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ON SPARSITY OF THE SOLUTION TO A RANDOM

QUADRATIC OPTIMIZATION PROBLEM

Xin Chen1 and Boris Pittel2

Abstract. The standard quadratic optimization problem (StQP), i.e.

the problem of minimizing a quadratic form xTQx on the standard

simplex {x ≥ 0 : xT e = 1}, is studied. The StQP arises in numer-

ous applications, and it is known to be NP-hard. The first author,

Peng and Zhang [10] showed that almost certainly the StQP with a

large random matrix Q = QT , whose upper-triangular entries are i.

i. concave-distributed, attains its minimum at a point with few posi-

tive components. In this paper we establish sparsity of the solution for

a considerably broader class of the distributions, including those sup-

ported by (−∞,∞), provided that the distribution tail is (super/sub)-

exponentially narrow, and also for the matrices Q = (M+MT )/2, when

M is not symmetric. The likely support size in those cases is shown

to be polylogarithmic in n, the problem dimension. Following [10] and

Chen and Peng [11], the key ingredients are the first and second order

optimality conditions, and the integral bound for the tail distribution of

the solution support size. To make these results work for our goal, we

obtain a series of estimates involving, in particular, the random interval

partitions induced by the order statistics of the elements Qi,j .

1. Introduction and main results

Bomze [3] coined the term “standard quadratic optimization problem”

(StQP) for the problem

minxTQx,(1.1)

s.t. eTx = 1, x ≥ 0,(1.2)

where Q = [Qij ] ∈ ℜn×n is a symmetric matrix, and e ∈ ℜn is the all

1-vector. We will refer to the set in (1.2) as the simplex ∆n.
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2 SPARSE SOLUTIONS

The StQP appears in numerous applications such as resource alloca-

tion [24], portfolio selection [29], machine learning [30], the maximal clique

problem in discrete optimization [19], and the determination of co-positivity

of a matrix in linear algebra [5], etc. Since it is prototype for numerous,

more general, quadratic programming problems, it has been used to test

various algorithms proposed in the literature (see [5, 32, 33] and the refer-

ences therein for details).

Our subject in this paper is a random instance of the StQP, where the

symmetric matrix Q is generated from a certain distribution. To put our

work into perspective, we note that the study of optimization problems

with random data can be traced back to early 1980s, e.g. Goldberg and

Marchetti-Spaccamela [20] (knapsack problem). See Beier [2] for a more

recent progress on random knapsack problems. There has been made a

significant progress in analysis of the so-called L1 minimization problem

with random constraints. Notably it was proved that when the coefficient

matrix is generated from a normal distribution, then with high probability

(whp), the optimal solution of the L1 minimization problem is the sparsest

point in the constrained set (see Candés and Wakin [8], Candés, Romberg

and Tao [9], and Donoho [15]).

It is also important to note that in the optimization literature, when

testing algorithms, it is not uncommon to generate optimization problem

data randomly due to the lack of testing instances. For example, Bomze

and De Klerk [4] and Bundfuss and Dür [7] generate StQPs with symmetric

Q whose entries are uniformly distributed. Thus, a good understanding of

the behavior of the optimal solutions under randomly generated instances

may shed light on the behaviors of various algorithms tested on these in-

stances. Indeed, our results, together with those in [10] and [11], establish-

ing the sparsity of the optimal solutions of randomly generated StQPs under

quite general distribution assumptions, indicate that the performance of al-

gorithms tested on these instances must be carefully analyzed before any

general statement can be made. Interestingly, motivated by the sparsity of

the optimal solutions, Bomze et al.[6] construct StQP instances with a rich

solution structure.

The first author, Peng and Zhang [10], prodded by a close relation be-

tween the StQP and the L1 minimization problem and a keen interest in

understanding randomly generated optimization problems, proved that, as

n→ ∞, the random StQP whp has an optimal solution X∗ with the number

of non-zero components bounded in probability, provided that the distribu-

tion F of Qi,j, (i ≤ j), is supported by [A,B), with finite A, and F is

concave on [A,B). This family of distributions contains, for instance, the
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uniform distribution and the exponential distribution. However, the con-

cavity assumption excludes A = −∞, whence the normal distribution was

out. In a follow-up work, Chen and Peng [11] were still able to prove that

for the GOE matrix Q = (M +MT )/2, Mi,j being i.i.d. normal, whp the

minimum point X∗ has at most two non-zero components, thus being almost

an extreme vertex of the simplex. The key ingredient of the proof was an

upper bound e−n2/4 for the probability that n-dimensional GOE matrix is

positive, semi-definite (see Dean and Majumdar [14]).

The core analysis in [10] is based on the estimates coming from the first-

order optimality condition on X∗ and some probabillistic bounds on the

order statistics for the attendant random variables. The further analysis in

[11] relied in addition on the second-order optimality condition.

These two optimality conditions, and a pair of the integral inequalities

from [10], remain our tools in this paper as well. Still we have to extend,

considerably, the probabilistic/combinatorial techniques to broaden the class

of admissible distributions beyond concave ones, in order to include the

distributions with support going all the way to −∞.

Our main results are as follows. Suppose that the cumulative distribution

function (cdf) F of the entries Qi,j, i ≤ j, is continuous. Let X∗ denote a

global minimum solution of the StQP with the random matrix Q. Let Kn

denote the support size for X∗, i.e. Kn = |{j ∈ [n] : X∗
j > 0}|.

Theorem 1.1. Let α > e
√
2, and kn = ⌈αn1/2⌉. Then

P{Kn ≥ kn} = O
(

eγ(α)n
1/2)

, γ(α) := 2α log(e
√
2/α) < 0.

So Kn = O(n1/2) with probability sub-exponentially close to 1.

The surprisingly short proof of this general claim follows from Theorem

3 in [11]. With additional, mildly restrictive, constraints, we are able to

reduce, significantly, the likely range of the support size.

Theorem 1.2. (Left-bounded support.) Suppose that the c.d.f. F (x) has a

continuous density f(x), and satisfies the following properties.

(1) f(x) > 0 for x ∈ [A,B), −∞ < A < B ≤ ∞; A = 0 without loss of

generality;

(2) There exists ν > 0 and ρ > 0 such that

F (x) = ρxν +O(xν+1), x ↓ 0;

(3)

β := sup

{

f(x′)

f(x)
: x, x′ ∈ (0, B), x′ ∈ (x, 2x)

}

<∞.
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Then, for k ≤ kn,

P{Kn = k} ≤ exp
(

−c(max(ν, 1))k + o(k)
)

,

c(µ) :=

∫ 1

0
log(1 + xµ) dx =

∑

j≥1

(−1)j−1

j(jµ + 1)
.

Notes. (i) So P{Kn > k} decays exponentially fast long before k gets as

large as kn. In fact, the exponential decay holds much longer, up until k is,

say, of order n log−2 n. That is, in probability, Kn is very much bounded.

(ii) The uniform distribution and the exponential distribution are covered

by this theorem: ν = 1, β = 1 for the former, and ν = 2, β = 1 for

the latter. Notice also that the leading term ρxν in the condition (2) is

concave for ν ≤ 1. The local nature of this condition makes Theorem 1.2

substantially more general than Theorem 3.4 in [10], proved for F (x) concave

everywhere on the support of the density f , whence for the two distributions

mentioned above. (iii) The condition (3) is an extension of the notion of a

“dominatedly varying” monotone function introduced and studied by Feller

[16], [17] (Ch. 8, Exer. 33).

While the class of distributions covered by Theorem 1.2 is quite broad,

it does not contain, for instance, the normal distribution (supported by

(−∞,∞)), which is predominantly assumed in the extensive literature on the

L1 minimization problem and its various generalizations. With the normal

distribution in our peripheral vision, we introduce a class of distributions

supported by (−∞, B), B ≤ ∞, such that, for x→ −∞,

(1.3) F (x) = (c+O(|x|−κ))|x|a exp(−r|x− x0|b), b, c, r, κ > 0;

shifting/scaling x we make r = 1, x0 = 0. It is well-known that the normal

distribution meets (1.3) with a = −1, b = 2. Among other examples are the

two-sided exponential density (a = 0, b = 1), and the cosh-density (a = 0,

b = 1). As in Theorem 1.2, this condition restricts the behavior of the cdf

F (x) in the vicinity of a single point, which is −∞ this time.

Theorem 1.3. Let b > 1. Then, for all k ≤ kn, we have

P
{

Kn ≥ k
}

≤b n

(

8

9

)k/4

+ n exp

(

−k
(

log n
k

)min{0,a/b}

2e

)

;

the symbol ≤b means that the probability is below the RHS times a bounded

coefficient. Consequently Kn = Op(log n) for a ≥ 0, meaning that P(Kn >

ω(n) log n) → 0 for every ω(n) → ∞ however slowly), and Kn =

Op

(

(log n)1+|a|/b
)

for a < 0.
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Theorem 1.4. Let b ≤ 1. Define

σ(a, b) =











1 +
1 + 2a

b
, if a > 0,

1 +
1 + |a|
b

, if a ≤ 0;

so σ(a, b) > 2. For every σ > σ(a, b), and d < b(σ−σ(a,b))
2 ,

P{Kn > log1+d n} < exp
(

− log1+d n
)

.

Note. Therefore, with probability > 1−O(n−L), (∀L > 0), Kn is below

log1+d n. Using the term coined in Knuth, Motwani and Pittel [27], “quite

surely” (q.s.) the support size is of a moderate (poly-logarithmic) order.

Turn to the alternative model: first randomly generate an n × n matrix

M whose elements are i.i.d. random variables with the cdf G; then define

Q = (M +MT )/2.

Suppose G satisfies the (one-point) condition (1.3), and x0 = 0, r = 1,

without loss of generality. The diagonal entries of Q have distribution G and

the non-diagonal entries of Q have the distribution F (x) = (G ⋆ G)(2x), ⋆

standing for convolution. We prove that, for a > −1 when b ≤ 1, F satisfies

the equation (1.3) as well, with the parameters b′ = b, c′ > 0, r′ = 2min(1,b)

and

a′ =



















2a+
b

2
, if b > 1,

a+ b− 1, if 0 < b < 1,

2a+ 1, if b = 1.

Since r′ > 1 = r, we have limx→−∞G(x)/F (x) = ∞. Combining this fact

and the general identity proved in [10] (the proof of Theorem 2.2), we easily

transfer the proof of our Theorems 1.3 and 1.4 to this model. To state the

resulting claims one has only to replace a with a′ in Theorems 1.3 and 1.4.

We note that the theorems above have the natural counterparts for the

problem max{xTQx : x meets (1.2)}: the distribution F of Qi,j is sup-

ported by (A,∞), A ≥ −∞, and the restrictions are imposed on the be-

havior of F (x) in the vicinity of ∞. Since −Q meets the conditions of the

respective claim for the support (−∞,−A), no additional proof is needed.

So, for the quasi -normal distribution, i.e. a = −1, b = 2, both the minimum

point and the maximum point are sparse, with the likely support size of

order (log n)3/2 in each case. As we mentioned, Chen and Peng [11] proved

that for the GOE matrix Q = (M+MT )/2, Mi,j being i.i.d. exactly normal,

whp the support size of X∗ is 2, at most.

To conclude the introduction, we mention that thirty years earlier King-

man [26] initiated the study of local maxima of the random quadratic forms
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pTFp on the simplex ∆n, with p interpreted as the distribution of the alle-

les A1, . . . , An at a single locus, and Fi,j ∈ [0, 1] as the (random) fitness, i.e.

the probability that the gene pair (Ai, Aj) survives to a reproductive age.

Kingman’s main interest was potential coexistence of several alleles at the

locus, i.e. of locally stable distributions (local maxima) p with a sizable sup-

port. Concurrently, in the context of evolutionary stable strategies, Haigh

[22], [23] established the counterparts of some of Kingman’s results for a non-

symmetric payoff matrix; see a more recent paper Kontogiannis and Spirakis

[28]. The second author of the current paper showed that for a broad class

of the fitness distributions, the likely support of a local maximum point p

not containing a support of a local equilibrium is ⌈(2/3) log2 n⌉, at most.

And, for the uniform fitnesses, there are likely many potential local maxima

supports free of local equilibriums, each of size close to ⌈(1/2) log2 n⌉, [31].
Conjecturally the likely size of the largest support of a local maximum is

polylogarithmic in n.

The paper is organized as follows. In Section 2, we provide some prelimi-

naries useful for our analysis. In Section 3, we present the proofs of our key

results, and finish the paper with some concluding remarks in Section 4.

2. Preliminaries

The analysis of the random StQP in [10] began with the formulation and

the proof of the following optimality conditions. Given x ∈ ∆n, denote

k(x) = |{j ∈ [n] : xj > 0}|.

Proposition 2.1. Suppose that x∗ is an optimal solution of the problem

(1.1-1.2) satisfying k(x∗) = k > 1. So λ∗ := (x∗)TQx∗ is the absolute

minimum of the quadratic form on the simplex ∆n. Denoting K = {j ∈
[n] : x∗j > 0}, let QK be the principal k × k submatrix of Q induced by the

elements of the set K. Then

C.1 there exists a row (whence a column) of QK such that the arithmetic

mean of all its elements is (strictly) less than minj∈[n]Qj,j;

C.2 with EK(i, j) := 1{i,j∈K}, QK − λ∗EK is positive semidefinite; in

short, QK − λ∗EK < 0.

Properties C.1 and C.2 follow, respectively, from the first-order optimality

condition and the second-order optimality condition.

Consider the random symmetric matrix {Qi,j}: (1) the diagonal entries

Qi,i are independent, each having the same, continuous, distribution G; (2)

the above-diagonal elements Qi,j, (i < j), are independent of each other, and

of the diagonal elements, each having the same, continuous, distribution F ;

(3) the below-diagonal elements Qi,j are set equal to Qj,i.
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If we relabel the elements of [n] to make Q1,1 < Q2,2 < · · · < Qn,n, then

the above-diagonal elements in the new n × n array will remain indepen-

dent of each other and of the diagonal entries, that now form the sequence

V1, . . . , Vn of the order statistics for n independent variables, each with dis-

tribution G.

Let us use the capital X∗ to denote the solution of the random StQP

problem. Let Kn denote the support size of X∗. Property C.1 was used in

[10] to prove the following, crucial, estimate.

Lemma 2.1. Let V1 < V2 < · · · < Vn (W1 < W2 < · · · < Wn−1 resp.)

denote the order statistics of the sequence of n (n − 1 resp.) indepen-

dent, G-distributed (F -distributed resp.) random variables. Assume that

V := (V1, . . . , Vn) and W := (W1, . . . ,Wn−1) are independent of each other.

Then, for k ≥ 1,

P{Kn = k + 1} ≤ ρ(n, k),

ρ(n, k) :=
n
∑

i=1

P
{

W̄k ≤ (k + 1)V1 − Vi
}

, W̄k :=
k
∑

j=1

Wj.

Proof. (For completeness.) Consider Q obtained from the initial {Qi,j} via

the above relabeling, so that now Qi,i is the i-th smallest among the diagonal

entries. For each i ∈ [n], let W(i) = (W1(i) < · · · < Wn−1(i)) stand for

the (n − 1) order statistics of the non-diagonal entries in the i-th row of

the transformed Q. W(1), . . . ,W(n) are equi-distributed, independent of

V, though not of each other since the matrix is symmetric. By the property

C.1, there exists a row i∗ in Q such the sum of some k + 1 entries in this

row, that includes its diagonal entry, is below (k + 1)miniQi,i = (k + 1)V1.

This sum is certainly not smaller than

k
∑

j=1

Wj(i
∗) + Vi∗ = W̄k(i

∗) + Vi∗ .

For a generic row i ∈ [n],

P
{

W̄k(i) + Vi ≤ (k + 1)V1} = P
{

W̄k + Vi ≤ (k + 1)V1}.

Applying the union bound we complete the proof. �

In the case k = n Property C.2 was utilized in [11] to prove

Lemma 2.2. For n ≥ 2,

P {Kn = n} ≤ P







⋂

i 6=j∈[n]

{

Qi,j ≤ max(Qi,i, Qj,j)
}







≤ 2n

(n+ 1)!
.
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Define

ρ(n, k) = P
{

W̄k ≤ kV1}+ ρ̂(n, k),

ρ̂(n, k) :=

n
∑

i=2

P{W̄k ≤ (k + 1)V1 − Vi}.

Notice that ρ̂(n, k) ≤ (n − 1) P
{

W̄k ≤ kV1}, since Vi ≥ V1 for i ≥ 2.

Therefore, by Lemma 2.1,

(2.1) P{Kn = k + 1} ≤ n P
{

W̄k ≤ kV1}.

Using the classic formula for the joint distribution of the order statistics,

they found in [10] (see (11), and the top identity in the proof of Theorem

2.2 therein) the multi-dimensional integral representations of the functions

ρ(·) and ρ̂(·).
In terms of the order statistics W, and W̄k :=

∑

j∈[k]Wj, the formulas

for P
{

W̄k ≤ kV1} and ρ̂(n, k) become

(2.2)

P
{

W̄k ≤ kV1} = E
[(

1−G(W̄k/k)
)n]

,

ρ̂(n, k) = (n− 1)E
[

Hn,k(W̄k)
]

,

Hn,k(w) := − [1−G(w/k)]n

n− 1

+
n(k + 1)

n− 1

∞
∫

w/k

g
(

(k + 1)v − w) [1 −G(v)]n−1 dv.

The top formula was the main focus of analysis in [10], and will be instru-

mental in our paper as well. As in [10], we switch to Uj = F (Wj), so that Uj

are order statistics for the variables F (Xj), where Xj are i.i.d. with the cdf

F . We know, of course, that F (Xj) are [0, 1]-uniform. Thus U1, . . . , Un−1

are the order statistics of the sequence of (n − 1) independent, uniformly

distributed, random variables. So the formula of the keen interest becomes

(2.3) P
{

W̄k ≤ kV1} = E

[(

1−G

(

1

k

k
∑

j=1

F−1(Uj)

))n]

.

3. Proofs

For convenience, as we go along, we will restate the claims already made

in Section 1.

Let G = F . We begin with Theorem 1.1, a really low hanging fruit, that

nevertheless will significantly influence our estimates throughout the paper.
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Theorem 3.1. Let Kn be the support size for the solution of the random

StQP with continuously distributed entries. Picking α > e
√
2 and setting

kn := ⌈αn1/2⌉, we have

P{Kn ≥ kn} = O
(

eγ(α)n
1/2)

, γ(α) := 2α log(e
√
2/α) < 0.

Proof. From Proposition 2.1 C.2 and Lemma 2.2, we have that

P{Kn = k} ≤ P
{

∃ a k × k submatrix K s.t. QK − λ∗Ek < 0
}

≤ S(n, k) :=

(

n

k

)

· 2k

(k + 1)!
.

Using the inequality b! ≥ (b/e)b (implied by (1+1/b)b < e) and its corollary
(

a
b

)

≤ (ea/b)b, we obtain

S(n, k) ≤
(

2e2n

k2

)k

≤
(

2e2

α2

)k

, ∀ k ≥ αn1/2.

Summing up this bound for k ≥ kn = ⌈αn1/2⌉, we complete the proof. �

Turn to the integral formula (2.3). Below and elsewhere we will write

L ≤b R when L = O(R), but R is bulky enough to make O(R) unsightly.

First, observe that, given δ ∈ (0, 1), by the union bound we have: for

k ≤ kn, and n large,

(3.1)
P{Uk ≥ δ} ≤

(

n− 1

n− k

)

(1− δ)n−k ≤
(

n

k

)

(1− δ)n−k

≤ (1− δ)n−knk ≤b (1− δ)0.99nnk ≤ n−k,

provided that δ = δn := 2.1n−1kn log n = O(n−1/2 log n). So the contribu-

tion to the RHS of (2.3) coming from Uk ≥ δn is at most n−k, uniformly for

k ≤ kn.

Second, let us show that we can focus on U with

(3.2) S(U) :=
1

k

k
∑

j=1

log
1

Uj
. log

ne

k
.

This fact will come handy in the analysis of the F ’s support going all the

way to −∞.

Lemma 3.2. Given α > 0, define S = S(α) = log n
αk . If α < e−1, then for

every β ∈ (0, 1 − αe) we have

P
{

S(U) > S
}

≤b

(

αe

1− β

)βk

.



10 SPARSE SOLUTIONS

Proof. Recall that the components of U are the k first order statistics of

(n − 1) independent, [0, 1]-uniform random variables. In view of the sum-

type formula for S(U) in (3.2), we apply a variation of Chernoff’ method.

Picking λ > 0, and λ < k in order to make the coming integral finite, we

define u = (u1 < · · · < uk) ∈ (0, 1)n−1 and write

P
{

S(U) > S
}

≤ e−λS(n− 1)k

∫

S(u)>S

(1− uk)
n−1−k exp





λ

k

k
∑

j=1

log
1

uj



 du

=
e−λS(n − 1)k

(k − 1)!

∫ 1

0
(1− uk)

n−1−ku
−λ/k
k

(
∫ uk

0
w−λ/k dw

)k−1

duk

=
e−λS(n− 1)k

(1− λ/k)k−1 (k − 1)!

∫ 1

0
(1− uk)

n−1−kuk−1−λ
k duk

=
e−λS(n− 1)k

(1− λ/k)k−1 (k − 1)!
· Γ(n− k) Γ(k − λ)

Γ(n− λ)

=
e−λS

(1− λ/k)k−1
· Γ(n) Γ(k − λ)

Γ(n− λ) Γ(k)
.

Set λ = βk; using Stirling formula for the Gamma function in the last

expression, it is easy to see that

P
{

S(U) > S
}

≤b

(

αe

1− β

)βk

;

the bound is exponentially small since αe < 1− β. �

3.1. Distributions with left-bounded supports. In this section, we fo-

cus on a class of distributions satisfying the properties in Theorem 1.2.

In (3.1) we showed that, at the cost of O(n−k) error term, we can neglect

U with Uk > δn = 2.1n−1kn log n, for k ≤ kn = ⌈αn1/2⌉. We need to show

that, for the remaining U, φ(U) := F
(

k−1
∑k

j=1 F
−1(Uj)

)

typically dwarfs

1/n for large k, and so makes (1−φ(U))n close to zero in all likelihood. Our

first step is to establish an explicit lower bound for φ(u).

Lemma 3.3. Assume that F meets the conditions (1) and (2) in Theorem

1.2.

(1) There exists γ = 1 + O
(

δ
1/ν
n

)

such that, uniformly for u = 0 < u1 ≤
· · · ≤ uk ≤ δn, we have: φ(u) ≥ γ

(

k−1
∑k

j=1 u
1/ν
j

)ν
.

(2) Further, for ν ≥ 1, we have φ(u) ≥∑k
j=1 γjuj , with

(3.3) γj := γ

[(

1− j − 1

k

)ν

−
(

1− j

k

)ν]

.

Proof. (1) We will use the notation g = Θ(f), if g, f > 0 and g ≥ cf for an

absolute constant c > 0 in a given range of the arguments of f and g.
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Since F (x) = Θ(xν), (x ↓ 0), we see that F−1(u) ∈ [0, F−1(δn)] for

u ∈ [0, δn], and F
−1(δn) = O

(

δ
1/ν
n

)

. Define

σ = min
x∈[0,F−1(δn)]

F (x)

xν
, η =

1

maxx∈[0,F−1(δn)]
F (x)
xν

, γ =
σ

η
.

Since F (x) = ρxν+O(xν+1), we have σ, η = ρ+O
(

δ
1/ν
n

)

, so γ = 1+O
(

δ
1/ν
n

)

,

and furthermore

(3.4) F (x) ≥ σxν , ∀x ∈
[

0, F−1(δn)
]

; F−1(u) ≥
(

u

η

)1/ν

, ∀u ∈ [0, δn].

Applying (3.4), we lower-bound

φ(u) ≥ σ
(

k−1
k
∑

j=1

F−1(uj)
)ν

≥ γ
(

k−1
k
∑

j=1

u
1/ν
j

)ν
.

(2) Suppose ν ≥ 1. To explain γj in (3.3), let ν be an integer. Using notation
(

ν
ν1,...,νk

)

for the multinomial coefficient ν!/[ν1! · · · νk!], (
∑

j νj = ν), we have

γ





1

k

k
∑

j=1

u
1/ν
j





ν

=
γ

kν

∑

ν1,...,νk

(

ν

ν1, . . . , νk

) k
∏

j=1

u
νj/ν
j

partitioning the sum according to the first j

such that νj > 0 and using uj = min
ℓ≥j

uℓ ≤ 1

≥ γ

kν

k
∑

j=1

uj
∑

νj+···+νk=ν, νj>0

(

ν

νj, . . . , νk

)

=
γ

kν

k
∑

j=1

uj
(

(k − j + 1)ν − (k − j)ν
)

=
k
∑

j=1

γjuj.

Emboldened by this derivation, let us show that this inequality holds for all

ν ≥ 1. Clearly our task is to prove that, for

(3.5) 0 ≤ v1 ≤ v2 ≤ · · · ≤ vk,

we have




k
∑

j=1

vj





ν

≥
k
∑

j=1

vνj
[

(k − j + 1)ν − (k − j)ν
]

.

Without loss of generality, we may assume that
∑k

j=1 vj = 1. We need

to show that, subject to this constraint, the maximim value of the RHS

function, call it ψ(v), is 1. Since ν ≥ 1, ψ(v) is a convex function of v ≥ 0.

So, for v meeting (3.5) and
∑k

j=1 vj = 1, ψ(v) attains its maximum at an

extreme point of the resulting polyhedron. Every such point v is of the form
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v = (0, . . . 0, v, . . . , v). So if the last zero is at position j0, then (k−j0)v = 1,

i.e. v = (k − j0)
−1, and therefore ψ(v) is

k
∑

j=1

vνj
[

(k − j + 1)ν − (k − j)ν
]

= (k − j0)
−ν

k
∑

j=j0+1

[

(k − j + 1)ν − (k − j)ν
]

= (k − j0)
−ν · (k − j0)

ν = 1.

�

Armed with this lemma, we derive the upper bound for the truncated

expectation

En,k := E
[

1{Uk≤δn}

(

1− φ(U)
)n
]

, φ(U) = F
(

k−1
k
∑

j=1

F−1(Uj)
)

.

Let ν ≥ 1. Using notations γj:k =
∑k

ℓ=j γℓ, dut =
∏t

j=1 duj , u0 = 0, we

write

En,k

(n− 1)k
=

δn
∫

0

· · ·
δn
∫

uk−1

(1− uk)
n−1−k

(

1− φ(u)
)n
duk

≤
δn
∫

0

· · ·
δn
∫

uk−1

(1− uk)
n−1−k

(

1−
k
∑

j=1

γjuj

)n
duk

using concavity of log(·)

≤
δn
∫

0

· · ·
δn
∫

uk−1

[

1− uk +
n

2n− 1− k

(

uk(1− γk)−
k−1
∑

j=1

γjuj

)]2n−1−k

duk

integrating by parts over uk and dropping the negative term at uk = δn

≤ (2n− k)−1

(

1− n

2n− 1− k
(1− γk)

)−1

×
δn
∫

0

· · ·
δn
∫

uk−2

[

1− uk−1 +
n

2n − k

(

uk−1(1− γk−1:k)−
k−2
∑

j=1

γjuj

)]2n−k+1

duk−1.
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Repeating the integration step (k − 1) times, we arrive at the bound

En,k ≤
k
∏

j=1

n− 1− k + j

2n− 1− k + j

k
∏

j=1

(

1− n

2n− 1− k
(1− γk−j+1:k)

)−1

=

k
∏

j=1

n− 1− k + j

2n− 1− k + j

k
∏

j=1

(

1− n

2n− 1− k

(

1− γ

(

j

k

)ν))−1

.

Taking logarithms and using k ≤ kn, γ = 1 +O(δ
1/ν
n ), we easily obtain

(3.6)

logEn,k

k
≤ o(1)− c(ν),

c(ν) = log 2 +

∫ 1

0
log

(

1

2
+
xν

2

)

dx =

∫ 1

0
log
(

1 + xν
)

dx.

Clearly, c(ν) is positive and decreasing as ν increases. Note that

c(1) = 2 log 2− 1 ≈ 0.386,

c(ν) =
∑

j≥1

(−1)j−1

j(νj + 1)
→ 0 as ν → ∞.

Let ν < 1. Since
(

1
k

∑k
j=1 u

1/ν
j

)ν
is decreasing in ν, (3.6) holds with c(ν) :=

c(1). Thus, for all ν > 0, the truncated expectation En,k is decreasing

exponentially with k ≤ kn. Combining this claim with (3.1), we have proved

Lemma 3.4. Under the conditions (1-2) in Theorem 1.2, for k ≤ kn, we

have

P{W̄k ≤ kV1} ≤ exp
(

o(k) − c(max(ν, 1))k).

It remains to upper-bound ρ̂(n, k). According to (2.2),

(3.7) ρ̂(n, k) ≤ n(k + 1)E

[

∫ ∞

W̄k/k
f
(

(k + 1)v − W̄k

) [

1− F (v)
]n−1

dv

]

.

Let us bound the integral. We now assume that the density f satisfies the

condition (3):

β = sup
{

f(v′)/f(v) : v′ ∈ [v, 2v], f(v) > 0
}

<∞;

following Feller [16], one can say that the density f is dominatedly varying

on the support of the distribution F . We will need the following result, cf.

[16], [17].
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Lemma 3.5. Introduce

(3.8) β(j) = sup

{

f(x′)

f(x)
: x, x′ ∈ (0, b), x′ ∈ [x, jx], f(x) > 0

}

, j > 1.

Under the condition (3), we have β(j) ≤ βjα, with α := log2 β.

Proof. (For completeness.) First of all,

β(k1k2) ≤ β(k1)β(k2), k1, k2 ≥ 2;

thus β(·) is a sub-multiplicative function. Consequently, β(2m) ≤ β(2)m =

βm. Second, given k > 2, let m = m(k) be such that 2m−1 < k ≤ 2m. Since

β(·) is increasing, we have

β(k) ≤ β(2m) ≤ βm ≤ β
log(2k)
log 2 = (2k)log2 β = βklog2 β.

�

The argument of the density f in (3.7) is sandwiched between v and kv.

So, by Lemma 3.8, we obtain

ρ̂(n, k) ≤b nk
log2 β+1E

[

∫ ∞

W̄k/k
f(v)

[

1− F (v)
]n−1

dv

]

= klog2 β+1E
[

[

1− F (W̄k/k)
]n
]

= klog2 β+1 exp
(

−c(max(ν, 1))k + o(k)
)

= exp
(

−c(max(ν, 1))k + o(k)
)

,

as log k = o(k) for k → ∞.

Therefore we completed the proof of

Theorem 3.1. Under the properties (1-3) in Theorem 1.2, for k ≤ kn,

P{Kn = k + 1} ≤ exp
(

−c(max(ν, 1))k + o(k)
)

.

Note. The conditions (1), (2) relate to a single point a, i.e. they are

so mild that there are scores of the classic densities meeting them. The

condition (3) is different, as it concerns the ratio of the density values at

the pairs of comparably large/small x and x′. For the density f of a cdf F

meeting the conditions (1) and (2), the condition (3) is met, for instance,

if (i) f(x) > 0 for x ∈ (0, b) and (ii) there is x1 ∈ (0, b) such that f(x) is

decreasing on [x1, b).
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3.2. Distributions whose supports are not left bounded. In this sec-

tion, we turn to the case when the support of the distribution extends all the

way to −∞. Two examples come to mind. One is the normal distribution,

with density

f(x) =
1√
2π
e−x2/2.

It is known, and can be proved via a single integration by parts, that

F (x) =
1 +O(|x|−1)

|x|
√
2π

e−x2/2, x→ −∞.

Another example is a positive exponential, with F (x) = ex, for x < 0, and

F (x) ≡ 1 for x ≥ 0. They both are special cases of the distribution F (x)

such that, for some a ∈ (−∞,∞), b > 0, c > 0, and κ > 0,

(3.9) F (x) = (c+O(|x|−κ))|x|a exp(−|x|b), x→ −∞,

which will be the focus of our analysis here.

We distinguish between two cases depending on the value of b.

3.2.1. Case b ≥ 1. Recall the notation

φ(u) = F





1

k

k
∑

j=1

F−1(uj)



 , S(u) =
1

k

k
∑

j=1

log
1

uj
.

We will write L & R if L ≥ (1 + o(1))R.

Lemma 3.6. For uk ≤ δn, it holds that φ(u) & S(u)min{0,a/b}e−S(u).

Proof. Since x = F−1(u) iff u = F (x), we have: for u ↓ 0,

(3.10)

|x| =
(

log
c

u
+ a log |x|+O(|x|−κ)

)1/b

=
[

log
c

u
+
a

b
log
(

log
c

u
+ a log |x|+O(|x|−κ

)]1/b

=

[

log
c

u
+
a

b
log log

(

1

u

)

+O

(

log log(1/u)

log(1/u)

)]1/b

.
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As y1/b is concave for b ≥ 1, we obtain then

X :=
1

k

k
∑

j=1

F−1(uj)

= −1

k

k
∑

j=1

[

log
c

uj
+
a

b
log log

(

1

uj

)

+O

(

log log(1/uj)

log(1/uj)

)]1/b

≥ −





1

k

k
∑

j=1

(

log
c

uj
+
a

b
log log

(

1

uj

)

+O

(

log log(1/uj)

log(1/uj)

))





1/b

= −



log c+ S(u) + o(1) +
a

bk

k
∑

j=1

log log

(

1

uj

)





1/b

.

(i) If a ≤ 0, then X ≥ −
[

log c+S(u)+o(1)
]1/b

. Since X → −∞, we evaluate

F (X) using (3.9):

F (X) = (c+O(|X|−κ))|X|a exp(−|X|b)
≥ (1 + o(1))S(u)a/be−S(u).

(ii) If a > 0, then, using concavity of log(·), we obtain

X ≥ −
[

log c+ S(u) + o(1) +
a

b
log

(

1

k

k
∑

j=1

log
1

uj

)]1/b

= −
[

log c+ S(u) + o(1) +
a

b
log S(u)

]1/b
.

Therefore

F (X) = (c+O(|X|−κ))|X|a exp(−|X|b) ≥ (1 + o(1))e−S(u).

�

Theorem 3.7. Let b > 1, and c ∈ (3/2, 2). For k ≤ kn, we have

(3.11) P
{

W̄k ≤ kV1
}

≤b

(

8

9

)k/4

+ exp

(

−k
(

log n
k

)min{0,a/b}

ce

)

.

Consequently, by (2.1),

P
{

Kn = k + 1
}

≤b n

(

8

9

)k/4

+ n exp

(

−k
(

log n
k

)min{0,a/b}

2e

)

.

Proof. According to (2.3) and the definition of φ(U), we have: given S > 0,

(3.12)
P
{

W̄k ≤ kV1
}

= E
[

(1− φ(U))n
]

= E
[

1{S(U)>S}(1− φ(U))n
]

+ E
[

1{S(U)≤S}(1− φ(U))n
]

.
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By Lemma 3.2, if k ≤ kn then S(U) > S := log n
αk with probability ≤

(αe/(1 − β))βk = (8/9)k/4, if we select α = 2
3e and β = 1/4. If S(U) ≤ S,

then by Lemma 3.6 we have

φ(U) ≥ (1 + o(1))Smin{0,a/b}e−S = (1 + o(1))
αk

n

(

log
n

αk

)min{0,a/b}

= (1 + o(1))
k

(3/2)en

(

log
n

k

)min{0,a/b}
.

In that case we obtain

(3.13)
(

1− φ(U)
)n ≤ exp

(

−(1 + o(1))
k
(

log n
k

)min{0,a/b}

(3/2)e

)

.

Invoking (3.12) yields the finequality (3.11). �

3.2.2. Case b < 1. We consider k ∈ [k1, kn], k1 = ⌈logσ n⌉, σ > 1 + 1/b.

(The choice of σ will become clear shortly.) Our starting bound for |X|b is

based on the bottom line in (3.10): for uk ≤ δn, we have

(3.14)

|X|b ≤





1

k

k
∑

j=1

(

log
1

uj

)1/b




b

×
[

1 +
(a

b
+O(log−1(1/uk))

) log log(1/uk)

log(1/uk)

]

.

Recall that u1, . . . , uk are generic values of the first k order statistics U1, . . . , Uk

for the (n − 1) [0, 1]-uniform, independent random variables. To find a us-

able upper bound for the RHS in (3.14), valid for almost all u1, . . . , uk ≤ δn,

we need to identify a sufficiently likely upper bound for that RHS when the

k-tuple (u1, . . . , uk) is replaced with the order statistics U1, . . . , Uk.

To this end, we pick jn = ⌈logσ1 n⌉, such that 1 < σ1 < σ − 1/b (a choice

made possible by the condition σ > 1 + 1/b), and use b < 1 to bound

(3.15)





1

k

k
∑

j=1

(

log
1

Uj

)1/b




b

≤ T b
1 + T b

2 ,

T1 :=
1

k

jn
∑

j=1

(

log
1

Uj

)1/b

, T2 :=
1

k

k
∑

j=jn+1

(

log
1

Uj

)1/b

.

Pick σ2 ∈
(

1, (σ − σ1)b
)

and let σ3 := (σ − σ1)b− σ2 > 0. Using

T1 ≤
jn
k

(

log
1

U1

)1/b

, P{U1 ≤ u} = 1− (1− u)n−1 ≤ nu,

we obtain:

(3.16) P
{

T b
1 > log−σ3 n

}

≤ exp
(

− logσ2 n+ log n
)

≤ exp
(

−0.5 logσ2 n
)

.
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We obviously need σ2 > 1 to overcome log n term; besides we need all our

small probabilities to be really small, i.e. of order exp
(

−(log n)1+∆
)

. In

contrast, σ3 > 0 is good enough for the proof. Existence of the desired σi is

assured by the starting constraint σ > 1 + 1/b. Since σ2 > 1, we see that

T b
1 is vanishingly small with super-polynomially high probability, i.e. quite

surely.

Turn to T2. Our estimates need to be rather sharp since we expect T b
2

to be q.s. the dominant contribution to the RHS in (3.15). Here is a key

observation. If wj are independent negative exponentials, with the same

parameter, say 1, then, denoting U = (U1 < · · · < Un−1), we have

(3.17) U
D≡
{

Wi

Wn−1

}

i∈[n−1]

, Wi :=
i
∑

j=1

wj ,

(Karlin and Taylor [25], Section 5.4). In particular,

T1
D≡ 1

k

jn
∑

j=1

(

log
Wn−1

Wj

)1/b

, T2
D≡ 1

k

k
∑

j=jn+1

(

log
Wn−1

Wj

)1/b

.

The relation (3.17) allows us simply to define U =
{

Wi/Wn−1

}

. In the case

of T2, both Wn−1 and Wj are sums of the large numbers of independent wj,

and this opens the door to the Chernoff-type estimates.

Here is a general, Chernoff-type, claim. Let X1, . . . ,Xν be the indepen-

dent copies of a random variable X such that f(λ) := E
[

exp(λX)
]

exists and

is two-times continuously differentiable for λ ∈ (−λ0, λ0), for some λ0 > 0.

Let Sµ :=
∑µ

j=1Xj . Then the distribution of Sµ is exponentially concen-

trated around µf ′(0). More precisely, there exist ∆0 ∈ (0, 1) and ρ > 0

such that,

(3.18) P
{

|Sµ − µf ′(0)| ≥ µf ′(0)∆
}

≤ 2e−µf ′(0)ρ∆2
, ∀∆ ∈ (0,∆0).

For our case X = w we have

E
[

eλw
]

= f(λ) :=
1

1− λ
, |λ| < 1,

so that λ0 = 1, f ′(0) = 1. So, by (3.18), for some ∆0 ∈ (0, 1),

(3.19) P
{

Wi ∈ [(1−∆)i, (1 +∆)i]
}

≥ 1− 2 exp(−iρ∆2), ∀∆ ∈ (0,∆0).

In particular, with exponentially high probability, Wn−1 ∈ [n/2, 2n].
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Further, using the arithmetic-geometric mean inequality, we write

T2 =
1

k

k
∑

j=jn+1

(

log
Wn−1

Wj

)1/b

=
1

k

k
∑

j=jn+1

(

log
Wn−1/j
1
j

∑j
i=1 wi

)1/b

≤ 1

k

k
∑

j=jn+1

(

log
Wn−1/j
∏j

i=1 w
1/j
i

)1/b

=
1

k

k
∑

j=jn+1

(

log
Wn−1

j

)1/b
(

1− log
∏j

i=1w
1/j
i

log Wn−1

j

)1/b

using 1 + x ≤ ex

≤ 1

k

k
∑

j=jn+1

(

log
Wn−1

j

)1/b

· exp
(

1

b log(Wn−1/j)
·
∑j

i=1 log
1
wi

j

)

.(3.20)

So this time we are dealing with the sums of logarithms of the independent

exponentials wi. Observe that

f(λ) := E

[

exp

(

λ log
1

w

)]

=

∫ ∞

0
e−zz−λ dz = Γ(1− λ), λ < 1.

So

f ′(λ) =

(

E

[

exp

(

λ log
1

w

)])′

λ

= E

[

(

1

w

)λ

· log 1

w

]

= (Γ(1− λ))′ ,

hence f ′(λ) exists, and is continuous, for λ < 1. Letting λ→ 0, we obtain

f ′(0) = E

[

log
1

w

]

= − dΓ(z)

dz

∣

∣

∣

∣

z=1

= −γ,

where γ is the Euler constant. Likewise f ′′(λ) exists and is continuous, for

λ < 1, and (a fun fact)

f ′′(0) = E

[

log2
1

w

]

= Γ′′(1) = γ2 +
π2

6
.

See Bateman and Erdélyi [1], Eq. (7) in Sect. 1.7 and Eq. (10) in Sect.1.9.

Using (3.18), we have: for some ∆0 ∈ (0, 1) and ρ > 0,

(3.21) P

{
∑j

i=1 log
1
wi

j
≥ −γ(1−∆)

}

≤ 2 exp(−jρ∆2), ∀∆ ∈ (0,∆0).

Since j > jn = ⌈logσ1 n⌉, and σ1 > 1, the probability of the union of the

events in (3.21) over j ∈ [jn + 1, k] is of order exp
[

−Θ(logσ1 n)
]

. Therefore,

in conjunction with (3.19) for i = n − 1, we have: with probability ≥ 1 −
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exp
(

−Θ(logσ1 n)
)

, the bound (3.20) implies

T2 ≤
1 +O(log−1 n)

k

k
∑

j=jn+1

(

log
Wn−1

j

)1/b

≤ 1 +O(log−1 n)

k
(k − jn)

(

log
Wn−1

jn

)1/b

=
(

1 +O(log−1 n)
)

(

log
n

jn

)1/b

,

since jn/k ≤b (log n)
σ1−σ ≪ (log n)−1/b. Therefore

(3.22) P

{

T b
2 >

(

1 +O(log−1 n)
)

· log n

jn

}

≤ exp
(

−Θ(logσ1 n)
)

.

Combining (3.15), (3.16) and (3.22), we obtain: with Uj =
Wj

Wn−1
,

(3.23)
P

{[

1

k

k
∑

j=1

(

log
1

Uj

)1/b
]b

≥
(

1 +O(log−1 n)
)

log

(

n

logσ1 n

)

}

≤ exp
(

−Θ(logσ4 n)
)

, σ4 := min{σ1, σ2} > 1.

Finally, using (3.19), we have 1/Uk = Wn−1/Wk = Θ(n/k) ≥ Θ(n1/2) with

probability exceeding

1− exp(−Θ(k))− exp(−Θ(n)) ≥ 1− exp
(

−Θ(logσ n)
)

.

So, combining the above estimate with (3.14), we arrive at

(3.24)
P

{

|X|b ≤
[

1 +
(a

b
+O[log−1(n/k)]

) log log(n/k)

log(n/k)

]

log

(

n

logσ1 n

)}

≥ 1− exp
(

−Θ(logσ5 n)
)

, σ5 := min{σ, σ4}.
For a ≤ 0, the event on the LHS of (3.24) is contained in the event

(3.25) C ′
n :=

{

|X|b ≤ log
n

logσ1 n
+O

(

log log n

log n

)}

.

For a > 0, the containing event is

(3.26) C ′′
n :=

{

|X|b ≤ log
n

(log n)σ1−
2a
b
+O((log logn)−1)

}

,

because

(log n) ·
(a

b
+O[log−1(n/k)]

)log log(n/k)

log(n/k)

≤ 2a

b
(log log n)

(

1 +O

(

log log n

log n

))

,
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with factor 2 coming from kn = ⌈αn1/2⌉, the largest value of k under con-

sideration. Using the formula (3.9), i.e.

F (x) = (c+O(|x|−κ))|x|a exp(−|x|b), x→ −∞,

we see that nF (X) = Θ
(

(log n)σ1+
a
b

)

on C ′
n (i.e. for a ≤ 0), and nF (X) =

Θ
(

(log n)σ1−
2a
b

)

on C ′′
n (i.e. for a > 0). We want nF (X) ≫ log n on the

respective event Cn. To ensure this property, we need to have σ1 > 1 + |a|
b

if a ≤ 0, and σ1 >
2a
b + 1 if a > 0. Recall though that for the desirable

σi to exist, it was necessary and sufficient to have σ > σ1 + 1/b. So let us

introduce σ(a, b), the infimum of admissible σ, i.e.

(3.27) σ(a, b) =











1 +
|a|+ 1

b
, if a ≤ 0,

1 +
2a+ 1

b
, if a > 0.

Given σ > σ(a, b), we can choose σ∗1 = σ∗1(a, b) as the middle point of its

respective admissible range:

σ∗1 =











1 + |a|/b+ σ − 1/b

2
= 1 +

|a|
b

+
σ − σ(a, b)

2
, if a ≤ 0,

1 + 2a/b+ σ − 1/b

2
= 1 +

2a

b
+
σ − σ(a, b)

2
, if a > 0.

Consequently, both σ∗1 + a/b for a ≤ 0 and σ∗1 − 2a/b for a > 0 equal

1 + 0.5(σ − σ(a, b)). By (3.16), σ2 can be chosen arbitrarily close to, but

strictly less than

(3.28) σ∗2 = b(σ − σ∗1) = 1 +
b(σ − σ(a, b))

2
,

allowing σ3 to be positive. It turns out that σ∗2 < σ∗1 , and consequently

min{σj : j ∈ [5] \ {3}} can be made arbitrarily close from below to σ∗2. Sure

enough, σ∗2 > 1 since σ > σ(a, b). We have proved

Lemma 3.8. Given a, and b ∈ (0, 1), let σ(a, b) be defined by (3.27). For

σ > σ(a, b), let k1 = ⌈logσ n⌉, kn = ⌈αn1/2⌉. Then

P

{

∀ k ∈ [k1, kn] : nF

(

1

k

k
∑

j=1

F−1(Uj)

)

≥ log1+c n

}

≥ 1− exp(− log1+d n)

if 0 < c < σ−σ(a,b)
2 and 0 < d < b(σ−σ(a,b))

2 .

The next claim follows directly from Lemma 3.8 and

P
{

W̄k ≤ kV1
}

= E
[(

1− φ(U)
)n]

, φ(U) = F

(

1

k

k
∑

j=1

F−1(Uj)

)

.
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Theorem 3.9. Let b < 1. For all k ∈ [k1, kn],

P
{

W̄k ≤ kV1
}

≤ exp
(

− log1+d n
)

, ∀ d < b (σ − σ(a, b))

2
.

Consequently, by (2.1),

P
{

Kn = k + 1
}

≤ exp
(

− log1+d n
)

, ∀ d < b (σ − σ(a, b))

2
.

3.2.3. Case Q = (M + MT)/2. Consider the following random matrix

model: first randomly generate an n × n matrix M whose elements are

i.i.d. random variables with the cdf G(·); then define Q = (M +MT )/2.

Chen and Peng [11] studied the case when G is the standard normal distri-

bution. Let us consider the more general case when for some a and positive

b, c and κ,

(3.29) G(x) = (c+O(|x|−κ))|x|a exp(−|x|b), x→ −∞.

We will assume that this asymptotic formula can be differentiated to yield

an asymptotic formula for the density g(x). The diagonal entries of Q have

distribution G, while the non-diagonal entries of Q have the distribution

F (x) = (G ⋆ G)(2x). Let us show that F satisfies the condition similar to

(3.29).

Lemma 3.10. Suppose G satisfies the condition (3.29). Suppose that a >

−1 if b ≤ 1. Then there exist c′ > 0, κ′ > 0 such that

F (x) = (c′ +O(|x|−κ′

))|x|a′ exp
(

−2min(1,b)|x|b
)

, x→ −∞,

a′ =



















2a+
b

2
, if b > 1,

a+ b− 1, if 0 < b < 1,

2a+ 1, if b = 1.

Note. Importantly, thanks to the factor 2min(1,b) > 1, we have

(3.30) lim
x→−∞

G(x)

F (x)
= ∞.

Chen, Peng and Zhang [11] demonstrated that, for the diagonal entries and

the non-diagonal entries having respectively the distributions G and F ,

P
{

W̄k ≤ kV1
}

= E

[(

1−G

(

1

k

k
∑

j=1

F−1(Uj)

))n]

.

So by (3.30),

(3.31)

(

1−G

(

1

k

k
∑

j=1

F−1(uj)

))n

≤
(

1− F

(

1

k

k
∑

j=1

F−1(uj)

))n
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for 1
k

∑k
j=1 F

−1(uj) < −S, if S > 0 is sufficiently large. Therefore the

argument in the previous section will apply to this model once we show that

F meets the condition (3.9).

Proof. We will write f(x) ∼ g(x) if, for some ω > 0, f(x)/g(x) = 1 +

O(|x|−ω) as x → −∞. Differentiating the asymptotic formula (3.29), we

have

g(x) = (cb+O(|x|−κ))|x|a+b−1 exp(−|x|b), x→ −∞.

Now

(3.32)
F (x) = P{Qi,j ≤ x} = P{Mi,j +Mj,i ≤ 2x}

= 2 P{Mi,j +Mj,i ≤ 2x, Mi,j ≤ x} − P2{Mi,j ≤ x}.

Here, by (3.29),

(3.33) P2{Mi,j ≤ x} = (c2 +O(|x|−1))|x|2a exp(−2|x|b), x→ −∞.

Consider P{Mi,j +Mj,i ≤ 2x, Mi,j ≤ x}.
Case b > 1. Picking λ ∈ (1, 2) such that λb > 2, we have: for x < 0,

(3.34)

P{Mi,j +Mj,i ≤ 2x, Mi,j ≤ x} =

x
∫

−∞

G(2x − u)g(u) du

=

λx
∫

−∞

G(2x− u)g(u) du +

x
∫

λx

G(2x − u)g(u) du =:

∫

1
+

∫

2
.

Here, by (3.29), for x→ −∞,

(3.35)

∫

1
≤ G(λx) ≤ 2c|λx|ae−|λx|b ,
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and

(3.36)

∫

2
∼ c2b

x
∫

λx

|2x− u|a · |u|a+b−1 exp
(

−|2x− u|b − |u|b
)

du

(ψ(x, u) := |2x− u|b + |u|b attains its minimum at u = x)

∼ c2b |x|2a+b−1

x
∫

λx

exp
(

−|2x− u|b − |u|b
)

du

(

Taylor-expanding ψ(x, u) at u = x
)

∼ c2b |x|2a+b−1 exp
(

−2|x|b
)

x
∫

λx

exp
(

−b(b− 1)|x|b−2(x− u)2
)

du

(

extending the integration to (−∞, x]
)

∼ c2b |x|2a+ b
2 exp

(

−2|x|b
)

√

π

b(b− 1)

=
c2

2

√

bπ

b− 1
|x|2a+ b

2 exp
(

−2|x|b
)

.

Combining the bounds (3.29), (3.33) and (3.36), and recalling that λb > 2,

we complete the proof.

Case b ∈ (0,1]. This time we pick λ > 2 in (3.34). Substituting u = ξx

in the first line of (3.36), and using a > −1, we have: for x→ −∞,

(3.37)
1

c2b

∫

2
∼ |x|2a+b

λ
∫

1

|2− ξ|a |ξ|a+b−1 exp
(

−|x|b
(

|2− ξ|b + |ξ|b
)

)

dξ.

(It is the factor |2 − ξ|a that dictates the condition a > −1.) For b < 1,

the function |2− ξ|b + |ξ|b attains its absolute minimum, which is 2b, at two

points, ξ = 2 and ξ = 0, but only ξ = 2 is in [1, λ]. Further

|2− ξ|b + |ξ|b = 2b + |2− ξ|b +O(|2− ξ|), ξ → 2.
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Therefore

1

c2b

∫

2
∼ 2a+b−1|x|2a+b

λ
∫

1

|2− ξ|a exp
(

−|x|b
(

2b + |2− ξ|b
)

)

dξ

= 2a+b−1|x|2a+be−|2x|b
λ
∫

1

|2− ξ|ae−|x(2−ξ)|b dξ

= 2a+b−1|x|2a+be−|2x|b
∫ λ−2

−1
ηae−|xη|b dη

∼ 2a+b|x|a+b−1e−|2x|b
∫ ∞

0
zae−zb dz

=
2a+b

b
Γ
(a+ 1

b

)

|x|a+b−1e−|2x|b .

In combination with (3.35), the constraint λ > 2 and (3.33), this completes

the proof for b < 1.

Consider b = 1. Starting with (3.37), a similar work shows that, for

a > −1,
1

c2b

∫

2
∼ |x|2a+be−2|x|

∫ 2

1
(2− ξ)aξa+b−1 dξ.

So, again by (3.35),
∫

1 /
∫

2 is of order, roughly, e−(λ−2)|x|, and by (3.33),

P2{Mi,j ≤ x}/
∫

2 is of order |x|−b. �

Lemma 3.10 immediately yields the counterparts of Theorems 3.7 and 3.9.

Theorem 3.11. Let b ≤ 1 and a > −1. For

a′ =

{

a+ b− 1, if 0 < b < 1,

2a+ 1, if b = 1,
σ > σ(a′, b) :=















1 +
|a′|+ 1

b
, if a′ ≤ 0,

1 +
2a′ + 1

b
, if a′ > 0,

and all k between ⌊logσ n⌋ and kn = ⌈αn1/2⌉, (α > e
√
2), we have

P
{

Kn = k + 1
}

≤ exp
(

− log1+d′ n
)

, ∀ d′ < b(σ − σ(a′, b))

2
,

Theorem 3.12. Let b > 1. Then, for all k ≤ kn, we have

P
{

Kn = k + 1
}

≤b n

(

8

9

)k/4

+ n exp

(

−k
(

log n
k

)min{0,a′/b}

2e

)

,

a′ := 2a+
b

2
.

Consequently Kn = Op

(

(log n)max(1,1/2−2a/b)
)

. So for the quasi-normal case

a = −1, b = 2 we have Kn = Op

(

log3/2 n
)

.
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Note. The reader certainly noticed that the inequality (3.31) is weaker

than the inequality (3.30). It may well be possible to lower the powers

of log n in the likely order of Kn by using (3.30) fully, but the additional

technicalities look to be disproportionately high.

4. Conclusion

Our results, together with [10] and [11], demonstrate that the optimal

solutions of randomly generated StQPs are sparse under very general dis-

tribution assumptions. It would be interesting to extend our analysis to

portfolio selection problems in which the variance of a portfolio of assets

with random returns is minimized ([29]) so as to diversify the investment

risk. However, it has been observed empirically in the literature (see for

instance [13], [18] and [21]) that this does not lead to the diversification

one would have expected, i.e., the solutions are usually quite sparse, when

the empirical covariance matrices are constructed from real data. Our re-

sults and/or methodologies may allow us to provide an understanding of the

sparsity of portfolio selection problems theoretically.

The sparsity of solutions holds beyond the randomly generated StQPs

([12]). See also the references to L1 minimization research in the introduc-

tion. It would be important to identify a broader class of random quadratic

optimization problems with many linear constraints that are likely to have

solutions close to an extreme point of the attendant polyhedron.

It would also be interesting to explore how sparsity can be employed to

facilitate the design of algorithms that are efficient on average. One possi-

bility is to sift through all possible supports whose sizes are no more than

the likely (polylogarithmic) upper bound in our theorems. Our results indi-

cate that, typically, the running time of even such a primitive algorithm is of

order exp(logα n), i.e. well below an exponential order. In this context, we

refer the reader to Ye et al. [34] who develop a homotopy method for solving

a sequence of quadratic programs with slightly varying problem parameters.

Their computational experiments demonstrate adaptability of the method

to solution sparsity.
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