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recherche a été financée par le Conseil de recherches en sciences naturelles et en génie du Canada (CRSNG).

ar
X

iv
:1

80
3.

03
24

9v
3 

 [
cs

.G
T

] 
 1

 M
ar

 2
01

9



2 J. Könemann et al.

1 Introduction

Imagine a network of players that form partnerships to generate value. For example, maybe a tennis league
pairing players to play exhibition matches [3], or people making trades in an exchange network [47]. These
are examples of what are called matching games. In a (weighted) matching game, we are given a graph
G = (V,E), weights w : E → R≥0, the player set is the set V of nodes of G, and w(uv) denotes the value
earned when u and v collaborate. Each coalition S ⊆ V is assigned a value ν(S) so that ν(S) is equal to the
value of a maximum weight matching on the induced subgraph G[S]. The special case of matching games
where w = 1 is the all-ones vector, and G is bipartite is called an assignment game and was introduced in
a classical paper by Shapley and Shubik [47], and was later generalized to general graphs by Deng, Ibaraki,
and Nagamochi [12].

We are interested in what a fair redistribution of the total value ν(V ) to the players in the network
looks like. The field of cooperative game theory gives us the language to make this question formal. A vector
x ∈ RV is called an allocation if x(V ) = ν(V ) (where we use x(V ) as a short-hand for

∑
i∈V x(i) as usual).

Given such an allocation, we let x(S)− ν(S) be the excess of coalition S ⊆ V . This quantity can be thought
of as a measure of the satisfaction of coalition S. A fair allocation should maximize the bottleneck excess,
i.e. maximize the minimum excess, and this can be accomplished by an LP:

max ε (P )

s.t. x(S) ≥ ν(S) + ε for all S ⊆ V
x(V ) = ν(V )

x ≥ 0.

Let ε∗ be the optimum value of (P ), and define P (ε∗) to be the set of allocations x such that (x, ε∗) is
feasible for (P ). The set P (ε∗) is known as the leastcore [39] of the given cooperative game, and the special
case when ε∗ = 0, P (0) is the well-known core [25] of (V, ν). Intuitively, allocations in the core describe
payoffs in which no coalition of players could profitably deviate from the grand coalition V .

Why stop at maximizing the bottleneck excess? Consider an allocation which, subject to maximizing
the smallest excess, maximizes the second smallest excess, and subject to that maximizes the third smallest
excess, and so on. This process of successively optimizing the excess of the worst-off coalitions yields our

primary object of interest, the nucleolus. For an allocation x ∈ RV , let θ(x) ∈ R2V −2 be the vector obtained
by sorting the list of excess values x(S)− ν(S) for any ∅ 6= S ⊂ V in non-decreasing order 3. The nucleolus,
denoted η(V, ν) and defined by Schmeidler [45], is the unique allocation that lexicographically maximizes
θ(x):

η(V, ν) := arg lex max{θ(x) : x ∈ P (ε∗)}.

We refer the reader to Appendix B for an example instance of the weighted matching game with its nucleolus.
We now have sufficient terminology to state our main result:

Theorem 1. Given a graph G = (V,E) and weights w : E → R, the nucleolus η(V, ν) of the corresponding
weighted matching game can be computed in polynomial time.

Despite its intricate definition the concept of the nucleolus is surprisingly ancient. Its history can be traced
back to a discussion on bankruptcy division in the Babylonian Talmud [1]. Modern research interest in the
nucleolus stems not only from its geometric beauty [39], or several practical applications (e.g., see [5,38]),
but from the strange way problems of computing the nucleolus fall in the complexity landscape, seeming to
straddle the NP vs P boundary.

Beyond being one of the most fundamental problems in combinatorial optimization, starting with the
founding work of Kuhn on the Hungarian method for the assignment problem [35], matching problems

3 It is common within the literature, for instance in [30], to exclude the coalitions for S = ∅ and S = V in the
definition of the nucleolus. On the other hand, one could also consider the definition of the nucleolus with all
possible coalitions, including S = ∅ and S = V . We note that the two definitions of the nucleolus are equivalent
in all instances of matching games except for the trivial instance of a graph consisting of two nodes joined by a
single edge.
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have historically teetered on the cusp of hardness. For example, prior to Edmonds’ celebrated Blossom Algo-
rithm [15,14] it was not clear whether Maximum Matching belonged in P. For another example, until Rothvoß’
landmark result [44] it was thought that the matching polytope could potentially have sub-exponential ex-
tension complexity. In cooperative game theory, matchings live up to their historical pedigree of representing
a challenging problem class. The long standing open problem in this area was whether the nucleolus of a
weighted matching game instance can be computed in polynomial time. The concept of the nucleolus has
been known since 1969 [45], and the question was posed as an important open problem in multiple papers.
In 1998, Faigle, Kern, Fekete, and Hochstättler [18] mention the problem in their work on the nucleon,
a multiplicative-error analog to the nucleolus which they show is polynomial time computable. Kern and
Paulusma state the question of computing the nucleolus for general matching games as an important open
problem in 2003 [30]. In 2008, Deng and Fang [10] conjectured this problem to be NP-hard, and in 2017 Biró,
Kern, Paulusma, and Wojuteczky [4] reaffirmed this problem as an interesting open question. Theorem 1
settles the question, providing a polynomial-time algorithm to compute the nucleolus of a general instance
of a weighted cooperative matching game.

Our approach to proving Theorem 1 is to provide a compact description of each feasible region polytope in
a hierarchical sequence of linear programs described in the well-known Maschler scheme [34,39] for computing
the nucleolus. While there are a linear number of LPs in the sequence, their naive implementation requires
an exponential number of constraints. The base LP for this approach is the least core. It is known how to
separate over the least core, but the challenge lies in solving all successive linear programs in the sequence.
Previous results in [31,42] made use of the unweighted nature of node-weighted instances of matching games,
and were able to employ the Edmonds-Gallai structure theorem to derive compact formulations for the LPs
in Maschler’s hierarchy. We do not know how to extend this line of work beyond node-weighted instances.

In our work, we identify a minimal family of tight excess constraints of (P ) corresponding to coalitions
whose vertices are saturated by so called universal matchings. A matching is universal if it saturates a
coalition of vertices that is tight for all allocations in the least core. As we will show, universal matchings
are the optimal matchings for carefully chosen cost functions derived from so called universal allocations
(see Section 2.2). From here now, we rely on well-known characterizations of extreme points of matching
polyhedra, and the fact that these are defined by laminar families of blossom constraints. Ultimately, the
above allows us to obtain a decomposition of the input graph into the edges on either the inside or outside
of blossoms. The structure of the associated optimum face of the matching polytope (e.g., see Schrijver [46])
elucidates the structure of excess over all coalitions in the matching game. Our proof uses a critical insight
into the symmetric nature of exchange on the nodes of a blossom as we move between leastcore allocations
(see Lemma 5). We present the details of the leastcore LP in Section 2. We show how this formulation can
be used in Maschler’s framework to compute the nucleolus in Section 3.

Prior to our work, the nucleolus was known to be polynomial-time computable only in structured instances
of the matching game. Solymosi and Raghavan [48] showed how to compute the nucleolus in an (unweighted)
assignment game instance in polynomial time. Kern and Paulusma [31] later provided an efficient algorithm
to compute the nucleolus in general unweighted matching game instances. Paulusma [42] extended the work
in [31] and gave an efficient algorithm to compute the nucleolus in matching games where edge weights are
induced by node potentials. Farczadi [23] finally extended Paulusma’s framework further using the concept
of extendible allocations. We note also that it is easy to compute the nucleolus in weighted instances of the
matching game with non-empty core. For such instances, the leastcore has a simple compact description
that does not include constraints for coalitions of size greater than 2. Thus it is relatively straightforward to
adapt the iterative algorithm of Maschler [39] to a polynomial-time algorithm for computing the nucleolus
(e.g., see [23, Chapter 2.3] for the details, Section 1.3 for an overview).

1.1 Related Work

In a manner analogous to how we have defined matching games, a wide variety combinatorial optimization
games can be defined [12]. In such games, the value of a coalition S of players is succinctly given as the
optimal solution to an underlying combinatorial optimization problem. It is natural to conjecture that
the complexity of computing the nucleolus in an instance of such a game would fall in lock-step with
the complexity of the underlying problem. Surprisingly this is not the case. For instance, computing the
nucleolus is known to be NP-hard for network flow games [11], weighted threshold games [16], and spanning
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tree games [19,22]. On the other hand, polynomial time algorithms are known for finding the nucleolus
of special cases of flow games, certain classes of matching games, fractional matching games, and convex
games [2,6,11,20,23,26,27,31,36,40,42,43,48].

One application of cooperative matching games is to network bargaining [13,50], where one considers a
population of players that are interconnected by an underlying social network. Players engage in profitable
partnerships – each player with at most one of its neighbours. The profit generated through a partnership
then needs to be shared between the participating players in an equitable way. Cook and Yamagishi [7]
first proposed an elegant profit-sharing model that not only generalizes Nash’s famous 2-player bargaining
solution [41], but also validates empirical findings from the lab setting. Cook and Yamagishi’s model defines
a so called outside option for each player v that essentially denotes the largest share that v could demand
in a partnership with any of its neighbours. An outcome is called stable if each player receives a profit share
that is at least her outside option, and an outcome is balanced if value generated in excess of the sum of the
outside options of the involved players is shared evenly. Kleinberg and Tardos [32] showed that an instance
of network bargaining has a balanced outcome if and only if it has a stable outcome. Bateni et al. [2] later
noted that stable outcomes for network bargaining correspond to elements of the core of the underlying
cooperative matching game, and that balanced outcomes correspond to elements in the intersection of core
and prekernel.

It is well-known that the prekernel of a cooperative game may be non-convex and that it may even be
disconnected [34,49]. Despite this, Faigle, Kern and Kuipers [20] showed how to compute a point in the
intersection of prekernel and leastcore in polynomial time under the reasonable assumption that the game
has a polynomial time oracle to compute the minimum excess coalition for a given allocation. Later the same
authors [21] refine their result to computing a point in the intersection of the core and lexicographic kernel,
a set which is also known to contain the nucleolus. Bateni et al. pose as an open question the existence of
an efficiently computable, balanced and unique way of sharing the profit. It is well-known that the nucleolus
lies in the intersection of core and prekernel (if these are non-empty) and is always unique [45]. Theorem 1
therefore resolves the latter open question left in [2].

Connections have also been made between matching games and stable matchings. Allocations in the core
of the corresponding matching game have been found to be in 1-to-1 correspondence with stable matchings
with payments, a variant of the Gale and Shapley’s [24] famous stable marriage problem. See Koopmans and
Beckmann [33], Shapley and Shubik [47], Eriksson and Karlander [17], and Biro, Kern, and Paulusma [3] for
details.

1.2 Leastcore and Core of Matching Games.

It is straightforward to see that (P ) can be rewritten equivalently as

max ε

s.t. x(M) ≥ w(M) + ε for all M ∈M (P1)

x(V ) = ν(G)

x ≥ 0 ,

where M is the set of all matchings M on G, and x(M) is a shorthand for x(V (M)).
The separation problem for the linear program (P1) can be reduced to finding a maximum weight matching

in the graph G with edge weights w(uv) − x(uv), uv ∈ E (where we use x(uv) as a shorthand for x(u) +
x(v)). Since the maximum weight matching can be found in polynomial time [14], we know that the linear
program (P1) can be solved in polynomial time as well [29].

We use ε1 to denote the optimal value of (P1) and P1(ε1) for the set of allocations x such that (x, ε1) is
feasible for the leastcore linear program (P1). In general, for a value ε and a linear program Q on variables
in RV × R we denote by Q(ε) the set {x ∈ RV : (x, ε) is feasible for Q}.

Note that ε1 ≤ 0. Indeed, ε ≤ 0 in any feasible solution (x, ε) to (P1) as otherwise x(M) would need to
exceed w(M) for all matchings M . In particular this would also hold for a maximum weight matching on
G, implying that x(V ) > ν(G). If ε1 = 0 then the core of the cooperative matching game is non-empty. One
can see that ε1 = 0 if and only if the value of a maximum weight matching on G with weights w equals the
value of a maximum weight fractional matching. This follows since x ∈ P1(ε1) is a fractional weighted node



Computing the Nucleolus of Weighted Cooperative Matching Games in Polynomial Time 5

cover of value ν(G) when ε1 = 0. When ε1 < 0, we say that the cooperative matching game has an empty
core. The matching game instance given in Appendix B has an empty core.

In this paper, we assume that the cooperative matching game (G,w) has an empty core, as computing
the nucleolus is otherwise well-known to be doable in polynomial time [42].

1.3 Maschler’s scheme

As discussed, our approach to proving Theorem 1 relies on Maschler’s scheme. The scheme requires us to
solve a linear number of LPs: {(Pj)}j≥1 that we now define. (P1) is the leastcore LP that we have already
seen in Section 1.2. LPs (Pj) for j ≥ 2 are defined inductively. Crucial in their definition is the notion of
fixed coalitions that we introduce first. For a polyhedron Q ⊆ RV we denote by Fix(Q) the collection of sets
S ⊆ V such that x(S) is constant over the polyhedron Q, i.e.

Fix(Q) := {S ⊆ V : x(S) = x′(S) for all x, x′ ∈ Q} .

With this we are now ready to state LP (Pj) for j ≥ 2:

max ε (Pj)

s.t. x(S)− ν(S) ≥ ε for all S ⊂ V, S 6∈ Fix(Pj−1(εj−1))
x ∈ Pj−1(εj−1) ,

where εj be the optimal value of the linear program (Pj). Let j∗ be the minimum number j such that Pj(εj)
contains a single point. This point is the nucleolus of the game [9]. It is well-known [39] that Pj−1(εj−1) ⊂
Pj(εj) and εj−1 < εj for all j. Since the dimension of the polytope describing feasible solutions of (Pj)
decreases in every round until the dimension becomes zero, we have j∗ ≤ |V | [39][42, Pages 20-24].

Therefore, in order to find the nucleolus of the cooperative matching game efficiently it suffices to solve
each linear program (Pj), j = 1, . . . , j∗ in polynomial time. We accomplish this by providing polynomial-size
formulations for (Pj) for all j ≥ 1.

In Section 2 we introduce the concept of universal matchings which are fundamental to our approach,
and give a compact formulation for the first linear program in Maschler’s Scheme, the leastcore. We also
present our main technical lemma, Lemma 5, which provides a crucial symmetry condition on the values
allocations can take over the vertices of blossoms in the graph decomposition we use to describe the compact
formulation. In Section 3 we describe the successive linear programs in Maschler’s Scheme and provide a
compact formulation for each one in a matching game.

2 Leastcore Formulation.

In this section we provide a polynomial-size description of (P1). It will be useful to define a notation for
excess: for any x ∈ P1(ε1) and M ∈M let excess(x,M) := x(M)− w(M).

2.1 Universal Matchings, Universal Allocations.

For each x ∈ P1(ε1) we say that a matching M ∈ M is an x-tight matching whenever excess(x,M) = ε1.
We denote by Mx the set of x-tight matchings.

A universal matching M ∈ M is a matching which is x-tight for all x ∈ P1(ε1). We denote the set of
universal matchings on G by Muni. A universal allocation x∗ ∈ P1(ε1) is a leastcore point whose x∗-tight
matchings are precisely the set of universal matchings, i.e. Mx∗ =Muni.

Lemma 1. There exists a universal allocation x∗ ∈ P1(ε1).

Proof. Indeed, it is straightforward to show that every x∗ in the relative interior (see [51, Lemma 2.9(ii)])
of P1(ε1) is a universal allocation. If the relative interior is empty then P1(ε1) is a singleton, which trivially
contains a universal allocation. In Appendix A we provide a combinatorial proof.�

Lemma 2. A universal allocation x∗ ∈ P1(ε1) can be computed in polynomial time.

Proof. A point x∗ in the relative interior of P1(ε1) can be found in polynomial time using the ellipsoid
method (Theorem 6.5.5 [28],[8]). Since any allocation x∗ from the relative interior of P1(ε1) is a universal
allocation, this implies the statement of the lemma. �
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Given a non-universal allocation x and a universal allocation x∗, we observe thatMx∗ ⊂Mx and so θ(x∗)
is strictly lexicographically greater than θ(x). Thus the nucleolus is a universal allocation. We emphasize that
Mx∗ =Muni is invariant under the (not necessarily unique) choice of universal allocations x∗. Henceforth
we fix a universal allocation x∗ ∈ P1(ε1).

2.2 Description for Convex Hull of Universal Matchings.

By the definition of universal allocation x∗, a matching M is universal if and only if it is x∗-tight. Thus, M is
a universal matching if and only if its characteristic vector lies in the optimal face of the matching polytope
corresponding to (the maximization of) the linear objective function assigning weight − excess(x∗, uv) =
w(uv) − x∗(uv) to each edge uv ∈ E. Let O be the set of node sets S ⊆ V such that |S| ≥ 3, |S| is odd.
Edmonds [14] gave a linear description of the matching polytope of G as the set of y ∈ RE satisfying:

y(δ(v)) ≤ 1 for all v ∈ V
y(E(S)) ≤ (|S| − 1)/2 for all S ∈ O

y ≥ 0 .

Thus, a matching M ∈M is universal if and only if it satisfies the constraints

M ∩ δ(v) = 1 for all v ∈W
M ∩ E(S) = (|S| − 1)/2 for all S ∈ L
M ∩ {e} = 0 for all e ∈ F ,

(1)

where W is some subset of V , L is a subset of O, and F is a subset of E. Using an uncrossing argument, as
in [37, Pages 141-150], we may assume that the collection of sets L is a laminar family of node sets; i.e., for
any two distinct sets S, T ∈ L, either S ∩ T = ∅ or S ⊆ T or T ⊆ S.

Lemma 3. For every node v ∈ V there exists M ∈Muni such that v is exposed by M . Hence, W = ∅.

Proof. Assume for a contradiction that there exists a node v ∈ V such that v ∈W .
First, note that there always exists a non-universal matching M ∈M\Muni since otherwise the empty

matching would be universal, and thus

0 = x∗(∅) = w(∅) + ε1,

implying that the core of the given matching game instance is non-empty.
Suppose first that there exists a node u ∈ V exposed by some matching M ′ ∈ Muni such that x∗u > 0.

We define
δ0 := min{excess(x∗,M)− ε1 : M ∈M \Muni} .

Recall that Muni is the set of maximum weight matchings on G with respect to the node weights w(uv)−
x∗(uv), uv ∈ E, i.e. Muni is the set of x∗-tight matchings. Moreover, recall that excess(x∗,M) = ε1 for
M ∈Muni. Thus, we have δ0 > 0.

We define δ := min{δ0, x∗u} > 0 and a new allocation x′ as follows:

x′r :=


x∗r + δ, if r = v

x∗r − δ, if r = u

x∗r , otherwise.

Since all universal matchings contain v, the excess with respect to x′ of any universal matching is no smaller
than their excess with respect to x∗. Therefore, by our choice of δ, (x′, ε1) is a feasible, and hence optimal,
solution for (P1). But M ′ is not x′-tight, since M ′ covers v and exposes u. This contradicts that M ′ is a
universal matching.

Now consider the other case: for all u ∈ V if u is exposed by a universal matching then x∗u = 0. Then,
for every universal matching M ∈Muni we have

ε1 = excess(x∗,M) = x∗(V )− w(M) = ν(G)− w(M).

Since ν(G) is the maximum weight of a matching on G with respect to the weights w, we get that ε1 ≥ 0.
Thus x∗ is in the core, contradicting our assumption that the core is empty. �
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2.3 Description of Leastcore.

We denote inclusion-wise maximal sets in the family L as S∗1 , S
∗
2 , . . . , S

∗
k . We define the edge set E+ to be

the set of edges in G such that at most one of its nodes is in S∗i for every i ∈ [k] := {1, . . . , k}, i.e.

E+ := E \
( k⋃
i=1

E(S∗i )
)
.

Lemma 4. For every choice of vi ∈ S∗i , i ∈ [k], there exists a universal matching M ∈ Muni such that the
node set covered by M is as follows

k⋃
i=1

S∗i \{vi} .

Proof. By Lemma 3, we know that for every i ∈ [k] there exists a universal matching Mvi ∈Muni such that
vi is exposed by Mvi . Now, for every i ∈ [k], let us define

Mi := E(S∗i ) ∩Mvi .

Since Mi satisfies all laminar family constraints in L for subsets of S∗i we have that

k⋃
i=1

Mi

is a matching satisfying all the constraints (1), and hence is a universal matching covering the desired nodes.
�

For each i ∈ [k] fix a unique representative node v∗i ∈ S∗i . By Lemma 4, there exists a universal matching
M∗ covering precisely

⋃
i∈[k] S

∗
i \{v∗i }. For any x ∈ P1(ε1) and S ⊆ V we use diff(x, S) to denote

diff(x, S) := x(S)− x∗(S) .

For single nodes we use the shorthand diff(x, v) = diff(x, {v}). We now prove the following crucial structure
result on allocations in the leastcore.

Lemma 5. For every leastcore allocation x, i.e. for every x ∈ P1(ε1), we have that

(i) for all i ∈ [k], for all u ∈ S∗i : diff(x, u) = diff(x, v∗i ),
(ii) for all e ∈ E+: excess(x, e) ≥ 0.

Proof. Consider u ∈ S∗i , and note that we may use Lemma 4 to choose a universal matching Mu covering
precisely

S∗i \{u} ∪
⋃
j 6=i

S∗j \{v∗j }.

Hence we have V (Mu) ∪ {u} = V (M∗) ∪ {v∗i }, and since M∗ and Mu are universal, x(M∗) = x∗(M∗) and
x(Mu) = x∗(Mu). Using these observations we see that

diff(x, u) = x(u) + x(Mu)− (x∗(u)− x∗(Mu)) = x(v∗i ) + x(M∗)− (x∗(v∗i )− x∗(M∗)) = diff(x, v∗i ).

showing (i).

Now we prove (ii). Consider e ∈ E+ where e = {u, v}. Since e 6∈ E(S∗i ) for all i ∈ [k], we can choose a
universal matching M exposing u and v by Lemma 4. Thus M ∪{e} is also a matching. Notice M is x-tight,
and so we have

excess(x, e) = excess(x,M ∪ {e})︸ ︷︷ ︸
≥ε1

− excess(x,M)︸ ︷︷ ︸
=ε1

≥ 0

as desired. �
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Lemma 6. Let x ∈ P1(ε1) and let M ∈ M be a matching such that M ⊆
⋃

i∈[k]E(S∗i ). Then there exists

M ′ ⊆M∗ such that excess(x,M ′) ≤ excess(x,M) and for all i ∈ [k], |M ′ ∩ E(S∗i )| = |M ∩ E(S∗i )|.

Proof. See Appendix A. �

Recall that x∗ is a fixed universal allocation in P1(ε1). Let E∗ ⊆ E denote the union of universal matchings,
i.e. E∗ = ∪M∈Muni

M . We now define linear program (P 1).

max ε (P 1)

s.t. diff(x, u) = diff(x, v∗i ) for all u ∈ S∗i , i ∈ [k] (2)

excess(x, e) ≤ 0 for all e ∈ E∗

excess(x, e) ≥ 0 for all e ∈ E+

excess(x,M∗) = ε

x(V ) = ν(G)

x ≥ 0 .

Let ε1 be the optimal value of the linear program (P 1). We now show that P1(ε1) is indeed a compact
description of the leastcore P1(ε1).

Theorem 2. We have ε1 = ε1 and P1(ε1) = P 1(ε1).

Proof. First, we show that P1(ε1) ⊆ P 1(ε1). Consider x ∈ P1(ε1). By Lemma 5(i) we have

diff(x, u) = diff(x, v∗i ) for all u ∈ S∗i , i ∈ [k].

Lemma 5(ii) shows that excess(x, e) ≥ 0 for all e ∈ E+, and excess(x,M∗) = ε1 holds by the universality of
M∗. It remains to show that

excess(x, e) ≤ 0 for all e ∈ E∗.

Suppose for contradiction there exists e ∈ E∗ such that excess(x, e) > 0. By the definition of E∗, there exists
a universal matching M ′ containing e. Since M ′ is universal, excess(x,M ′) = ε1. But by our choice of e,

excess(x,M ′ \ {e}) < excess(x,M ′) = ε1

contradicting that x is in P1(ε1). Thus we showed that (x, ε1) is feasible for (P 1), i.e. we showed that
P1(ε1) ⊆ P 1(ε1).

To complete the proof we show that P 1(ε1) ⊆ P1(ε1). Let x be an allocation in P 1(ε1). Due to the
description of the linear program (P1), it is enough to show that for every matching M ∈M we have

excess(x,M) ≥ ε1 .

Since excess(x, e) ≥ 0 for alle ∈ E+, it suffices to consider only the matchings M , which are unions of
matchings on the graphs G[S∗i ], i ∈ [k]. Let ti := |M ∩ E(S∗i )|. By Lemma 6 applied to x∗ there exists
M ′ ⊆ M∗ such that excess(x∗,M) ≥ excess(x∗,M ′) and |M ′ ∩ E(S∗i )| = ti, for all i ∈ [k]. Then due to
constraints (2) in (P 1) we have

excess(x,M) =

k∑
i=1

2ti diff(x, v∗i )︸ ︷︷ ︸
=diff(x,M ′)

+ excess(x∗,M)︸ ︷︷ ︸
≥excess(x∗,M ′)

≥ excess(x,M ′) ≥ excess(x,M∗) = ε1 ,

where the last inequality follows since M ′ ⊆M∗ and excess(x, e) ≤ 0 for all e ∈ E∗.

Thus, we showed that P1(ε1) ⊆ P 1(ε1) and P 1(ε1) ⊆ P1(ε1). Recall, that ε1 and ε1 are the optimal
values of the linear programs (P1) and (P 1) respectively. Thus, we have ε1 = ε1 and P1(ε1) = P 1(ε1). �
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3 Computing the Nucleolus

The last section presented a polynomial-size formulation for the leastcore LP (P1). In this section we complete
our polynomial-time implementation of Maschler’s scheme by showing that (Pj) has the following compact
reformulation:

max ε (P j)

s.t. excess(x, e) ≥ ε− ε1 for all e ∈ E+, e 6∈ Fix(P j−1(εj−1))
x(v) ≥ ε− ε1 for all v ∈ V, v 6∈ Fix(P j−1(εj−1))

excess(x, e) ≤ ε1 − ε for all e ∈ E∗, e 6∈ Fix(P j−1(εj−1))
x ∈ P j−1(εj−1) ,

where εj is the optimal value of the linear program (P j)

Theorem 3. For all j = 1, . . . , j∗, we have εj = εj and Pj(εj) = P j(εj).

Proof. We proceed by induction. For j = 1 the statement holds due to Theorem 2. Let us show that statement
holds for each j = 2, . . . , j∗, assuming that the statement holds for j − 1. By induction, Pj−1(εj−1) =
P j−1(εj−1). We let F := Fix(Pj−1(εj−1)) = Fix(P j−1(εj−1)) to ease presentation.

First we show Pj(εj) ⊆ P j(εj). Let x ∈ Pj(εj). First consider an edge e ∈ E+\F . By Lemma 4 there exists
a universal matching M ∈ Muni exposing the endpoints of e. Moreover, since V (M) ∈ Fix(P1(ε1)) ⊆ F we
have V (M ∪ {e}) 6∈ F . Thus we see that

excess(x, e) = excess(x,M ∪ {e})︸ ︷︷ ︸
≥εj

− excess(x,M)︸ ︷︷ ︸
=ε1

≥ εj − ε1.

Now consider v ∈ V \F . Similar to the previous argument, but via Lemma 3, we can find a universal matching
M exposing v. Thus, since M is universal, V (M) ∪ {v} 6∈ F . We also have ν(V (M) ∪ {v}) ≥ w(M), so

x(v) = x(M ∪ {v})− w(M)− excess(x,M) ≥ εj − ε1.

Finally consider e = {u, v} ∈ E∗\F . Since e ∈ E∗ there exists a universal matching M ∈ Muni such that e
is in M . Since V (M) ∈ Fix(P1(ε1)) ⊆ F and {u, v} 6∈ F , we see that M \ {e} 6∈ F . Thus we have

excess(x, e) = excess(x,M)− excess(x,M\{e}) ≤ ε1 − εj

as desired.
So we have shown Pj(εj) ⊆ P j(εj), and thus it remains to show P j(εj) ⊆ Pj(εj). Let x ∈ P j(εj) and let

S ⊂ V such that S 6∈ F . We need to show

x(S)− ν(S) ≥ εj .

Since S 6∈ F , there exists v ∈ S such that {v} 6∈ F . Let M be a maximum w-weight matching on G[S], i.e.
w(M) = ν(S). Either v ∈ S\V (M) or v ∈ V (M). We proceed by case distinction.

Case 1: v ∈ S\V (M). Since x ≥ 0 we have x(S) ≥ x(V (M) ∪ {v}), and it suffices to prove that the

right-hand side exceeds the weight of M by at least εj . By assumption, x ∈ P j(εj) ⊆ P 1(ε1) = P1(ε1), and
hence

excess(x,M) ≥ ε1. (3)

Together with x(v) ≥ εj − ε1 this yields the desired inequality.
Case 2: v ∈ V (M). The same argument as before applies if there is u ∈ S\V (M) with {u} 6∈ F . There-

fore, we focus on the case where {u} ∈ F for all u ∈ S\V (M). Then M contains an edge f such that f 6∈ F .
Again using x ≥ 0, it suffices to show that x(V (M)) ≥ εj . We further distinguish cases: either f ∈M ∩ E+

or f ∈M\E+.
Case 2a: f ∈M ∩E+. Here, the desired inequality follows from excess(x,M\{f}) ≥ ε1 due to x ∈ P1(ε1)

and from excess(x, f) ≥ εj − ε1.
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Case 2b: f ∈ M\E+. If M ∩ E+ has an edge that is not in F then we use the same argument as in
Case 2a. So we may assume that all of the edges in M ∩E+ are in F . Now recall that x ∈ P1(ε1), and hence
excess(x, e) ≥ 0 for all e ∈ E+ by Lemma 5.(ii). Thus, we may assume that V (M) 6∈ F and M ∩ E+ = ∅.

For each i ∈ [k] choose some node ui ∈ S∗i exposed by M . By Lemma 4 there exists M̂ ∈Muni such that

M̂ exposes precisely u1, . . . , uk on L. Thus V (M) ⊆ V (M̂) and we see

x(M)− x(M̂) = x(V (M̂)\V (M)) =

k∑
i=1

x((V (M̂)\V (M)) ∩ S∗i ).

Since V (M) 6∈ F , and V (M̂) ∈ F this equation implies that there exists i ∈ [k] such that |M∩E(S∗i )| < |S∗i |−1
2

and (V (M̂)\V (M))∩S∗i 6∈ F . So there exists v ∈ V (M̂)∩S∗i such that {v} 6∈ F . Since diff(x, v) = diff(x, v∗i ),
we have that {v∗i } 6∈ F . By Lemma 6, applied to x, there exists M ′ ⊆ M∗ such that |M ′ ∩ E(S∗i )| =
|M ∩E(S∗i )| < |M∗∩E(S∗i )| and excess(x,M) ≥ excess(x,M ′). Note, that since |M ′∩E(S∗i )| = |M ∩E(S∗i )|,
V (M) ⊆ ∪ki=1S

∗
i and V (M) 6∈ F , we have V (M ′) 6∈ F . Choose e ∈ M∗\M ′, e 6∈ F , then we have e ∈

M∗\M ′ ⊆ E∗. Hence,

excess(x,M) ≥ excess(x,M ′) = excess(x,M∗)−excess(x, e)−excess(x,M∗\(M ′∪{e})) ≥ ε1−(ε1−εj) = εj ,

where the last inequality follows since excess(x,M∗\(M ′ ∪ {e})) ≤ 0 and x ∈ P j(εj), e ∈ E∗\F . �

With Theorem 3 we can replace each linear program (Pj) with (P j) in Maschler’s Scheme. Since the universal
allocation x∗, the node sets S∗i , i ∈ [k], the edge set E+, and the edge set E∗ can all be computed in polynomial
time, we have shown that the nucleolus of any cooperative matching game with empty core can be computed
in polynomial time. Therefore we have shown Theorem 1.

Open Questions Matching Games generalize naturally to b-matching games, where instead the underlying
optimization problem is to find an edge subset M with |M∩δ(v)| ≤ bv for each node v. Biro, Kern, Paulusma,
and Wojuteczky [4] showed that the core-separation problem when bv > 2 for some vertex v, is coNP-Hard.
Despite this, the complexity of computing the nucleolus of these games is open.

Our algorithm relies heavily on the ellipsoid method. When the core is non-empty, there is a combinatorial
algorithm for finding the nucleolus [3]. It would be interesting to develop a combinatorial algorithm for
nucleolus computation of matching games in general.

Acknowledgements. The authors thank Umang Bhaskar, Daniel Dadush, and Linda Farczadi for stimulating
and insightful discussions related to this paper.
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Appendix

A Omitted Proofs

Proof. (Of Lemma 1) LetMx denote the set of x-tight matchings for some x ∈ P1(ε1). That isMx := {M ∈
M : excess(x,M) = ε1}. We claim that there exists x∗ ∈ P1(ε1) such that

Mx∗ =
⋂

x∈P1(ε1)

Mx .

Let x∗ ∈ P1(ε1) be chosen to minimize |Mx∗ |. Suppose for a contradiction that x∗ is not universal. Then
there exists x ∈ P1(ε1) and M ∈ Mx∗\Mx. Let x̄ := 1

2 (x∗ + x). Since P1(ε1) is a convex set, x̄ ∈ P1(ε1).

Furthermore, Mx̄ =Mx∗ ∩Mx, thus Mx̄ ⊆Mx∗\{M} contradicting the minimality of |Mx∗ |. �

Optimal Matchings of Restricted Cardinality It is well-known[46], that for any t ∈ N and for any graph H,
conv{M ∈M(H) : |M | = t} has the following linear description:

Pt(H) := {x ∈ RE :

x(δ(v)) ≤ 1 for all v ∈ V (H)

x(E(U)) ≤ |U | − 1

2
for all U ∈ O(H)

x(E(H)) = t

x ≥ 0}.

For any given c ∈ RE(H) we denote by P c
t (H) the set of vertices x of the above polytope maximizing cTx,

i.e. the optimal solutions to the linear program max{cTx : x ∈ Pt(H)}. The dual to this linear optimization
problem is to minimize ∑

v∈V (H)

yv +
∑

U∈O(H)

|U | − 1

2
zU + tγ

where (y, z, γ) is in Dt,c(H) defined as follows:

Dt,c(H) := {(y, z, γ) ∈ RV (H) × RO(H) × R :

yu + yv + γ +
∑

U∈O:uv⊆U

zU ≥ c(uv) for all uv ∈ E(H)

y, z ≥ 0}.

Let Dc
t (H) denote the set of optimal solutions to min{

∑
v∈V (H) yv +

∑
U∈O(H)

|U |−1
2 zU + tγ : (y, z, γ) ∈

Dt,c(H)}.

Lemma 7. Suppose 2 ≤ t ≤
⌊
|V (H)|

2

⌋
. Let x ∈ P c

t (H) and (y, z, γ) ∈ Dc
t (H). If the support of z is laminar

and y = 0 then there exists e ∈ supp(x) such that

x− χ(e) ∈ P c
t−1(H)

and there exists (0, z′, γ′) ∈ Dc
t−1(H) with the support of z′ laminar.

Proof. Let L = supp(z) be the laminar family defined by the support of z. Let S1, . . . , S` ∈ L be the top
level sets of L (i.e. containment maximal sets), ordered so that

0 < zS1 ≤ zS2 ≤ · · · ≤ zS`
.

Since y = 0, if there exists e ∈ supp(x)∩ (E(H)\
⋃

i∈[`]E(Si)) then by complementary slackness, x− χ(e) ∈
P c
t−1(H) and (0, z, γ) ∈ Dc

t−1(H). Thus we may assume that x(uv) = 0 for all uv ∈ E(H)\
⋃

i∈[`]E(Si). Let
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uv ∈ E(S1) such that xuv = 1 and S1 is a minimal set in L containing uv. Complementary slackness assures
us that such uv exists. Let x′ = x− χ(uv). Define z′ ∈ RO(H) as follows

z′U =

{
zU − zS1

, if U = Si for some i ∈ [`]

zU , otherwise.

Define γ′ = γ+ zS1 . We will show x′ ∈ P c
t−1(H) and (0, z′, γ′) ∈ Dc

t−1(H). First we verify feasibility. Indeed,
since x is a matching with t edges, x′ is a matching with t − 1 edges and primal feasibility is satisfied. For
dual feasibility, observe by our choice of S1 that z′ ≥ 0, and for any edge uv ∈

⋃
i∈[`]E(Si) the net effect on

the left hand side of the dual constraint associated with e is 0. For uv ∈ E(H)\
⋃

i∈[`]E(Si), the left hand
side of the dual constraint associated with e increased by zS1

.

Clearly since supp(z) is laminar, and supp(z′) = supp(z)\{S1}, we have that supp(z′) is laminar. It remains
to verify optimality, which we will show via complementary slackness. Consider some uv ∈ E(H) for which
x′uv > 0. Then uv ∈ E(Si) for exactly one i. Hence

γ′ +
∑

U∈O(G):uv⊆U

z′U = γ + zS1 + (−zS1) +
∑

U∈O(G):uv⊆U

zU = c(uv)

where the last equality follows from complementary slackness for x and (0, z, γ). Lastly, let U ∈ L such that
z′U > 0. By our choice of z′, U 6= S1 and so

x′(E(U)) = x(E(U)) =
|U | − 1

2

where the last equality follows from complementary slackness for x and (0, z, γ). �

Proof. (Of Lemma 6) Let i ∈ [k] and let H = G[S∗i ]. Let t = |M∗ ∩ E(H)|, and let c ∈ RE(H) be defined
by c(uv) = w(uv)− x(uv) for all uv ∈ E(H). Let (y, z, γ) ∈ Dc

t (H). Since cTχ(M) = − excess(x,M) for all
M ∈ M(H), by Lemma 3 and complementary slackness, we have y = 0. Now we use standard uncrossing
techniques (see for ex. [37, Pages 141-150]) to obtain (0, z, γ) ∈ Dc

t (H) with supp(z) laminar. Note that
M∗ ∩ E(H) is in P c

t (H), otherwise we can replace M∗ ∩ E(H), within H, with an optimal matching in
P c
t (H) to obtain a matching with lower excess than M∗, contradicting the universal tightness of M∗. Apply

Lemma 7 inductively to obtain M ′i ⊆M∗∩E(H) such that χ(M ′i) ∈ P c
|M ′∩E(H)|(H). Since all S∗i are disjoint,

the matching M ′ =
⋃

i∈[k]M
′
i is the desired matching. �

B Example of a Matching Game With Empty Core

Consider the example in Fig. 1. This graph G = (V,E) is a 5-cycle with two adjacent edges 15 and 12 of
weight 2, and the remaining three edges of weight 1. Since the maximum weight matching value is ν(G) = 3,
but the maximum weight fractional matching value is 7

2 , the core of this game is empty. The allocation x∗

defined by x∗(1) = 7
5 and x∗(2) = x∗(3) = x∗(4) = x∗(5) = 2

5 lies in the leastcore. Each edge has the same
excess, − 1

5 , and any coalition of four vertices yields a minimum excess coalition with excess − 2
5 . Hence the

leastcore value of this game is ε1 = − 2
5 .

Fig. 1. Matching Game with
Empty Core

In fact, we can see that x∗ is the nucleolus of this game. To certify this we
can use the result of Schmeidler [45] that the nucleolus lies in the intersection
of the leastcore and the prekernel. For this example, the prekernel condition
that for all i 6= j ∈ V ,

max
S⊆V \{j}

x(S ∪ {i})− ν(S ∪ {i}) = max
S⊆V \{i}

x(S ∪ {j})− ν(S ∪ {j})

reduces to the condition that the excess values of non-adjacent edges are equal.
Since G is an odd cycle, this implies that all edges has equal excess, i.e.

excess(x, 12) = excess(x, 23) = excess(x, 34) = excess(x, 45) = excess(x, 15).

Combining the four equations above with the leastcore condition that x(V ) =
ν(G) we obtain a system of equations with the unique solution x∗. Hence the in-
tersection of the leastcore and prekernel is precisely {x∗}, and so by Schmeidler,
x∗ is the nucleolus.
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