Y)

s.t

1 µ′ p′

µ ∆ Y′

p Y X

 � 0,

∆[Nr] = Πr, for r ∈ [R ],(
p, X

)
∈ conv

{(
x, xx′

)
: x ∈ X

}
.

(8)

Consider any p,X,Y,∆ feasible for (8). Take Xr = X[Nr] and Yr = Y[Nr].
The psd constraint in (8) forces all the principal submatrices to be psd. Given
the block-diagonal partition, define {Vr : r ∈ [R]} to be the following subsets of
{1, . . . , 2n+ 1} :

Vr = {1} ∪ {i+ 1 : i ∈ Nr} ∪ {n+ i+ 1 : i ∈ Nr}, for r ∈ [R]. (9)

Then, the principal submatrices formed by restricting to entries from the index
set Vr, for r ∈ [R], satisfy,1 µ′ p′

µ ∆ Y′

p Y X

 [Vr] =

 1 µr ′ pr ′

µr ∆[Nr] Y[Nr]′
pr Y[Nr] X[Nr]

 =

 1 µr ′ pr ′

µr Πr Yr ′

pr Yr Xr

 � 0.

In addition, since (p,X) ∈ conv{(x,xx′) : x ∈ X}, it is immediate that the prin-
cipal submatrices X[Nr] = Xr satisfy the projected convex hull constraint in (7).
Furthermore, the objective, trace(Y) =

∑
r trace(Y[Nr]) =

∑
r trace(Y

r). Thus
for every p,X,Y,∆ feasible for (8), there exist {p,Xr,Yr : r ∈ [R ]} feasible for
(7) with the same objective. Therefore Z∗ ≤ Ẑ∗.

Step 2: To show Z∗ ≥ Ẑ∗
Suppose that {p∗,Xr

∗,Y
r
∗ : r ∈ [R]} maximizes (7). We show that Z∗ ≥ Ẑ∗ by

constructing p̂, X̂, Ŷ, ∆̂ feasible to (8) and trace(Ŷ) = Ẑ∗ =
∑
r trace(Y

r
∗).

Construction of p̂: Simply, take p̂ = p∗.

Construction of X̂: It follows from Carathéodory’s theorem and the convex hull
constraint in (7) that there exists X̂ , a subset of X , containing at most 1+

∑
r(n

2
r+

3nr)/2 elements such that,(
p̂,X1

∗, . . . ,X
R
∗

)
=
∑
x∈X̂

αx

(
x, x1x1′, . . . ,xRxR

′)
,
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for some {αx : x ∈ X̂} satisfying αx ≥ 0,
∑

x∈X̂ αx = 1.Now take X̂ =
∑

x∈X̂ αxxx′.
Then,[

1 p̂

p̂ X̂

]
=
∑
x∈X̂

αx

[
1
x

] [
1
x

]′
and X̂[Nr] =

∑
x∈X̂

αxxrxr
′
= Xr

∗, for r ∈ [R]. (10)

Construction of Ŷ and ∆̂: Consider n× n partial matrices Ŷp and ∆̂p with entries
specified only along the following principal submatrices:

Ŷp[Nr] = Yr
∗ and ∆̂p[Nr] = Πr, for r ∈ [R ]. (11)

Next, consider a (2n + 1) × (2n + 1) partial symmetric matrix Lp constructed in
terms of the partial matrices Ŷp, ∆̂p and the fully specified matrix X̂ as follows:

Lp =

1 µ′ p̂′

µ ∆̂p Ŷp

p̂ Ŷ′p X̂

 =



1 µ1′ . . . µR
′

p1
∗
′
. . . pR∗

′

µ1 Π1 ? ? Y1
∗
′

? ?
... ?

. . . ? ?
. . . ?

µR ? ? ΠR ? ? YR
∗
′

p1
∗ Y1

∗ ? ?
... ?

. . . ? X̂

pR∗ ? ? YR
∗


.

The entries marked ‘?’ denote missing entries. By demonstrating that the under-
lying pattern of Lp is chordal, Lemma 3 below establishes that there exists a psd
completion for the partial matrix Lp.

Lemma 3 The matrix Lp has a completion Lcomp such that Lcomp � 0.

Proof Consider the following construction of an undirected graph G with vertex
set, V = {s, c1, c2, . . . , cn, x1, . . . , xn} , comprising 2n+1 vertices. To define the edge
set, identify the vertices s, c1, c2, . . . , cn, x1, . . . , xn, respectively, with the rows (or
columns) numbered 1, 2, . . . , 2n + 1 of the partial matrix Lp. We assign an edge
between two vertices of G only if the the respective entry of the partial matrix Lp
is specified. Therefore, graph G represents the pattern of the partial matrix Lp

With the above described construction of graph G, note that the vertices
{x1, . . . , xn} form a clique in G as the matrix X̂ is specified completely. The
edges between the vertices {c1, . . . , cn} correspond to the specified entries of the
partial matrix ∆̂p. Likewise, the edges between vertices {c1, . . . , cn} and vertices
{x1, . . . , xn} correspond to the known entries of the partial martial Ŷp. Thus, for
any r ∈ [R ], when restricted to vertices corresponding to cr and xr, we again have
a clique (see Figure 1 for an illustration).

Next, consider the ordering of the vertices, c1, c2, . . . , cn, s, x1, x2, . . . , xn, of G.
Since the vertices {s, x1, . . . , xn} form a clique, it is immediate that for any xi,

the neighbors of the node that appear after it in the ordering also form a clique.
The same reasoning applies for the vertex s. For any i ∈ [n], let ri be the unique
r ∈ [R ] such that i ∈ Nri . Subsequently, the neighbors of ci that appear after it
in the ordering comprises the collection {cj , s, xk : j, k ∈ Nri , j > i}, which again
forms a clique. This is because the vertices {s, cj , xj : j ∈ Nr} form a clique, for
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any r ∈ [R ]. Consequently, the ordering c1, c2, . . . , cn, s, x1, x2, . . . , xn is a perfect
elimination ordering for the graph G. Then due to Lemma 1, G is a chordal graph.

Recalling the definition of Vr in (9), observe that any fully specified principal
submatrix of Lp is a principal submatrix of

Lp[Vr] =

 1 µr ′ (p̂r)′

µr ∆̂p[Nr] Ŷp[Nr]′

p̂r Ŷp[Nr] X̂[Nr]

 =

 1 µr ′ pr∗
′

µr Πr Yr
∗
′

pr∗ Yr
∗ Xr

∗

 ,
for some r ∈ [R ]. The latter equality follows from (11) and the second observation
in (10). Since p∗,Y

r
∗,X

r
∗ are taken to be feasible for (7), we have that Lp[Vr] � 0

for any r ∈ [R ]. With the ‘maximal’ fully specified principal submatrices {Lp[Vr] :
r ∈ [R ]} being psd, we have that all the fully specified principal submatrices are
psd. Therefore Lp is partial psd.

Finally, with the pattern underlying the partial psd matrix Lp forming a
chordal graph, it follows from Lemma 2 that there exists a psd completion for
Lp. �

To complete the proof, consider the psd completion Lcomp of Lp. Take ∆̂ :=
Lcomp[{2, . . . , n+1}] and Ŷ to be the n×n submatrix of Lcomp formed from entries
in rows {2, . . . , n+ 1} and columns {n+ 2, . . . , 2n+ 1}. Then Lcomp � 0 allows us
to write,

Lcomp =

1 µ′ p̂′

µ ∆̂ Ŷ′

p̂ Ŷ X̂

 � 0. (12)

Since the specified entries of Lp match with that of Lcomp, it follows from the
construction of Lp that Ŷ is a completion of Ŷp and ∆̂ is a psd completion of ∆̂p;
the latter completion is psd because the principal submatrices of Lcomp are psd.
Therefore, we have from (11) that

∆̂[Nr] = Πr and Ŷ[Nr] = Yr
∗. (13)

Furthermore, as we have taken {p∗,Xr
∗,Y

r
∗ : r ∈ [R]} to maximize (7), we have,

Ẑ∗ =
R∑
r=1

trace(Yr
∗) =

R∑
r=1

trace(Ŷ[Nr]) = trace(Ŷ). (14)

It follows from (12) and the first of the two equations in (10) and (13) that
p̂, ∆̂, X̂, Ŷ are feasible for (8). Therefore, the optimal value of (8), denoted by Z∗,
satisfies Z∗ ≥ trace(Ŷ). The desired Z∗ ≥ Ẑ∗ is now a consequence of (14). This
completes Step 2 and the proof of Theorem 1. �

3.4 On the structure of a worst-case distribution

In this section, we exhibit a probability distribution for c̃ that attains the optimal
value Z∗ of (7). The construction is along the lines of the worst case distribution
proposed in [31], adapted to our model.
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s

c1 x1

c2 x2

c3 x3

c4 x4

c5 x5

c6 x6

Fig. 1: Illustration for the graph G for the case where n = 6 and the partition is
given by N1 = {1, 2},N2 = {3, 4} and N3 = {5, 6}. For k odd, ck−1 and ck are not
connected and {ck, xk, ck+1, xk+1, s} form a clique.

We begin with a result on psd matrix factorization in [31]. The following def-
inition of Moore-Penrose pseudoinverse (see [36,38]) is useful in stating the psd
matrix factorization in Lemma 4. Let X be a matrix of dimension k1 × k2. Then
the Moore-Penrose pseudoinverse of X is a matrix X† of dimension k2 × k1 and is
defined as a unique solution to the set of four equations:

XX†X = X, X†XX† = X†, XX† = (XX†)′, and X†X = (X†X)′.

Lemma 4 [31, Theorem 1] Suppose that L is a (k1 +k2)× (k1 +k2) positive semidef-

inite block matrix of the form,

L =

[
A B′

B C

]
� 0, (15)

where the matrices A ∈ Rk1×k1 ,C ∈ Rk2×k2 are symmetric and the matrix C admits

an explicit factorization given by C = VV′. Then L admits the following factorization:

L =

[
B′(V†)′

V

] [
B′(V†)′

V

]′
+

[
U

0

] [
U

0

]′
, (16)

where the matrix U is defined such that A−B′C†B = UU′ � 0.

For a given partition {Nr : r ∈ [R ]} and projected covariance matrices {Πr :
r ∈ [R ]}, suppose that {p∗,Xr

∗,Y
r
∗ : r ∈ [R]} maximizes (7). As in the proof of

Theorem 1, it follows from Carathéodory’s theorem and the convex hull constraint
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in (7) that there exists X̂ , a subset of X , containing at most 1 +
∑
r(n

2
r + 3nr)/2

elements such that,(
p∗,X

1
∗, . . . ,X

R
∗

)
=
∑
x∈X̂

αx

(
x, x1x1′, . . . ,xRxR

′)
,

for some {αx : x ∈ X̂} satisfying αx ≥ 0,
∑

x∈X̂ αx = 1. Consequently, for any
r ∈ [R ], we have from Lemma 4 that,Πr µr Yr

∗
′

µr ′ 1 pr∗
′

Yr
∗ pr∗ Xr

∗

 =
∑
x∈X̂

αx

Πr µr Yr
∗
′

µr ′ 1 xr ′

Yr
∗ xr xrxr ′


=
∑
x∈X̂

αx

dr(x
r)

1
xr

dr(x
r)

1
xr

′ +
 Φr 0nr,1 0nr,nr

01,nr 0 01,nr

0nr,nr 0 0nr,nr

 , (17)

where dr(x
r) ∈ Rnr and Φr ∈ S+nr for every r ∈ [R ]. From the above factorization,

observe that,

trace(Yr
∗) = trace

∑
x∈X̂

αxxrdr(x
r)′

 =
∑
x∈X̂

αx

R∑
r=1

dr(x
r)′xr. (18)

For completeness, we will now list explicitly the expressions for the means
dr(x

r) and Φr. These expressions are obtained by making appropriate substitu-
tions as per Lemma 4. For every r ∈ [R], define the matrix Vr of size (nr+1)×mr

where mr is the number of points in the projected space X r as follows.

Vr =

[
. . .

√
αr(xr) . . .

...
√
αr(xr)x

r
...

]
(19)

Each column of Vr corresponds to an element xr of X r and is of the form[ √
αr(xr)√
αr(xr)x

r

]
. Define Φr of size nr × nr as:

Φr = Πr − [µr Ŷr
∗]

[
1

∑
xr αr(x

r)(xr)′∑
xr αr(x

r)xr
∑

xr αr(x
r)xr(xr)′

]† [
µr

Ŷr
∗

]
(20)

The mean vector dr(xr) is set to be the column vector of the matrix[
µr Ŷr

∗
]

(V†r)
′ × 1/

√
αr(xr) corresponding to where xr occurs in Vr.

Proposition 1 Suppose that {p∗,Xr
∗,Y

r
∗ : r ∈ [R]} maximizes (7) and that there

exists a finite X̂ ⊆ X and {αx : x ∈ X̂} satisfying (17). Let θ∗ be the distribution of c̃

generated as follows:

Step 1: Generate a random vector x̃ ∈ X̂ ⊆ X such that P (x̃ = x) = αx.

Step 2: For every r ∈ [R ], independently generate a normally distributed random

vector z̃r ∈ Rnr , conditionally on x, with mean dr(x
r) and covariance Φr. Set

c̃r = z̃r.
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Then θ∗ attains the maximum in (2).

Proof Consider (x̃, c̃) generated jointly according to the described steps. Then
it follows from the law of iterated expectations that, E[f(c̃)] = E[E[f(c̃)|x̃] =∑

x∈X̂ αxE[f(c̃)|x̃ = x], for any function f. As a result, we have from (17) that for
any r ∈ [R ],

E
[
c̃r

1

] [
c̃r

1

]′
=
∑
x∈X̂

αx

[
dr(x

r)dr(x
r)′ + Φr dr(x

r)

dr(x
r)′ 1

]
=

[
Πr µr

µr ′ 1

]
. (21)

Moreover, as x̃ ∈ X , the objective E[maxx∈X c̃′x] satisfies,

Z∗ ≥ E
[
max
x∈X

c̃′x

]
≥ E[c̃′x̃] = E

[
E [c̃ | x̃]′ x̃

]
= E

[
R∑
r=1

E [c̃r | x̃]
′
x̃r

]

= E

[
R∑
r=1

dr(x̃
r)′x̃r

]
=
∑
x∈X

αx

R∑
r=1

dr(x
r)′xr =

R∑
r=1

trace(Ŷr
∗) = Ẑ∗ = Z∗,

where the last three equalities follow, respectively, from (18), the optimality of
{p∗,Xr

∗,Y
r
∗ : r ∈ [R ]} for (7), and Theorem 1. Combining this observation with

(21), we have that the distribution of c̃, denoted by θ∗, is feasible and it attains
the maximum in (2). �

4 Polynomial-time solvable instances

In this section, we identify efficient representations of the convex hull constraint
in (7) for three illustrative applications. The common theme in these applications
is that the derived efficient characterizations, in turn, result in polynomial-time
solvable instances for the partial covariance based distributionally robust formu-
lation in (2). As far as we know, the example we consider in Section 4.1 is the
first example of such an approach towards appointment scheduling that results in
a polynomial-time solvable tight reformulation in the presence of explicitly known
correlation information between uncertain processing times of the jobs to be sched-
uled.

4.1 Appointment scheduling

4.1.1 Problem description

In the presence of uncertainty in the processing durations of jobs for a sequence of
customers, the appointment scheduling problem deals with identifying customer
reporting times that minimize the total amount of time spent by customers waiting
for service after arrival. As an example, consider n patients who need to meet a
doctor. Let ũi be the random service duration of patient i ∈ [n]. Suppose that all
patients arrive exactly at the reporting time allotted to them. If we let si denote the
duration scheduled for patient i, then the reporting time for patient i is

∑i−1
j=1 sj .

We take the waiting time of the first patient to be zero. Then the waiting time
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for patient i, denoted by wi, satisfies the well-known Lindley’s recursion for the
waiting time in single-server queues:

w1 = 0, wi = max(wi−1 + ũi−1 − si−1, 0), i = 2, . . . , n. (22)

The total waiting time for all patients is the sum of waiting times
∑n
i=1 wi. The

overtime of the doctor can be modeled as wn+1 = max(wn + ũn− sn, 0). Then the
total waiting time of the patients and the overtime of the doctor are cumulatively
captured by,

f(ũ, s) =
n∑
i=1

max(wi + ũi − si, 0). (23)

Define S = {s ∈ Rn+ : s1 + . . . + sn ≤ T}, where T is a positive upper time limit
within which the schedules should be fit. It is then natural to seek a schedule
sequence s ∈ S that minimizes E[f(ũ, s)].

The described setup is applicable to schedule appointments in various situa-
tions where a single server processes the arriving jobs on a first-come-first-serve
basis. In settings where the jobs to be processed are dependent and the joint distri-
bution of their processing times ũ is difficult to be fully specified, an approach that
has gained much attention over the last decade is to seek distributionally robust
schedules that minimize the worst case waiting time, supθ∈P Eθ[f(ũ, s)]; here, the
set P is taken to be the family of all probability distributions consistent with the
information known about the probability distribution of ũ. This problem was first
studied in [24] where complete information on the first moment µ and second mo-
ment matrix Π is assumed to be available on the service time durations. Building
on the completely positive formulation in (5), the problem can be reformulated as:

Zapp(µ,Π, s) = max
p,X,Y

trace(Y)− s′p

s.t

1 µ′ p′

µ Π Y′

p Y X

 ∈ C(R+ ×Rn ×Rn+),

[A,−In]p = b,

[a′i,−e′i]X[a′i,−e′i]
′ = b2i , ∀i ∈ [n].

(24)

In the above formulation p ∈ R2n, Y ∈ Rn×2n and X ∈ R2n×2n. The matrix
A ∈ Rn×n is such that Ajj = −1 for j ∈ [n], Aj+1,j = 1 for j ∈ [n − 1], bj =
−1 for j ∈ [n] and a′i indicates row i of A and ei ∈ Rn denotes a column vector
with 1 at position i and zero everywhere else. The above formulation provides the
distributionally robust bound for a given schedule s. The distributionally robust
schedules may be obtained by optimizing the dual of the above formulation over
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the dual variables as well as s as follows:

min
s,α,β,Γ,γ,
u,v,Λ,η,χ

trace(Π′Γ) + µ′β + α+ γ

s.t



α+
n∑
i=1

vi − ui β′

2

s + 2η
2χ

′

−
n∑

i=1

ui

ai
ei

′

2

β
2 Γ

(
−0.5In

On

)′
s + 2η

2χ

− n∑
i=1

ui

ai
ei


2

(
−0.5In

On

)
−

n∑
i=1

vi

(
ai
−ei

)(
ai
−ei

)′
+ Λ


� 0

 γ

(
η

χ

)′
(
η

χ

)
Λ

 ∈ C∗(R2n+1
+ )

(25)
In the above formulation α, γ ∈ R, β,u,v,η,χ ∈ Rn, Γ ∈ Rn×n, Λ ∈ R2n×2n. In
and On denote the identity matrix and the square matrix of zeros respectively,
both of size n.

4.1.2 Polynomial-time solvable instance

To illustrate the applicability of Theorem 1 in this context, suppose that the
number of patients, n, is even without loss of generality, and the mean of service
times ũ is fully specified, and only the entries, {Πii, Πj,j+1, Πj+1,j : i ∈ [n], j ∈
{1, 3, . . . , n − 1}} of the second moment matrix, Π = [Πij ], are specified. This
corresponds to knowing the correlations among service time durations of adjoining
patients. Recalling the definition of the partition {Nr : r ∈ [R ]} of [n], this partial
specification of the second moments corresponds to the scenario where,

R = n/2, and Nr = {2r − 1, 2r}, for r = 1, . . . , R. (26)

For any given schedule s ∈ S, consider the worst-case expected total waiting time,

Z∗app(s) = sup
{
Eθ [f(ũ, s)] : Eθ [ũi] = µi,Eθ[ũ2i ] = Πii, for i ∈ [n],

Eθ[ũj ũj+1] = Πj,j+1, for j ∈ {1, 3, ...n− 1}
}
. (27)

Our key result is that by an appropriate application of Theorem 1, we obtain
a polynomial-time solvable formulation for evaluating Z∗app(s) in Theorem 2.
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Theorem 2 Given a schedule s ∈ S, suppose that Z∗app(s) is defined as in (27). Then,

Z∗app(s) = max
pi,Xij ,Yij ,tkj

n∑
i=1

(Yii − sipi)

s.t.


1 µi µi+1 pi pi+1

µi Πii Πi,i+1 Yii Yi,i+1

µi+1 Πi,i+1 Πi+1,i+1 Yi+1,i Yi+1,i+1

pi Yii Yi+1,i Xii Xi,i+1

pi+1 Yi,i+1 Yi+1,i+1 Xi,i+1 Xi+1,i+1

 � 0, for i odd, i ∈ [n],

pi =
i∑

k=1

n+1∑
j=i

tkj(j − i), for i ∈ [n],

Xii =
i∑

k=1

n+1∑
j=i

tkj(j − i)2, for i ∈ [n],

Xi,i+1 = Xi+1,i =
i∑

k=1

n+1∑
j=i+1

tkj(j − i)(j − (i+ 1)), for i odd, i ∈ [n],

i∑
k=1

n+1∑
j=i

tkj = 1, for i ∈ [n],

tkj ≥ 0, for 1 ≤ k ≤ j ≤ n+ 1.

The proof of Theorem 2 is presented in Section 4.1.3. As demonstrated in Corol-
lary 1 below, an optimal schedule that minimizes the worst-case total expected
waiting time can be obtained by considering the dual minimization problem of the
semidefinite program in Theorem 2.

Corollary 1 Given T > 0, a schedule s ∈ S = {s ∈ Rn+ : s1 + . . . + sn ≤ T} that

minimizes Z∗app(s) can be obtained by solving the following semidefinite program:

Z∗app = min
s,η,β,Γ,ρ,δ,τ ,γ

∑
i∈[n],
i odd

ηi +
n∑
i=1

βiµi +
∑
i∈[n],
i odd

∑
k,l∈{i,i+1}

ΓklΠkl +
n+1∑
i=1

ρi

s.t


2ηi βi βi+1 δi + si δi+1 + si+1

βi 2Γii Γi,i+1 −1 0
βi+1 Γi,i+1 2Γi+1,i+1 0 −1
δi + si −1 0 2γi τi

δi+1 + si+1 0 −1 τi 2γi+1

 � 0, for i odd, i ∈ [n],

j∑
i=k

ρi ≥
min{j,n}∑
i=k

δi(j − i) +

min{j,n}∑
i=k

γi(j − i)2 +

min{j,n}∑
i=k
i odd

τi(j − i)(j − (i+ 1)),

for 1 ≤ k ≤ j ≤ n+ 1,
n∑
i=1

si ≤ T, si ≥ 0, for i ∈ [n].

Proof The result follows by performing a joint minimization over s ∈ S and the
objective of the dual of the semidefinite program in Theorem 2. This is because,
for any s ∈ S, the value of the semidefinite program in Theorem 2 is equal to
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that of its dual minimization problem. Indeed, the existence of an interior feasible
point for the dual problem can be exhibited as follows. Given s ∈ S, set all the
variables other than ηi, γi, γi+1, Γii, Γi+1,i+1, for i odd, to zero, and let Γiiγi > 1/4,
ρi > γi(n + 1 − i)2, for every i ∈ [n]; fix ηi, for i odd, to be arbitrarily positive;
this assignment results in a dual feasible solution where none of the constraints
are active. Moreover, the requirement that Πr − µrµr ′ � 0, for every r ∈ [R ] is
sufficient to guarantee strong duality.

4.1.3 A proof of Theorem 2

Step 1: Recasting the waiting time f(ũ, s) in the form of (1). Given a fixed
sequence of schedules s = (s1, . . . , sn), the recursive structure in (22) allows writing
the total waiting time, f(ũ, s), as the value of the following linear program:

min
w

n+1∑
i=1

wi

s.t wi ≥ wi−1 + ũi−1 − si−1, for i = 2, . . . , n+ 1,
wi ≥ 0, for i = 1, . . . , n+ 1.

Define c̃(s) := ũ− s. The dual of this linear program results in,

f(ũ, s) = max
x

c̃(s)′x

s.t. xi − xi−1 ≥ −1, for i = 2, . . . , n− 1,
xn ≤ 1,
xi ≥ 0, for i = 1, . . . , n,

(28)

The constraints in (28) are such that any subset of n active constraints satisfy,
for every i ∈ [n], either xi = 0 or xi−1 = xi + 1. It has been shown in [48,49] that
any x = (x1, . . . , xn) with this special structure can be uniquely represented as a
partition of intervals of integers in {1, . . . , n+ 1}. This structure was first used in
[28] to identify a tractable instance of appointment scheduling with mean-variance
information and to the case with no-shows in [23]. Lemma 5 below exploits this
representation to characterize the extreme points of the feasible region to (28). For
completeness, we provide the proof here.

Lemma 5 The extreme points of the feasible region in (28) is given by,

Xapp =

{
x ∈ Rn+ : xi =

i∑
k=1

n+1∑
j=i

Tkj(j − i), for i ∈ [n],
i∑

k=1

n+1∑
j=i

Tkj = 1, for i ∈ [n],

Tkj ∈ {0, 1}, for 1 ≤ k ≤ j ≤ n+ 1

}
. (29)

Proof Recall our observation on the constraints in (28) that any subset of n active
constraints must have that, for every i ∈ [n], either xi = 0 or xi−1 = xi + 1.
Therefore, any x in the feasible region to (28) is an extreme point if and only if
either xi = 0 or xi−1 = xi + 1, for every i ∈ [n].

Now, for an extreme point x = (x1, . . . , xn), let Ix be the unique partition of
intervals of integers {1, 2, . . . , n, n+1} such that the interval [k, j] := {k, k+1, . . . , j},



Exploiting Partial Correlations in Distributionally Robust Optimization 17

for k ≤ j, belongs to the partition Ix if and only if xj = 0, xj−1 = 1, . . . , xk = j−k.
Thus there exists a bijection between the extreme points of the feasible region to
(28) and the collection of partitions of integer intervals of {1, 2, . . . , n + 1}. For
illustration, if n = 3 and x = (0, 0, 0) then I(0,0,0) = {[1], [2], [3], [4]}; likewise,
the points (3, 2, 1), (1, 0, 1), are identified with their respective partitions given by,
I(3,2,1) = {[1, 4]} and I(1,0,1) = {[1, 2], [3, 4]}, and vice versa.

Next, for any extreme point x (whose unique interval partition representation
is Ix), consider the following assignment of values to the variables (Tkj : 1 ≤ k ≤
j ≤ n+ 1) :

Tkj =

{
1 if the integer interval [k, j] ∈ Ix,
0 otherwise.

(30)

It follows from the very construction of the interval partition Ix that that only
one of {Tkj : k ≤ i ≤ j} equals 1, for every i ∈ [n], and xi =

∑i
k=1

∑n+1
j=i Tkj(j− i).

Therefore any extreme point of the feasible region of (28) lies in Xapp.
On the other hand, for any x = (x1, . . . , xn) in Xapp, we have xi =∑i
k=1

∑n+1
j=i Tkj(j − i) satisfying,

xi =


0 if Tki = 1 for some k ≤ i,
1 if i = n and Tkn = 0,

xi+1 + 1 otherwise,

for every i ∈ [n]. Here we have again used the observation that for any given

assignment of variables Tkj ∈ {0, 1} satisfying
∑i
k=1

∑n+1
j=i Tkj = 1, for every i ∈

[n], only one of {Tkj : k ≤ i ≤ j} equals one. Since any x ∈ Xapp satisfies xi = 0 or
xi−1 = xi + 1 for every i ∈ [n], we arrive at the conclusion that Xapp is indeed the
set of extreme points of the feasible region to (28). �

As the feasible region to the linear program in (28) is bounded, there exists an
extreme point at which attains the maximum is attained. Then as a consequence
of Lemma 5, we have that

f(ũ, s) = max
{
c̃(s)′x : x ∈ Xapp

}
. (31)

Step 2: Application of Theorem 1. For the partition {Nr : r ∈ [R]} specified in
(26), we use (31) to express Z∗app(s) as,

sup

{
Eθ
[

max
x∈Xapp

c̃(s)′x

]
: Eθ[c̃(s)] = µ− s,Eθ

[
c̃(s)r c̃(s)r

′
]

= Πr
s ∀r ∈ [R ], θ ∈ P(Rn)

}
,

where, for i = 1, 3, . . . , n− 1, the second moment of (c̃i(s), c̃i+1(s)) is specified by,

Π
di/2e
s =

[
Πii Πi,i+1

Πi,i+1 Πi+1,i+1

]
−
[
si
si+1

] [
µi
µi+1

]′
−
[
µi
µi+1

] [
si
si+1

]′
+

[
si
si+1

] [
si
si+1

]′
.

Then as an application of Theorem 1, we can write Z∗app(s) as the value of the
semidefinite program in (7) by replacing parameters µr,Πr, respectively, with
µr − sr and Πr

s . Further, changing the variables Yr to Yr − prsr ′ for r ∈ [R ],
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the objective in (7) becomes,
∑
r trace(Y

r −prsr ′), and the psd constraints in (7)
becomes,  1 µr ′ − sr ′ pr ′

µr − sr Πr − srµr ′ − µrsr ′ + srsr ′ Yr ′ − srpr ′

pr Yr − prsr ′ Xr

 � 0.

This psd constraint is equivalently written as, 1 µr ′ pr ′

µr Πr Yr ′

pr Yr Xr

 � 0,

due to the identical constraints that arise as a result of Schur complement condi-
tions (for psd matrices) on both the constraints above. Indeed, block-matrices of
the form (15) are psd if and only if both A and C−B′A−1B are psd; for the block
matrices in the above constraints, take A = 1 to verify the desired equivalence.

With these observations, we have

Z∗app(s) = max
pi,Xij ,Yij ,tkj

n∑
i=1

(Yii − sipi)

s.t.


1 µi µi+1 pi pi+1

µi Πii Πi,i+1 Yii Yi,i+1

µi+1 Πi,i+1 Πi+1,i+1 Yi+1,i Yi+1,i+1

pi Yii Yi+1,i Xii Xi,i+1

pi+1 Yi,i+1 Yi+1,i+1 Xi,i+1 Xi+1,i+1

 � 0, for i odd ,

(p1, . . . , pn, X11, . . . , Xnn, X12, X34, . . . , Xn−1,n) ∈ Capp,
(32)

where

Capp = conv
{(
x1, . . . , xn, x

2
1, . . . , x

2
n, x1x2, x3x4, . . . , xn−1xn

)
: x ∈ Xapp

}
.

Step 3: An efficient representation of the convex hull Capp. We now complete
the proof of Theorem 2 by identifying a characterization of the convex hull Capp
that leads to an efficient representation of the last constraint written in (32).

Proposition 2 The set Capp is equivalently written as,

Capp =

{
(p1, . . . , pn, X11, . . . , Xnn, X12, X34, . . . , Xn−1,n) ∈ R5n/2 :

pi =
i∑

k=1

n+1∑
j=i

tkj(j − i), Xii =
i∑

k=1

n+1∑
j=i

tkj(j − i)2, for i ∈ [n],

Xi,i+1 =
i∑

k=1

n+1∑
j=i+1

tkj(j − i)(j − (i+ 1)), for i ∈ [n], i odd,

i∑
k=1

n+1∑
j=i

tkj = 1, for i ∈ [n], tkj ≥ 0 for 1 ≤ k ≤ j ≤ n+ 1

}
.
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Proof Take any x ∈ Xapp. It follows from the characterization in (29) that there
exists an assignment for variables Tkj ∈ {0, 1} such that only one of {Tkj : k ≤
i ≤ j} equals one, for every i ∈ [n], and xi =

∑i
k=1

∑n+1
j=i Tkj(j − i). Therefore,

xi = j − i and x2i = (j − i)2 for the unique j ≥ i such that Tkj = 1. Equivalently,
we have

x2i =
i∑

k=1

n+1∑
j=i

Tkj(j − i)2. (33)

Again, since only one of {Tkj : k ≤ i ≤ j} equals one, for every i ∈ [n], we have,

TkjTab = 0, when either k 6= a or j 6= b and k ≤ i ≤ j, a ≤ i ≤ b. (34)

Equipped with this observation, consider:

xixi+1 =

 i∑
k=1

n+1∑
j=i

Tkj(j − i)

i+1∑
a=1

n+1∑
b=i+1

Tab(j − (i+ 1))


=

i∑
k=1

n+1∑
j=i

Tkj(j − i)×
i∑

a=1

n+1∑
b=i+1

Tab(b− (i+ 1))

+
i∑

k=1

n+1∑
j=i

Tkj(j − i)×
n+1∑
b=i+1

Ti+1,b(b− (i+ 1)),

where the latter summand is equal to zero because, a) the terms for which j = i are
zero due to the appearance of j− i, (see Figure 2) and b) the terms for which j > i

are zero due to the appearance of TkjTi+1,b, which is zero due to (34) (illustrated
in Figure 3) . Likewise, in the first summand, the terms for which k 6= a, j 6= b

vanish due to (34). As a result,

xixi+1 =
i∑

k=1

n+1∑
j=i+1

Tkj(j − i)(j − (i+ 1)). (35)

k i i+ 1

Fig. 2: Terms involving TkiTi+1,b vanish as xi = 0.

i i+ 1k j j + 1 b

Fig. 3: Terms involving TkjTi+1,b vanish as only one of Tkj , Ti+1,b can be 1.
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Remark 1 The representation in (35) for the cross terms xixi+1 can be easily under-
stood via the interval partition representation Ix for x ∈ Xapp described in Lemma
5. For any point x ∈ Xapp, identify the only interval in the partition Ix containing
i to be [k, j]. Then we have that xj = 0, xj−1 = 1, . . . , xk = j − k and Tkj = 1 (see
(30)). If i + 1 ∈ [k, j], then xi = (j − i) and xi+1 = j − (i + 1) and the product
xixi+1 = Tkj(j − i)(j − (i+ 1)). On the other hand, if i+ 1 does not belong to the
interval [k, j], we have xi = 0; consequently, again xixi+1 = Tkj(j − i)(j − (i+ 1)).
Since only one element, Tkj , in the collection {Tab : a ≤ i ≤ b} equals one, the
representation in (35) holds. While the representation for the square terms in (33)
has been known in the literature (see, for example, [28]), the representation for the
specific cross terms in (35) has been explicitly characterized, as far as we know,
for the first time in this paper.

Combining the observation in (35) with that in (33) we obtain

Capp = conv
{(
x1, . . . , xn, x

2
1, . . . , x

2
n, x1x2, x3x4, . . . , xn−1xn

)
: x ∈ Xapp

}
= conv

{
(p1, . . . , pn, X11, . . . , Xnn, X12, X34, . . . , Xn−1,n) ∈ R5n/2 :

pi =
i∑

k=1

n+1∑
j=i

Tkj(j − i), Xii =
i∑

k=1

n+1∑
j=i

Tkj(j − i)2, for i ∈ [n],

Xi,i+1 =
i∑

k=1

n+1∑
j=i+1

Tkj(j − i)(j − (i+ 1)), for i ∈ [n], i odd,

i∑
k=1

n+1∑
j=i

Tkj = 1, for i ∈ [n], Tkj ∈ {0, 1} for 1 ≤ k ≤ j ≤ n+ 1

}
,

as a consequence of Lemma 5. Further, total unimodularity of the constraints over
T verifies the representation for Capp in the statement of Proposition 2. �

With this characterization of the set Capp in Proposition 2, observe that the state-
ment of Theorem 2 follows as a consequence of the formulation in (32). This
completes the proof of Theorem 2. �

Remark 2 Mean-variance bound: For any given schedule s ∈ S, the worst-case ex-
pected total waiting time,

Z∗mv(s) = sup
{
Eθ [f(ũ, s)] : Eθ [ũi] = µi,Eθ[ũ2i ] = Πii, for i ∈ [n]

}
, (36)

that is consistent with given mean and variance information of the service times
{ũi : i ∈ [n]}, can be computed by solving the semidefinite programming formula-
tion below in (37). This formulation results from a similar application of Theorem
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1 to the simpler case where Nr = {r}, for r = 1, . . . , n.

Z∗mv(s) = max
pi,Xii,Yii,tkj

n∑
i=1

(Yii − sipi)

s.t

 1 µi pi
µi Πii Yii
pi Yii Xii

 � 0, for i ∈ [n],

pi =
i∑

k=1

n+1∑
j=i

tkj(j − i), for i ∈ [n],

Xii =
i∑

k=1

n+1∑
j=i

tkj(j − i)2, for i ∈ [n],

i∑
k=1

n+1∑
j=i

tkj = 1, for i ∈ [n],

tkj ≥ 0, for 1 ≤ k ≤ j ≤ n+ 1.

(37)

Similar to the formulation in Corollary 1, a distributionally robust schedule that
minimizes the worst-case total expected waiting time can be found by solving the
following semidefinite program:

min
s,η,β,Γ,ρ,δ,γ

n∑
i=1

ηi +
n∑
i=1

βiµi +
n∑
i=1

ΓiiΠii +
n+1∑
i=1

ρi

s.t

 2ηi βi δi + si
βi 2Γii −1

δi + si −1 2γi

 � 0, for i ∈ [n],

j∑
i=k

ρi ≥
min{j,n}∑
i=k

δi(j − i) +

min{j,n}∑
i=k

γi(j − i)2, for 1 ≤ k ≤ j ≤ n+ 1,

n∑
i=1

si ≤ T,

si ≥ 0, for i ∈ [n].

(38)

The semidefinite program in (38) can be seen as an alternative to the second
order conic programming formulation in [28] where the problem of appointment
scheduling in the presence of mean and variance information was considered. The
equivalent SOCP formulation [28] is provided next where σ2 denotes the vector
of variances:

Zapp(µ,σ2) = min
s,β>0,α,λ

n∑
i=1

λi + µiαi + (µ2i + σ2i )βi

s.t

min{n,j}∑
i=k

λi ≥
min{n,j}∑
i=k

(
(πij − αi)2

4βi
− siπij

)
for 1 ≤ k ≤ n, k ≤ j ≤ n+ 1

(39)

where πij = j − i, 1 ≤ i ≤ j ≤ n+ 1.
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Remark 3 A representation for cross terms xixi+2, similar to that in (35) in terms
of variables Tkj ∈ {0, 1}, does not result in linear representation in the variables
Tkj . To see this, recall the interval partition representation described in Lemma
5. Consider any x ∈ Xapp such that there exist k, j satisfying [k, i + 1] ∈ Ix and
[i + 2, j] ∈ Ix. Then xi = 1 and xi+2 = j − (i + 2), in which case xixi+2 =∑i+1
k=1

∑n+1
j=i+2 Tk,i+1Ti+2,j(j − (i+ 2)), which cannot be reduced in a straightfor-

ward manner to a linear representation as in (35).

4.2 Longest path in directed acyclic graphs

In this section, we examine the problem of computing the expected length of the
longest path between a fixed start node and a sink node in a directed acyclic
graph whose arc lengths are uncertain. A key application of this longest path
problem is to estimate project completion times using Project Evaluation and
Review Technique (PERT) networks in project management (see, for example,
[44]). A PERT network is a directed acyclic graph representation of a project that
consists of several activities with partially specified precedence relationship among
the activities. Our objective is to tackle the case where the activity durations (arc
lengths) are random, dependent and their joint distribution is not fully known.

Let V = {0, . . . ,m − 1} denote the set of nodes of a directed acyclic graph G.

Suppose that the nodes 0 and m − 1 represent the start and sink nodes. Let A
denote the set of arcs in G and cij denote the length of arc (i, j) between nodes i
and j. If G is a PERT network, the nodes 0 and m−1 represent the start and end of
the project; the length of the longest path between nodes 0 and m−1 represents the
project completion duration. The length of the longest path can be represented as
the optimal objective value of the following combinatorial optimization problem:

Z(c) = max
∑

(i,j)∈A
cijxij

s.t
∑

j:(i,j)∈A
xij −

∑
j:(j,i)∈A

xji =


1, if i = 0,

−1, if i = m− 1,

0, otherwise,

xij ∈ {0, 1}, for (i, j) ∈ A.

(40)

If the arc lengths (cij)(i,j)∈A are known, Z(c) can be computed in polynomial-time
by solving the linear programming relaxation of the formulation in (40) due to the
total unimodularity of the underlying constraint matrix.

On the other hand, if the arc lengths are random, exact computation of the
expected length of the longest path is known to be #P-hard even with the assump-
tion of independence among arc lengths (see [21]). For specialized graph structures
such as series-parallel graphs, it has been shown in [3,29] that the expected length
of the longest path can be computed in time polynomial in the size of the graph
and the number of points in the discrete support of the arc lengths.

In the absence of the knowledge of the entire joint distribution of the arc
lengths, the distributionally robust formulations in [7,8] result in polynomial-time
solvable bounds for the project duration when the marginal moments of arc lengths
are specified. A natural approach to specify correlation information in PERT net-
works, in order to obtain tighter bounds, is to consider all the activities that enter
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a node to be related and therefore specify correlation information among all ac-
tivities that enter a node. Indeed, such a partition formed by sets of incoming arcs
into nodes have been considered for specifying marginal distribution information
in [18,40,17]. Theorem 3 below identifies a polynomial-time solvable formulation
for evaluating the maximum possible (worst-case) expected project duration in
the presence of mean and covariance information of activity durations whose arcs
enter the same node.

To fix notation, let n be the cardinality of the set A of arcs and R = m − 1.
For the given directed acyclic graph G, consider the following partition of A,

Nr = {i : (i, r) ∈ A}, for r = 1, . . . , R, (41)

formed by considering sets of arcs that enter node r, for r = 1, . . . ,m − 1. Let
c̃ = (c̃ij)(i,j)∈A be the random vector of arc lengths and c̃r = (c̃ir)i: (i,r)∈A be the
random subvector of arc lengths of arcs entering node r, for r = 1, . . . , R. Given that
the expected value of c̃ is µ and that of c̃r(c̃r)′ is Πr for every r ∈ {1, . . . ,m− 1},
our objective is to evaluate,

Z∗path = sup
{
Eθ [Z(c̃)] : Eθ[c̃] = µ, Eθ[c̃r(c̃r)′] = Πr for r ∈ [R ], θ ∈ P(Rn)

}
,

(42)

where Z(·) is specified as in (40).

Theorem 3 Z∗path can be evaluated as the optimal objective value of the following

semidefinite program:

Z∗path = max
pr,Xr,Yr

m−1∑
r=1

trace(Yr)

s.t

 1 µr ′ pr ′

µr Πr Yr ′

pr Yr Xr

 � 0, for r ∈ {1, . . . ,m− 1},

∑
j:(i,j)∈A

pij −
∑

j:(j,i)∈A
pji =


1, if i = 0,

−1, if i = m− 1,

0, otherwise,

Xr
jk =

{
pij , if j = k,

0, otherwise,
for r = 1, . . . ,m− 1,

pij ≥ 0, for (i, j) ∈ A.

(43)

Proof Let us use Xpath to denote the feasible region to the formulation (40). Then
as an application of Theorem 1, Z∗path can be written as the optimal objective
value of the semidefinite program in (7). To efficiently represent the convex hull
constraint in (7), observe that for any x ∈ Xpath,

xirxjr =

{
xir, if i = j,

0, if i 6= j,
(44)

for every i, j such that i, j ∈ Nr. This follows from the observation that any path
from 0 to m that passes through r can contain only one of the arcs {(k, r) : (k, r) ∈
A}. To see this explicitly from the constraints in (40), observe that if x is such
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that
∑
k:(k,r)∈A xkr = 1, then as xkr ∈ {0, 1}, only one of {xkr : (k, r) ∈ A} equals

1. Therefore xirxjr = 0 if i 6= j. On the other hand, x2ir = xir as xir ∈ {0, 1}, thus
verifying (44). As a result of this and total unimodularity of the constraints in
formulation (40),

conv
{(

x,x1x1′, . . . ,xm−1xm−1′
)

: x ∈ Xpath
}

= conv
{(

x,Diag(x1), . . . ,Diag(xm−1)
)

: x ∈ Xpath
}
,

=
{(

p,Diag(p1), . . . ,Diag(pm−1)
)

: p ∈ conv(Xpath)
}
,

where Diag(xr) denotes the nr × nr diagonal matrix formed with elements from
the subvector xr. Since the convex hull of Xpath is simply the collection of points
p = (pij)(i,j)∈A such that pij ≥ 0 and

∑
j:(i,j)∈A

pij −
∑

j:(j,i)∈A
pji =


1, if i = 0,

−1, if i = m− 1,

0, otherwise,

,

the constraints in the formulation (43) are equivalent to those in (7). This com-
pletes the proof of Theorem 3. �

4.3 Linear assignment problem

In this section, we consider the linear assignment problem (see [25,30]), where m
entities belonging to a set V need to be assigned to m entities in a set U . The
entities in the sets U and V can be thought, respectively, as candidates and jobs
that need to be performed by the candidates. Each candidate must be assigned to
exactly one job and each job must be assigned to exactly one candidate. In the
version we consider, only candidates can have preferences for jobs and let cij be
the preference of candidate i for job j.

The described information can be represented as a weighted undirected bipar-
tite graph with weights given by c = (cij)(i,j):i∈U,j∈V . Among the m! possible
assignments of entities in V to U, the objective is to identify an assignment that
maximizes the sum of preferences of all candidates. Hereafter, we address the sum
of preferences of an assignment as the “total welfare” of the assignment. An as-
signment that maximizes the total welfare can be obtained by solving the following
combinatorial optimization problem:

Z(c) = max
xij

∑
i∈U

∑
j∈V

cijxij

s.t
∑
j∈V

xij = 1, for i ∈ U,∑
i∈U

xij = 1, for j ∈ V,

xij ∈ {0, 1}, for i ∈ U, j ∈ V.

(45)

Similar to the formulation for computing the length of the longest path in
(40), the constraints in the formulation (45) are totally unimodular. Therefore a
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linear programming relaxation can be used to identify an optimal assignment in
polynomial-time.

When the preferences are random, there have been attempts in [34,1] to develop
an understanding of the expected total welfare (sum of preferences) of the optimal
assignments. Since the deterministic formulation in (45) is solvable in polynomial-
time, the distributional robust bound with marginal moments can be solved in
polynomial-time as well to result in tight bounds (see [7]). In this section, we
employ Theorem 1 to compute tight bounds that are applicable when partial
correlation information is known in addition to the marginal moments.

Identifying the entries in U with {1, . . . ,m}, we take Nr = {(r, j) : j ∈ V },
for r ∈ [m]. This corresponds to the setting where the correlation of preferences
between any two jobs for the same candidate is known, but correlation across
candidates is not known. Let c̃ = (c̃ij)i:i∈U,j∈V be the random vector of preferences
and c̃i = (c̃ij)j∈V be the random subvector of c̃ when the indices are restricted to
the subset Ni. We aim to evaluate the bound,

Z∗lap = sup
{
Eθ [Z(c̃)] : Eθ[c̃] = µ, Eθ[c̃r(c̃r)′] = Πr for r ∈ [R ], θ ∈ P(Rn)

}
, (46)

where Z(·) is given by (45). As an alternative to the partition considered, one could
consider the partition where we identify the entities in V with {1, . . . ,m} and take
Nr = {(i, r) : i ∈ U}, for r ∈ [m]. In settings where −cij can be interpreted as
the cost for assigning job j to candidate i, this partition corresponds to knowing
correlation between costs for the same job when performed by different candidates.
The following observation can be replicated for this partition as well.

Theorem 4 Suppose that Z∗lap is defined as in (46). Then Z∗lap can be evaluated as

the optimal objective value of the following semidefinite program:

Z∗lap = max
pr,Xr,Yr

m−1∑
r=1

trace(Yr)

s.t

 1 µr ′ pr ′

µr Πr Yr ′

pr Yr Xr

 � 0, for r ∈ [m],∑
j∈V

pij = 1, for i ∈ U,∑
i∈U

pij = 1, for j ∈ V,

Xr
jk =

{
prj , if j = k,

0, otherwise,
for r = 1, . . . ,m,

pij ≥ 0, for i ∈ U, j ∈ V.
(47)

Proof As in the proof of Theorem 3, let Xlap be the bounded feasible region to the
formulation (47). Then as an application of Theorem 1, Z∗lap can be written as the
optimal objective value of the semidefinite program in (7). To efficiently represent
the convex hull constraint in (7), observe that for any x ∈ Xlap,

xijxik =

{
xij , if j = k,

0, if j 6= k,
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for every i ∈ U, j, k ∈ V. This is because, as in the proof of Theorem 3, only one
of {xij : j ∈ V } equals 1, for every i ∈ U ; here recall the constraint,

∑
j∈V xij = 1,

that dictates that only one entity from V is assigned exactly to every i ∈ U. With
xi = (xij)j∈V , we obtain,

conv
{(

x,x1x1′, . . . ,xmxm
′
)

: x ∈ Xlap
}

= conv
{(

x,Diag(x1), . . . ,Diag(xm)
)

: x ∈ Xlap
}
,

=
{(

p,Diag(p1), . . . ,Diag(pm)
)

: p ∈ conv(Xlap)
}
,

where Diag(xi) denotes the m×m diagonal matrix formed with elements from the
subvector xi. Since, due to total unimodularity, the convex hull of Xlap is simply
the collection of points p = (pij)i∈U,j∈V such that pij ≥ 0,

∑
j∈V pij = 1 and∑

i∈U pij = 1, the constraints in the formulation (47) are equivalent to those in
(7). This completes the proof of Theorem 4. �

5 Numerical results

In this section, we report the results of numerical experiments for the appointment
scheduling formulation considered in Section 4.1. We compare the performance of
the semidefinite programming formulation in Theorem 2 (which we refer to as
Non-overlapping), with the following three alternatives:

a) The mean-variance formulation is solved using the SOCP reformulation (39)
originally proposed in [28]. This approach, addressed “Mean-Variance” in the
discussions that follow, provides an upper bound for Z∗app(s) in Theorem 2.

b) For the second alternative, we solve for Z∗app(s) by maximizing over the un-
specified covariance entries of ũ in the formulation (24) (originally proposed
in [24]) that assumes the knowledge of the mean and entire covariance ma-
trix of ũ. The exact formulation in [24] involves a completely positive con-
straint, which is then relaxed to a doubly nonnegative matrix constraint for
tractability (see [24]), thus resulting only in an upper bound for Z∗app(s). In Sec-
tion 5.1 where we restrict our attention to the distributionally robust bound,
we use this formulation, However in Section 5.2, we use the dual formulation
(25), where instead of the copositivity requirement M ∈ C∗(R2n+1

+ ), we use
M = S + N,S � 0,N non-negative as an approximation. We address the pri-
mal as well as dual formulations as “DNN-relaxation” in the discussion below.

c) The exact value of Z∗app(s) is also computed for the formulation (6) where
the extreme points corresponding to (23) are explicitly enumerated and only
the partial moment information is assumed to be known. The explicit enu-
meration of the extreme points involves introduction of new scalar variables
αx for each extreme point x such that

∑
x αx = 1 and αx ≥ 0. The convex

hull constraint in formulation (6) is captured using the following constraints:
p =

∑
x∈Xapp

αxx,X =
∑

x∈Xapp

αxxx′,
∑

x∈Xapp
αx = 1, αx ≥ 0∀x ∈ Xapp. Since

the number of extreme points grows exponentially with n, this approach is fea-
sible only for small values of n. This exact approach, labeled as “Large-SDP”,
is feasible in our computational setup only for n ≤ 9.
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We also tested a recently proposed alternate approximation scheme proposed
in [10] in place of the doubly nonnegative matrix based relaxation for approximat-
ing the completely positive constraint in the exact formulation in [24]. The results
obtained were identical to the approach labeled above as “DNN-relaxation” and
hence we only report the results of DNN-relaxation. All experiments were run on
MATLAB using SDPT3 solver1 [42,43] and YALMIP interface2. For the SOCP
based approach in [28] that is labeled as “Mean-Variance”, the solver used is Se-
DuMi [41].

5.1 Comparison of worst-case expected total waiting times

Assuming that the correlation coefficient between service times ũi and ũi+1 equals
ρ, for every i in {1, 3, . . . , n−1}, we compare the objective value of the formulation
in Theorem 2 with that of the alternative approaches described above, for various
values of ρ in the interval [−1, 1]. We report objective values averaged over 50
independent runs, where in each run, the means and variances of c̃i(s) = ũi − si
are taken to be independent realizations of random variables uniformly distributed
in the intervals [−2, 2] and (0, 5] respectively. For all the results in the current
subsection, since we are interested in only the bound computation, we set s = 0
in all the formulations.

See Figure 4a for a comparison of the ratio of average objective values of our
formulation in Theorem 2 and the Large-SDP approach for n = 6. Table 1 gives
the min, max and mean ratios for various formulations. Since our formulation is
exact, it is not surprising that the ratio is 1 for all values of ρ. The ratios resulting
by comparing average objective values of Mean-Variance and DNN-relaxation ap-
proaches with the exact Large-SDP approach are also reported in Figure 4a. The
variability in the ratio for the Mean-Variance approach can be inferred from the
error bars in Figure 4a. The growth in gap between the objective values of the
Mean-Variance approach and our partial covariance based approach in (27), as n
increases can be inferred from Figure 4b.

Table 1: Bound ratios over Large-SDP bound for various approaches to DR ap-
pointment scheduling for various ρ values, n=6. 50 runs were performed with
random means in [-2,2] and variances in (0,5].

Mean-variance Our Approach DNN Relaxation
ρ mean min max mean min max mean min max

-1.0 1.489 1.054 2.028 1 1 1 1.001 1 1.008
-0.7 1.251 1.036 1.492 1 1 1 1.001 1 1.006
-0.3 1.141 1.023 1.285 1 1 1 1.001 1 1.004
0.0 1.088 1.016 1.185 1 1 1 1.001 1.001 1.007
0.3 1.051 1.010 1.111 1 1 1 1.001 1 1.002
0.7 1.017 1.001 1.039 1 1 1 1.001 1 1.001
1.0 1.010 1 1.055 1 1 1 1.002 1 1.056

1 http://www.math.nus.edu.sg/ mattohkc/sdpt3.html
2 https://yalmip.github.io/
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(a) Ratio of objective value and Z∗
app(s)

for various values of ρ, n = 6
(b) Ratio of objective value and

Z∗
app(s) for various values of n, ρ = −1

Fig. 4: Bound Ratios of various approaches.

It is evident from Figure 4a that the bound resulting from mean-variance for-
mulation in (27) is significantly higher than Z∗app(s) for negative values of ρ. As ρ
approaches 1, the bound resulting from Mean-Variance approach appears to coin-
cide with Z∗app(s).

While the numerical results appear to suggest that the distributionally ro-
bust formulation with partial correlation information offers a behaviour similar
to that of the Mean-Variance approach as ρ → 1, it is worthwhile to note that
the correlation coefficients between c̃i and c̃i+1 need not equal 1 for the worst-case
distribution that attains the supremum in the Mean-Variance formulation (27). In-
deed, given marginal distributions, for objective functions that are supermodular
in its random variable arguments, it is well known that the comonotone joint dis-
tribution maximises the expectation (see, for example, [27,14,19]). However this
comonotone joint distribution may very well be such that the correlation coeffi-
cients between its components are lesser than 1. This also explains the reason why
the mean-variance bound need not exactly match the Large-SDP bound for ρ = 1
(see the last row in Table 1).

From Figures 4a and 4b, we also observe that the DNN-relaxation approach
consistently gives a good approximation ratio (close to 1, see Table 1 for specific
values), though it tends to be computationally expensive for large values of n; see
Figure 5 for comparison of execution times for the different approaches considered.

Fig. 5: Execution times in seconds
of various approaches with n

n Mean Min Max

30 8.397 8.052 8.835

40 19.565 18.712 21.127

50 41.215 38.515 48.330

60 78.533 75.563 82.552

70 129.533 122.533 142.875

80 227.400 206.607 244.174

90 416.586 343.712 478.861

100 672.803 611.037 716.489

Table 2: Execution times (in sec) for
solving the semidefinite program in
Theorem 2
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It can be inferred from Figure 5 that the Large-SDP approach is computa-
tionally prohibitive for large values of n. The mean, minimum and maximum of
observed execution times of the semidefinite program in Theorem 2 are provided
for larger values of n in Table 2. Even for n = 100, the average execution time of
our approach is only 672 seconds (roughly 11 minutes).

5.2 Comparison of optimal schedules

We next compare the optimal schedule obtained using the semidefinite program
in Corollary 1 with those obtained from the Mean-Variance and DNN-relaxation

approaches. For this purpose, we consider n = 20 patients, all with mean process-
ing duration 2 and standard deviation 0.5. We take T = 45 units to be the time
within which the schedules need to be fit. Figure 6a - 6d portray the schedules,
respectively, for the cases where the correlation coefficient between ũi and ũi+1,

for i ∈ {1, 3, . . . , n − 1} is given by ρ = 1,−1, 0 and −0.5. In order to understand
the differences in the optimal schedules when the full covariance matrix is known,
we plot the schedules given by the DNN-relaxation approach for the specific in-
stance where the covariance entries that are not specified are set to 0. We use
the label DNN-Full covariance for this scenario and DNN-Non-overlapping for the
DNN-relaxation with partial moments.

Interestingly, for negative values of ρ, we observe that the inclusion of partial
correlation information results in optimal schedules that are considerably different
(in the relative durations allotted for earlier and later patients) when compared to
those resulting from the Mean-Variance approach that assumes only the knowledge
of mean and variance (see Figure 6b). For the extreme case where ρ = −1, we ob-
serve that the worst-case waiting time, Z∗app, in the presence of partial correlation
information is 4.116; this quantity is much smaller when compared to the worst
case expected total waiting time of 25.615 for the Mean-Variance approach where
the partial correlation information is not included in the formulation. Moreover,
we observe that employing the optimal schedule resulting from the mean-variance
approach increases the worst-case waiting time, Z∗app(·), by nearly 100% over the
optimal Z∗app. On the other hand, employing the optimal schedule from our for-
mulation (38) results in about 30% increase in the worst-case waiting time Z∗mv(·).
Such stark changes in the structure and objective value for optimal schedules are
typically not observed for nonnegative values of ρ (see Table 3).

Table 3: Mean percentage increase in the worst-case waiting time Z∗app(·) when
the optimal schedule from Mean-Variance approach is used instead of the optimal
schedule that minimizes Z∗app(s), and vice versa, for n = 20 and cases ρ = −1, 0
and 1. The rows indicate schedules and columns indicate the DRO formulation
used: M-V for the objective, Z∗mv(·), of the Mean-Variance approach and P-C for
the objective, Z∗app(·), that also includes the knowledge of partial correlations.

ρ = −1 ρ = 0 ρ = 1

Schedule
Objective

M-V P-C P-C P-C M-V P-C

M-V optimal 0 98 0 7.9 0 2.8
P-C optimal 34 0 5.2 0 1.9 0
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(a) Correlation between patient 1 and 2 =
correlation between patients 3 and 4 = . . . =
ρ = 1. For Full-covariance, all other correla-
tions are set to zero. Maximum time avail-
able (T) is 45 units. Optimal objective value
= 25.0688, Mean-Variance bound= 25.6151,
DNN relaxation bound= 25.1534

(b) Correlation between patient 1 and 2 =
correlation between patients 3 and 4 = . . . =
ρ = −1. For Full-covariance, all other corre-
lations are st to zero. Maximum time avail-
able (T) is 45 units. Optimal objective value
= 4.1162, Mean-Variance bound= 25.6151,
DNN relaxation bound= 4.2290

(c) Correlation between patient 1 and 2 =
correlation between patients 3 and 4 = . . . =
ρ = 0. For Full-covariance, all other cor-
relations are set to zero. Maximum time
available (T) is 45 units. Optimal objec-
tive value=19.7474, Mean-Variance bound=
25.6151 , DNN relaxation bound= 19.8607

(d) Correlations between patient 1 and 2 =
correlations between patients 3 and 4 = . . . =
ρ = −0.5. For Full-covariance, all other corre-
lations are set to zero. Maximum time avail-
able (T) is 45 units. Exact bound= 14.6842,
Mean-Variance bound= 25.6151, DNN relax-
ation bound= 14.7904

Fig. 6: Optimal schedules under knowledge of non-overlapping moments. 20 pa-
tients all with mean 2 and standard deviation 0.5.
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