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Abstract

We consider approximation algorithms for packing integer programs (PIPs) of the form max{〈c, x〉 :
Ax ≤ b, x ∈ {0, 1}n} where c, A, and b are nonnegative. We let W = mini,j bi/Ai,j denote the width of A
which is at least 1. Previous work by Bansal et al. [1] obtained an Ω( 1

∆
1/⌊W⌋
0

)-approximation ratio where

∆0 is the maximum number of nonzeroes in any column of A (in other words the ℓ0-column sparsity
of A). They raised the question of obtaining approximation ratios based on the ℓ1-column sparsity
of A (denoted by ∆1) which can be much smaller than ∆0. Motivated by recent work on covering
integer programs (CIPs) [4, 6] we show that simple algorithms based on randomized rounding followed
by alteration, similar to those of Bansal et al. [1] (but with a twist), yield approximation ratios for PIPs
based on ∆1. First, following an integrality gap example from [1], we observe that the case of W = 1 is as
hard as maximum independent set even when ∆1 ≤ 2. In sharp contrast to this negative result, as soon
as width is strictly larger than one, we obtain positive results via the natural LP relaxation. For PIPs
with width W = 1+ ǫ where ǫ ∈ (0, 1], we obtain an Ω(ǫ2/∆1)-approximation. In the large width regime,
when W ≥ 2, we obtain an Ω(( 1

1+∆1/W
)1/(W−1))-approximation. We also obtain a (1− ǫ)-approximation

when W = Ω( log(∆1/ǫ)

ǫ2
).

1 Introduction

Packing integer programs (abbr. PIPs) are an expressive class of integer programs of the form:

maximize 〈c, x〉 over x ∈ {0, 1}n s.t. Ax ≤ b,

where A ∈ R
m×n
≥0 , b ∈ R

m
≥0 and c ∈ R

n
≥0 all have nonnegative entries1. Many important problems in discrete

and combinatorial optimization can be cast as special cases of PIPs. These include the maximum independent
set in graphs and hypergraphs, set packing, matchings and b-matchings, knapsack (when m = 1), and the
multi-dimensional knapsack. The maximum independent set problem (MIS), a special case of PIPs, is NP-
hard and unless P = NP there is no n1−ǫ-approximation where n is the number of nodes in the graph
[9, 17]. For this reason it is meaningful to consider special cases and other parameters that control the
difficulty of PIPs. Motivated by the fact that MIS admits a simple 1

∆(G) -approximation where ∆(G) is

the maximum degree of G, previous work considered approximating PIPs based on the maximum number
of nonzeroes in any column of A (denoted by ∆0); note that when MIS is written as a PIP, ∆0 coincides
with ∆(G). As another example, when maximum weight matching is written as a PIP, ∆0 = 2. Bansal
et al. [1] obtained a simple and clever algorithm that achieved an Ω(1/∆0)-approximation for PIPs via the
natural LP relaxation; this improved previous work of Pritchard [12, 13] who was the first to obtain an
approximation for PIPs only as a function of ∆0. Moreover, the rounding algorithm in [1] can be viewed as a

∗C. Chekuri and K. Quanrud supported in part by NSF grant CCF-1526799. M. Torres supported in part by fellow-
ships from NSF and the Sloan Foundation. University of Illinois, Urbana-Champaign, IL 61801. {chekuri, quanrud2,

manuelt2}@illinois.edu
1We can allow the variables to have general integer upper bounds instead of restricting them to be boolean. As observed in

[1], one can reduce this more general case to the {0, 1} case without too much loss in the approximation.
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contention resolution scheme which allows one to get similar approximation ratios even when the objective is
submodular [1, 5]. It is well-understood that PIPs become easier when the entries in A are small compared
to the packing constraints b. To make this quantitative we consider the well-studied notion called the width

defined as W := mini,j:Ai,j>0 bi/Ai,j . Bansal et al. obtain an Ω(( 1
∆0

)1/⌊W⌋)-approximation which improves as
W becomes larger. Although they do not state it explicitly, their approach also yields a (1−ǫ)-approximation
when W = Ω( 1

ǫ2 log(∆0/ǫ)).
∆0 is a natural measure for combinatorial applications such as MIS and matchings where the underlying

matrix A has entries from {0, 1}. However, in some applications of PIPs such as knapsack and its multi-
dimensional generalization which are more common in resource-allocation problems, the entries of A are
arbitrary rational numbers (which can be assumed to be from the interval [0, 1] after scaling). In such
applications it is natural to consider another measure of column-sparsity which is based on the ℓ1 norm.
Specifically we consider ∆1, the maximum column sum of A. Unlike ∆0, ∆1 is not scale invariant so one
needs to be careful in understanding the parameter and its relationship to the width W . For this purpose
we normalize the constraints Ax ≤ b as follows. Let W = mini,j:Ai,j>0 bi/Ai,j denote the width as before
(we can assume without loss of generality that W ≥ 1 since we are interested in integer solutions). We can
then scale each row Ai of A separately such that, after scaling, the i’th constraint reads as Aix ≤W . After
scaling all rows in this fashion, entries of A are in the interval [0, 1], and the maximum entry of A is equal to
1. Note that this scaling process does not alter the original width. We let ∆1 denote the maximum column
sum of A after this normalization and observe that 1 ≤ ∆1 ≤ ∆0. In many settings of interest ∆1 ≪ ∆0.
We also observe that ∆1 is a more robust measure than ∆0; small perturbations of the entries of A can
dramatically change ∆0 while ∆1 changes minimally.

Bansal et al. raised the question of obtaining an approximation ratio for PIPs as a function of only ∆1.
They observed that this is not feasible via the natural LP relaxation by describing a simple example where
the integrality gap of the LP is Ω(n) while ∆1 is a constant. In fact their example essentially shows the
existence of a simple approximation preserving reduction from MIS to PIPs such that the resulting instances
have ∆1 ≤ 2; thus no approximation ratio that depends only on ∆1 is feasible for PIPs unless P = NP .
These negative results seem to suggest that pursuing bounds based on ∆1 is futile, at least in the worst
case. However, the starting point of this paper is the observation that both the integrality gap example
and the hardness result are based on instances where the width W of the instance is arbitrarily close to 1.
We demonstrate that these examples are rather brittle and obtain several positive results when we consider
W ≥ (1 + ǫ) for any fixed ǫ > 0.

1.1 Our results

Our first result is on the hardness of approximation for PIPs that we already referred to. The hardness result
suggests that one should consider instances with W > 1. Recall that after normalization we have ∆1 ≥ 1
and W ≥ 1 and the maximum entry of A is 1. We consider three regimes of W and obtain the following
results, all via the natural LP relaxation, which also establish corresponding upper bounds on the integrality
gap.

(i) 1 < W ≤ 2. For W = 1 + ǫ where ǫ ∈ (0, 1] we obtain an Ω( ǫ2

∆1
)-approximation.

(ii) W ≥ 2. We obtain an Ω(( 1

1+
∆1
W

)1/(W−1))-approximation which can be simplified to Ω(( 1
1+∆1

)1/(W−1))

since W ≥ 1.

(iii) A (1 − ǫ)-approximation when W = Ω( 1
ǫ2 log(∆1/ǫ)).

Our results establish approximation bounds based on ∆1 that are essentially the same as those based on ∆0

as long as the width is not too close to 1. We describe randomized algorithms which can be derandomized
via standard techniques. The algorithms can be viewed as contention resolution schemes, and via known
techniques [1, 5], the results yield corresponding approximations for submodular objectives; we omit these
extensions in this version.
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All our algorithms are based on a simple randomized rounding plus alteration framework that has been
successful for both packing and covering problems. Our scheme is similar to that of Bansal et al. at a high
level but we make a simple but important change in the algorithm and its analysis. This is inspired by
recent work on covering integer programs [4] where ℓ1-sparsity based approximation bounds from [6] were
simplified.

1.2 Other related work

We note that PIPs are equivalent to the multi-dmensional knapsack problem. When m = 1 we have the
classical knapsack problem which admits a very efficient FPTAS (see [2]). There is a PTAS for any fixed m
[7] but unless P = NP an FPTAS does not exist for m = 2.

Approximation algorithms for PIPs in their general form were considered initially by Raghavan and
Thompson [14] and refined substantially by Srinivasan [15]. Srinivasan obtained approximation ratios of the
form Ω(1/nW ) when A had entries from {0, 1}, and a ratio of the form Ω(1/n1/⌊W⌋) when A had entries from
[0, 1]. Pritchard [12] was the first to obtain a bound for PIPs based solely on the column sparsity parameter
∆0. He used iterated rounding and his initial bound was improved in [13] to Ω(1/∆2

0). The current state of
the art is due to Bansal et al. [1]. Previously we ignored constant factors when describing the ratio. In fact
[1] obtains a ratio of (1− o(1) e−1

e2∆0
) by strengthening the basic LP relaxation.

In terms of hardness of approximation, PIPs generalize MIS and hence one cannot obtain a ratio better
than n1−ǫ unless P = NP [9, 17]. Building on MIS, [3] shows that PIPs are hard to approximate within a
nΩ(1/W ) factor for any constant width W . Hardness of MIS in bounded degree graphs [16] and hardness for k-
set-packing [10] imply that PIPs are hard to approximate to within Ω(1/∆1−ǫ

0 ) and to within Ω((log∆0)/∆0)
when ∆0 is a sufficiently large constant. These hardness results are based on {0, 1} matrices for which ∆0

and ∆1 coincide.
There is a large literature on deterministic and randomized rounding algorithms for packing and covering

integer programs and connections to several topics and applications including discrepancy theory. ℓ1-sparsity
guarantees for covering integer programs were first obtained by Chen, Harris and Srinivasan [6] partly inspired
by [8].

2 Hardness of approximating PIPs as a function of ∆1

Bansal et al. [1] showed that the integrality gap of the natural LP relaxation for PIPs is Ω(n) even when ∆1

is a constant. One can use essentially the same construction to show the following theorem.

Theorem 1. There is an approximation preserving reduction from MIS to instances of PIPs with ∆1 ≤ 2.

Proof. Let G = (V,E) be an undirected graph without self-loops and let n = |V |. Let A ∈ [0, 1]n×n be
indexed by V . For all v ∈ V , let Av,v = 1. For all uv ∈ E, let Au,v = Av,u = 1/n. For all the remaining
entries in A that have not yet been defined, set these entries to 0. Consider the following PIP:

maximize 〈x,1〉 over x ∈ {0, 1}n s.t. Ax ≤ 1. (1)

Let S be the set of all feasible integral solutions of (1) and I be the set of independent sets of G. Define
g : S → I where g(x) = {v : xv = 1}. To show g is surjective, consider a set I ∈ I. Let y be the characteristic
vector of I. That is, yv is 1 if v ∈ I and 0 otherwise. Consider the row in A corresponding to an arbitrary
vertex u where yu = 1. For all v ∈ V such that v is a neighbor to u, yv = 0 as I is an independent set. Thus,
as the nonzero entries in A of the row corresponding to u are, by construction, the neighbors of u, it follows
that the constraint corresponding to u is satisfied in (1). As u is an arbitrary vertex, it follows that y is a
feasible integral solution to (1) and as I = {v : yv = 1}, g(y) = I.

Define h : S → N0 such that h(x) = |g(x)|. It is clear that maxx∈S h(x) is equal to the optimal value
of (1). Let Imax be a maximum independent set of G. As g is surjective, there exists z ∈ S such that
g(z) = Imax. Thus, maxx∈S h(x) ≥ |Imax|. As maxx∈S h(x) is equal to the optimum value of (1), it follows
that a β-approximation for PIPs implies a β-approximation for maximum independent set.

3



Round-and-Alter Framework: input A, b, and α

let x be the optimum fractional solution of the natural LP relaxation
for j ∈ [n], set x′

j to be 1 independently with probability αxj and 0 otherwise
x′′ ← x′

for i ∈ [m] do
find S ⊆ [n] such that setting x′

j = 0 for all j ∈ S would satisfy 〈ei, Ax
′〉 ≤ bi

for all j ∈ S, set x′′
j = 0

end for

return x′′

Figure 1: Randomized rounding with alteration framework.

Furthermore, we note that for this PIP, ∆1 ≤ 2, thus concluding the proof.

Unless P = NP , MIS does not admit a n1−ǫ-approximation for any fixed ǫ > 0 [9, 17]. Hence the
preceding theorem implies that unless P = NP one cannot obtain an approximation ratio for PIPs solely as
a function of ∆1.

3 Round and alter framework

The algorithms in this paper have the same high-level structure. The algorithms first scale down the fractional
solution x by some factor α, and then randomly round each coordinate independently. The rounded solution
x′ may not be feasible for the constraints. The algorithm alters x′ to a feasible x′′ by considering each
constraint separately in an arbitrary order; if x′ is not feasible for constraint i some subset S of variables
are chosen to be set to 0. Each constraint corresponds to a knapsack problem and the framework (which is
adapted from [1]) views the problem as the intersection of several knapsack constraints. A formal template
is given in Figure 1. To make the framework into a formal algorithm, one must define α and how to choose
S in the for loop. These parts will depend on the regime of interest.

For an algorithm that follows the round-and-alter framework, the expected output of the algorithm is
E [〈c, x′′〉] =

∑n
j=1 cj ·Pr[x

′′
j = 1]. Independent of how α is defined or how S is chosen, Pr[x′′

j = 1] = Pr[x′′
j =

1|x′
j = 1] · Pr[x′

j = 1] since x′′
j ≤ x′

j . Then we have

E[〈c, x′′〉] = α

n
∑

j=1

cjxj · Pr[x
′′
j = 1|x′

j = 1].

Let Eij be the event that x′′
j is set to 0 when ensuring constraint i is satisfied in the for loop. As x′′

j is only
set to 0 if at least one constraint sets x′′

j to 0, we have

Pr[x′′
j = 0|x′

j = 1] = Pr





⋃

i∈[m]

Eij |x
′
j = 1



 ≤

m
∑

i=1

Pr[Eij |x
′
j = 1].

Combining these two observations, we have the following lemma, which applies to all of our subsequent
algorithms.

Lemma 2. Let A be a randomized rounding algorithm that follows the round-and-alter framework given in

Figure 1. Let x′ be the rounded solution obtained with scaling factor α. Let Eij be the event that x′′
j is set to

0 by constraint i. If for all j ∈ [n] we have
∑m

i=1 Pr[Eij |x
′
j = 1] ≤ γ, then A is an α(1 − γ)-approximation

for PIPs.

We will refer to the quantity Pr[Eij |x
′
j = 1] as the rejection probability of item j in constraint i. We will

also say that constraint i rejects item j if x′′
j is set to 0 in constraint i.

4



round-and-alter-by-sorting(A, b, α1):

let x be the optimum fractional solution of the natural LP relaxation
for j ∈ [n], set x′

j to be 1 independently with probability α1xj and 0 otherwise
x′′ ← x′

for i ∈ [m] do
sort and renumber such that Ai,1 ≤ · · · ≤ Ai,n

s← max{ℓ ∈ [n] :
∑ℓ

j=1 Ai,jx
′
j ≤ bi}

for each j ∈ [n] such that j > s, set x′′
j = 0

end for

return x′′

Figure 2: Round-and-alter in the large width regime. Each constraint sorts the coordinates in increasing
size and greedily picks a feasible set and discards the rest.

4 The large width regime: W ≥ 2

In this section, we consider PIPs with width W ≥ 2. Recall that we assume A ∈ [0, 1]m×n and bi = W for all
i ∈ [m]. Therefore we have Ai,j ≤ W/2 for all i, j and from a knapsack point of view all items are “small”.
We apply the round-and-alter framework in a simple fashion where in each constraint i the coordinates are
sorted by the coefficents in that row and the algorithm chooses the largest prefix of coordinates that fit in
the capacity W and the rest are discarded. We emphasize that this sorting step is crucial for the analysis
and differs from the scheme in [1]. Figure 2 describes the formal algorithm.

The key property for the analysis: The analysis relies on obtaining a bound on the rejection probability
of coordinate j by constraint i. Let Xj be the indicator variable for j being chosen in the first step. We
show that Pr[Eij | Xj = 1] ≤ cAij for some c that depends on the scaling factor α. Thus coordinates with
smaller coefficients are less likely to be rejected. The total rejection probability of j,

∑m
i=1 Pr[Eij | Xj = 1],

is proportional to the column sum of coordinate j which is at most ∆1.
The analysis relies on the Chernoff bound, and depending on the parameters, one needs to adjust the

analysis. In order to highlight the main ideas we provide a detailed proof for the simplest case and include
the proofs of the other cases in the appendix.

4.1 An Ω(1/∆1)-approximation algorithm

We show that round-and-alter-by-sorting yields an Ω(1/∆1)-approximation if we set the scaling factor α1 =
1

c1∆1
where c1 = 4e1+1/e.

The rejection probability is captured by the following main lemma.

Lemma 3. Let α1 = 1
c1∆1

for c1 = 4e1+1/e. Let i ∈ [m] and j ∈ [n]. Then we have Pr[Eij |Xj = 1] ≤
Ai,j

2∆1

in the algorithm round-and-alter-by-sorting(A, b, α1).

Proof. At iteration i of round-and-alter-by-sorting, after the set {Ai,1, . . . , Ai,n} is sorted, the indices are
renumbered so that Ai,1 ≤ · · · ≤ Ai,n. Note that j may now be a different index j′, but for simplicity of

notation we will refer to j′ as j. Let ξℓ = 1 if x′
ℓ = 1 and 0 otherwise. Let Yij =

∑j−1
ℓ=1 Ai,ℓξℓ.

If Eij occurs, then Yij > W − Ai,j , since x′′
j would not have been set to zero by constraint i otherwise.

That is,
Pr[Eij |Xj = 1] ≤ Pr[Yij > W −Ai,j |Xj = 1].

The event Yij > W − Ai,j does not depend on x′
j . Therefore,

Pr[Yij > W −Ai,j |Xj = 1] ≤ Pr[Yij ≥W −Ai,j ].

5



To upper bound E[Yij ], we have

E[Yij ] =

j−1
∑

ℓ=1

Ai,ℓ · Pr[Xℓ = 1] ≤ α1

n
∑

ℓ=1

Ai,ℓxℓ ≤ α1W.

As Ai,j ≤ 1, W ≥ 2, and α1 < 1/2, we have (1−α1)W
Ai,j

> 1. Using the fact that Ai,j is at least as large as all

entries Ai,j′ for j
′ < j, we satisfy the conditions to apply the Chernoff bound in Theorem 13. This implies

Pr[Yij > W −Ai,j ] ≤

(

α1e
1−α1W

W −Ai,j

)(W−Ai,j)/Ai,j

.

Note that W
W−Ai,j

≤ 2 as W ≥ 2. Because e1−α1 ≤ e and by the choice of α1, we have

(

α1e
1−α1W

W −Ai,j

)(W−Ai,j)/Ai,j

≤ (2eα1)
(W−Ai,j)/Ai,j =

(

1

2e1/e∆1

)(W−Ai,j)/Ai,j

.

Then we prove the final inequality in two parts. First, we see that W ≥ 2 and Ai,j ≤ 1 imply that
W−Ai,j

Ai,j
≥ 1. This implies

(

1

2∆1

)(W−1)/Ai,j

≤
1

2∆1
.

Second, we see that
(1/e1/e)(W−Ai,j)/Ai,j ≤ (1/e1/e)1/Ai,j ≤ Ai,j

for Ai,j ≤ 1, where the first inequality holds because W − Ai,j ≥ 1 and the second inequality holds by
Lemma 14. This concludes the proof.

Theorem 4. When setting α1 = 1
c1∆1

where c1 = 4e1+1/e, round-and-alter-by-sorting(A, b, α1) is a random-

ized (α1/2)-approximation algorithm for PIPs with width W ≥ 2.

Proof. Fix j ∈ [n]. By Lemma 3 and the definition of ∆1, we have

m
∑

i=1

Pr[Eij |Xj = 1] ≤

m
∑

i=1

Ai,j

2∆1
≤

1

2
.

By Lemma 2, which shows that upper bounding the sum of the rejection probabilities by γ for every item
leads to an α1(1− γ)-approximation, we get the desired result.

4.2 An Ω( 1
(1+∆1/W )1/(W−1) )-approximation

We improve the bound from the previous section by setting α1 = 1
c2(1+∆1/W )1/(W−1) where c2 = 4e1+2/e.

Note that the scaling factor becomes larger as W increases. The analysis of the following lemma is similar
to that of Lemma 3 and is therefore left for the appendix.

Lemma 5. Let α1 = 1
c2(1+∆1/W )1/(W−1) for c2 = 4e1+2/e. Let i ∈ [m] and j ∈ [n]. Then in the algorithm

round-and-alter-by-sorting(A, b, α1), we have Pr[Eij |Xj = 1] ≤
Ai,j

2∆1
.

If we replace Lemma 3 with Lemma 5 in the proof of Theorem 4, we obtain the following stronger
guarantee.

Theorem 6. When setting α1 = 1
c2(1+∆1/W )1/(W−1) where c2 = 4e1+2/e, for PIPs with width W ≥ 2,

round-and-alter-by-sorting(A, b, α1) is a randomized (α1/2)-approximation.

6



4.3 A (1− O(ǫ))-approximation when W ≥ Ω( 1
ǫ2
ln(∆1

ǫ
))

In this section, we give a randomized (1−O(ǫ))-approximation for the case when W ≥ Ω( 1
ǫ2 ln(

∆1

ǫ )). We use
the algorithm round-and-alter-by-sorting in Figure 2 with the scaling factor α1 = 1− ǫ. The analysis follows
the same structure as the analyses for the lemmas bounding the rejection probabilities from the previous
sections. The proof can be found in the appendix.

Lemma 7. Let 0 < ǫ < 1
e , α1 = 1 − ǫ, and W = 2

ǫ2 ln(
∆1

ǫ ) + 1. Let i ∈ [m] and j ∈ [n]. Then in

round-and-alter-by-sorting(A, b, α1), we have Pr[Eij |Xj = 1] ≤ e ·
ǫAi,j

∆1
.

Lemma 7 implies that we can upper bound the sum of the rejection probabilities for any item j by eǫ,
leading to the following theorem.

Theorem 8. Let 0 < ǫ < 1
e and W = 2

ǫ2 ln(
∆1

ǫ ) + 1. When setting α1 = 1 − ǫ and c = e + 1,
round-and-alter-by-sorting(A, b, α1) is a randomized (1− cǫ)-approximation algorithm.

Proof. Fix j ∈ [n]. By Lemma 7 and the definition of ∆1,

m
∑

i=1

Pr[Eij |Xj = 1] ≤

m
∑

i=1

eǫAi,j

∆1
≤ eǫ.

By Lemma 2, which shows that an upper bound on the rejection probabilities of γ leads to an α1(1 − γ)-
approximation, we have an α1(1−eǫ)-approximation. Then note that α1(1−eǫ) = (1−ǫ)(1−eǫ) ≥ 1−(e+1)ǫ.
This concludes the proof.

5 The small width regime: W = (1 + ǫ)

We now consider the regime when the width is small. Let W = 1+ǫ for some ǫ ∈ (0, 1]. We cannot apply the
simple sorting based scheme that we used for the large width regime. We borrow the idea from [1] in splitting
the coordinates into big and small in each constraint; now the definition is more refined and depends on ǫ.
Moreover, the small coordinates and the big coordinates have their own reserved capacity in the constraint.
This is crucial for the analysis. We provide more formal details below.

We set α2 to be ǫ2

c3∆1
where c3 = 8e1+2/e. The alteration step differentiates between “small” and “big”

coordinates as follows. For each i ∈ [m], let Si = {j : Ai,j ≤ ǫ/2} and Bi = {j : Ai,j > ǫ/2}. We say that an
index j is small for constraint i if j ∈ Si. Otherwise we say it is big for constraint i when j ∈ Bi. For each
constraint, the algorithm is allowed to pack a total of 1 + ǫ into that constraint. The algorithm separately
packs small indices and big indices. In an ǫ amount of space, small indices that were chosen in the rounding
step are sorted in increasing order of size and greedily packed until the constraint is no longer satisfied. The
big indices are packed by arbitrarily choosing one and packing it into the remaining space of 1. The rest
of the indices are removed to ensure feasibility. Figure 3 gives pseudocode for the randomized algorithm
round-alter-small-width which yields an Ω(ǫ2/∆1)-approximation.

It remains to bound the rejection probabilities. Recall that for j ∈ [n], we define Xj to be the indicator
random variable 1(x′

j = 1) and Eij is the event that j was rejected by constraint i.
We first consider the case when index j is big for constraint i. Note that it is possible that there may

not exist any big indices for a given constraint. The same holds true for small indices.

Lemma 9. Let ǫ ∈ (0, 1] and α2 = ǫ2

c3∆1
where c3 = 8e1+2/e. Let i ∈ [m] and j ∈ Bi. Then in

round-alter-small-width(A, b, ǫ, α2), we have Pr[Eij |Xj = 1] ≤
Ai,j

2∆1
.

Proof. Let E be the event that there exists j′ ∈ Bi such that j′ 6= j and Xj′ = 1. Observe that if Eij occurs
and Xj = 1, then it must be the case that at least one other element of Bi was chosen in the rounding step.
Thus,

Pr[Eij |Xj = 1] ≤ Pr[E ] ≤
∑

ℓ∈Bi
ℓ 6=j

Pr[Xℓ = 1] ≤ α2

∑

ℓ∈Bi

xℓ,

7



round-alter-small-width(A, b, ǫ, α2):

let x be the optimum fractional solution of the natural LP relaxation
for j ∈ [n], set x′

j to be 1 independently with probability α2xj and 0 otherwise
x′′ ← x′

for i ∈ [m] do
if |Si| = 0 then

s← 0
else

sort and renumber such that Ai,1 ≤ · · · ≤ Ai,n

s← max
{

ℓ ∈ Si :
∑ℓ

j=1 Ai,jx
′
j ≤ ǫ

}

end if

if |Bi| = 0, then t = 0, otherwise let t be an arbitrary element of Bi

for each j ∈ [n] such that j > s and j 6= t, set x′′
j = 0

end for

return x′′

Figure 3: By setting the scaling factor α2 = ǫ2

c∆1
for a sufficiently large constant c, round-alter-small-width is

a randomized Ω(ǫ2/∆1)-approximation for PIPs with width W = 1+ ǫ for some ǫ ∈ (0, 1] (see Theorem 11).

where the second inequality follows by the union bound. Observe that for all ℓ ∈ Bi, we have Ai,ℓ > ǫ/2.
By the LP constraints, we have 1 + ǫ ≥

∑

ℓ∈Bi
Ai,ℓxℓ >

ǫ
2 ·
∑

ℓ∈Bi
xℓ. Thus,

∑

ℓ∈Bi
xℓ ≤

1+ǫ
ǫ/2 = 2/ǫ+ 2.

Using this upper bound for
∑

ℓ∈Bi
xℓ, we have

α2

∑

ℓ∈Bi

xℓ ≤
ǫ2

c3∆1

(

2

ǫ
+ 2

)

≤
4ǫ

c3∆1
≤

Ai,j

2∆1
,

where the second inequality utilizes the fact that ǫ ≤ 1 and the third inequality holds because c3 ≥ 16 and
Ai,j > ǫ/2.

Next we consider the case when index j is small for constraint i. The analysis here is similar to that in
the preceding section with width at least 2. The proof is left for the appendix.

Lemma 10. Let ǫ ∈ (0, 1] and α2 = ǫ2

c3∆1
where c3 = 8e1+2/e. Let i ∈ [m] and j ∈ Si. Then in

round-alter-small-width(A, b, ǫ, α2), we have Pr[Eij |Xj = 1] ≤
Ai,j

2∆1
.

As Lemma 10 shows that the rejection probability is small, we can prove the following approximation
guarantee much like in Theorems 4 and 6.

Theorem 11. Let ǫ ∈ (0, 1]. When setting α2 = ǫ2

c3∆1
for c3 = 8e1+2/e, for PIPs with width W = 1 + ǫ,

round-alter-small-width(A, b, ǫ, α2) is a randomized (α2/2)-approximation algorithm .

Proof. Fix j ∈ [n]. Then by Lemmas 9 and 10 and the definition of ∆1, we have

m
∑

i=1

Pr[Eij |Xj = 1] ≤

m
∑

i=1

Ai,j

2∆1
≤

1

2
.

Recall that Lemma 2 gives an α2(1−γ)-approximation where γ is an upper bound on the sum of the rejection
probabilities for any item. This concludes the proof.
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Appendix

A Chernoff Bounds and Useful Inequalities

The following standard Chernoff bound is used to obtain a more convenient Chernoff bound in Theorem 13.
The proof of Theorem 13 follows directly from choosing δ such that (1 + δ)µ = W − β and applying
Theorem 12. We include the proof for convenience.

Theorem 12 ([11]). Let X1, . . . , Xn be independent random variables where Xi is defined on {0, βi}, where
0 < βi ≤ β ≤ 1 for some β. Let X =

∑

i Xi and denote E[X ] as µ. Then for any δ > 0,

Pr[X ≥ (1 + δ)µ] ≤

(

eδ

(1 + δ)1+δ

)µ/β

Theorem 13. Let X1, . . . , Xn ∈ [0, β] be independent random variables for some 0 < β ≤ 1. Suppose

µ = E[
∑

iXi] ≤ αW for some 0 < α < 1 and W ≥ 1 where (1 − α)W > β. Then

Pr

[

∑

i

Xi > W − β

]

≤

(

αe1−αW

W − β

)(W−β)/β

.

Proof. Since the right-hand side is increasing in α, it suffices to assume µ = αW . Choose δ such that
(1 + δ)µ = W − β. Then δ = (W − β − µ)/µ. Because µ = αW and since (1 − α)W > β, we have
δ = ((1− α)W − β)/µ > 0. We apply the standard Chernoff bound in Theorem 13 to obtain

Pr

[

∑

i

Xi > W − β

]

= Pr

[

∑

i

Xi > (1 + δ)µ

]

≤

(

eδ

(1 + δ)1+δ

)µ/β

.

Because 1 + δ = (W − β)/µ and δ = (W − β − µ)/µ,

(

eδ

(1 + δ)1+δ

)µ/β

=

(

eW−β−µ

((W − β)/µ)W−β

)1/β

.

Exponentiating the denominator,

(

eW−β−µ

((W − β)/µ)W−β

)1/β

= exp

(

1

β

(

W − β − µ+ (W − β) ln

(

µ

W − β

)))

As µ = αW ,

exp

(

1

β

(

W − β − µ+ (W − β) ln

(

µ

W − β

)))

= exp

(

1

β

(

(1− α)W − β + (W − β) ln

(

αW

W − β

)))

We can rewrite the exponent to show that

exp

(

1

β

(

(1 − α)W − β − (W − β) ln

(

W − β

αW

)))

≤

(

αe1−αW

W − β

)(W−β)/β

.

The following three lemmas are used in the proofs bounding the rejection probabilities for different
regimes of width. The inequalities are easily verified via calculus. The proofs are included for the sake of
completeness.
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Lemma 14. Let x ∈ (0, 1]. Then (1/e1/e)1/x ≤ x.

Proof. Taking logs of both sides of the stated inequality and rearranging, it suffices to show that ln(1/e1/e) ≤
x lnx for x > 0. x ln x is convex and its minimum is −1/e at x = 1/e. Since ln(1/e1/e) = −1/e, the inequality
holds.

Lemma 15. Let y ≥ 2 and x ∈ (0, 1] . Then x/y ≥ (1/e2/e)y/2x.

Proof. We start with a simple rewriting of the statement. After taking logs and rearranging, it is sufficient
to show

(x/y) ln(x/y) ≥ (1/2) ln(1/e2/e) = −1/e.

Replacing x/y with z, we see that it suffices the prove z ln z ≥ −1/e for 0 < z ≤ 1/2. We note that x lnx is
convex and its minimum is −1/e at x = 1/e. Thus, z ln z ≥ −1/e. This concludes the proof.

Lemma 16. Let 0 < ǫ ≤ 1 and x ∈ (0, 1]. Then ǫx/2 ≥ (ǫ/e2/e)1/x.

Proof. To start, let d = e2/e/2 and observe that d > 1. We first do a change of variables, replacing ǫ/2 with
ǫ and x with x/ǫ. If we take a log of both sides, then our reformulated goal is to show that

x lnx ≥ ǫ ln(ǫ/d)

for 0 < ǫ ≤ 1/2 and x ∈ (0, ǫ]. Letting f(y) = y ln y and g(y) = y ln(y/d), we want to show that f(x) ≥ g(ǫ).
We will proceed by cases.

First, suppose 0 < ǫ ≤ d/e. It is easy to show that f is decreasing on (0, 1/e] and increasing on [1/e,∞)
and that g is decreasing on (0, d/e] and increasing on [d/e,∞). As f is decreasing on (0, 1/e], for 0 < ǫ ≤ 1/e,
we have f(x) ≥ f(ǫ) as x ≤ ǫ. As d > 1, it follows that f(ǫ) ≥ g(ǫ). Therefore, f(x) ≥ g(ǫ) for 0 < ǫ ≤ 1/e.
Furthermore, as g is decreasing on [1/e, d/e] and f is increasing on [1/e, d/e], we have f(x) ≥ g(ǫ) for
0 < ǫ ≤ d/e.

For the second case, suppose d/e < ǫ ≤ 1/2. Note that the minimum of f on the interval (0, 1/2] is
f(1/e) = −1/e. Thus, it would suffice to show that g(ǫ) ≤ −1/e. As we noted previously that g is increasing
on [d/e, 1/2], it would suffice to show that g(1/2) ≤ −1/e. By definition of g, we see g(1/2) = −1/e.
Therefore, f(x) ≥ g(ǫ). This concludes the proof.

B Skipped Proofs

B.1 Proof of Lemma 5

Proof. The proof proceeds similarly to the proof of Lemma 3. Since α1 < 1/2, everything up to and including
the application of the Chernoff bound there applies. This gives that for each i ∈ [m] and j ∈ [n],

Pr[Eij |Xj = 1] ≤ (2eα1)
(W−Ai,j)/Ai,j .

By choice of α1, we have

(2eα1)
(W−Ai,j)/Ai,j =

(

1

2e2/e(1 + ∆1/W )1/(W−1)

)(W−Ai,j)/Ai,j

We prove the final inequality in two parts. First, note that
W−Ai,j

Ai,j
≥W − 1 since Ai,j ≤ 1. Thus,

(

1

2(1 + ∆1/W )1/(W−1)

)(W−Ai,j)/Ai,j

≤
1

2W−1(1 + ∆1/W )
≤

W

2∆1
.

Second, we see that
(

1

e2/e

)(W−Ai,j)/Ai,j

≤

(

1

e2/e

)W/2Ai,j

≤
Ai,j

W

forAi,j ≤ 1, where the first inequality holds becauseW ≥ 2 and the second inequality holds by Lemma 15.
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B.2 Proof of Lemma 7

Proof. Renumber indices so that Ai,1 ≤ · · · ≤ Ai,n and if the index of j changes to j′, we still refer to j′ as

j. Let Yij =
∑j−1

ℓ=1 Ai,ℓξℓ where ξℓ = 1 if x′
ℓ = 1 and 0 otherwise. We first note that

Pr[Eij |Xj = 1] ≤ Pr[Yij > W −Ai,j ].

By the choice of α1 and the fact that Ai,j ≤ 1 and W = 2
ǫ2 ln(

∆1

ǫ )+1, we have ((1−α1)W )/Ai,j ≥ ǫW =
2
ǫ ln(

∆1

ǫ ) + ǫ. A direct argument via calculus shows 2
ǫ ln(

∆1

ǫ ) + ǫ > 1 for ǫ ∈ (0, 1
e ). Thus, (1− α1)W > Ai,j .

By the LP constraints, E[Yij ] ≤ α1W . Then as Ai,j′ ≤ Ai,j for all j′ < j, we can apply the Chernoff
bound in Theorem 13 to obtain

Pr[Yij ≥W −Ai,j ] ≤

(

α1e
1−α1W

W −Ai,j

)(W−Ai,j)/Ai,j

.

As Ai,j ≤ 1,
(

W

W −Ai,j

)(W−Ai,j)/Ai,j

≤

(

W

W − 1

)W−1

≤ e,

where the last inequality follows from the fact that (1− 1/z)z−1 ≥ 1/e for all z ≥ 1. Then

(

α1e
1−α1W

W −Ai,j

)(W−Ai,j)/Ai,j

≤ e ·
(

α1e
1−α1

)(W−Ai,j)/Ai,j
.

By the choice of α1,

e ·
(

α1e
1−α1

)(W−Ai,j)/Ai,j
= e · ((1− ǫ)eǫ)(W−Ai,j)/Ai,j .

For 0 < ǫ < 1
e , we have 1− ǫ ≤ exp(−ǫ− ǫ2

2 ). As W = 2
ǫ2 ln(

∆1

ǫ ) + 1 and Ai,j ≤ 1,

e · ((1 − ǫ)eǫ)(W−Ai,j)/Ai,j ≤ e ·
(

e−ǫ2/2
)

2
ǫ2

ln(
∆1
ǫ )

≤ e · exp

(

−
ln(∆1

ǫ )

Ai,j

)

.

Observe that 1
Ai,j
− ln( e

Ai,j
) ≥ 0. For Ai,j ∈ [0, 1], a direct argument shows ln(t)

Ai,j
− ln( t

Ai,j
) is increasing in t

for t ≥ e. As ∆1/ǫ > e, we have
ln(

∆1
ǫ )

Ai,j
≥ ln( ∆1

ǫAi,j
). Therefore,

e exp

(

−
ln(∆1

ǫ )

Ai,j

)

≤ e exp

(

− ln

(

∆1

ǫAi,j

))

=
eǫAi,j

∆1
.

This concludes the proof.

B.3 Proof of Lemma 10

Proof. Renumber the indices so that Ai,1 ≤ · · · ≤ Ai,n. Note that the index j might have changed to j′ but

for simplicity we refer to j′ as j. Let ξℓ = 1 if x′
ℓ = 1 and 0 otherwise. Let Yij =

∑j−1
ℓ=1 Ai,ℓξℓ. We have

Pr[Eij |Xj = 1] ≤ Pr[Yij ≥ ǫ−Ai,j ].

Let A′
i,ℓ =

2
ǫ · Ai,ℓ for ℓ ∈ [j]. As Ai,ℓ ≤ ǫ/2 for all ℓ ∈ [j], we have A′

i,ℓ ∈ [0, 1]. Let Y ′
ij =

∑j−1
ℓ=1 A

′
i,ℓξℓ.

Then
Pr[Yij ≥ ǫ−Ai,j ] = Pr[Y ′

ij ≥ 2−A′
i,j ].
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To upper bound E[Y ′
ij ], we have

E[Y ′
ij ] =

j−1
∑

ℓ=1

A′
i,ℓ · Pr[Xℓ = 1] ≤

2α2

ǫ

n
∑

ℓ=1

Ai,ℓxℓ ≤
2α2(1 + ǫ)

ǫ
=

2ǫ(1 + ǫ)

c3∆1
.

Let α′
2 = 2ǫ

c3∆1
and W = 2. Then E[Y ′

ij ] ≤ α′
2W . As α′

2 < 1/2 and A′
i,j ≤ 1, we see that ((1−α)W )/A′

i,j > 1.
Therefore, as A′

i,ℓ ≤ A′
i,j for all ℓ < j, we can apply the Chernoff bound in Theorem 13 to obtain

Pr[Y ′
ij ≥ 2−A′

i,j ] ≤

(

α′
2e

1−α′
2W

W −A′
i,j

)(W−A′
i,j)/A

′
i,j

.

Observe that e1−α′
2 ≤ e and W

W−A′
i,j
≤ 2 since W = 2 and A′

i,j ≤ 1. By our choice of α′
2,

(

α′
2e

1−α′
2W

W − A′
i,j

)(W−A′
i,j)/A

′
i,j

≤ (2eα′
2)

(W−A′
i,j)/A

′
i,j =

(

ǫ

2e2/e∆1

)(W−A′
i,j)/A

′
i,j

We prove the final inequality in two parts. First, we note that
W−A′

i,j

A′
i,j

≥ 1 since W = 2 and A′
i,j ≤ 1.

Then
(

1

2∆1

)(W−A′
i,j)/A

′
i,j

≤
1

2∆1
.

Second, we observe
W−A′

i,j

A′
i,j

≥ 1/A′
i,j since W = 2 and A′

i,j ≤ 1. Then we can apply Lemma 16 to obtain

(ǫ/e2/e)(W−A′
i,j)/A

′
i,j ≤ (ǫ/e2/e)1/A

′
i,j ≤

ǫA′
i,j

2
.

We have shown Pr[Eij |Xj = 1] ≤
ǫA′

i,j

4∆1
. Since A′

i,j = Ai,j ·
2
ǫ , the result follows.
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