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Abstract

We give a characterization of the Hoffman constant of a system of linear constraints
in R

n relative to a reference polyhedron R ⊆ R
n. The reference polyhedron R represents

constraints that are easy to satisfy such as box constraints. In the special case R = R
n,

we obtain a novel characterization of the classical Hoffman constant.
More precisely, suppose R ⊆ R

n is a reference polyhedron, A ∈ R
m×n, and A(R) :=

{Ax : x ∈ R}. We characterize the sharpest constant H(A|R) such that for all b ∈
A(R) + R

m
+ and u ∈ R

dist(u, PA(b) ∩R) ≤ H(A|R) · ‖(Au− b)+‖,

where PA(b) = {x ∈ R
n : Ax ≤ b}. Our characterization is stated in terms of the largest

of a canonical collection of easily computable Hoffman constants. Our characterization
in turn suggests new algorithmic procedures to compute Hoffman constants.

1 Introduction

A classical result of Hoffman [15] shows that the distance from a point u ∈ R
n to a non-empty

polyhedron PA(b) := {x ∈ R
n : Ax ≤ b} can be bounded above in terms of the size of the

residual vector (Au − b)+ := max(0, Au − b). More precisely, for A ∈ R
m×n there exists a

Hoffman constant H(A) that depends only on A such that for all b ∈ A(Rn) + R
m
+ and all

u ∈ R
n,

dist(u, PA(b)) ≤ H(A) · ‖(Au− b)+‖. (1)

Here A(Rn) := {Ax : x ∈ R
n} and dist(u, PA(b)) := min{‖u − x‖ : x ∈ PA(b)}. For

convenience, we will make the following slight abuse of notation throughout the paper. We
will write ‖ · ‖ to denote both the norm in R

n and the norm in R
m. The specific norm will

always be evident from the context. The bound (1) is a type of error bound for the system
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of inequalities Ax ≤ b, that is, an inequality bounding the distance from a point u ∈ R
n to

a nonempty solution set in terms of a measure of the error or residual of the point u for the
constraints defining the solution set.

We consider the following more general relative version of (1). Suppose R ⊆ R
n is a

nonempty reference polyhedron and A ∈ R
m×n. The reference polyhedron R represents some

constraints that are easy to satisfy such as box constraints. Let A(R) := {Ax : x ∈ R}. We
give a characterization of the sharpest relative Hoffman constant H(A|R) that depends only
on (A,R) such that for all b ∈ A(R) + R

m
+ and all u ∈ R,

dist(u, PA(b) ∩ R) ≤ H(A|R) · ‖(Au− b)+‖. (2)

In the special case when R = R
n we have H(A|R) = H(A) and obtain the following novel

characterization of H(A):

H(A) = max
J∈S(A)

1

min
v∈RJ

+,‖v‖∗=1
‖AT

Jv‖
∗
, (3)

where S(A) is the collection of subsets J ⊆ {1, . . . , m} such that AJ(R
n) + R

J
+ = R

J , AJ is
the submatrix of A defined by the rows indexed by J , and ‖ · ‖∗ denotes the dual norm of
‖ · ‖. Observe that AJ (R

n) + R
J
+ = R

J if and only if AJx < 0 is feasible.
Hoffman bounds of the classical form (1), the relative form (2), and more general error

bounds play a fundamental role in mathematical programming [29, 30, 51]. In particular,
these kinds of Hoffman bounds as well as other related error bounds play a central role in
establishing convergence properties of a variety of modern convex optimization algorithms [4,
11, 14, 19, 20, 26, 28, 33, 47]. Hoffman bounds are also used to measure the optimality and
feasibility of a point generated by rounding an optimal point of the continuous relaxation
of a mixed-integer linear or quadratic optimization problem [12, 40]. Furthermore, Hoffman
bounds are used in sensitivity analysis [16], and to design solution methods for non-convex
quadratic programs [48].

The relative format (2) that includes a reference polyhedron arises naturally in various
contexts. For instance, it usually occurs when there are box constraints of the form ℓ ≤
x ≤ u as these constraints are generally easy to satisfy. Our interest in characterizing the
Hoffman constant in the more general relative case that includes a reference polyhedron is
motivated by the recent articles [4,11,14,19,33,48]. In each of these articles, relative Hoffman
constants for systems of linear constraints for suitable reference polyhedra play a central role
in establishing key properties of modern optimization algorithms. In particular, the facial
distance or pyramidal width introduced in [19, 33] is precisely a relative Hoffman constant
with the standard simplex as reference polyhedron.

The paper makes the following main contributions. First, we develop novel character-
izations of Hoffman constants for systems of linear inequalities. The characterization is
stated as the largest of a canonical collection of easily computable Hoffman constants. Our
characterization applies to the general case that includes both linear inequalities and linear
equations, and a reference polyhedron representing constraints that are easy to satisfy. As a
special case we obtain the new characterization (3) for the classical Hoffman constant H(A).
The Hoffman constant and our characterization of it also extend to the broader context of
polyhedral set-valued mappings.
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Second, throughout the paper we highlight the interesting and natural but mostly over-
looked connection between the Hoffman constant and Renegar’s distance to ill-posedness [36,
37], which is a cornerstone of condition measures in continuous optimization. Our connection
is along the lines of some developments by Ramdas and Peña [35]. In particular, we detail
the tight connection between the reciprocal of the Hoffman constant 1/H(A) and Renegar’s
distance to ill-posedness for the system of linear inequalities Ax < 0. We also discuss similar
interesting connections for other Hoffman constants.

Third, we leverage our characterizations of the relative Hoffman constants H(A) and
H(A|R) to develop novel algorithmic approaches to compute or estimate Hoffman constants.
We should note that the exact or even approximate computation of the Hoffman constant
is a notoriously difficult and largely unexplored computational challenge. The characteriza-
tion (3) suggests that while any J ∈ S(A) yields a lower bound on H(A), the typically more
interesting task of computing a reasonable upper bound on H(A) is far more challenging
since the upper bound must hold for all J ∈ S(A). Aside from the algorithmic procedures
proposed in this paper, there appears to be only one other documented method to compute
the Hoffman constant, namely Algorithm ALG 2 proposed by Klatte and Thiere in [18]. This
algorithm is based on the following popular characterization of H(A) from [13, 18, 47]

H(A) = max
J⊆{1,...,m}

AJ full row rank

1

min
v∈RJ

+,‖v‖∗=1
‖AT

Jv‖
∗
. (4)

The characterization (4) is often alluded to in the optimization literature as an expression
for computing H(A). Indeed, Algorithm ALG 2 of Klatte and Thiere in [18] is based on this
characterization. It performs an exhaustive search over all J ⊆ {1, . . . , m} to evaluate (4)
which evidently is viable only for very small values of m. A main limitation of (4) is that
it does not take advantage of any structural properties of A. As we discuss in Section 3, it
is possible to compute H(A) via a variant of (3) that takes the maximum over a potentially
much smaller collection of subsets F ⊆ S(A). In the most favorable case when A(Rn)+R

m
+ =

R
m we can take F = {{1, . . . , m}} and thus

H(A) =
1

min
v∈Rm

+ ,‖v‖∗=1
‖ATv‖∗

,

which can be computed via a single and fairly tractable convex optimization problem for
suitable choices of norms.

The paper is entirely self-contained and relies only on standard convex optimization tech-
niques. Our results are related to a number of previous developments in the rich literature
on error bounds [2, 6, 13, 23, 27, 38, 45, 49] and on condition measures for continuous opti-
mization [5, 7–10, 21, 31, 32, 36, 37]. In particular, the expressions for the Hoffman constants
in Proposition 1 and Proposition 2 have appeared, albeit in slightly different form or under
more restrictive assumptions, in the work of Klatte and Thiere [18], Li [23], Robinson [38],
and Wang and Lin [47]. More precisely, Klatte and Thiere [18] state and prove a version of
Proposition 1 under the more restrictive assumption that Rn is endowed with the ℓ2 norm.
Li [23], Robinson [38], and Wang and Lin [47] give characterizations of Hoffman constants
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that are equivalent to Proposition 1 and Proposition 2 but where the maximum is taken over
a different, and typically much larger, collection of index sets. As we detail in Section 2, our
characterization for H(A) in Proposition 1 and Proposition 2 implies (4) and can readily be
seen to be at least as sharp as some bounds on H(A) previously derived by Güler et al. [13],
Burke and Tseng [6], and Zhang [50]. We also note that weaker versions of Theorem 1 can be
obtained from results on error bounds in Asplund spaces as those developed in the article by
Van Ngai and Théra [45]. Our goal to characterize a relative version of Hoffman constants
that accounts for the presence of a reference polyhedron is partly inspired by the concepts of
relative smoothness, relative strong convexity, and relative continuity recently developed and
used by Bauschke et al [3], Lu [24], Lu et al [25], and Teboulle [43]. Our characterization of
the Hoffman constants is in the spirit of and draws on the seminal work by Renegar [36, 37]
as well as related work by Freund and Vera [9, 10], Peña [31, 32] and Lewis [21, 22].

The contents of the paper are organized as follows. Section 2 presents our main de-
velopments. We give a novel characterization of the classical Hoffman constant H(A) (see
Proposition 1, Proposition 2, and Corollary 1). We also extend this characterization to
the more general case that includes linear inequalities, linear equations, and a reference
polyhedron (see Proposition 5, Proposition 6, and Corollary 3). Section 3 describes several
algorithmic procedures to compute Hoffman constants. Section 4, the most technical section
of the paper, presents developments similar to those in Section 2 but in the broader context
of polyhedral set-valued mappings (see Theorem 1, Theorem 2, and Corollary 4). Finally,
Section 5 details how the results in Section 2 follow from those in Section 4.

Throughout the paper whenever we work with an Euclidean space R
d, we will assume

that it is endowed with a (non-necessarily Euclidean) norm ‖ · ‖ and inner product 〈·, ·〉. We
will often use the dual norm ‖ · ‖∗ of ‖ · ‖ defined as follows

‖u‖∗ := max
‖x‖≤1

〈u, x〉.

Unless we explicitly state otherwise, our results apply to arbitrary norms.
We will also rely on the following notation. Given a polyhedron Q ⊆ R

d let T (Q) :=
{TQ(u) : u ∈ Q} where TQ(u) denotes the tangent cone to Q at u ∈ Q, that is,

TQ(u) = {d ∈ R
d : u+ td ∈ Q for some t > 0}.

Observe that since Q is assumed to be a polyhedron, the collection of tangent cones T (Q) is
finite. Given a convex cone K ⊆ R

n we let K∗ denote its dual cone, that is,

K∗ := {u ∈ R
n : 〈u, x〉 ≥ 0 for all x ∈ K}.

Throughout the paper we will write [m] as shorthand for {1, . . . , m}.

2 Hoffman constants for systems of linear constraints

This section describes a characterization for the Hoffman constant H(A|R) in (2) for systems
of linear inequalities

Ax ≤ b
x ∈ R.
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We subsequently consider analogous Hoffman constants for systems of linear inequalities and
linear equations

Ax ≤ b
Cx = d
x ∈ R.

Although the latter case with inequalities and equations subsumes the former case, for ex-
position purposes we discuss separately the case with inequalities only. Furthermore, we
start with the special case R = R

n. The notation and main ideas in this special case are
simpler and easier to grasp. In particular, the crux of the characterization of H(A) based on
a canonical collection of submatrices of A is more apparent.

We defer the proofs of the propositions in this section to Section 5, where we show
that they follow from more general results for polyhedral set-valued mappings detailed in
Section 4.

2.1 The case of inequalities only

Proposition 1 below gives a characterization of the sharpest Hoffman constant H(A) such
that (1) holds. The characterization is stated in terms of a canonical collection of submatrices
of A.

Let A ∈ R
m×n. We next consider systems of linear inequalities of the form

Ax ≤ b.

Let S(A) := {J ⊆ [m] : AJ(R
n) + R

J
+ = R

J} and

H(A) := max
J∈S(A)

HJ(A), (5)

where
HJ(A) := max

y∈Rm

‖y‖≤1

min
x∈Rn

AJx≤yJ

‖x‖

for each J ∈ S(A). By convention HJ(A) := 0 if J = ∅.

Throughout the sequel, for A ∈ R
m×n and b ∈ R

m we let PA(b) denote the polyhedron
{x ∈ R

n : Ax ≤ b}.

Proposition 1. Let A ∈ R
m×n. Then for all b ∈ A(Rn) + R

m
+ and all u ∈ R

n

dist(u, PA(b)) ≤ H(A) · dist(b−Au,Rm
+) ≤ H(A) · ‖(Au− b)+‖. (6)

Furthermore, the first bound in (6) is tight: If H(A) > 0 then there exist b ∈ A(Rn) + R
m
+

and u ∈ R
n such that

dist(u, PA(b)) = H(A) · dist(b− Au,Rm
+) > 0.

The following result complements Proposition 1 and yields an alternative expression for
H(A).
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Proposition 2. Let A ∈ R
m×n. Then for all J ∈ S(A)

HJ(A) = max
y∈Rm

‖y‖≤1

min
x∈Rn

AJx≤yJ

‖x‖ =
1

min
v∈RJ

+,‖v‖∗=1
‖AT

J v‖
∗
, (7)

with the convention that the last denominator is +∞ and thus HJ(A) = 0 when J = ∅. In
particular,

H(A) = max
J∈S(A)

1

min
v∈RJ

+, ‖v‖∗=1
‖AT

Jv‖
∗
. (8)

Proposition 2 implies that

H(A) = max
J∈S(A)

max{‖v‖∗ : v ∈ R
J
+, ‖A

T

Jv‖
∗ ≤ 1}

= max
J∈S(A)

max{‖ṽ‖∗ : ṽ ∈ ext{v ∈ R
J
+, ‖A

T

Jv‖
∗ ≤ 1}},

where ext(C) denotes the set of extreme points of a closed convex set C. Thus the following
bound on H(A) previously established in [6, 13] readily follows:

H(A) = max
J∈S(A)

max{‖ṽ‖∗ : ṽ ∈ ext{v ∈ R
J
+, ‖A

T

Jv‖
∗ ≤ 1}}

≤ max{‖ṽ‖∗ : ṽ ∈ ext{v ∈ R
m
+ , ‖A

Tv‖∗ ≤ 1}}.

Furthermore, observe that if J ∈ S(A) and ṽ ∈ ext{v ∈ R
J
+, ‖A

T

Jv‖
∗ ≤ 1} then AJ ′ must

have full row rank for J ′ := {i : ṽi > 0} ⊆ J. Therefore Proposition 2 also implies that

H(A) = max
J⊆{1,...,m}

AJ full row rank

max{‖v‖∗ : v ∈ R
J
+, ‖A

T

Jv‖
∗ ≤ 1} = max

J⊆{1,...,m}
AJ full row rank

1

min
v∈RJ

+,‖v‖∗=1
‖AT

J v‖
∗
,

which is precisely the characterization (4) of H(A). In addition, Proposition 2 implies the
following bound on H(A) in terms of the χ(A) condition measure [41, 44, 46] established
in [50] for the special case when A ∈ R

m×n is full column rank and both R
m and R

n are
endowed with Euclidean norms:

H(A) = max
J⊆{1,...,m}

AJ full row rank

max{‖v‖ : v ∈ R
J
+, ‖A

T

Jv‖ ≤ 1}

= max
J⊆[m],|J|=n

AJ non-singular

max{‖v‖ : v ∈ R
J
+, ‖A

T

Jv‖ ≤ 1}

≤ max
J⊆[m],|J|=n

AJnon-singular

max{‖v‖ : v ∈ R
J , ‖AT

Jv‖ ≤ 1}

= max
J⊆[m],|J|=n

AJnon-singular

‖A−1
J ‖

= χ(A).

The last step follows from [50, Prop. 3.7].
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Observe that the above inequality could be fairly loose. For example if A =

[

1 −ǫ
1 ǫ

]

for

some small ǫ > 0, then H(A) = 1 +O(ǫ) whereas χ(A) = ‖A−1‖ = Ω(1/ǫ).

Proposition 2 also implies that the Hoffman constant H(A) can be computed by maxi-
mizing over a potentially much smaller collection F ⊆ S(A) as stated in equation (10) below.
The expressions (8) and (10) for H(A) are at the heart of one of the algorithmic procedures
for computing H(A) that we discuss in Section 3.

Corollary 1. Let A ∈ R
m×n.

(a) If A(Rn) + R
m
+ = R

m then

H(A) =
1

min
v∈Rm

+ , ‖v‖∗=1
‖ATv‖∗

. (9)

(b) Suppose F ⊆ S(A) and I ⊆ 2[m] \ S(A) are such that for all J ⊆ [m] either J ⊆ F for
some F ∈ F , or I ⊆ J for some I ∈ I. Then

H(A) = max
J∈F

HJ(A) = max
J∈F

1

min
v∈RJ

+,‖v‖∗=1
‖AT

J v‖
∗
. (10)

Proof. (a) This follows from part (b) applied to F = {[m]} and I = ∅.

(b) The conditions on F and I imply that for all J ∈ S(A) there exists F ∈ F such that
J ⊆ F . The latter condition implies HJ(A) ≤ HF (A). Therefore

H(A) = max
J∈S(A)

HJ(A) = max
J∈F

HJ(A) = max
J∈F

1

min
v∈RJ

+,‖v‖∗=1
‖AT

J v‖
∗
.

The identity (9) in Corollary 1 has the following geometric interpretation. By Gordan’s
Theorem, Ax < 0 has a solution if and only if ATv = 0, v ≥ 0, v 6= 0 does not. Equivalently,
A(Rn) + R

m
+ = R

m if and only if 0 6∈ {ATv : v ≥ 0, ‖v‖∗ = 1}. When this is the case,
the quantity 1/H(A) is precisely the distance (in the dual norm ‖ · ‖∗) from the origin to
{ATv : v ≥ 0, ‖v‖∗ = 1}. The latter quantity in turn equals the distance to non-surjectivity of
the mapping x 7→ Ax+R

m
+ , that is, the norm of the smallest perturbation matrix ∆A ∈ R

m×n

such that (A+∆A)(Rn)+R
m
+ 6= R

m as it is detailed in [21]. This distance to non-surjectivity
is the same as Renegar’s distance to ill-posedness of the system of linear inequalities Ax < 0
defined by A. The more general identity (8) in Proposition 2 in turn can be interpreted as
follows. The quantity 1/H(A) is the smallest distance to ill-posedness of the collection of
the feasible systems of linear inequalities of the form AJx < 0 for J ⊆ [m].

The distance to ill-posedness provides the main building block for Renegar’s concept of
condition number for convex optimization introduced in the seminal papers [36,37] that has
been further extended in [1, 5, 7–10, 31, 32] among many other articles.
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Proposition 1, Proposition 2, and Corollary 1 extend to the more general context when
there is a reference polyhedron representing some constraints that are easy to satisfy. More
precisely, let R ⊆ R

n be a reference polyhedron and A ∈ R
m×n. Consider systems of the

following form
Ax ≤ b
x ∈ R,

where R represents a set of constraints that are easy to satisfy. It is natural to consider a
refinement of the Hoffman constant H(A) that reflects the presence of these easy-to-satisfy
constraints. To that end, let S(A|R) and H(A|R) be the extensions of S(A) and H(A)
defined as follows.

S(A|R) := {(J,K) : J ⊆ [m], K ∈ T (R) and AJ(K) + R
J
+ = R

J},

and
H(A|R) = max

(J,K)∈S(A|R)
HJ,K(A),

where
HJ,K(A) := max

y∈Rm

‖y‖≤1

min
x∈K

AJx≤yJ

‖x‖.

Once again, by convention HJ,K(A) := 0 if J = ∅.
We have the following analogue of Proposition 1.

Proposition 3. Let A ∈ R
m×n and R ⊆ R

n be a reference polyhedron. Then for all b ∈
A(R) + R

m
+ and u ∈ R

dist(u, PA(b) ∩R) ≤ H(A|R) · dist(b−Au,Rm
+) ≤ H(A|R) · ‖(Au− b)+‖.

Furthermore the first bound is tight: If H(A|R) > 0 then there exist b ∈ A(R) + R
m
+ and

u ∈ R such that

dist(u, PA(b) ∩ R) = H(A|R) · dist(b− Au,Rm
+) > 0.

We also have the following analogue of Proposition 2 that provides an alternative expres-
sion for H(A|R).

Proposition 4. Let A ∈ R
m×n and R ⊆ R

n be a reference polyhedron. Then for all (J,K) ∈
S(A|R)

HJ,K(A) = max
y∈Rm

‖y‖≤1

min
x∈K

AJx≤yJ

‖x‖ =
1

min
v∈RJ+, ‖v‖∗=1

AT

J
v−u∈K∗

‖u‖∗
. (11)

In particular,

H(A|R) = max
(J,K)∈S(A|R)

1

min
v∈RJ

+
, ‖v‖∗=1

AT

J
v−u∈K∗

‖u‖∗
. (12)

We also have the following analogue of Corollary 1.
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Corollary 2. Let A ∈ R
m×n and R ⊆ R

n be a reference polyhedron.

(a) If R is a cone and A(R) + R
m
+ = R

m then

H(A|R) = max
y∈Rm

‖y‖≤1

min
x∈R
Ax≤y

‖x‖ =
1

min
v∈Rm+ , ‖v‖∗=1

ATv−u∈R∗

‖u‖∗
. (13)

(b) Suppose F ⊆ S(A|R) and I ⊆ 2[m] × T (R) \ S(A|R) are such that for all (J,K) ∈
2[m] × T (R) either J ⊆ F and T ⊆ K for some (F, T ) ∈ F , or I ⊆ J and K ⊆ U for
some (I, U) ∈ I. Then

H(A|R) = max
(J,K)∈F

1

min
v∈R

J
+,‖v‖∗=1

ATv−u∈K∗

‖u‖∗
.

2.2 The case of inequalities and equations

Let A ∈ R
m×n, C ∈ R

p×n, and R ⊆ R
n be a reference polyhedron. Consider systems of the

form
Ax ≤ b
Cx = d
x ∈ R,

where R represents some constraints that are easy to satisfy.
Proposition 5 below gives a bound analogous to (1) for the distance from a point u ∈ R

to a nonempty polyhedron of the form

{x ∈ R : Ax ≤ b, Cx = d} = PA(b) ∩ C−1(d) ∩ R.

For J ⊆ [m] let [A,C; J ] : Rn
⇒ R

m × R
p be the set-valued mapping defined by

x 7→ {(Ax+ s, Cx) : s ∈ R
m, sJ ≥ 0}.

Let

S(A,C|R) := {(J,K) : J ⊆ [m], K ∈ T (R), [A,C; J ](K) is a linear subspace},

and
H(A,C|R) := max

(J,K)∈S(A,C|R)
max

(y,w)∈Rm×C(K)
‖(y,w)‖≤1

min
x∈K

AJx≤yJ ,Cx=w

‖x‖. (14)

We have the following more general versions of Proposition 3, Proposition 4, and Corol-
lary 2.

Proposition 5. Let R ⊆ R
n be a reference polyhedron, A ∈ R

m×n, and C ∈ R
p×n. Then for

all (b, d) ∈ {(Ax+ s, Cx) : x ∈ R, s ∈ R
m
+} and u ∈ R

dist(u, PA(b) ∩ C−1(d) ∩R) ≤ H(A,C|R) · dist
(

(b−Au, d− Cu),Rm
+ × {0}

)

(15)

and this bound is tight: If H(A,C|R) > 0 then there exist (b, d) ∈ {(Ax+ s, Cx) : x ∈ R, s ∈
R

m
+} and u ∈ R such that

dist(u, PA(b) ∩ C−1(d) ∩R) = H(A,C|R) · dist
(

(b− Au, d− Cu),Rm
+ × {0}

)

> 0.
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Proposition 6. Let R ⊆ R
n be a reference polyhedron, A ∈ R

m×n, and C ∈ R
p×n. Then for

all (J,K) ∈ S(A,C|R)

max
(y,w)∈Rm×C(K)

‖(y,w)‖≤1

min
x∈K

AJx≤yJ ,Cx=w

‖x‖ =
1

min
v∈RJ

+
,z∈C(K)

‖(v,z)‖∗=1,AT

J
v+CTz−u∈K∗

‖u‖∗
.

In particular

H(A,C|R) = max
(J,K)∈S(A,C|R)

1

min
v∈RJ+,z∈C(K)

‖(v,z)‖∗=1,AT

J
v+CTz−u∈K∗

‖u‖∗
.

Corollary 3. Let R ⊆ R
n be a reference polyhedron, A ∈ R

m×n, and C ∈ R
p×n.

(a) If R is a cone and {(Ax+ s, Cx) : x ∈ R, s ∈ R
m
+} is a linear subspace then

H(A,C|R) =
1

min
v∈R

m
+ ,z∈C(R)

‖(v,z)‖∗=1,ATv+CTz−u∈R∗

‖u‖∗
. (16)

(b) Suppose F ⊆ S(A,C|R) and I ⊆ 2[m]×T (R) \S(A,C|R) are such that for all (J,K) ∈
2[m] × T (R) either J ⊆ F and T ⊆ K for some (F, T ) ∈ F , or I ⊆ J and K ⊆ U for
some (I, U) ∈ I. Then

H(A,C|R) = max
(J,K)∈F

1

min
v∈RJ+,z∈C(K)

‖(v,z)‖∗=1,AT

J
v+CTz−u∈K∗

‖u‖∗
.

The constant H(A,C|R) generalizes the previous constants H(A), H(A|R). More pre-
cisely, by taking p = 0 and C = [ ] the “empty” 0× n matrix, we get

H(A, [ ] |R) = H(A|R).

If C = [ ] and R = R
n then we get H(A, [ ] |Rn) = H(A).

Therefore Proposition 1 and Proposition 3 are special cases of Proposition 5. Likewise,
Proposition 2 and Proposition 4 are special cases of Proposition 6. We present the proofs of
Proposition 5 and Proposition 6 in Section 5. They are immediate consequences of the more
general Theorem 1 and Theorem 2 for polyhedral sublinear mappings.

Another special and particularly interesting case occurs when m = 0 and A = [ ]. This
concerns systems of the form

Cx = d
x ∈ R,

where R represents some polyhedral constraints that are easy to satisfy. In this case Propo-
sition 5 implies that for all d ∈ C(R) and x ∈ R

dist(x, C−1(d) ∩R) ≤ H̃(C |R) · ‖d− Cx‖, (17)
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where
H̃(C |R) = H([ ], C |R) = max

K∈S̃(C|R)
max

w∈C(K)
‖w‖≤1

min
x∈K
Cx=w

‖x‖,

and
S̃(C |R) = S([ ], C |R) = {K ∈ T (R) : C(K) is a linear subspace}.

Proposition 5 also implies that the bound (17) is tight. Furthermore, Proposition 6 yields

H̃(C|R) = max
K∈S̃(C|R)

1

min
z∈C(K),‖z‖∗=1

CTz−u∈K∗

‖u‖∗
.

In addition, Corollary 3 implies that if R is a cone and C(R) is a linear subspace then

H̃(C |R) = max
w∈C(R)
‖z‖≤1

min
x∈R

Cx=w

‖x‖ =
1

min
z∈C(R),‖z‖∗=1

CTz−u∈R∗

‖u‖∗
. (18)

In a nice analogy to (9) in Corollary 1, the identity (18) has the following geometric
interpretation. If R is a cone then L := C(R) is a linear subspace if and only if Cx ∈ relint(R)
is feasible and when this is the case (18) implies that

1

H̃(C |R)
= max{r : w ∈ L, ‖w‖ ≤ r ⇒ y ∈ C(B ∩R)},

where B := {x ∈ R
n : ‖x‖ ≤ 1}. In other words, 1/H̃(C |R) is the radius of the largest ball

in L centered at the origin and contained in L ∩ C(B ∩ R). This radius can be seen as a
generalization of the smallest singular value of C. Indeed, observe that when R = R

n and
both R

n and R
m are endowed with Euclidean norms, 1/H̃(C |Rn) is the smallest positive

singular value of C. In the special case when R is a cone and C(R) = R
m, the quantity

1/H̃(C |R) equals the distance to non-surjectivity of the mapping

x 7→

{

Cx if x ∈ R
∅ otherwise

as detailed in [21]. This distance to non-surjectivity is the same as Renegar’s distance to
ill-posedness of the system of constraints Cx = 0, x ∈ relint(R) defined by C and relint(R).

3 Computing Hoffman constants

We next describe some algorithmic approaches to compute Hoffman constants. For ease of
exposition, we focus on the computation of H(A) but the approaches described below can
be extended to compute or estimate more general relative Hoffman constants H(A,C|R).

We describe two main approaches to compute H(A). The first approach is based on a
formulation of H(A) as a mathematical program with linear complementarity constraints
(MPLCC). The MPLCC formulation in turn can be rewritten as a mixed integer linear
program or as a linear program with special order set constraints of type 1. The second
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approach is based on identifying collections of sets that satisfy a certain covering property
based on Corollary 1.

Throughout this section we assume that A 6= 0 as otherwise the computation of H(A) is
uninteresting.

3.1 MPLCC formulation of H(A)

The next proposition shows that H(A) can be formulated as an MPLCC.

Proposition 7. Let A ∈ R
m×n \ {0}. Then

1

H(A)
= min

x,s,v
‖ATv‖∗

s. t. Ax− s ≤ −1

‖v‖∗ = 1

sivi = 0, i = 1, . . . , m

s ≥ 0, v ≥ 0.

(19)

Proof. This is essentially a restatement of (8). Indeed, (8) can be rewritten as

1

H(A)
= min

J∈S(A)
min

u∈RJ
+, ‖u‖∗=1

‖AT

Ju‖
∗. (20)

To establish the equivalence between (19) and (20), observe that the set of feasible points
(x, s, v) for (19) is in one-to-one correspondence with the set of pairs (J, u) such that J ∈ S(A)
and u ∈ R

J
+, ‖u‖

∗ = 1 via

J = {i ∈ [m] : si = 0} and u = vJ .

Under this correspondence we have ‖ATv‖∗ = ‖AT

Ju‖
∗ and thus (19) is equivalent to (20).

For a suitable choice of norms, problem (19) can be cast as a linear program with linear
complementarity constraints (LPLCC). Indeed, suppose R

n and R
m are endowed with the

ℓ1-norm and ℓ∞-norm respectively. Then ‖ATv‖∗ = ‖ATv‖∞ and ‖v‖∗ = ‖v‖1 for all v ∈ R
m

and hence for this choice of norms (19) is equivalent to

1

H(A)
= min

x,v,z,t
t

s. t. − t1 ≤ ATv ≤ t1

Ax− s ≤ −1

1Tv = 1

sivi = 0, i = 1, . . . , m

s ≥ 0, v ≥ 0

(21)

LPLCC is a large and important class of problems that subsumes linear bilevel optimization
and non-convex quadratic programming among others. There a variety of solution methods
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for LPLCCs, many of them based on enumerative schemes. For a detailed review on this
subject, see [17]. We next describe how (21) can also be formulated as a mixed integer linear
program and as a linear program with special order set constraints of type 1.

By using big-M constraints, we can reformulate (21) as the following mixed integer linear
program (MILP):

min
x,v,z,t

t

s. t. ATv ≤ 1t

ATv ≥ −1t

Ax ≤ −z +M(1− z)

1Tv = 1

0 ≤ v ≤ z

zj ∈ {0, 1}, j = 1, . . . , m.

(22)

A potential limitation of (22) is the need for an appropriate and valid estimate for the value
of M . Modern MILP solvers provide some ways to overcome this limitation. First, state-of-
the-art MILP solvers enable the alternate reformulation of the third and sixth constraints
in (22) as the following set of indicator constraints (see [42, Chapter 26]):

zj = 1 ⇒ Ajx ≤ −1, j = 1, . . . , m.
zj ∈ {0, 1}, j = 1, . . . , m.

(23)

Another alternative to big-M constraints is to use special order set constraints of type 1
(SOS1) as discussed in [34, 39]. An SOS1 constraint is a set of variables in which at most
one member can be strictly positive. Problem (21) can be reformulated as a the following
linear program with SOS1 constraints:

min
x,v,t,s

t

s. t. −t1 ≤ ATv ≤ t1
Ax− s ≤ −1
1Tv = 1
s ≥ 0, v ≥ 0
{vj , sj} ∈ SOS1, j = 1, . . . , m.

(24)

3.2 Computation of H(A) via the covering property

Let A ∈ R
m×n \ {0}. Corollary 1 suggests the following algorithmic approach to compute

H(A). Find F ⊆ S(A) and I ⊆ 2[m] \ S(A) that satisfy the following covering property:

For all J ∈ 2[m] either J ⊆ F for some F ∈ F or I ⊆ J for some I ∈ I.

Then compute

H(A) := max
J∈F

1

min{‖AT

Jv‖
∗ : v ∈ R

J
+, ‖v‖

∗ = 1}
. (25)
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We choose the term covering property since the above condition can be alternatively stated
as follows: every element J ∈ 2[m] of the the ground set 2[m] is either “covered” by some set
in F or its complement [m] \ J is “covered” by the complement of some set in I. Observe
that (F , I) = (S(A),S(A)) satisfies the covering property for the collection S(A) ⊆ S(A)
of maximal (inclusion-wise) sets in S(A) and the collection S(A) ⊆ 2[m] \ S(A) of minimal
(inclusion-wise) sets in 2[m] \ S(A). Furthermore, it is easy to see that if (F , I) satisfies
the covering property then S(A) ⊆ F and S(A) ⊆ I. In other words, (S(A),S(A)) is the
minimal pair of collections that satisfies the covering property.

The main challenge in computing H(A) via (25) is the identification of suitable collections
F and I that satisfy the covering property. In some special cases, it is possible to find S(A)
analytically and thus compute H(A) via (25) with F = S(A). We illustrate this approach via
some examples in Section 3.2.1. In Section 3.2.2 Algorithm 1 describes a general procedure
that gradually constructs S(A) and S(A). We should note that Algorithm 1 is only viable
when the collections S(A) and S(A) are of reasonable size since the algorithm constructs
both of these collections explicitly.

The following observation facilitates the computation ofH(A). If Rn and R
m are endowed

with the ℓ1-norm and ℓ∞-norm respectively then

min{‖AT

Jv‖
∗ : v ∈ R

J
+, ‖v‖

∗ = 1} = min{‖AT

Jv‖∞ : v ∈ R
J
+, 1

Tv = 1}. (26)

The latter expression is computable via linear programming.
It is worthwhile noting that although the computation of H(A) depends on the choices of

norms, the covering property does not. In particular, if the pair (F , I) satisfies the covering
property, then H(A) can be computed or estimated for any choice of norms via (25) provided
that min{‖AT

Jv‖
∗ : v ∈ R

J
+, ‖v‖

∗ = 1} can be computed or estimated. We also note that if
the pair (F , I) satisfies the covering property then it provides a certificate of optimality for
H(A) since it certifies that HJ(A) ≤ H(A) for any J ∈ S(A). By contrast, the MPLCC
and MILP approaches described in Section 3.1 do not readily provide such a certificate of
optimality for H(A).

3.2.1 Some examples

As the following examples illustrate, when the matrixA is highly structured it may be possible
to construct F and I directly so that the covering property holds. In the examples below
we actually identify the collection S(A) of maximal sets in S(A). Once S(A) is identified,
we can compute H(A) via (25) with F = S(A). To facilitate the latter computation, in the
next three examples we assume that Rn and R

m are endowed with the ℓ1-norm and ℓ∞-norm
respectively so that (26) holds.

Example 1 (box). Let n ≥ 1 and consider the matrix

A =

[

In

−In

]

∈ R
2n×n

where In ∈ R
n×n denotes the n×n identity matrix. In this case the collection S(A) consists of

the 2n sets of the form {i1, i2, . . . , in} where ik ∈ {k, k + n}, k = 1, . . . , n. A straightforward
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calculation then shows that

H(A) = max
J∈S(A)

1

min
v∈RJ

+,1Tv=1
‖AT

Jv‖∞
=

1

min
v∈Rn

+,1Tv=1
‖v‖∞

= n.

Example 2 (simplex). Let n ≥ 1 and consider the matrix

A =

[

In

−1T

]

∈ R
(n+1)×n.

In this case the collection S(A) consists of the n + 1 sets {1, . . . , n} and {1, . . . , n, n + 1} \
{k}, k = 1, . . . , n. A straightforward calculation then shows that

H(A) = max







1

min
v∈Rn

+,1Tv=1
‖v‖∞

,
1

min
(v,vn)∈Rn

+,1Tv+vn=1
‖(v − vn1,−vn)‖∞







= max(n, 2n+ 1)

= 2n+ 1.

Example 3 (ℓ1-unit ball). Let n ≥ 1 and consider the matrix A ∈ R
2n×n whose rows are the

2n vectors in {−1, 1}n ordered lexicographically, that is,

A =



















−1 −1 · · · −1 −1
−1 −1 · · · −1 1
−1 −1 · · · 1 −1
...

...
. . .

...
...

1 1 · · · 1 −1
1 1 · · · 1 1



















.

In this case the collection S(A) consists of the collection of all sets of the form

Ju = {i : Aiu < 0}

for u ∈ R
n such that all components of Au are non-zero. The symmetry of A implies that

H(A) = max
J∈S(A)

1

min
v∈RJ

+,1Tv=1
‖AT

Jv‖∞
= max

J∈S0

1

min
v∈RJ

+,1Tv=1
‖AT

Jv‖∞
, (27)

where S0 ⊆ F is the smaller collection of sets of the form Ju where u ∈ R
n has non-increasing

entries and all entries of Au are non-zero. For small values of n, both S0 and H(A) can be
computed explicitly. The following table displays the values of H(A) and the optimal index
set J ∈ S0 where (27) attains its maximum for n = 1, 2, 3, 4, 5. To ease notation, the J
entry in each column only displays the new indices that need to be added to the J entry in
the previous column which is denoted by ‘· · · ’:

n 1 2 3 4 5

H(A) 1 1 3 5 9
J {1} · · · ∪ {2} · · · ∪ {3, 5} · · · ∪ {4, 6, 7, 9} · · · ∪ {8, 10, 11, 12, 13, 17, 18, 19}
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The values of the Hoffman constant H(A) in Example 1, Example 2, and Example 3
can also be obtained via the MPLCC formulations discussed in Section 3.1 above or via
Algorithm 1 below.

3.2.2 An algorithm that constructs F and I gradually

Algorithm 1 below formalizes the following simple iterative procedure to construct a pair
(F , I) that satisfies the covering property: Start with F = I = ∅. At each subsequent
iteration check whether (F , I) covers 2[m]. It is does, then we are done. Otherwise, find
J ∈ 2[m] that is not covered by (F , I) and check whether J ∈ S(A). If indeed J ∈ S(A) then
add J to F . Otherwise, find I ⊆ J such that I 6∈ S(A) and add I to I. This procedure must
eventually terminate since each iteration adds a new element to F or to I. Furthermore, as
Proposition 8 below shows, if this procedure is properly executed, it constructs the minimal
collections F = S(A) and I = S(A) that satisfy the covering property.

The algorithm needs to perform two main steps. First, given F ⊆ S(A) and I ⊆
2[m] \ S(A), find J ∈ 2[m] not covered by (F , I) or verify that no such J exists. Second,
given J ∈ 2[m], either certify that J ∈ S(A) or else find I ⊆ J with I ∈ 2[m] \ S(A).

The first step can be accomplished by solving the following combinatorial optimization
problem

max
J

|J |

s. t. |Jc ∩ I| ≥ 1, I ∈ I
|J ∩ F c| ≥ 1, F ∈ F
J ⊆ [m].

(28)

Observe that (F , I) satisfy the covering property if and only if (28) is infeasible. Otherwise
the optimal solution of (28) yields J ∈ 2[m] of maximal size that is not covered by (F , I).

The second step can be accomplished by solving the following optimization problem

min{‖AT

Jv‖
∗ : v ∈ R

J
+, ‖v‖

∗ = 1}. (29)

Observe that J ∈ S(A) if and only if the optimal value of (29) is positive. Otherwise, when
the optimal value of (29) is zero, its optimal solution satisfies v ∈ R

J
+ \ {0} and AT

Jv = 0. In
this case I(v) := {i ∈ J : vi > 0} ∈ 2[m] \ S(A) and I(v) ⊆ J . Furthermore, for additional
efficiency we will assume that in the latter case v is chosen so that I(v) is of minimal size.
This condition is easily enforceable by applying a straightforward post-processing procedure
whenever the optimal value of (29) is zero. As we noted in (26), when R

n and R
m are

endowed with the ℓ1-norm and ℓ∞-norm respectively problem (29) can be rewritten as a
linear program.

It is easy to see that if [m] ∈ S(A) then Algorithm 1 terminates after one iteration: the
first iteration places [m] in F and leaves I empty. At that point the collections F = S(A) =
{[m]} and I = S(A) = ∅ satisfy the covering property. Similarly when [m] is the only set
missing from S(A) Algorithm 1 terminates after 1 +m iterations: the first iteration places
the set [m] in I and the next m iterations place the sets [m] \ {j} for j = 1, . . . , m in F . At
that point the collections F = S(A) = {[m] \ {j} : j = 1, . . . , m} and I = S(A) = {[m]}
satisfy the covering property.
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Algorithm 1 Computation of a pair (F , I) satisfying the covering property and H(A)

1: input A ∈ R
m×n \ {0}

2: Let F := ∅, I := ∅, H(A) := 0
3: while (F , I) does not satisfy the covering property do
4: Solve (28) to pick J ∈ 2[m] not covered by (F , I)
5: Let v solve (29) to detect whether J ∈ S(A)
6: if ‖AT

Jv‖
∗ > 0 then

7: F := F ∪ {J} and H(A) := max
{

H(A), 1
‖AT

J
v‖∗

}

8: else
9: Let I := I ∪ {I(v)}
10: end if
11: end while
12: return F , I, H(A)

For general A ∈ R
m×n\{0}, Proposition 8 extends the above two special cases. We should

note that, as the above two cases illustrate, the expression |S(A)|+ |S(A)| = |S(A) ∪ S(A)|
in (30) below is always smaller, and in some cases vastly smaller, than 2m which is the number
of steps that a brute force scan of the subsets of [m] would require. Indeed, observe that for
each J ∈ S(A) ∪ S(A) one of the following two situations must occur: either J ∈ S(A) and
hence S(A)∪S(A) has none of the proper subsets of J , or J ∈ S(A) and hence S(A)∪S(A)
has none of the proper supersets of J .

Proposition 8. Let A ∈ R
m×n \ {0} and let S(A) ⊆ S(A) denote the collection of maximal

(inclusion-wise) sets in S(A) and let S(A) ⊆ 2[m] \ S(A) denote the collection of minimal
(inclusion-wise) sets in 2[m] \ S(A). Then Algorithm 1 terminates after

|S(A)|+ |S(A)| (30)

iterations. Furthermore, upon termination Algorithm 1 returns F = S(A) and I = S(A).

Proof. Each iteration of Algorithm 1 either adds one element J ∈ S(A) to F because the
set J selected in Step 4 is of maximal size, or adds one element from I(v) ∈ S(A) to I
because the set I(v) selected in Step 9 is of minimal size. To finish, observe that Algorithm 1
terminates as soon as F = S(A) and I = S(A).

The expression (30) can be interpreted as follows. Suppose S(A) = {J1, . . . , Jk}. Then
J ∈ 2[m] \ S(A) if and only if J \ Ji 6= ∅ for i = 1, . . . , k. Therefore |S(A)| is the number
of minimal (componentwise) solutions (x1, . . . , xm) ∈ {0, 1}m to the following system of set-
covering constraints

∑

i 6∈Jℓ

xi ≥ 1 for ℓ = 1, . . . , k

xi ∈ {0, 1} for i = 1, . . . , m.

Hence |S(A)|+ |S(A)| will not be too large if the sets in S(A) are few and large. The most
favorable case |S(A)|+ |S(A)| = 1 occurs when S(A) = {[m]} or equivalently when Ax < 0
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is feasible. The next most favorable case |S(A)|+ |S(A)| = 1+m occurs when S(A) = {[m]}
or equivalently when Ax < 0 is infeasible but it becomes feasible as soon as we drop one
inequality.

3.3 Numerical experiments

Table 1 and Table 2 summarize two sets of numerical experiments that illustrate and compare
three different methods to compute H(A): the SOS1 formulation (24), Algorithm 1 based
on the covering property, and an enumeration scheme based on (4) via a scan of the subsets
J ⊆ [m] such that AJ is full row rank. We will refer to these three methods as SOS1,
COVER, and ENUM respectively. To make the implementation of ENUM more efficient, we
used a variant of Algorithm 1 that scans only for maximal subsets J ⊆ [m] such that AJ has
full row rank. In particular, the number of sets that ENUM needs to scan is bounded above
by

(

m

n

)

+
(

m

n−1

)

+ · · ·+
(

m

1

)

. All experiments were carried out in an iMac with a 3.5GHz Intel
Core i7 and 32 GB 1600 MHz DDR3 RAM, using MATLAB R2017b and Gurobi 8.1.1.

Table 1 reports results on a set of instances A ∈ R
m×n with n ≤ m ≤ 100 drawn from

LPnetlib, CUTEr, and Globallib test sets. For each instance we display the value H(A)
and the following number of “main steps” performed by each method. For SOS1, we display
the number of nodes (including the root node) that Gurobi generated to solve (24). For
COVER, we display the number of main iterations. For ENUM we display the number of
sets J ⊆ [m] that had to be scanned. The main task required at each main step in each
method is the solution of a linear program. Thus the number of main steps gives a rough
comparison among the three methods. An entry ‘∗’ in Table 1 indicates that the method did
not solve the corresponding instances within 10,000 main steps.

Although we ran over 150 instances, we only display results for the more challenging
instances where either SOS1 or COVER require more than one main step. The entries in
Table 1 (which is ordered by the number of steps taken by the SOS1 method) reveal that
many of the instances from the LPnetlib, CUTEr, and Globallib are easily solved by
SOS1 and COVER whereas only the very smallest ones are solved by ENUM. The easiest
instances (about 120 total, not resported in the Table) are those with S(A) = {[m]} which
COVER solves in one step and SOS1 generally solves in one or two steps. By contrast,
ENUM cannot solve most of these instances within 10,000 steps. The first, fifth, and sixth
instances in Table 1 illustrate this behavior. For other more challenging instances, COVER
usually finds H(A) after fewer main steps than SOS1. However, the SOS1 “steps” (nodes)
are much faster (up to an order of magnitude) than the COVER iterations. This is not
surprising since we used Gurobi, a state-of-the-art mathematical programming solver, in
our SOS1 implementation. By contrast, we used fairly straightforward and simple MATLAB

implementations for both COVER and ENUM.
Table 2 reports results on instances of A generated as in Example 1 and Example 3.

For each of these two examples we included two instances. The first one corresponds to the
largest n such that the instance was solvable by all three methods within 10,000 steps. The
second one corresponds to the very next value of n. The general conclusions of these four
experiments are that ENUM appears to be the least effective method, while the relationship
between the efficiency of SOS1 and COVER is not always the same. It is noteworthy that
Example 3 poses a significant challenge even for SOS1 when n = 5 thereby highlighting the
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Instance m n H(A) SOS1 COVER ENUM

qp50 25 3 3.mat 50 25 2.7203 2 1 ∗
st bpv2.mat 5 4 2.0000 2 3 3
st iqpbk1.mat 8 7 28.0000 2 9 8
st fp5 11 10 3.2286 6 3 3
qp50 25 1 3 50 25 3.5817 8 1 ∗
qp40 20 4 2 40 20 10.4870 10 1 ∗
st e22 5 2 11.0000 26 10 10
st glmp kk92 6 4 4.0000 30 11 11
st glmp fp2 7 4 134.3334 38 18 22
st e25 8 4 173.2708 39 13 70
qp20 10 4 2 20 10 36.2748 40 6 ∗
qp30 15 1 1 30 15 3411.7169 40 8 ∗
st glmp ss1 8 5 9.0000 58 20 20
st glmp kky 8 7 3.1429 64 20 20
qp20 10 3 1 20 10 49.7414 88 15 ∗
st ph20 9 3 28.0000 108 33 84
st ph13 10 3 6.0000 118 15 99
st qpk2 12 6 2.0000 248 70 70
biggsc4 13 4 5.0000 420 61 385
qp1 50 1 483.3333 1026 501 50
qp3 100 1 483.3333 1026 551 100
st qpk3 22 11 1.8196 7046 2059 2059
lpi woodinfe 89 35 57.0006 8005 ∗ ∗
qp30 15 3 1 30 15 104528.1035 ∗ 371 ∗

∗: Algorithm reached limit on the number of steps.

Table 1: Performance of SOS1, COVER, and ENUM on test instances from LPnetlib,

CUTEr, Globallib, with a limit of 10,000 main steps.

formidable challenge that computing H(A) entails. We also tested the methods for instances
of A generated as in Example 2 for n up to 1000. Not surprisingly, all three methods solve
those instances quite easily: SOS1 usually generates only one node beyond the root node,
COVER terminates after n + 2 iterations, and ENUM terminates after scanning n+ 1 sets.

We reiterate that the above results are based on entirely straightforward and simple
implementations of SOS1, COVER, and ENUM. In particular, our basic implementations do
not use warm-starts and do not make any attempt to exploit the symmetry structure that is
evident in Example 1, Example 2, and Example 3. The development of more sophisticated
implementations of the above algorithmic schemes will be an interesting topic for future
work.
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Instance m n H(A) SOS1 COVER ENUM

Example 1 26 13 13.0000 24 8205 8205
Example 1 28 14 14.0000 24 ∗ ∗
Example 3 16 4 5.0000 1552 152 1128
Example 3 32 5 9.0000 ∗ 4594 ∗

Table 2: Performance of SOS1, COVER, and ENUM on instances of A generated as in
Example 1 and Example 3.

4 A Hoffman constant for polyhedral set-valued map-

pings

We next present a characterization of the Hoffman constant for polyhedral set-valued map-
pings. Recall that a set-valued mapping Φ : Rn

⇒ R
m assigns a set Φ(x) ⊆ R

m to each
x ∈ R

n. Let Φ : Rn
⇒ R

m be a set-valued mapping. The inverse Φ−1 : Rm
⇒ R

n of Φ is the
set-valued mapping defined in the following natural way

x ∈ Φ−1(y) if and only if y ∈ Φ(x).

We will say that Φ is polyhedral if

graph(Φ) := {(x, y) : y ∈ Φ(x)} ⊆ R
n × R

m

is a polyhedron. We will say that Φ is sublinear if graph(Φ) is a convex cone, and we will
say that Φ is closed if graph(Φ) is closed. In particular, we will say that Φ is a polyhedral
sublinear mapping if graph(Φ) is a polyhedral convex cone.

Let Φ : Rn
⇒ R

m be a set-valued mapping. The domain and image of Φ are defined as
follows:

dom(Φ) = {x ∈ R
n : (x, y) ∈ graph(Φ) for some y ∈ R

m},

Im(Φ) = {y ∈ R
m : (x, y) ∈ graph(Φ) for some x ∈ R

n}.

When Φ : Rn
⇒ R

m is a sublinear mapping, the norm of Φ is defined as follows

‖Φ‖ = max
x∈dom(Φ)

‖x‖≤1

min
y∈Φ(x)

‖y‖.

In particular, if Φ : Rn
⇒ R

m is a sublinear mapping then the norm of Φ−1 : Rm
⇒ R

n is

‖Φ−1‖ = max
y∈dom(Φ−1)

‖y‖≤1

min
x∈Φ−1(y)

‖x‖ = max
y∈Im(Φ)
‖y‖≤1

min
x∈Φ−1(y)

‖x‖.

It is easy to see that both ‖Φ‖ and ‖Φ−1‖ are finite if Φ : Rn
⇒ R

m is a polyhedral sublinear
mapping.
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Suppose Φ : Rn
⇒ R

m is sublinear. Then the upper adjoint Φ∗ : Rm
⇒ R

n is defined as
follows

u ∈ Φ∗(v) ⇔ 〈u, x〉 ≤ 〈v, y〉 for all (x, y) ∈ graph(Φ) ⇔ (−u, v) ∈ graph(Φ)∗.

We will rely on the following correspondence between polyhedral sublinear mappings and
polyhedral cones. By definition, Φ : R

n
⇒ R

m is a polyhedral sublinear mapping if
graph(Φ) ⊆ R

n × R
m is a polyhedral cone. Conversely, if K ⊆ R

n × R
m is a polyhedral

cone, then the set-valued mapping ΦK : Rn
⇒ R

m defined via

y ∈ ΦK(x) ⇔ (x, y) ∈ K

is a polyhedral sublinear mapping with graph(ΦK) = K.
A polyhedral set-valued mapping Φ : R

n
⇒ R

m is surjective if Im(Φ) = R
m. More

generally, we will say that Φ is relatively surjective if Im(Φ) is a linear subspace. Suppose
Φ : Rn

⇒ R
m is a polyhedral set-valued mapping. Let

S(graph(Φ)) := {T ∈ T (graph(Φ)) : ΦT is relatively surjective},

and
H(Φ) := max

T∈S(graph(Φ))
‖Φ−1

T ‖.

We have the following general versions of Proposition 1, Proposition 2, and Corollary 1 for
polyhedral set-valued mappings.

Theorem 1. Let Φ : Rn
⇒ R

m be a polyhedral set-valued mapping. Then for all b ∈ Im(Φ)
and u ∈ dom(Φ)

dist(u,Φ−1(b)) ≤ H(Φ) · dist(b,Φ(u)). (31)

Furthermore, this bound is tight: If H(Φ) > 0 then there exist b ∈ Im(Φ) and u ∈ dom(Φ)
such that

dist(u,Φ−1(b)) = H(Φ) · dist(b,Φ(u)) > 0.

Theorem 2. Let Φ : R
n
⇒ R

m be a polyhedral set-valued mapping. Then for all T ∈
S(graph(Φ))

‖Φ−1
T ‖ = max

u∈Φ∗
T
(v)

‖u‖∗≤1

‖ΠIm(ΦT )(v)‖
∗ =

1

min
u∈Φ∗

T
(v)

‖ΠIm(ΦT )(v)‖
∗=1

‖u‖∗
,

where ΠIm(ΦT ) : R
m → Im(ΦT ) denotes the orthogonal projection on the subspace Im(ΦT ). In

particular,

H(Φ) = max
T∈S(graph(Φ))

1

min
u∈Φ∗

T
(v)

‖ΠIm(ΦT )(v)‖
∗=1

‖u‖∗
.

Corollary 4. Let Φ : Rn
⇒ R

m be a polyhedral set-valued mapping.
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(a) If Φ is sublinear and relatively surjective then

H(Φ) =
1

min
u∈Φ∗(v)

‖ΠIm(Φ)(v)‖
∗=1

‖u‖∗
.

(b) Suppose F ⊆ S(Φ) and I ⊆ T (graph(Φ)) \S(Φ) are such that for all T ∈ T (graph(Φ))
either F ⊆ T for some F ∈ F, or T ⊆ I for some I ∈ I. Then

H(Φ) = max
T∈F

‖Φ−1
T ‖ = max

T∈F

1

min
u∈Φ∗

T
(v)

‖ΠIm(ΦT )(v)‖
∗=1

‖u‖∗
.

The proof of Theorem 1 relies on the following technical lemma.

Lemma 1. Let Φ : Rn
⇒ R

m be a polyhedral set-valued mapping. Then

H(Φ) = max
T∈S(graph(Φ))

‖Φ−1
T ‖ = max

T∈T (graph(Φ))
‖Φ−1

T ‖.

Proof of Theorem 1. To ease notation, throughout this proof let G := graph(Φ). We will
prove the following equivalent statement to (31): For all b ∈ Im(Φ) and (u, v) ∈ G

dist(u,Φ−1(b)) ≤ H(Φ) · ‖b− v‖. (32)

Assume b − v 6= 0 as otherwise there is nothing to show. We proceed by contradiction.
Suppose b ∈ Im(Φ) and (u, v) ∈ G are such that b− v 6= 0 and

‖x− u‖ > H(Φ) · ‖b− v‖ (33)

for all x such that (x, b) ∈ G. Let d := b−v
‖b−v‖

and consider the optimization problem

max
w,t

t

s. t. (u+ w, v + td) ∈ G,
‖w‖ ≤ H(Φ) · t.

(34)

Since b ∈ Im(Φ) it follows that d = (b − v)/‖b − v‖ ∈ Im(ΦT ) for T := TG(u, v) ∈ T (G).
Since ‖d‖ = 1, the definition of ‖Φ−1

T ‖ and Lemma 1 imply that there exists (z, d) ∈ T
with ‖z‖ ≤ ‖Φ−1

T ‖ ≤ H(Φ). By the construction of T = TG(u, v) it follows that for t > 0
sufficiently small (u+ tz, v + td) ∈ G and so (w, t) := (tz, t) is feasible for problem (34). Let

S := {(w, t) ∈ R
n × R+ : (w, t) is feasible for (34)}.

Assumption (33) implies that t < ‖b−v‖ for all (w, t) ∈ S. In addition, since G is polyhedral,
it follows that S is compact. Therefore (34) has an optimal solution (w̄, t̄) with 0 < t̄ <
‖b− v‖.
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Let (u′, v′) := (u+w̄, v+ t̄d) ∈ G. Consider the modification of (34) obtained by replacing
(u, v) with (u′, v′), namely

max
w′,t′

t′

s. t. (u′ + w′, v′ + t′d) ∈ G,
‖w′‖ ≤ H(Φ) · t′.

(35)

Observe that b − v′ = b − v − t̄d = (‖b − v‖ − t̄)d 6= 0. Again since b ∈ Im(Φ) it follows
that d = b−v′

‖b−v′‖
∈ Im(ΦT ′) for T ′ := TG(u

′, v′). Hence there exists (z′, d) ∈ T ′ such that

‖z′‖ ≤ ‖Φ−1
T ′ ‖ ≤ H(Φ). Therefore, (35) has a feasible point (w′, t′) = (t′z′, t′) with t′ > 0. In

particular (u′ +w′, v′ + t′d) = (u+ w̄+w′, v + (t̄+ t′)d) ∈ G with ‖w̄+w′‖ ≤ ‖w̄‖+ ‖w′‖ ≤
H(Φ) · (t̄+ t′) and t̄+ t′ > t̄. This contradicts the optimality of (w̄, t̄) for (34).

To show that the bound is tight, suppose H(Φ) = ‖Φ−1
T ‖ > 0 for some T ∈ S(Φ) ⊆ T (G).

The construction of ‖Φ−1
T ‖ implies that there exists d ∈ R

m with ‖d‖ = 1 such that the
problem

min
z

‖z‖

s. t. (z, d) ∈ T
(36)

is feasible and has an optimal solution z̄ with ‖z̄‖ = ‖Φ−1
T ‖ = H(Φ) > 0. Let (u, v) ∈ G be

such that T = TG(u, v). Let b := v+td where t > 0 is small enough so that (u, v)+t(z̄, d) ∈ G.
Observe that b ∈ Im(Φ) and b − v = td 6= 0. To finish, notice that if x ∈ Φ−1(b) then
(x− u, b− v) = (x− u, td) ∈ TG(u, v) = T . The optimality of z̄ then implies that

‖x− u‖ ≥ H(Φ) · t = H(Φ) · ‖b− v‖.

Since this holds for all x ∈ Φ−1(b) and b−v 6= 0, it follows that dist(u,Φ−1(b)) ≥ H(Φ) · ‖b−
v‖ ≥ H(Φ) · dist(b,Φ(u)) > 0.

The proofs of Theorem 2 and Lemma 1 rely on the following convex duality construction.
Observe that for a polyhedral convex cone T ⊆ R

n × R
m

‖Φ−1
T ‖ = max

y
‖Φ−1

T (y)‖

s. t. y ∈ Im(ΦT )
‖y‖ ≤ 1,

where
‖Φ−1

T (y)‖ := min
x

‖x‖

s. t. (x, y) ∈ T.
(37)

By convex duality it follows that

‖Φ−1
T (y)‖ = max

u,v
−〈v, y〉

s. t. ‖u‖∗ ≤ 1
(u, v) ∈ T ∗.

(38)
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Therefore when T ⊆ R
n × R

m is a polyhedral cone we have

‖Φ−1
T ‖ = max

u,v,y
−〈v, y〉

s. t. y ∈ Im(ΦT )
‖y‖ ≤ 1
‖u‖∗ ≤ 1
(u, v) ∈ T ∗.

(39)

Proof of Theorem 2. Let T ∈ S(graph(Φ)). Since ΦT is relatively surjective, from (39) it
follows that

‖Φ−1
T ‖ = max

u,v
‖ΠIm(ΦT )(v)‖

∗

s. t. ‖u‖∗ ≤ 1
u ∈ Φ∗

T (v).

The latter quantity is evidently the same as

1

min
u∈Φ∗

T
(v)

‖ΠIm(ΦT )(v)‖
∗=1

‖u‖∗
.

Our proof of Lemma 1 relies on the following equivalence between surjectivity and non-
singularity of sublinear mappings. A standard convex separation argument shows that a
closed sublinear mapping Φ : Rn

⇒ R
m is surjective if and only if

(0, v) ∈ graph(Φ)∗ ⇒ v = 0. (40)

Condition (40) is a kind of non-singularity of Φ∗ as it can be rephrased as 0 ∈ Φ∗(v) ⇒ v = 0.

Proof of Lemma 1. Without loss of generality assume affine(Im(Φ)) = R
m as otherwise we

can work instead with the modified mapping Φ0 : Rn
⇒ L defined via Φ0(x) := Φ(x) − y0,

where y0 ∈ Im(Φ) and L is the lineality space of affine(Im(Φ)), that is, L = affine(Im(Φ))−y0.
To ease notation let G := graph(Φ). We need to show that

max
T∈T (G)

‖Φ−1
T ‖ = max

T∈S(G)
‖Φ−1

T ‖.

By construction, it is immediate that

max
T∈T (G)

‖Φ−1
T ‖ ≥ max

T∈S(G)
‖Φ−1

T ‖.

To prove the reverse inequality let T ∈ T (G) be fixed and let (ū, v̄, ȳ) attain the optimal
value ‖Φ−1

T ‖ in (39). Let F̄ be the minimal face of T ∗ containing (ū, v̄) and T̄ := F̄ ∗ ∈
T (T ) ⊆ T (G). As we detail below, (ū, v̄, ȳ) can be chosen so that ΦT̄ is surjective. Since
‖ȳ‖ ≤ 1 we have

‖Φ−1
T ‖ = −〈v̄, ȳ〉 ≤ ‖v̄‖∗.
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Furthermore, (ū, v̄) ∈ F̄ ⊆ T ∗ = graph(ΦT̄ )
∗ and ‖ū‖∗ ≤ 1, thus Theorem 2 yields

‖Φ−1
T ‖ ≤ ‖v̄‖∗ ≤ ‖Φ−1

T̄
‖.

Since this holds for any fixed T ∈ T (G), it follows that

max
T∈T (G)

‖Φ−1
T ‖ ≤ max

T̄∈S(G)
‖Φ−1

T̄
‖.

It remains to show that (ū, v̄, ȳ) can be chosen so that ΦT̄ is surjective, where T̄ = F̄ ∗ and
F̄ is the minimal face of T ∗ containing (ū, v̄). To that end, pick a solution (ū, v̄, ȳ) to (39)
and consider the set

V := {v ∈ R
m : 〈v, ȳ〉 = 〈v̄, ȳ〉, (ū, v) ∈ T ∗}.

In other words, V is the projection of the set of optimal solutions to (39) of the form (ū, v, ȳ).
Since T is polyhedral, so is T ∗ and thus V is a polyhedron. Furthermore, V must have at
least one extreme point. Otherwise there exist v̂ ∈ V and a nonzero ṽ ∈ R

m such that
v̂ + tṽ ∈ V for all t ∈ R. In particular, (ū, v̂ + tṽ) ∈ T ∗ for all t ∈ R and thus (0, tṽ) ∈ T ∗

for all t ∈ R. The latter in turn implies Im(ΦT ) = {y ∈ R
m : (x, y) ∈ T for some x ∈ R

n} ⊆
{y ∈ R

m : 〈ṽ, y〉 = 0}. Since T ∈ T (G), if follows that Im(Φ)) ⊆ {y ∈ R
m : 〈ṽ, y〉 = 0}

and thus affine(Im(Φ)) ⊆ {y ∈ R
m : 〈ṽ, y〉 = 0} thereby contradicting the assumption

affine(Im(Φ)) = R
m. By replacing v̄ if necessary, we can assume that v̄ is an extreme point

of V . We claim that the minimal face F̄ of K∗ containing (ū, v̄) satisfies

(0, v′) ∈ F̄ = T̄ ∗ ⇒ v′ = 0

thereby establishing the surjectivity of ΦT̄ (cf., (40)). To prove this claim, proceed by
contradiction. Assume (0, v′) ∈ F̄ for some nonzero v′ ∈ R

m. The choice of F̄ ensures
that (ū, v̄) lies in the relative interior of F̄ and thus for t > 0 sufficiently small both (ū, v̄ +
tv′) ∈ F̄ ⊆ T ∗ and (ū, v̄ − tv′) ∈ F̄ ⊆ T ∗. The optimality of (ū, v̄, ȳ) implies that both
〈v̄ + tv′, ȳ〉 ≥ 〈v̄, ȳ〉 and 〈v̄ − tv′, ȳ〉 ≥ 〈v̄, ȳ〉 and so 〈v′, ȳ〉 = 0. Thus both v̄ + tv′ ∈ V and
v̄ − tv′ ∈ V with tv′ 6= 0 thereby contradicting the assumption that v̄ is an extreme point of
V .

To conclude this section, we briefly describe how the approach to compute Hoffman
constants via the covering property in Section 3.2 extends to the general context of polyhedral
set-valued mappings. Suppose Φ : Rn

⇒ R
m is a polyhedral set-valued mapping. Corollary 4

suggests the following algorithmic approach to compute H(Φ): Find F ⊆ S(Φ) and I ⊆
T (graph(Φ)) \S(Φ) that satisfy the following covering property:

For all T ∈ T (graph(Φ)) either F ⊆ T for some F ∈ F, or T ⊆ I for some I ∈ I.

Then compute

H(Φ) = max
T∈F

‖Φ−1
T ‖ = max

T∈F

1

min
u∈Φ∗

T
(v)

‖ΠIm(ΦT )(v)‖
∗=1

‖u‖∗
.
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5 Proofs of propositions in Section 2

We next present the proofs of Proposition 5 and Proposition 6. As noted before, the other
propositions in Section 2 follow as special cases of these two results.

Let R ⊆ R
n, A ∈ R

m×n, and C ∈ R
p×n. Construct Φ : Rn

⇒ R
m+p as follows

Φ(x) =

{

{(Ax+ s, Cx) : s ≥ 0} if x ∈ R
∅ otherwise.

(41)

Observe that Φ is polyhedral since R is a polyhedron.

Proof of Proposition 5. For Φ as in (41) we have

S(graph(Φ)) = {TJ,K : (J,K) ∈ S(A,C|R)}

where TJ,K = {(x,Ax + s, Cx) : x ∈ K, sJ ≥ 0}. Next, observe that for (J,K) ∈ S(A,C|R)
we have (y, w) ∈ ΦTJ,K

(x) ⇔ x ∈ K, AJx ≤ yJ , and Cx = w. Therefore

H(Φ) = max
(J,K)∈S(A,C|R)

‖Φ−1
TJ,K

‖ = max
(J,K)∈S(A,C|R)

max
(y,w)∈Rm×C(K)

‖(y,w)‖≤1

min
x∈L

AJx≤yJ ,Cx=w

‖x‖ = H(A,C|R).

Furthermore, dom(Φ) = R and Im(Φ) = {(Ax+s, Cx) : x ∈ R, s ≥ 0}. Therefore Theorem 1
implies that for all (b, d) ∈ Im(Φ) = {(Ax+ s, Cx) : x ∈ R, s ≥ 0} and u ∈ dom(Φ) = R

dist(u, PA(b) ∩ C−1(d) ∩R) = dist(u,Φ−1(b, d))

≤ H(Φ) · dist((b, d),Φ(u))

= H(A,C|R) · dist((b−Au, d− Cu),Rm
+ × {0}).

Theorem 1 also implies that this bound is tight.

Proof of Proposition 6. Observe that for (J,K) ∈ S(A,C|R)) and T := TJ,K we have Im(ΦT ) =
R

m×C(K) and u ∈ Φ∗
T (v, z) if and only if ATv+CTz−u ∈ K∗, vJ ≥ 0, and vJc = 0. Hence

min
u∈Φ∗

T
(v,z)

‖ΠIm(ΦT )(v,z)‖∗=1

‖u‖∗ = min
v∈RJ+,z∈C(K)

‖(v,z)‖∗=1,AT

J
v+CTz−u∈L∗

‖u‖∗.

To finish, apply Theorem 2 and the facts S(graph(Φ)) = {TJ,K : (J,K) ∈ S(A,C|R)} and
H(Φ) = H(A,C|R) established in the previous proof.

6 Conclusions

We provide a characterization of the Hoffman constant for a system of linear inequalities and
equations relative to a reference polyhedron (Proposition 5). Our characterization is stated
as the largest of a finite collection of easily computable Hoffman constants (Proposition 6).
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We describe how our characterization can be leveraged to design two classes of algorith-
mic procedures to compute Hoffman constants. One of them is based on a formulation of
the Hoffman constant as a mathematical program with linear complementarity constraints
(Proposition 7). The other one is based on a certain type of covering property (Algorithm 1).

We also develop the concept of Hoffman constant and generalize our characterization
and covering property to compute it in the more general context of polyhedral set-valued
mappings (Theorem 1 and Theorem 2).
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