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Abstract. Finding the exact integrality gap α for the LP relaxation of the met-
ric Travelling Salesman Problem (TSP) has been an open problem for over thirty
years, with little progress made. It is known that 4/3 ≤ α ≤ 3/2, and a famous
conjecture states α = 4/3. It has also been conjectured that there exist half-
integer basic solutions of the linear program for which the highest integrality
gap is reached.
For this problem, essentially two “fundamental” classes of instances have been
proposed. This fundamental property means that in order to show that the inte-
grality gap is at most ρ for all instances of the metric TSP, it is sufficient to show
it only for the instances in the fundamental class. However, despite the impor-
tance and the simplicity of such classes, no apparent effort has been deployed for
improving the integrality gap bounds for them. In this paper we take a natural first
step in this endeavour, and consider the 1/2-integer points of one such class. We
successfully improve the upper bound for the integrality gap from 3/2 to 10/7
for a superclass of these points for which a lower bound of 4/3 is proved.
A key role in the proof of this result is played by finding Hamiltonian cycles
whose existence is equivalent to Kotzig’s result on ”compatible Eulerian tours”,
and which lead us to delta-matroids for developing the related algorithms. Our
arguments also involve other innovative tools from combinatorial optimization
with the potential of a broader use.

1 Introduction

Given the complete graph Kn = (Vn,En) on n nodes with non-negative edge costs c ∈
REn , the Traveling Salesman Problem (henceforth TSP) is to find a Hamiltonian cycle
of minimum cost in Kn. When the costs are metric, i.e. satisfy the triangle inequality
ci j + c jk ≥ cik for all i, j,k ∈ Vn, the problem is called the metric TSP. If the metric is
defined by the shortest (cardinality) paths of a graph, then it is called a graph metric;
the TSP specialized to graph metrics is the graph TSP.

For G = (V,E), x ∈RE and F ⊆ E, x(F) := ∑e∈F xe; for U ⊆V , δ (U) := δG(U) :=
{uv ∈ E : u ∈U,v ∈ V \U}; E[U ] := {uv ∈ E : u ∈U,v ∈U}. The scalar product of
vectors a and x of the same dimension will simply be denoted by ax. A path is the edge
set of a connected subgraph with two nodes of degree 1 and all other nodes of degree 2,
and a cycle is the edge set of a connected subgraph with all node degrees equal to 2.
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A natural linear programming relaxation for the TSP is the following subtour LP:

minimize cx (1)
subject to: x(δ (v)) = 2 for all v ∈Vn, (2)

x(δ (S))≥ 2 for all /0 6= S (Vn, (3)
0≤ xe ≤ 1 for all e ∈ En. (4)

For a given cost function c ∈ REn , we use LP(c) to denote the optimal solution value
for the subtour LP and OPT (c) to denote the optimal solution value for the TSP. The
polytope associated with the subtour LP, called the subtour elimination polytope and
denoted by Sn, is the set of all vectors x satisfying the constraints of the subtour LP, i.e.
Sn = {x ∈ REn : x satisfies (2),(3),(4)}.

The metric TSP is known to be NP-hard. One approach taken for finding reason-
ably good solutions is to look for a ρ-approximation algorithm for the problem, i.e. a
polynomial-time algorithm that always computes a solution of value at most ρ times the
optimum. Currently the best such algorithm known for the metric TSP is the algorithm
due to Christofides [9] for which ρ = 3

2 . Although it is widely believed that a better ap-
proximation algorithm is possible, no one has been able to improve upon Christofides
algorithm in four decades. For arbitrary nonnegative costs not constrained by the trian-
gle inequality there does not exist a ρ-approximation algorithm for any ρ ∈ R unless
P = NP, since such an algorithm would be able to decide if a given graph is Hamilto-
nian.

For an approximation guarantee of a minimization problem one needs lower bounds
for the optimum, often provided by linear programming. For the metric TSP with cost
function c, a commonly used lower bound is LP(c). Then finding a solution, i.e. a
Hamiltonian cycle, of objective value at most ρ LP(c) in polynomial time implies at
the same time a ρ-approximation algorithm, and establishes that the integrality gap
OPT (c)/LP(c) is at most ρ for any input. (The input consists of the nodes and the
metric function c on pairs of nodes; again, without the metric assumption this ratio
is unbounded already for the graph TSP by putting infinite costs on non-edges of the
defining graph.) Since up until now the bounds on the integrality gap have been proved
via polynomial algorithms constructing the Hamiltonian cycles, the approximation ratio
for metric costs is conjectured not to be larger than the integrality gap.

It is known that the integrality gap for the subtour LP for any metric c is at most 3
2

([10], [25], [26]), however no example for which the integrality gap is greater than 4
3

is known. In fact, a famous conjecture, often referred to as the 4
3 Conjecture, states the

following:

Conjecture 1. The integrality gap for the subtour LP with metric c is at most 4
3 .

Well-known examples have an integrality gap asymptotically equal to 4
3 . In almost thirty

years, there have been no improvements made to the upper bound of 3
2 or lower bound

of 4
3 for the integrality gap for the subtour LP with metric c.
Define a tour to be the edge set of a spanning Eulerian (i.e. connected with all de-

grees even) multisubgraph of Kn. If none of the multiplicities can be decreased, then all
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multiplicities are at most two; however, there are some technical advantages to allowing
higher multiplicities.

For any multiset J ⊆ En, the incidence vector of J, denoted by χJ , is the vector in
REn for which χJ

e is equal to the number of copies of edge e in J for all e∈En. We use T n

to denote the convex hull of incidence vectors of tours of Kn, and for costs c ∈ REn we
use OPTT n(c) to denote the cost of a minimum cost tour. Note that T n is an unbounded
polyhedron, as T n +REn

+ = T n: each edge may have arbitrarily large multiplicity.
For any ρ ∈ R, ρ Sn denotes {y ∈ REn : y = ρx,x ∈ Sn}. The definition of the in-

tegrality gap can be reformulated in terms of a containment relation between the two
polyhedra ρSn and T n (Theorem 1) that does not depend on the objective function. We
not only use this reformulation here, but also develop a specific way of exploiting it, and
for our arguments this is the very tool that works. Showing for some constant ρ ∈ R
that ρ x ∈ T n for each x ∈ Sn, i.e. that ρ x is a convex combination of incidence vectors
of tours, gives an upper bound of ρ on the integrality gap for the subtour LP: it implies
that for each x ∈ Sn and any cost function c ∈ REn such that cx = LP(c), at least one
of the tours in the convex combination has cost at most ρ (cx) = ρ LP(c). If the costs
are metric, this tour can be shortcut to a TSP solution of cost at most ρ LP(c), giving
a ratio of OPT (c)/LP(c) ≤ ρ . A shortcut means to fix an Eulerian tour and replace a
sequence of nodes a,b,c) by a,c, whenever b has already been visited by the tour. The
essential part “(i) implies (ii)” of the following theorem, due to Goemans [14] (also see
[8]), asserts that the converse is also true: if ρ is at least the integrality gap then ρ Sn is
a subset of T n.

Theorem 1. [14][8] Let Kn = (Vn,En) be the complete graph on n nodes and let ρ ∈
R,ρ ≥ 1. The following statements are equivalent:

(i) For any metric cost function c : En −→ R+, OPT (c)≤ ρLP(c).
(ii) For any x ∈ Sn, ρx ∈ T n.

(iii) For any vertex x of Sn, ρx ∈ T n.

By Theorem 1, Conjecture 1 can be equivalently reformulated as follows:

Conjecture 2. The polytope 4
3 Sn is contained in the polyhedron T n, that is, 4

3 Sn ⊆ T n.

Given a vector x ∈ Sn, the support graph Gx = (Vn,Ex) of x is defined with Ex =
{e ∈ En : xe > 0}. We call a point x ∈ Sn

1
2 -integer if xe ∈ {0, 1

2 ,1} for all e ∈ En. For
such a vector we call the edges e ∈ En

1
2 -edges if xe =

1
2 and 1-edges if xe = 1. Note

that the 1-edges of 1
2 -integer points form a set of disjoint paths that we call 1-paths of

x, and the 1
2 -edges form a set of edge-disjoint cycles we call the 1

2 -cycles of x.
For Conjecture 1, it seems that 1

2 -integer vertices play an important role (see [1],[7],[20]).
In fact it has been conjectured by Schalekamp, Williamson and van Zuylen [20] that a
subclass of these 1

2 -integer vertices are the ones that give the largest gap. Here we state
a weaker version of their conjecture:

Conjecture 3. The integrality gap for the subtour LP is reached on 1
2 -integer vertices.

Very little progress has been made on the above conjectures, even though they have
been around for a long time and have been well-studied. For the special case of graph
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TSP an upper bound of 7
5 is known for the integrality gap [23]. Conjecture 2 has been

verified for the so-called triangle vertices x ∈ Sn for which the values are 1
2 -integer,

and the 1
2 -edges form triangles in the support graph [4]. The lower bound of 4

3 for the
integrality gap is provided by triangle vertices with just two triangles.

A concept first introduced by Carr and Ravi [7] (for the 2-edge-connected subgraph
problem) is that of a fundamental class, which is a class of points F in the subtour elim-
ination polytopes Sn, n ≥ 3 with the following property: showing that ρ x is a convex
combination of incidence vectors of tours for all vertices x ∈ F implies the same holds
for all vertices of polytopes Sn, and thus implies that the integrality gap for the subtour
LP is at most ρ .

Two main classes of such vertices have been introduced, one by Carr and Vempala
[8], the other by Boyd and Carr [4]. In this paper we will focus on the latter one, that
is, we define a Boyd-Carr point [4] to be a point x ∈ Sn that satisfies the following
conditions:

(i) The support graph Gx of x is cubic.
(ii) In Gx, there is exactly one 1-edge incident to each node.

(iii) The fractional edges of Gx form disjoint 4-cycles.

A Carr-Vempala point [8] is one that satisfies (i), (ii) and instead of (iii), the frac-
tional edges form a Hamiltonian cycle. We use fundamental point as a common name
for points that are either Boyd-Carr or Carr-Vempala points. It has been proved that
the Boyd-Carr points [4] and Carr-Vempala points [8] each form fundamental classes.
The support graph of a fundamental point will be called a fundamental graph. In other
words, a fundamental graph is a cubic graph where there exists a perfect matching
whose deletion leads to a graph whose components are 4-cycles, or a Hamiltonian cy-
cle. Note that the 3-edge-connected instances of each of the two classes of fundamental
points also form fundamental classes: for Boyd-Carr points this can be checked from
the construction itself [4]; for Carr-Vempala points this is obvious, since the Hamilto-
nian cycle of edges {e ∈ En : x(e)< 1} has at least two edges in every cut, but two such
edges alone do not suffice for constraints (3) of the subtour LP.

Despite their significance and simplicity, no effort has been deployed to exploring
new integrality gap bounds for these classes, and no improvement on the general 3

2
upper bound on the integrality gap has been made for them, not even for special cases.
A natural first step in this endeavour is to try to improve the general bounds for the
special case of 1

2 -integer Boyd-Carr or Carr-Vempala points.
In this paper we improve the upper bound for the integrality gap from 3

2 to 10
7 for

1
2 -integer Boyd-Carr points, and also provide a 10

7 -approximation algorithm for metric
TSP for any cost function for which the subtour LP is optimized by a Boyd-Carr point.
In fact we generalize these results to a superclass of these points. Replacing the 1-edges
in Boyd-Carr points by 1-paths of arbitrary length between their two endpoints, we get
all the square points, that is, 1

2 -integer points of Sn for which the 1
2 -edges form disjoint

4-cycles, called squares of the support graph. We also show that there exists a subclass
of square points that provide instances where the integrality gap is at least 4

3 . Thus
square points provide new tight examples for the lower bound of the conjectures.
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In the endeavour to find improved upper bounds on the integrality gap we exam-
ine the structure of the support graphs of Boyd-Carr points. We show that they are all
Hamiltonian, an important ingredient of our bounding of their integrality gap. The proof
uses a theorem of Kotzig [19] on Eulerian trails with forbidden transitions. An Eulerian
trail in a graph is a closed walk containing each of its edges exactly once. Contrary to
tours, it is more than just an edge set, the order of the edges also plays a role. The con-
nection of tours to Eulerian trails leads us to delta-matroids and to developing related
algorithms, which are discussed in Section 4.

In Section 2.1 we show a first, basic application of these ideas, where some parts
of the difficulties do not occur. We prove that all edges can be uniformly covered 6/7
times by tours in the support graphs of both fundamental classes in the case where they
are 3-edge-connected. This is better than the conjectured general bound 8/9 that would
follow for arbitrary 3-edge-connected cubic graphs from Conjecture 2 (see [22]).

Another new way of using classical combinatorial optimization for the TSP occurs
in Section 2.2, where we use an application of Edmonds’ matroid intersection theorem
to write the optimum x of the subtour elimination polytope as the convex combination
of incidence vectors of “rainbow” spanning trees in edge-coloured graphs. The idea of
using spanning trees with special structures to get improved results has recently been
used successfully in [13] for graph TSP, and in [15] and [24] for a related problem,
namely the metric s− t path TSP. However, note that we obtain and use our trees in a
completely different way.

Our main results concerning the integrality ratio of 1
2 -integer Boyd-Carr points and

square points are proved in Section 3. We conclude that section by outlining a potential
strategy for using the Carr-Vempala points of [8] for proving the 4

3 Conjecture.
Finally, in Section 4, we provide polynomial-time optimization algorithms for some

of the existence theorems of previous sections, including a 10
7 -approximation algorithm

for metric TSP for any cost function which is optimized by a square point for the subtour
LP. The methods used relate to delta matroids, and their relevance is discussed.

2 Polyhedral Preliminaries and Other Useful Tools

In this section we discuss some useful and powerful tools that we need in the proof of
our main result in Section 3. We begin with some preliminaries.

Given a graph G = (V,E) with a node in V labelled 1, a 1-tree is a subset F of E
such that |F ∩δ (1)|= 2 and F\δ (1) forms a spanning tree on V\{1}. The convex hull
of the incidence vectors of 1-trees of G, which we will refer to as the 1-tree polytope of
the graph G, is given by the following [16, page 262]:

{x ∈ RE : x(δ (1)) = 2, x((E[U ]))≤ |U |−1 for all /0 6=U ⊆V\{1},

0≤ xe ≤ 1 for all e ∈ E, x(E) = |V |}. (5)

It is well-known that the 1-trees of a connected graph satisfy the basis axioms of a
matroid (see [16, page 262-263]).

Given G = (V,E) and T ⊆ V , |T | even, a T -join of G is a set J ⊆ E such that T is
the set of odd degree nodes of the graph (V,J). A cut C = δ (S) for some S⊂V is called
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a T -cut if |S∩T | is odd. We say that a vector majorates another if it is coordinatewise
greater than or equal to it. The set of all vectors x that majorate some vector y in the
convex hull of incidence vectors of T -joins of G is given by the following [12]:

{x ∈ RE : x(C)≥ 1 for each T -cut C, xe ≥ 0 for all e ∈ E}. (6)

This is the T -join polyhedron of the graph G.
The following two results are well-known (see [10], [25], [26]), but we include the

proofs as they introduce the kind of polyhedral arguments we will use:

Lemma 1. [10] [25] [26] If x∈ Sn, then (i) it is a convex combination of incidence vec-
tors of 1-trees of Kn, and (ii) x/2 majorates a convex combination of incidence vectors
of T -joins of Kn for every T ⊆Vn, |T | even.

Proof. Constraints (2) and (3) of the subtour LP together imply that x(En) = n and
x(En[S]) ≤ |S| − 1, for all /0 6= S ( Vn. Thus x ∈ Sn satisfies all of the constraints of
the 1-tree polytope of Kn and (i) of the lemma follows. To check (ii), note that for all
T ⊆ Vn, |T | even, x/2 satisfies the constraints of the T -join polyhedron of Kn (in fact
x(C)/2 ≥ 1 for every cut C), that is, it majorates a convex combination of incidence
vectors of T -joins. ut

Theorem 2. [10] [25] [26] If x ∈ Sn, 3
2 x ∈ T n.

Proof. By (i) of Lemma 1, x is a convex combination of incidence vectors of 1-trees of
Kn. Let F be any 1-tree of such a convex combination, and TF be the set of odd degree
nodes in the graph (Vn,F). Then by (ii) of Lemma 1, x/2 majorates a convex combi-
nation of incidence vectors of TF -joins. So χF + x/2 majorates a convex combination
of incidence vectors of tours, and taking the average with the coefficients of the convex
combination of 1-trees, we get that x+ x/2 majorates a convex combination of inci-
dence vectors of tours. Since adding 2 to the multiplicity of any edge in a tour results in
another tour, it follows that 3

2 x ∈ T n. ut

The tools of the following two subsections are new for the TSP and appear to be
very useful.

2.1 Eulerian Trails with Forbidden Bitransitions

Let G = (V,E) be a connected 4-regular multigraph. For any node v ∈V , a bitransition
(at v) is a partition of δ (v) into two pairs of edges. Clearly every Eulerian trail of G uses
exactly one bitransition at every node, meaning the two disjoint pairs of consecutive
edges of the trail at the node. There are three bitransitions at every node and the theorem
below, equivalent to a result of Kotzig [19], states that we can forbid one of these and
still have an allowed Eulerian trail. As we will show, this provides Hamiltonian cycles
in the support of square points, used in Section 3 to prove our main result.

Theorem 3. [19] Let G = (V,E) be a 4-regular connected multigraph with a forbid-
den bitransition for every v ∈ V . Then G has an Eulerian trail not using the forbidden
bitransition of any node.
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A square graph is defined as a pair (G,M) where G=(V,E) is a cubic 2-edge-connected
graph, and M is a perfect matching of G such that the edges E \M form squares. We
associate Boyd-Carr points to square graphs, where M is defined to be the set of 1-edges.

Lemma 2. A square graph (G,M) has a Hamiltonian cycle containing M.

Proof. Let G = (V,E). We assume G has at least two squares as the lemma is trivially
true otherwise.

Suppose first that G has a square u1u2,u2u3, u3u4,u4u1 in E \M, with a chord, say
u2u4, in M, that is, exactly the two edges au1 and u3b (a,b ∈ V ) are leaving the set
{u1,u2,u3,u4} ⊆V . In this case we can delete u1,u2,u3,u4 from the graph and add the
edge ab to G to form a new square graph (Ĝ,M̂) with M̂ = M− u2u4 + ab. From a
Hamiltonian cycle of this reduced graph containing M̂ we obtain a Hamiltonian cycle
of G containing M by deleting ab, and adding au1,u1u2,u2u4,u4u3,u3b. We can thus
suppose that G has no such square.

Contracting all squares of G, we obtain a 4-regular connected multigraph G′ =
(V ′,E ′) whose edges are precisely M and whose nodes are precisely the squares of
G \M. To each contracted square C we associate the forbidden bitransition consisting
of the pairs of edges of M incident with the diagonally opposite nodes of C in G, as
shown in Figure 1. By Theorem 3, there is an Eulerian trail K of G′ that does not use
these forbidden bitransitions. The two pairs of consecutive edges in K at each node in G′

can then be completed by a perfect matching of the corresponding square in G, forming
the desired Hamiltonian cycle. ut

v

v

2

3

u

G’
v4

v1

u

u

u

u

v

v

v

2

34

1 2

34

v1

Gx

Fig. 1: Shrinking a square in G to node u; forbidden: {(uv1,uv3),(uv2,uv4)}.

The exhibited connection of Eulerian graphs with forbidden bitransitions sends us
to a link on delta-matroids [3] with well-known optimization properties. We explore
this link in Section 4, where we provide a direct self-contained algorithmic proof (with
a polynomial-time, greedy algorithm) for a weighted generalization of Lemma 2. We
content ourselves in this section by providing a simple, first application of Lemma 2
which shows a basic idea we will use in the proof of our main result in Section 3,
without the additional difficulty of the more refined application.

Given a graph G = (V,E) and a value λ , the everywhere λ vector for G is the
vector y ∈ RE|V | for which ye = λ for all edges e ∈ E and ye = 0 for all the other edges
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in the complete graph K|V |. In Theorem 4 below we show that for any cubic 3-edge-
connected graph with a Hamiltonian cycle, the everywhere 6/7 vector is in T n. Since
fundamental graphs are Hamiltonian (by Lemma 2 for Boyd-Carr, and by definition for
Carr-Vempala), the theorem applies to their 3-edge-connected instances. Both classes
of such 3-edge-connected graphs are also fundamental classes as was noted earlier (see
the remark after the definition).

Theorem 4. If G = (V,E) is a cubic, 3-edge-connected Hamiltonian graph, then the
everywhere 6/7 vector for G is in T n.

Proof. Let H be a Hamiltonian cycle of G, and let M := E \H be the perfect matching
complementary to H. Note that χH is the incidence vector of a tour, and we will use it
in the convex combination for the everywhere 6/7 vector. It is a good choice in that it
is a tour which contains the fewest edges possible, however it will need to be balanced
with tours that do not use the edges in H very often in order to achieve our goal. To this
end we consider the point x ∈ RE|V | defined by xe = 1 if e ∈M, xe = 1/2 if e ∈ H and
xe = 0 otherwise. It is easily seen that x is in the subtour elimination polytope S|V |, thus
by Theorem 2, 3

2 x ∈ T n.
Now take the convex combination of tours t := 3

7 χH + 4
7

3
2 x. Then for edges e ∈M

we have te = 0+ 4
7

3
2 = 6

7 . For edges e ∈ H we have te = 3
7 +

4
7

3
2

1
2 = 6

7 , and xe = 0 for
all edges e not in G, finishing the proof. ut

Replacing Hamiltonian cycles by other, relatively small tours or convex combina-
tions of tours in the proof of Theorem 4, one may get similar results weakening the
Hamiltonicity condition. Such results are particularly interesting for general, cubic 3-
edge-connected graphs. For such graphs the everywhere 1 vector is in T n, as noticed
in [22], where it is then asked whether the everywhere 8

9 vector belongs to T n. These
are the values one gets from Theorem 2 and Conjecture 2 respectively, applied to the
everywhere 2

3 vector, feasible for Sn. Note that the analogous problem for the s− t path
TSP has been solved [24].

The above possibility has been explored by Haddadan, Newman and Ravi [17],
who proved that the everywhere 18/19 vector is in T n, getting this constant below 1 for
the first time, and with a polynomial-time algorithm. They replaced the Hamiltonian
cycle in the proof of Theorem 4 by a convex combination of tours proved by Kaiser
and Škrekovski [18] and by Boyd, Iwata, Takazawa [5] algorithmically. Using this con-
vex combination they also deduce better bounds with simple proofs for node-weighted
graphs. Let us do the same for node-weighted Hamiltonian graphs.

In a node-weighted TSP every node v of a given graph G = (V,E) is given a weight
fv ∈ R+, and the cost cuv of an edge uv ∈ K|V | is fu + fv if uv ∈ E, and the cost of a
shortest path in G otherwise. Note that c is metric.

Theorem 5. Let G = (V,E) be a node-weighted cubic 3-edge-connected graph for
which the everywhere λ vector y is in T n. Then OPT (c)≤ 3

2 λLP(c).

Proof. Since G is cubic we have c(E) = 3∑( fv : v ∈V ). Since y ∈ T n there is a tour J
such that

c(J)≤ λc(E) = 3λ ∑( fv : v ∈V ). (7)
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As observed in [17], it follows from constraints (2) of the subtour LP and the fact that the
everywhere 2

3 vector on E(G) is feasible for S|V | that LP(c) = 2∑( fv : v ∈V ). Together
with (7) and the fact that OPT (c)≤ c(J) for metric costs completes the proof. ut

Corollary 1. If G = (V,E) is a node-weighted cubic, 3-edge-connected Hamiltonian
graph, or in particular a 3-edge-connected fundamental graph, then OPT (c)≤ 9

7 LP(c).

2.2 Rainbow 1-trees

We now use matroid intersection to prove that not only is x is in the convex hull of
incidence vectors of 1-trees, but we can also require that these 1-trees satisfy some
additional useful properties. We will use this in the proof of our main result in Section
3.

Given a graph G=(V,E), let every edge of G be given a colour. We call a 1-tree F of
G a rainbow 1-tree if every edge of F has a different colour. Rainbow trees are discussed
by Broersma and Li in [6], where they note they are the common independent sets of
two matroids, a fact combined here with a polyhedral argument to obtain the following
theorem:

Theorem 6. Let x ∈ Sn be 1
2 -integer, and let P be any partition of the 1

2 -edges into
pairs. Then x is in the convex hull of incidence vectors of 1-trees that each contain
exactly one edge from each pair in P .

Proof. Let Gx = (Vn,Ex) be the support graph of x. Consider the partition matroid (cf.
[21]) defined on Ex by the partition P ∪{{e} : e ∈ Ex, e is a 1-edge}. By Lemma 1, x
is in the convex hull of incidence vectors of 1-trees in Ex; since x(Q) = 1 for every class
Q of the defined partition matroid, it is also in the convex hull of its bases. Thus by [21,
Corollary 41.12d], which is a corollary of Edmonds’ matroid intersection theorem [11],
x is in the convex hull of incidence vectors of the common bases of the two matroids.

ut

3 Improved Bounds for 1
2 -integer Points

In this section we show that 10
7 x ∈ T n for all square points x ∈ Sn, and thus for all 1

2 -
integer Boyd-Carr points x as well. We also analyse the possibility of a similar proof for
Carr-Vempala points that would have the advantage of also implying a ratio of 10

7 for all
1
2 -integer points in Sn, as we will discuss at the end of this section. We begin by stating
two properties we prove later to be sufficient to guarantee 10

7 x ∈ T n for any 1
2 -integer

vector x in Sn:

(A) The support graph Gx of x has a Hamiltonian cycle H.
(B) Vector x is a convex combination of incidence vectors of 1-trees of Kn such that

each 1-tree satisfies the following condition: it contains an even number of edges
in every cut of Gx consisting of four 1

2 -edges in H.
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We will use χH of (A) as part of the convex combination for 10
7 x, which is globally

good, since H has only n edges, but the 1
2 -edges of H have too high a value (equal to 1),

contributing too much for the convex combination. To compensate for this, property (B)
ensures that x is not only a convex combination of 1-trees, but these 1-trees are even for
certain edge cuts δ (S), allowing us to use a value essentially less than the x

2 = 1
4 for 1

2
edges in H for the corresponding T -join. The details of how to ensure feasibility for the
T -join polyhedron will be given in the proof of Theorem 7.

While condition (A) may look at first sight impossibly difficult to meet, Lemma 2
shows that one can count on the bonus of the naturally arising properties: any square
point x satisfies property (A), and the additional property stated in this lemma together
with the “rainbow 1-tree decomposition” of Theorem 6 will also imply (B) for square
points. The reason we care about the somewhat technical property (B) instead of its
more natural consequences is future research: in a new situation we may have to use the
most general condition.

Lemma 3. Let x be any square point. Then x satisfies both (A) and (B).

Proof. If we replace the 1-paths in the support graph Gx by single 1-edges, then by
Lemma 2 there is a Hamiltonian cycle for the new graph that contains all of the 1-
edges, and thus Gx also has a Hamiltonian cycle H that contains all of its 1-edges. Thus
point x satisfies Property (A) by Lemma 2. Moreover, since H contains all the 1-edges
in Gx, it follows that H contains a perfect matching from each square of Gx.

Define P to be the partition of the set of 1
2 -edges of Gx into pairs whose classes are

the perfect matchings of squares. Then by Theorem 6, x is in the convex hull of inci-
dence vectors of 1-trees that contain exactly one edge from each pair P ∈P . Property
(B) follows, since every cut C that contains four 1

2 -edges of H is partitioned by two
classes P1,P2 ∈P . (Indeed, we saw at the end of the first paragraph of this proof that a
square met by H is met in a perfect matching.) Since P1 and P2 are met by exactly one
edge of each tree of the constructed convex combination, C is met by exactly two edges
of each tree. ut

Next we prove that properties (A) and (B) are sufficient to guarantee that 10
7 x ∈ T n

for any 1
2 -integer point of Sn. Recall that properties (A) and (B) are more general than

what we need for square points: the condition of the theorem we prove does not require
that the Hamiltonian cycle of property (A) contains the 1-edges of Gx, as Lemma 2
asserts for square points. We keep this generality of (A) and (B) to remain open to
eventual posterior demands of future research.

Theorem 7. Let x ∈ Sn be a 1
2 -integer point satisfying properties (A) and (B). Then

10
7 x ∈ T n.

Proof. Let Gx = (Vn,Ex) be the support graph of x, and let H be any Hamiltonian cycle
of Gx, which exists according to (A). Let the 1-trees in the convex combination for
property (B) be Fi, i = 1,2, ...,k, and for any 1-tree F of Gx let TF be the set of odd
degree nodes in the graph (Vn,F). Consider the vector y∈REn defined as y := 2

3 x− 1
6 χH .

Claim. For any 1-tree F of Gx which satisfies the condition of property (B), vector y is
in the TF -join polyhedron of Kn.
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To prove the claim, we show that y satisfies the constraints of the TF -join polyhedron
(6) of Kn. Clearly ye ≥ 0 for all e∈ En. Let C be a TF -cut in Kn. We must show y(C)≥ 1.
Note that |H ∩C| 6= 0 is even, and H ⊆ Ex.

Case 1: |H ∩C|= 2. Since x(C)≥ 2 we have y(C)≥ 2( 2
3 )−2( 1

6 ) = 1, as required.

Case 2: |H ∩C| = 4. Since x ∈ Sn, we have x(C) ≥ 2 and since x is 1
2 -integer the 1

2 -
edges form edge-disjoint cycles, so x(C) is integer: x(C) ≥ 3, since x(C) = 2 would
imply that C consists of the four edges of H ∩C, and by (B) C is then not a TF -cut; so
y(C)≥ 3( 2

3 )−4( 1
6 )≥ 1.

Case 3: |H ∩C| ≥ 6. Then for all e ∈ H ∩C: ye = 2
3 xe − 1

6 χH
e ≥ 2

3 (
1
2 )−

1
6 = 1

6 , so
y(C)≥ 1, which completes the proof of the claim.

According to the claim, for all i ∈ {1, . . . ,k} y majorates a convex combination of
TFi -joins, and adding any one of these to χFi , we get tours. The convex combination of
these tours is majorated by χFi + y, so χFi + y ∈ T n for all i = 1, . . . ,k, and therefore
x+ y ∈ T n. Thus z := 1

7 χH + 6
7 (x+ y) = 10

7 x is also in T n, which completes the proof.
ut

Our main result is an immediate corollary of this theorem:

Theorem 8. Let x be a square point. Then 10
7 x ∈ T n.

Proof. By Theorem 7 it is enough to make sure that x satisfies properties (A) and (B),
which is exactly the assertion of Lemma 3. ut

Since 1
2 -integer Boyd-Carr points are square points we have:

Corollary 2. If x is a 1
2 -integer Boyd-Carr point, then 10

7 x ∈ T n.

Theorem 8 immediately implies the following optimization form of the above corol-
lary:

Corollary 3. Let c ∈ REn be a metric cost function optimized by a square point x, i.e.
cx = LP(c). Then there exists a Hamiltonian cycle of cost at most 10

7 LP(c) in Kn.

Proof. We have 10
7 LP(c) = 10

7 cx = c( 10
7 x) ≥ OPTT n(c), where the last inequality fol-

lows from 10
7 x being a convex combination of tours by Theorem 8. As OPTT n(c) ≥

OPT (c) for metric costs, the result follows. ut

In the following section we show that the above existence theorems and their corol-
laries can also be accompanied with polynomial algorithms. We finish this section by
showing that the integrality gap of square points is at least 4

3 , providing new examples
showing that Conjecture 1 cannot be improved.

Define a subclass of square points we call k-donuts, k ∈ Z, k≥ 2: the support graph
Gx = (Vn,Ex) consists of k 1

2 -squares arranged in a cyclic order, where the squares are
joined by 1-paths, each of length k. In Figure 2 the support graph of a 4-donut is shown.
In the figure, dashed edges represent 1

2 -edges and solid edges represent 1-edges.
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We define the cost of each edge in Ex to be 1, except for the pair of 1
2 -edges in each

square that are opposite to one another, with one edge on the inside of the donut, and
one on the outside, which are defined to have cost k (see the figure, where only edges
of cost k are labelled, and all other edges in Ex have cost 1). The costs of other edges of
Kn not in Ex are defined by the metric closure (cost of shortest paths in Gx). For these
defined costs c(k), we have OPT (c(k)) = 4k2− 2k+ 2 and LP(c(k)) ≤ c(k)x = 3k2 + k,

thus limk→∞
OPT (c(k))
LP(c(k))

≥ 4
3 . Along with Theorem 8, this gives the following:

Corollary 4. The integrality gap for square points lies between 4
3 and 10

7 .

k k

k

k

k k

k

k

Fig. 2: Graph Gx for a k-donut x, k=4.

To conclude this section we briefly discuss the structure of Carr-Vempala points.
Note that for the Boyd-Carr points that have been our focus, the transformation used
from general vertices x ∈ Sn to these Boyd-Carr points does not completely preserve
the denominators. In particular, 1

2 -integer vertices of Sn get transformed into Boyd-Carr
points x∗ with x∗e values in {1, 1

2 ,
3
4 ,

1
4 ,0}. However, for the Carr-Vempala points, it is

clear from their construction in [8] that general 1
2 -integer vertices of Sn lead to 1

2 -integer
Carr-Vempala vertices. In fact we have the following theorem which, if Conjecture 3 is
true, would provide a nice approach for proving Conjecture 2, since it is given for free
that Carr-Vempala vertices satisfy property (A):

Theorem 9. If ρx ∈ T n for each 1
2 -integer Carr-Vempala point x ∈ Sn, then ρx ∈ T n

for every 1
2 -integer point x ∈ Sn.

In light of these results and conjectures it seems worthwhile to study fundamental
classes further and the role of 1

2 -integer points in them.

4 Related Algorithms

In this section we show that some of the existence theorems stated in the previous
sections can be accompanied by simple combinatorial algorithms that can be executed
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in polynomial time. The main result of this section is a polynomial-time algorithm for
finding the Hamiltonian cycle of Corollary 3 in a completely elementary way. We point
out that the bridge taking us to this result also leads to a polynomial-time algorithm for
finding a minimum cost Hamiltonian cycle containing the M edges in a square graph,
generalizing Lemma 2.

It turns out that the greedy algorithm is the main ingredient of our algorithms, and
delta-matroids are the structure behind this phenomenon. We give a short introduction
to delta-matroids, their greedy algorithm and their connection to our results. We first
introduce the algorithm directly on our combinatorial objects below.

Greedy Algorithm (HAM) for Hamiltonian cycles in square graphs
Input: A square graph (G,M) and cost vector c ∈ RE(G).

Output: A Hamiltonian cycle containing M.

1. For each square C of G let wC be the absolute value of the difference of the cost of
the two perfect matchings of C. Order the squares in non-increasing order of wC, from
C1 to Ct ; i := 0.

2. i:=i+1 ; while i≤ t do:
We keep exactly one of the two perfect matchings of Ci and delete both edges of
the other perfect matching according to the following rule:

If the graph remains connected after both of these choices, keep the perfect
matching of Ci which has smaller cost (if the costs are equal, break ties arbi-
trarily).
If the graph remains connected after exactly one of these two possible choices,
then make this choice.

There is no other case according to the following claim:

Claim: The graph remains connected with at least one of the two choices.

Proof: Suppose that at iteration i, G−Ci (edge-deletion) is not connected. Then
it has at least two of the four arising nodes of degree 1 (the only nodes of odd
degree after contracting the remaining squares) in each component. It follows that
it has two components. If adding one of the two perfect matchings it is still not
connected, then all edges of Ci are induced by one of the two components, so G is
also not connected, a contradiction. ut

3. Output the constructed graph which is a Hamiltonian cycle containing M (all degrees
are two, and it is connected because of the claim).
end

We will see that this algorithm determines the Hamiltonian cycle of minimum cost
containing M (Theorem 12), and this is also not difficult to prove directly along the same
lines as the optimality of the greedy algorithm for optimal spanning trees, as follows:
Suppose for a contradiction that the algorithm finds H, while K is a Hamiltonian cycle
of smaller cost containing M. Then there exists a square Ci for which K uses a different
perfect matching than H and the cost of this perfect matching is strictly less than the
one used by H. Let i be the smallest index for which this is true, and assume that over
all minimum cost Hamiltonian cycles containing M, we chose K to be the one for which
this i is as large as possible. By the algorithm, when we considered square Ci, we know
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that removing the smaller cost perfect matching disconnected the graph (or it would
have been chosen). Thus there must exist another square C j crossing the cut formed
by this disconnection for which K chooses a different perfect matching than H, and
j < i. By choice of index i, we know that the perfect matching used in C j by K has cost
greater than or equal to the one used by H. Now consider the new Hamiltonian cycle
K′ obtained by taking K, and swapping the perfect matchings used by K in squares Ci
and C j. We have c(K′) = c(K)+wCi −wC j and since wC j ≥ wCi by the index ordering,
we must have K′ is another minimum cost Hamiltonian cycle. Again there must exist
a square Cr for which K′ uses a different perfect matching than H and the cost of this
perfect matching is strictly less than the one used by H, but by construction of K′ we
have r > i. But this contradicts our choice of K.

We now propose the following algorithm for finding a tour of relatively small cost
for cost functions optimized at square points.

Algorithm (TOUR) for tours in the case of a square optimum for the subtour LP
Input: Costs c ∈ REn and a square point x optimizing c on the subtour LP, i.e. c(x) =
LP(c).

Output: A tour in Gx.

1. Determine the support graph Gx, and call (HAM) for the square graph (G,M) that
results from replacing each 1-path of Gx by one single edge whose cost is the sum of
the costs of the replaced edges, and defining M to be the set of these single edges. Let H
be the Hamiltonian cycle of Gx obtained by taking the output of (HAM) and replacing
all edges of M by their respective 1-paths.

2. As in Theorem 6 and Lemma 3, determine the partition P of the 1
2 -edges of Gx into

pairs whose classes are the perfect matchings of the squares of Gx, and find the spanning
tree F∗ of Gx of minimum cost having exactly one edge in each P ∈P in polynomial
time with Edmonds matroid intersection algorithm [11].

3. Let TF∗ be the set of odd degree nodes in the graph (Vn,F∗). Find a minimum cost
TF∗ -join in Gx. Note this can be done in polynomial time (cf. [21]).

4. Let J∗ be the union of F∗ and the TF∗ -join from Step 3, and output the one of H or
J∗ having smaller cost.

We can now complete Corollary 3 with an algorithmic postulate.

Theorem 10. Let c ∈ REn be a metric cost function optimized by a square point x,
cx = LP(c). Then there exists a Hamiltonian cycle of cost at most 10

7 LP(c) in Kn and
(TOUR) can be used to find such a cycle in polynomial time.

Proof. We have to prove only the latter part of the last sentence concerning the algo-
rithm, as the rest has already been included in Corollary 3.

Let H be any Hamiltonian cycle of the support graph Gx that contains all of the
1-edges, provided algorithmically in polynomial time by (HAM), and let J∗ be the tour
of Gx determined in polynomial time by (TOUR). Note that the 1-tree F∗ from Step 2
of (TOUR) satisfies the condition of property (B), and thus by the Claim in the proof
of Theorem 7 we have y := 2

3 x− 1
6 χH is in the TF∗ -join polyhedron (6) of Kn . Thus
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the cost of the minimum cost TF∗ -join found in Step 3 is at most c(y). Similarly, by
Theorem 6, c(F∗)≤ c(x), which gives c(J∗)≤ c(x)+ c(y). Thus

min{c(H),c(J∗)}≤ 1
7

c(H)+
6
7

c(J∗)≤ 1
7

c(H)+
6
7

c(x)+
6
7
(

2
3

c(x)− 1
6

c(H))=
10
7

LP(c)

is the cost of a tour, and shortcutting this tour we get a Hamtiltonian cycle of Kn not
larger in cost. ut

Note that this proof actually used less than what (HAM) produces: for TOUR it is
sufficient to find any Hamiltonian cycle in Gx containing its 1-edges, not necessarily
the optimal one! However, sharper or more general results may need the exact opti-
mum here. This motivates us to sketch some details about delta-matroids that are in the
background.

Delta-matroids were introduced by Bouchet [2]. For the introduction and the basics
about them we follow [3]: the family D 6= /0 of subsets of a finite set S, or the pair
(S,D) is called a delta-matroid if the following symmetric exchange axiom (also called
the 2-step axiom) is satisfied: For D1,D2 ∈ D and j ∈ D1∆D2 there exists k ∈ D1∆D2
such that D1∆{ j,k} ∈ D . Note that k = j is possible, and we then naturally define
{ j, j} := { j}.

A delta-matroid (S,D) may have an exponential number of elements, too many
to be given explicitly. Fortunately, in order to work with delta-matroids we need less
than giving all of its elements as input. The basic and simple greedy algorithm already
necessitates a solution of the following problem [3, (2.1)]: let (S,D) be a delta-matroid,
then for given A,B⊆ S decide whether there exists D ∈D such that D⊇ A, D∩B = /0.
Let us call an oracle that solves this problem the extendability oracle for the given delta-
matroid. This oracle can be executed in polynomial time for all the relevant applications,
and we will have to check that this also holds for the delta matroid for which we need
it.

Think about the set A as a set of elements chosen to be in the solution, and B the set
of elements chosen not to be in the solution. Roughly, for an objective function c ∈ RS,
the greedy algorithm considers the elements of S in decreasing order of the absolute
values and attempts to put a considered s ∈ S into A if c(s) ≥ 0 and “it is possible” to
be put in A, and to B if c(s)≤ 0 and “it is possible” to put it in B, where “it is possible”
means a YES answer of the extendibility oracle with the attempted update of A and B
(see precisely below).

The following theorem is a generalization of Lemma 2 and therefore a direct proof
of it. Given a square graph (G,M), let R = R(G)⊆ E(G)\M be a reference set contain-
ing exactly one edge from each square of E(G)\M; |R|= |V (G)|/4. Let H = H (G)
be the set of Hamiltonian cycles of G containing M.

Theorem 11. Let (G,M) be a square graph. Then H 6= /0, and

D := {H ∩R : H is a Hamiltonian cycle of G containing M}

is a delta-matroid.
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Proof. To prove the first part, replace one by one, one after the other in arbitrary order,
the squares by one of their two perfect matchings.

Claim: With at least one of the two choices the graph remains connected.

It follows that at the end of the procedure we get a connected graph with all degrees
equal to 2 containing M, that is, a Hamiltonian cycle containing M.

To prove the claim note that the graph GC we get after deleting the square C has
at most 2 components. So one of the two perfect matchings of C must join the two
components, since otherwise the graph obtained by adding back C is also not connected.
The claim is proved.

So we proved that D 6= /0. In order to prove that it is a delta-matroid, we have to
check that for any two Hamiltonian cycles H1 6= H2, and square C of G−M where H1
and H2 do not use the same perfect matching of C, either H14C is also a Hamiltonian
cycle or there exists a square D of G−M so that H14C4D is a Hamiltonian cycle.

To prove this, suppose H14C is not a Hamiltonian cycle. It is still a 2-factor – subset
of edges with all degrees equal to 2 – with two components, with the cut Q ⊆ E(G)
between the two components. Since H2 is connected, it contains a square D so that for
one of the two perfect matchings of D: H2∩D∩Q 6= /0. But then clearly, H1 and H2 do
not use the same perfect matching of D, and H14C4D is again connected, and thus a
Hamiltonian cycle containing M. ut

Let us call the delta-matroid D of the theorem square. It is the same delta-matroid
as Bouchet’s delta-matroid of transitions in Eulerian trails [2].

Lemma 4. For square delta-matroids the extendability oracle can be computed in poly-
nomial time.

Proof. Assume A,B⊆ R. If A∩B 6= /0 the answer of the extendability oracle is NO. So
let A∩B = /0.

For edges a ∈ A, choose in the square of a the perfect matching containing a, and
for b ∈ B in the square of b the one that does not contain b.

If the obtained graph is not connected, then clearly, the extendability oracle gives a
NO answer. In case it is connected, replace each of the remaining squares (those disjoint
from A∪B) one after the other by one of its two perfect matchings, so that it remains
connected. One of the two choices does indeed keep the graph connected, since if not,
adding both perfect matchings, (like in the proof of Theorem 11) it would also not be
connected. ut

General Greedy Algorithm (GREEDY) for Delta-Matroids [3]

Input: Delta-matroid (S,D) given with the extendability oracle, and cost vector c∈RS.

Task: Determine D ∈D , equivalently the vector χD, of minimum cost.

1. Order the S decreasingly in the absolute values of c, that is, |c1| ≥ |c2| ≥ . . . |c|S||,
where we can suppose S = {1, . . . , |S|}. Define i := 0, A0 := B0 := /0.
2. i:=i+1 ; while i≤ n do:
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- If ci ≤ 0:
In case the extendability oracle gives a YES answer with input Ai := Ai−1∪{i} and
Bi := Bi−1, then keep this definition of Ai, Bi.
In case the extendability oracle gives a NO answer, Ai := Ai−1, Bi := Bi−1 ∪{i}.
(Since (Ai,Bi) is extendable, the answer for the latter choice is YES in this case.)

- If ci > 0:
In case the extendability oracle gives a YES answer with input Ai := Ai−1 and
Bi := Bi−1∪{i}, then keep this definition of Ai, Bi.
In case the extendability oracle gives a NO answer, Ai := Ai−1∪{i}, Bi := Bi−1.

3. Output D := An.
end

It can be readily checked that {An,Bn} is a partition of S, An ∈D , and it is also not
difficult to check that c(An) = min{c(D) : D ∈D}. Moreover, (HAM) is a special case,
and we have:

Theorem 12. The output of (HAM) for a square graph (G,M) is a Hamiltonian cycle
of G containing M of minimum cost.
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22. A. Sebő, Y. Benchetrit, M. Stehlik, Problems about uniform covers, with tours

and detours, Matematisches Forschungsinstitut Oberwolfach Report No. 51/2014, DOI:
10.4171/OWR/2014/51, 2912–2915 (2015)
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