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Abstract

The correspondence between the monotonicity of a (possibly) set-valued op-
erator and the firm nonexpansiveness of its resolvent is a key ingredient in the
convergence analysis of many optimization algorithms. Firmly nonexpansive
operators form a proper subclass of the more general – but still pleasant from
an algorithmic perspective – class of averaged operators. In this paper, we intro-
duce the new notion of conically nonexpansive operators which generalize non-
expansive mappings. We characterize averaged operators as being resolvents of
comonotone operators under appropriate scaling. As a consequence, we char-
acterize the proximal point mappings associated with hypoconvex functions as
cocoercive operators, or equivalently; as displacement mappings of conically
nonexpansive operators. Several examples illustrate our analysis and demon-
strate tightness of our results.
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1 Introduction

In this paper, we assume that

X is a real Hilbert space,

with inner product 〈·, ·〉 and induced norm ‖·‖. Monotone operators form a beauti-
ful class of operators that play a crucial role in modern optimization. This class in-
cludes subdifferential operators of proper lower semicontinuous convex functions
as well as matrices with positive semidefinite symmetric part. (For detailed dis-
cussions on monotone operators and the connection to optimization problems, we
refer the reader to [2], [5], [6], [7], [10], [11], [20], [25], [26], [27], [31], [32], and the
references therein.)

The correspondence between the maximal monotonicity of an operator and the
firm nonexpansiveness of its resolvent is of central importance from an algorithmic
perspective: to find a critical point of the former, iterate the later!

Indeed, firmly nonexpansive operators belong to the more general and pleasant
class of averaged operators. Let x0 ∈ X and let T : X → X be averaged. Thanks
to the Krasnosel’skiı̆–Mann iteration (see [17], [18] and also [2, Theorem 5.14]), the
sequence (Tnx0)n∈N converges weakly to a fixed point of T. When T is the proximal
mapping associated with a proper lower semicontinuous convex function f , the set
of fixed points of T is the set of critical point of f ; equivalently the set of minimizers
of f . In fact, iterating T is this case produces the famous proximal point algorithm,
see [24]. The main goal of this paper is to answer the question: Can we explore a new
correspondence between a set-valued operator and its resolvent which generalizes the funda-
mental correspondence between monotone operators and firmly nonexpansive mappings (see
Fact 2.1)? Our approach relies on the new notion of conically nonexpansive operators as
well as the notions of ρ-monotonicity (respectively ρ-comonotonicity) which, depending on
the value of ρ, reduce to strong monotonicity, monotonicity or hypomonotonicity (respec-
tively cocoercivity, monotonicity or cohypomonotonicity).

Although some correspondences between a monotone operator (ρ ≥ 0) and its
resolvent have been established in [3], our analysis here not only provides more
quantifications and but also goes beyond monotone operators. We now summarize
the three main results of this paper:

R1 We show that, when ρ > −1, the resolvent of a ρ-monotone operator as well
as the resolvent of its inverse are single-valued and have full domain. This
allows us to extend the classical theorem by Minty (see Fact 2.2) to this class of
operators (see Theorem 2.16).
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R2 We characterize conically nonexpansive operators (respectively averaged op-
erators and nonexpansive operators) to be resolvents of ρ-comonotone opera-
tors with ρ > −1 (respectively ρ > − 1

2 and ρ ≥ − 1
2) (see Corollary 3.10 and

also Table 1).

R3 As a consequence of R2, we obtain a novel characterization of the proximal
point mapping associated with a hypoconvex function1 (under appropriate scal-
ing of the function) to be a conically nonexpansive mapping, or equivalently,
the displacement mapping of a cocoercive operator (see Theorem 6.4).

The remainder of this paper is organized as follows. Section 2 is devoted to the
study of the properties of ρ-monotone and ρ-comonotone operators. In Section 3,
we provide a characterization of averaged operators as resolvents of ρ-comonotone
operators. Section 4 provides useful correspondences between an operators and its
resolvent as well as its reflected resolvent. In Section 5, we focus on ρ-monotone and
ρ-comonotone linear operators. In the final Section 6, we establish the connection to
hypoconvex functions.

The notation we use is standard and follows, e.g., [2] or [25].

2 ρ-monotone and ρ-comonotone operators

Let A : X ⇒ X. Recall that the resolvent of A is JA = (Id+A)−1 and the reflected
resolvent of A is RA = 2JA − Id, where Id : X → X : x 7→ x. The graph of A is
gra A =

{

(x, u) ∈ X × X
∣

∣ u ∈ Ax
}

. Let T : X → X and let α ∈ ]0, 1[. Recall that

(i) T is nonexpansive if (∀(x, y) ∈ X × X) ‖Tx − Ty‖ ≤ ‖x − y‖.

(ii) T is α-averaged if there exists a nonexpansive operator N : X → X such that
T = (1 − α) Id+αN; equivalently, (∀(x, y) ∈ X × X) we have

(1 − α)‖(Id−T)x − (Id−Ty)‖2 ≤ α(‖x − y‖2 − ‖Tx − Ty‖2). (1)

(iii) T is firmly nonexpansive if T is 1
2 -averaged. Equivalently, if (∀(x, y) ∈ X × X)

‖Tx − Ty‖2 + ‖(Id−T)x − (Id−T)y‖2 ≤ ‖x − y‖2.

We begin this section by stating the following two useful facts.

Fact 2.1. (see, e.g., [13, Theorem 2]) Let D be a nonempty subset of X, let T : D → X,
and set A = T−1 − Id. Then T = JA. Moreover, the following hold:

1This is also known as weakly convex function.
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(i) T is firmly nonexpansive if and only if A is monotone.

(ii) T is firmly nonexpansive and D = X if and only if A is maximally monotone.

Fact 2.2 (Minty’s Theorem). [19] (see also [2, Theorem 21.1]) Let A : X ⇒ X be mono-
tone. Then

gra A =
{

(JAx, (Id−JA)x)
∣

∣ x ∈ ran(Id+A)
}

. (2)

Moreover,
A is maximally monotone ⇔ ran(Id+A) = X. (3)

Definition 2.3. Let A : X ⇒ X and let ρ ∈ R. Then

(i) A is ρ-monotone if (∀(x, u) ∈ gra A) (∀(y, v) ∈ gra A) we have

〈x − y, u − v〉 ≥ ρ‖x − y‖2. (4)

(ii) A is maximally ρ-monotone if A is ρ-monotone and there is no ρ-monotone operator
B : X ⇒ X such that gra B properly contains gra A, i.e., for every (x, u) ∈ X × X,

(x, u) ∈ gra A ⇔ (∀(y, v) ∈ gra A) 〈x − y, u − v〉 ≥ ρ‖x − y‖2. (5)

(iii) A is ρ-comonotone if (∀(x, u) ∈ gra A) (∀(y, v) ∈ gra A) we have

〈x − y, u − v〉 ≥ ρ‖u − v‖2. (6)

(iv) A is maximally ρ-comonotone if A is ρ-comonotone and there is no ρ-comonotone
operator B : X ⇒ X such that gra B properly contains gra A, i.e., for every (x, u) ∈
X × X,

(x, u) ∈ gra A ⇔ (∀(y, v) ∈ gra A) 〈x − y, u − v〉 ≥ ρ‖u − v‖2. (7)

Some comments are in order.

Remark 2.4.

(i) When ρ = 0, both ρ-monotonicity of A and ρ-comonotonicity of A reduce to the
monotonicity of A; equivalently to the monotonicity of A−1.

(ii) When ρ < 0, ρ-monotonicity is known as ρ-hypomonotonicity, see [25, Exam-
ple 12.28] and [7, Definition 6.9.1]. In this case, the ρ-comonotonicity is also known
as ρ-cohypomonotonicity (see [12, Definition 2.2]).

(iii) In passing, we point out that when ρ > 0, ρ-monotonicity of A reduces to ρ-strong
monotonicity of A, while ρ-comonotonicity of A reduces to ρ-cocoercivity2 of A.

2Let β > 0 and let T : X → X. Recall that T is β-cocoercive if βT is firmly nonexpansive, i.e.,
(∀(x, y) ∈ X × X) 〈x − y, Tx − Ty〉 ≥ β‖Tx − Ty‖2.
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Unlike classical monotonicity, ρ-comonotonicity of A is not equivalent to ρ-
comonotonicity of A−1. Instead, we have the following correspondences.

Lemma 2.5. Let A : X ⇒ X and let ρ ∈ R. The following are equivalent:

(i) A is ρ-comonotone.

(ii) A−1 − ρ Id is monotone.

(iii) A−1 is ρ-monotone, i.e., (∀(x, u) ∈ gra A−1) (∀(y, v) ∈ gra A−1) 〈x − y, u− v〉 ≥
ρ‖x − y‖2.

Proof. “(i)⇒(ii)”: Let {(x, u), (y, v)} ⊆ X × X. Then {(x, u), (y, v)} ⊆ gra(A−1 −
ρ Id) ⇔ [u ∈ A−1x − ρx and v ∈ A−1y − ρy] ⇔ {(x, u + ρx), (y, v + ρy)} ⊆ gra A−1

⇔ {(u + ρx, x), (v + ρy, y)} ⊆ gra A ⇒ 〈x − y, u − v + ρ(x − y)〉 ≥ ρ‖x − y‖2 ⇔
ρ‖x − y‖2 + 〈x − y, u − v〉 ≥ ρ‖x − y‖2 ⇔ 〈u − v, x − y〉 ≥ 0.

“(ii)⇒(iii)”: Let {(x, u), (y, v)} ⊆ gra A−1. Then {(x, u − ρx), (y, v − ρy)} ⊆
gra(A−1 − ρ Id). Hence 〈x − y, u − v − ρ(x − y)〉 ≥ 0; equivalently 〈x − y, u − v〉 ≥
ρ‖x − y‖2.

“(iii)⇒(i)”: Let {(x, u), (y, v)} ⊆ X × X. Then {(x, u), (y, v)} ⊆ gra A ⇔
{(u, x), (v, y)} ⊆ gra A−1 ⇒ 〈x − y, u − v〉 ≥ ρ‖u − v‖2. �

Lemma 2.6. Let A : X ⇒ X and let ρ ∈ R. Then the following hold:

(i) gra A =
{

(u + ρx, x)
∣

∣ (x, u) ∈ gra(A−1 − ρ Id)
}

.

(ii) gra(A−1 − ρ Id) =
{

(u, x − ρu)
∣

∣ (x, u) ∈ gra A
}

.

Proof. (i): Let (x, u) ∈ X × X. Then (x, u) ∈ gra(A−1 − ρ Id) ⇔ u ∈ A−1x − ρx ⇔
u + ρx ∈ A−1x ⇔ x ∈ A(u + ρx) ⇔ (u + ρx, x) ∈ gra A. This proves “⊇” in (i). The
opposite inclusion can be proved similarly. (ii): The proof proceeds similar to that
of (i). �

Lemma 2.7. Let A : X ⇒ X and let ρ ∈ R. The following are equivalent:

(i) A is maximally ρ-comonotone.

(ii) A−1 − ρ Id is maximally monotone.

Proof. Note that Lemma 2.5 implies that A is ρ-comonotone ⇔ A−1 − ρ Id is
monotone. “(i)⇒(ii)”: Let (y, v) ∈ X × X. Then (y, v) is monotonically re-
lated to gra(A−1 − ρ Id) ⇔ (∀(x, u) ∈ gra(A−1 − ρ Id)) 〈x − y, u − v〉 ≥ 0 ⇔
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(∀(x, u) ∈ gra(A−1 − ρ Id)) 〈x − y, u − v〉 + ρ‖x − y‖2 ≥ ρ‖x − y‖2 ⇔ (∀(x, u) ∈
gra(A−1 − ρ Id)) 〈x − y, u + ρx − (v + ρy)〉 ≥ ρ‖x − y‖2. Because the last inequal-
ity holds for all (x, u) ∈ gra(A−1 − ρ Id), the parametrization of gra A given in
Lemma 2.6(i) and the maximal ρ-comonotonicity of A imply that (v + ρy, y) ∈ gra A.
Therefore, by Lemma 2.6(ii), (y, v) ∈ gra(A−1 − ρ Id).

“(ii)⇒(i)”: Let (y, v) ∈ X × X. Then (y, v) is ρ-comonotonically related to gra A
⇔ (∀(x, u) ∈ gra A) 〈x − y, u − v〉 ≥ ρ‖u − v‖2 ⇔ (∀(x, u) ∈ gra A) 〈x − ρu −
(y − ρv), u − v〉 ≥ 0. It follows from Lemma 2.6(ii) and the maximal monotonicity
of A−1 − ρ Id that (v, y − ρv) ∈ gra(A−1 − ρ Id), equivalently, using Lemma 2.6(i),
(y, v) ∈ gra A. �

Remark 2.8. Note that when ρ < 0, the (maximal) monotonicity of A−1 − ρ Id is equiv-
alent to the (maximal) monotonicity of the Yosida approximation (A−1 − ρ Id)−1. Such a
characterization is presented in [7, Proposition 6.9.3].

Proposition 2.9. Let A : X ⇒ X be maximally ρ-comonotone where ρ > −1. Then
ran(Id+A−1) = X.

Proof. By Lemma 2.7, A−1 − ρ Id is maximally monotone. Consequently, because
1 + ρ > 0, the operator 1

1+ρ(A−1 − ρ Id) is maximally monotone. Applying (3) to
1

1+ρ(A−1 − ρ Id) we have ran(Id+A−1) = ran((1 + ρ) Id+(A−1 − ρ Id)) = (1 +

ρ) ran(Id+ 1
1+ρ(A−1 − ρ Id)) = (1 + ρ)X = X. �

Proposition 2.10. Let A : X ⇒ X. Then the following hold:

(i) JA−1 = Id−JA.

(ii) ran(Id+A−1) = dom(Id−JA) = ran(Id+A).

Proof. (i): This follows from [2, Proposition 23.7(ii) and Definition 23.1]. (ii): Using
(i), we have ran(Id+A−1) = dom(Id+A−1)−1 = dom JA−1 = dom(Id−JA) =
(dom Id) ∩ (dom JA) = dom JA = ran(Id+A). �

Corollary 2.11 (surjectivity of Id+A and Id+A−1). Let A : X ⇒ X be maximally
ρ-comonotone where ρ > −1. Then

dom JA = ran(Id+A) = X, (8)

and
dom(Id−JA) = ran(Id+A−1) = X. (9)

Proof. Combine Proposition 2.9 and Proposition 2.10(i)&(ii). �
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Proposition 2.12 (single-valuedness of the resolvent). Let A : X ⇒ X be ρ-
comonotone where ρ > −1. Then JA = (Id+A)−1 and JA−1 = Id−JA are at most
single-valued.

Proof. Let x ∈ dom JA = ran(Id+A) and let (u, v) ∈ X × X. Then {u, v} ⊆ JAx
⇔ [x − u ∈ Au and x − v ∈ Av] ⇒ 〈(x − u) − (x − v), u − v〉 ≥ ρ‖u − v‖2 ⇔
−‖u − v‖2 ≥ ρ‖u − v‖2. Since ρ > −1, the last inequality implies that u = v. Now
combine with Proposition 2.10(i). �

Corollary 2.13 (See also [23, Proposition 3.4]). Let A : X ⇒ X be maximally ρ-
comonotone where ρ > −1. Then JA = (Id+A)−1 and JA−1 = Id−JA are single-valued
and dom JA = dom JA−1 = X.

In Example 2.14 below, we illustrate that the assumption that ρ > −1 is critical in
the conclusion of Corollary 2.11 and Proposition 2.12.

Example 2.14. Suppose that X 6= {0}. Let C be a nonempty closed convex subset of X,
let r ∈ R+, set B = − Id−rPC, set A = B−1 and set ρ = −(1 + r) ≤ −1. Then the
following hold:

(i) B − ρ Id is maximally monotone.

(ii) A is maximally ρ-comonotone.

(iii) ran(Id+A) = ran(Id+A−1) = (ρ + 1)C = −rC.

(iv) Id+A is surjective ⇔ [C = X and r > 0].

(v) JA is at most single-valued ⇔ JA−1 is at most single-valued ⇔ [C = X and r > 0].

Proof. (i): Indeed, B − ρ Id = − Id−rPC + (1 + r) Id = r(Id−PC). It follows from [2,
Example 23.4 & Proposition 23.11(i)] that Id−PC is maximally monotone. Because
r ≥ 0, the operator B − ρ Id = r(Id−PC) is maximally monotone as well.

(ii): Combine (i) and Lemma 2.7.

(iii): The first identity is Proposition 2.10(ii). Now ran(Id+A−1) = ran(Id+B) =
ran(−rPC) = −r ran PC = −rC = (ρ + 1)C.

(iv): This is a direct consequence of (iii).

(v): The first equivalence follows from Proposition 2.10(i). Note that [r = 0 or C =
{0}] ⇔ rC = {0} ⇔ rPC ≡ 0 ⇔ B = − Id ⇔ gra JA−1 = gra JB = {0} × X. Now
suppose that r > 0. Then JA−1 = JB = (Id+B)−1 = (−rPC)

−1 = (Id+NC) ◦
(−r−1 Id) which is at most single-valued ⇔ C = X, by e.g., [2, Theorem 7.4]. �
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Proposition 2.15. Let A : X ⇒ X be ρ-comonotone, where ρ > −1, and such that
ran(Id+A) = X. Then A is maximally ρ-comonotone.

Proof. Let (x, u) ∈ X × X such that (∀(y, v) ∈ gra A)

〈x − y, u − v〉 ≥ ρ‖u − v‖2. (10)

It follows from the surjectivity of Id+A that there exists (y, v) ∈ X × X such that
v ∈ Ay and x + u = y + v ∈ (Id+A)y. Consequently, (10) implies that ρ‖u − v‖2 ≤
〈x − y, u − v〉 = 〈−(u − v), u − v〉 = −‖u − v‖2. Hence, because ρ > −1, we have
u = v and thus x = y which proves the maximality of A. �

Theorem 2.16 (Minty parametrization). Let A : X ⇒ X be ρ-comonotone where ρ >

−1. Then
gra A =

{

(JAx, (Id−JA)x)
∣

∣ x ∈ ran(Id+A)
}

. (11)

Moreover, A is maximally ρ-comonotone ⇔ ran(Id+A) = X, in which case

gra A =
{

(JAx, (Id−JA)x)
∣

∣ x ∈ X
}

. (12)

Proof. Let (x, u) ∈ X × X. In view of Proposition 2.12 we have (x, u) ∈ gra A⇔
u ∈ Ax ⇔ x + u ∈ x + Ax = (Id+A)x ⇔ x = JA(x + u) ⇔ [z := x + u ∈
ran(Id+A), x = JAz and u = x + u − x = x + u − JA(x + u) = (Id−JA)z]. The
equivalence of maximal ρ-comonotonicity of A and the surjectivity of Id+A follows
from combining Corollary 2.11 and Proposition 2.15. �

Corollary 2.17. Suppose that A : X ⇒ X is maximally ρ-comonotone where ρ > −1 and
let (x, u) ∈ X × X. Then the following hold:

(i) (x, u) ∈ gra JA ⇔ (u, x − u) ∈ gra A.

(ii) (x, u) ∈ gra RA ⇔
(

1
2(x + u), 1

2(x − u)
)

∈ gra A.

Proof. Let (x, u) ∈ X × X and note that in view of Proposition 2.12 and Theorem 2.16
JA : X → X and consequently RA : X → X are single-valued.

(i): We have (x, u) ∈ gra JA ⇔ u = JAx ⇔ x − u = (Id−JA)x. Now use
Theorem 2.16.

(ii): We have (x, u) ∈ gra RA ⇔ u = RAx = 2JAx − x ⇔ x + u = 2JAx ⇔ JAx =
1
2(x + u) ⇔ x − JAx = x − 1

2(x + u) = 1
2(x − u) ⇔ (1

2(x + u), 1
2(x − u)) ∈ gra A,

where the last equivalence follows from Theorem 2.16. �
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3 ρ-comonotonicity and averagedness

We start this section with the following definition.

Definition 3.1. Let T : X → X and let α ∈ ]0,+∞[. Then T is α-conically nonexpansive
if there exists a nonexpansive operator N : X → X such that T = (1 − α) Id+αN.

Remark 3.2. In view of Definition 3.1, it is clear that T is α-averaged if and only if [T
α-conically nonexpansive and α ∈ ]0, 1[]. Similarly, T is nonexpansive if and only if T
1-conically nonexpansive.

The proofs of the next two results are straightforward and hence omitted.

Lemma 3.3. Let T : X → X and let α ∈ ]0,+∞[. Then

T is α-conically nonexpansive ⇔ Id−T is 1
2α -cocoercive. (13)

Lemma 3.4. Let D be a nonempty subset of X, let T : D → X, let N : D → X, let α ∈
[1,+∞[ and set T = (1 − α) Id+αN. Suppose that N : D → X is nonexpansive. Then
(∀(x, y) ∈ D × D) we have

‖Tx − Ty‖ ≤ (2α − 1)‖x − y‖, (14)

i.e., T is Lipschitz with constant 2α − 1.

One can directly verify the following result.

Lemma 3.5. Let (x, y) ∈ X × X and let α ∈ R. Then

α2‖x‖2 − ‖(α − 1)x + y‖2 = 2α〈x − y, y〉 − (1 − 2α)‖x − y‖2. (15)

Lemma 3.6. Let D be a nonempty subset of X, let N : D → X, let α ∈ R and set T =
(1 − α) Id+αN. Then N is nonexpansive if and only if (∀(x, y) ∈ D × D) we have

2α〈Tx − Ty, (Id−T)x − (Id−T)y〉 ≥ (1 − 2α)‖(Id−T)x − (Id−T)y‖2. (16)

Proof. Let (x, y) ∈ D × D. Applying Lemma 3.5 with (x, y) replaced by (x − y, Tx −
Ty), we learn that

2α〈Tx − Ty, (Id−T)x − (Id−T)y〉 − (1 − 2α)‖(Id−T)x − (Id−T)y‖2 (17a)

= α2‖x − y‖2 − ‖(α − 1)(x − y) + (1 − α)(x − y) + α(Nx − Ny)‖2 (17b)

= α2
(

‖x − y‖2 − ‖Nx − Ny‖2
)

. (17c)

Now N is nonexpansive ⇔ ‖x − y‖2 − ‖Nx − Ny‖2 ≥ 0 and the conclusion directly
follows. �

We now provide new characterizations of averaged and nonexpansive operators.
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Corollary 3.7. Let D be a nonempty subset of X, let T : D → X, let α ∈ ]0,+∞[ and let
(x, y) ∈ D × D. Then the following hold:

(i) T is nonexpansive ⇔ 2〈Tx − Ty, (Id−T)x − (Id−T)y〉 ≥ −‖(Id−T)x −
(Id−T)y‖2.

(ii) T is α-conically nonexpansive ⇔ 2α〈Tx − Ty, (Id−T)x − (Id−T)y〉 ≥ (1 −
2α)‖(Id−T)x − (Id−T)y‖2.

Proof. (i): Apply Lemma 3.6 with α = 1.

(ii): A direct consequence of Lemma 3.6. �

Proposition 3.8. Let D be a nonempty subset of X, let T : D → X, let α ∈ ]0,+∞[, set
A = T−1 − Id and set N = 1

α T − 1−α
α Id, i.e., T = JA = (1 − α) Id+αN. Then the

following hold:

(i) T is α-conically nonexpansive ⇔ N is nonexpansive ⇔ A is
(

1
2α − 1

)

-comonotone.

(ii) [T is α-conically nonexpansive and D = X] ⇔ [N is nonexpansive and D = X] ⇔
A is maximally

(

1
2α − 1

)

-comonotone.

Proof. (i): The first equivalence is Definition 3.1. We now turn to the sec-
ond equivalence. “⇒”: Let {(x, u), (y, v)} ⊆ gra A. Then (x, u) = (T(x +
u), (Id−T)(x + u)) and likewise (y, v) = (T(y+ v), (Id −T)(y+ v)). It follows from
Lemma 3.6 applied with (x, y) replaced by (x + u, y + v) that 2α〈x − y, u − v〉 ≥
(1 − 2α)‖u − v‖2. Since α > 0, the conclusion follows by dividing both sides
of the last inequality by 2α. “⇐”: Using Theorem 2.16, we learn that (∀(x, y) ∈
D × D) {(Tx, (Id−T)x), (Ty, (Id −T)y)} ⊆ gra A and hence 〈Tx − Ty, (Id−T)x −

(Id−T)y〉 ≥
(

1
2α − 1

)

‖(Id−T)x − (Id−T)y‖2. Thus 2α〈Tx − Ty, (Id−T)x −

(Id−T)y〉 ≥ (1 − 2α)‖(Id−T)x − (Id−T)y‖2. Now use Lemma 3.6.

(ii): Note that dom N = dom T = ran T−1 = ran(Id+A). Now combine (i) and
Theorem 2.16. �

Proposition 3.9. Let D be a nonempty subset of X, let T : D → X, let α ∈ ]0,+∞[, set
A = T−1 − Id, i.e., T = JA, and set ρ = 1

2α − 1 > −1. Then the following equivalences
hold:

(i) T is α-conically nonexpansive ⇔ A is ρ-comonotone.

(ii) [T is α-conically nonexpansive and D = X ] ⇔ A is maximally ρ-comonotone.
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(iii) T is nonexpansive ⇔ A is
(

− 1
2

)

-comonotone.

(iv) [T is nonexpansive and D = X ] ⇔ A is maximally
(

− 1
2

)

-comonotone.

If we assume that α ∈ ]0, 1[, equivalently, ρ > − 1
2 , then we additionally have:

(v) T is α-averaged ⇔ A is ρ-comonotone.

(vi) [T is α-averaged and D = X] ⇔ A is maximally ρ-monotone.

Proof. (i)&(ii): This follows from Proposition 3.8(i)&(ii). (iii)–(vi): Combine (i) and
(ii) with Remark 3.2. �

Corollary 3.10. (The characterization corollary). Let T : X → X. Then the following
hold:

(i) T is nonexpansive if and only if it is the resolvent of a maximally
(

− 1
2

)

-comonotone
operator A : X ⇒ X.

(ii) Let α ∈ ]0,+∞[. Then T is α-conically nonexpansive if and only if it is the resolvent
of a ρ-comonotone operator A : X ⇒ X, where ρ = 1

2α − 1 > −1
(

i.e., α = 1
2(ρ+1)

)

.

(iii) Let α ∈ ]0, 1[. Then T is α-averaged if and only if it is the resolvent of a ρ-comonotone
operator A : X ⇒ X where ρ = 1

2α − 1 > − 1
2 (i.e., α = 1

2(ρ+1)
).

Example 3.11. Suppose that U is a closed linear subspace of X and set N = 2PU − Id.
Let α ∈ [0,+∞[, set Tα = (1 − α) Id+αN, and set Aα = (Tα)−1 − Id. Then for every
α ∈ [0,+∞[, Tα is α-conically nonexpansive and

Aα =

{

NU, if α = 1
2 ;

2α
1−2α PU⊥ , otherwise.

(18)

Moreover, Aα is
(

1
2α − 1

)

-comonotone.

Proof. First note that Tα = (1 − α) Id+α(2PU − Id) = (1 − 2α) Id+2αPU . The case
α = 1

2 is clear by, e.g., [2, Example 23.4]. Now suppose that α ∈ [0,+∞[ r {1
2},

and let y ∈ X. Then y ∈ Aαx ⇔ x + y ∈ (Id+Aα)x ⇔ x = Tα(x + y) = (1 −
2α)(x + y) + 2αPU(x + y)⇔ x = x + y− 2α(Id−PU)(x + y)⇔ y = 2αPU⊥(x + y) =
2αPU⊥x + 2αPU⊥y = 2αPU⊥x + 2αy. Therefore, y = 2α

1−2α PU⊥x, and the conclusion
follows in view of Corollary 3.10(ii). �

Proposition 3.12. Let A : X ⇒ X be such that dom A 6= ∅, let ρ ∈ ]−1,+∞[, set
D = ran(Id+A), set T = JA, i.e., A = T−1 − Id, and set N = 2(ρ + 1)T − (2ρ + 1) Id,

i.e., T =
2ρ+1

2(ρ+1)
Id+ 1

2(ρ+1)
N. Then the following equivalences hold:
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(i) A is ρ-comonotone ⇔ N is nonexpansive.

(ii) A is maximally ρ-comonotone ⇔ N is nonexpansive and D = X.

Proof. (i): Set α = 1
2(ρ+1)

and note that α > 0. It follows from Proposition 2.12

that T = JA is single-valued. Now use Proposition 3.8(i). (ii): Combine (i) and
Proposition 3.8(ii). �

Proposition 3.13. Let A : X ⇒ X be such that dom A 6= ∅, let ρ ∈ ]−1,+∞[, set
D = ran(Id+A), set T = JA, i.e., A = T−1 − Id, and set α = 1

2(ρ+1)
. Then we have the

following equivalences:

(i) A is ρ-comonotone ⇔ T is 1
2(ρ+1)

-conically nonexpansive.

(ii) A is maximally ρ-comonotone ⇔ T is α-conically nonexpansive and D = X.

(iii) A is
(

− 1
2

)

-comonotone ⇔ T is nonexpansive.

(iv) A is maximally
(

− 1
2

)

-comonotone ⇔ T is nonexpansive and D = X.

(v) [A is ρ-comonotone and ρ > − 1
2] ⇔ T is α-averaged.

(vi) [A is maximally ρ-monotone and ρ > − 1
2 ] ⇔ [T is α-averaged and D = X].

Proof. (i)–(vi): Use Proposition 3.9. �

Corollary 3.14. Let A : X ⇒ X be maximally ρ-comonotone and ρ > − 1
2 . Then JA is

1
2(ρ+1)

-averaged.

The following corollary provides an alternative proof to [7, Proposition 6.9.6].

Corollary 3.15. Let A : X ⇒ X be maximally ρ-comonotone and ρ ≥ − 1
2 . Then zer A is

closed and convex.

Proof. It is clear that zer A = Fix JA. The conclusion now follows from combining [2,
Corollary 4.14] and Proposition 3.13(iv). �

Table 1 below summarizes the main results of this section.
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ρ A A−1 JA JA−1

0
ρ-cocoercive ⇔ ρ-strongly

monotone
⇔ 1

2(ρ+1)
-

conically nonexpansive

⇔ (ρ + 1)-cocoercive

0
monotone ⇔ monotone ⇔ firmly nonexpan-

sive
⇔ firmly nonexpan-

sive

0-0.5
ρ-
comonotone

⇔ ρ-
monotone

⇔ 1
2(ρ+1)

-averaged ⇔ (ρ + 1)-cocoercive

-0.5
ρ-
comonotone

⇔ ρ-
monotone

⇔ nonexpansive ⇔ 1
2 -cocoercive

-1 -0.5
ρ-
comonotone

⇔ ρ-
monotone

⇔ 1
2(ρ+1)

-

conically nonexpansive

⇔ (ρ + 1)-cocoercive

-1
ρ-
comonotone

⇔ ρ-
monotone

⇒ may fail to be at
most single-valued

⇔ may fail to be
at most single-
valued

Table 1: Properties of an operator A and its inverse A−1 along with the correspond-
ing resolvents JA and JA−1 respectively, for different values of ρ ∈ R. Here, A satis-
fies the implication: {(x, u), (y, v)} ⊆ gra A ⇒ 〈x − y, u − v〉 ≥ ρ‖u − v‖2.

4 Further properties of the resolvent JA and the re-

flected resolvent RA

We start this section with the following useful lemma.

Lemma 4.1. Let T : X → X, let α ∈ [0, 1[. Then the following hold:

(i) T is α-averaged ⇔ 2T− Id = (1− 2α) Id+2αN for some nonexpansive N : X → X.

(ii) [T = α
2 (Id+N) and N is nonexpansive] ⇔ −(2T − Id) is α-averaged3, in which

case T is a Banach contraction with Lipschitz constant α < 1.

(iii) T is 1
2-strongly monotone ⇔ 2T − Id is monotone.

Proof. (i): We have: T is α-averaged ⇔ [T = (1 − α) Id+αN and N is nonexpansive]
⇔ [2T − Id = (2 − 2α) Id+2αN − Id = (1 − 2α) Id+2αN and N is nonexpansive].

(ii): Indeed, [T = α
2 (Id+N) and N is nonexpansive] ⇔ 2T − Id = (α −

1) Id+αN = −((1 − α) Id+α(−N)), equivalently 2T − Id is α-negatively averaged.

(iii): We have: T is 1
2-strongly monotone ⇔ T − 1

2 Id is monotone ⇔ 2T − Id is
monotone. �

3This is also known as α-negatively averaged (see [14, Definition 3.7]).
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Before we proceed, we recall the following useful fact (see, e.g., [2, Proposi-
tion 4.35]).

Fact 4.2. Let T : X → X, let (x, y) ∈ X × X and let α ∈]0, 1[. Then

T is α- averaged ⇔ ‖Tx − Ty‖2 + (1 − 2α)‖x − y‖2 ≤ 2(1 − α)〈x − y, Tx − Ty〉.
(19)

Proposition 4.3. Let α ∈ ]0, 1[, let β ∈
]

− 1
2 ,+∞

[

, let A : X ⇒ X and suppose that A is
β-comonotone. Then the following hold:

(i) A is β-comonotone ⇔ JA is 1
2(1+β)

-averaged ⇔ RA =
(

1 − 1
1+β

)

Id+ 1
1+β N for

some nonexpansive N : X → X.

(ii) A is β-strongly monotone ⇔ [JA = 1
2(β+1)

(Id+N) and N is nonexpansive]⇔−RA

is 1
β+1-averaged, in which case JA is a Banach contraction with Lipschitz constant

1
β+1 < 1.

(iii) A is nonexpansive ⇔ JA is 1
2-strongly monotone ⇔ RA is monotone.

(iv) A is α-averaged ⇔ RA is 1−α
α -cocoercive.

(v) A is firmly nonexpansive ⇔ RA is firmly nonexpansive.

Proof. Let {(x, u), (y, v)} ⊆ X×X. Using Corollary 2.17(i), we have {(x, u), (y, v)} ⊆
gra JA ⇔ {(u, x − u), (v, y − v)} ⊆ gra A, which we shall use repeatedly.

(i): Let {(x, u), (y, v)} ⊆ gra JA. We have

A is β-comonotone

⇔ β‖(x − y)− (u − v)‖2 ≤ 〈(x − y)− (u − v), u − v〉 (20a)

⇔ β‖x − y‖2 + β‖u − v‖2 − 2β〈x − y, u − v〉 ≤ 〈x − y, u − v〉 − ‖u − v‖2 (20b)

⇔ β‖x − y‖2 + (β + 1)‖u − v‖2 ≤ (2β + 1)〈x − y, u − v〉 (20c)

⇔ ‖u − v‖2 +
β

β+1‖x − y‖2 ≤
2β+1
β+1 〈x − y, u − v〉 (20d)

⇔ ‖u − v‖2 +
(

1 − 1
β+1

)

‖x − y‖2 ≤ 2
(

1 − 1
2(β+1)

)

〈x − y, u − v〉 (20e)

⇔ JA is 1
2(β+1)

-averaged, (20f)

⇔ RA =
(

1 − 1
1+β

)

Id+ 1
1+β N for some nonexpansive N : X → X, (20g)

where the last two equivalences follow from Fact 4.2 and Lemma 4.1(i), respectively.

(ii): We start by proving the equivalence of the first and third statement. (see [14,
Proposition 5.4] for “⇒” and also [22, Proposition 2.1(iii)]). Let {(x, u), (y, v)} ⊆

14



gra(−RA), i.e., {(x,−u), (y,−v)} ⊆ gra RA. In view of Corollary 2.17(ii), this is
equivalent to {(1

2(x − u), 1
2(x + u)), (1

2 (y − v), 1
2(y + v))} ⊆ gra A. We have

A is β-strongly monotone

⇔ 〈(x − y) + (u − v), (x − y)− (u − v)〉 ≥ β‖(x − y)− (u − v)‖2 (21a)

⇔ ‖x − y‖2 − ‖u − v‖2 ≥ β‖x − y‖2 + β‖u − v‖2 − 2β〈x − y, u − v〉 (21b)

⇔ 2β〈x − y, u − v〉 ≥ (β − 1)‖x − y‖2 + (β + 1)‖u − v‖2 (21c)

⇔
2β

β+1〈x − y, u − v〉 ≥
β−1
β+1‖x − y‖2 + ‖u − v‖2 (21d)

⇔ 2
(

1 − 1
β+1

)

〈x − y, u − v〉 ≥
(

1 − 2
β+1

)

‖x − y‖2 + ‖u − v‖2 (21e)

⇔ − RA is 1
β+1-averaged, (21f)

where the last equivalence follows from Fact 4.2. Now apply Lemma 4.1(ii) to prove
the equivalence of the second and third statements in (ii).

(iii): Let {(x, u), (y, v)} ⊆ gra JA and note that Corollary 2.17(i) implies that x −
u ∈ Au, y − v ∈ Av, 2u − x ∈ (Id−A)u and 2v − y ∈ (Id−A)v. It follows from
Corollary 3.7(i) applied with (T, x, y) replaced by (A, u, v) that

A is nonexpansive ⇔ 〈(x − y)− (u − v), 2(u − v)− (x − y)〉

≥ − 1
2‖2(u − v)− (x − y)‖2 (22a)

⇔ − ‖x − y‖2 − 2‖u − v‖2 + 3〈x − y, u − v〉

≥ −2‖u − v‖2 − 1
2‖x − y‖2 + 2〈x − y, u − v〉 (22b)

⇔ 〈x − y, u − v〉 ≥ 1
2‖x − y‖2 (22c)

⇔ JA is 1
2-strongly monotone (22d)

⇔ RA is monotone, (22e)

where the last equivalence follows from Lemma 4.1(iii).

(iv): Let {(x, u), (y, v)} ⊆ X × X. Using Corollary 2.17 we have {(x, u), (y, v)} ⊆
gra RA⇔

{(

1
2(x+ u), 1

2(x − u)
)

,
(

1
2(y+ v), 1

2(y− v)
)}

⊆ gra A. Let {(x, u), (y, v)} ⊆

gra RA. Applying Corollary 3.7(ii) with (T, x, y) replaced by
(

A, 1
2(x + u), 1

2(y + v)
)

and Remark 3.2, we learn that

A is α-averaged ⇔ 2α〈1
2((x − y)− (u − v)), u − v〉 ≥ (1 − 2α)‖u − v‖2 (23a)

⇔ α〈x − y, u − v〉 − α‖u − v‖2 ≥ (1 − 2α)‖u − v‖2 (23b)

⇔ α
1−α〈x − y, u − v〉 ≥ ‖u − v‖2, (23c)

equivalently RA is 1−α
α -cocoercive. (v): Apply (iv) with α = 1

2 . �

Remark 4.4. Proposition 4.3(i) generalizes the conclusion of [14, Proposition 5.3]. Indeed,
if β > 0 we have A is β-cocoercive, equivalently RA is 1

β+1-averaged.
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5 ρ-monotone and ρ-comonotone linear operators

Let A ∈ R
n×n and set As =

A+AT

2 . In the following we use λmin(A) and λmax(A) to
denote the smallest and largest eigenvalue of A, respectively, provided all eigenval-
ues of A are real.

Proposition 5.1. Suppose that A ∈ R
n×n. Then the following hold:

(i) A is ρ-monotone ⇔ λmin(As) ≥ ρ.

(ii) A is ρ-comonotone ⇔ λmin(As − ρATA) ≥ 0.

Proof. Let x ∈ R
n. (i): A is ρ-monotone ⇔ 〈x, Ax〉 ≥ ρ‖x‖2 ⇔ 〈x, (A − ρ Id)x〉 ≥ 0

⇔ 〈x, (A − ρ Id)sx〉 ≥ 0 ⇔ 〈x, (As − ρ Id)x〉 ≥ 0 ⇔ As − ρ Id � 0 ⇔ As � ρ Id ⇔
λmin(As) ≥ ρ. (ii): A is ρ-comonotone ⇔ 〈x, Ax〉 ≥ ρ‖Ax‖2 ⇔ 〈x, (As − ρATA)x〉 ≥
0 ⇔ As − ρATA � 0 ⇔ λmin(As − ρATA) ≥ 0. �

Example 5.2. Suppose that N : X → X is continuous and linear such that N∗ = −N and
N2 = − Id. Then N is nonexpansive. Moreover, let λ ∈ [0, 1[, set Tλ = (1 − λ) Id+λN
and set Aλ = (Tλ)

−1 − Id. Then the following hold:

(i) We have
Aλ = λ

(1−λ)2+λ2

(

(1 − 2λ) Id−N
)

. (24)

(ii) Aλ is ρ-monotone with optimal ρ = λ(1−2λ)
λ2+(1−λ)2 .

(iii) Aλ is ρ-comonotone with optimal ρ = 1−2λ
2λ .

Proof. Let x ∈ X. Then ‖Nx‖2 = 〈Nx, Nx〉 = 〈x, N∗Nx〉 = 〈x,−N2x〉 = 〈x, x〉 =
‖x‖2. Hence N is nonexpansive; in fact, N is an isometry. Now set

Bλ = λ
(1−λ)2+λ2

(

(1 − 2λ) Id−N
)

. (25)

(i): We have

(Id+Bλ)Tλ =
(

Id+ λ
(1−λ)2+λ2

(

(1 − 2λ) Id−N
)

)

(

(1 − λ) Id+λN
)

(26a)

= 1
(1−λ)2+λ2

(

(1 − λ) Id−λN
)(

(1 − λ) Id+λN
)

(26b)

= 1
(1−λ)2+λ2

(

(1 − λ)2 Id−λ2N2
)

= Id . (26c)

Similarly, one can show that Tλ(Id+Bλ) = Id and the conclusion follows.
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(ii): Using (i), we have

〈x, Aλx〉 =
λ

(1 − λ)2 + λ2

(

(1 − 2λ)‖x‖2 − 〈Nx, x〉
)

(27a)

=
λ(1 − 2λ)

(1 − λ)2 + λ2
‖x‖2. (27b)

(iii): Using (i), we have

‖Aλx‖2 =
λ2

((1 − λ)2 + λ2)2

(

(1 − 2λ)2‖x‖2 + ‖Nx‖2
)

(28a)

=
λ2

((1 − λ)2 + λ2)2

(

(1 − 2λ)2 + 1
)

‖x‖2. (28b)

Therefore, combining with (27b) we obtain

〈x, Aλx〉 =
(1 − 2λ)((1 − λ)2 + λ2)

λ((1 − 2λ)2 + 1)
·

λ2((1 − 2λ)2 + 1)

((1 − λ)2 + λ2)2
‖x‖2 (29a)

=
(1 − 2λ)((1 − λ)2 + λ2)

λ((1 − 2λ)2 + 1)
‖Aλx‖2, (29b)

=
1 − 2λ

2λ
‖Aλx‖2, (29c)

and the conclusion follows. �

6 Hypoconvex functions

In this section, we apply results in the previous sections to characterize proximal
mappings of hypoconvex functions. We shall assume that f : X → ]−∞,+∞] is a
proper lower semicontinuous function minorized by a concave quadratic function:
∃ν ∈ R, β ∈ R, α ≥ 0 such that

(∀x ∈ X) f (x) ≥ −α‖x‖2 − β‖x‖+ ν.

For µ > 0, the Moreau envelope of f is defined by

eµ f (x) = inf
y∈X

(

f (y) +
1

2µ
‖x − y‖2

)

,

and the associated proximal mapping Proxµ f by

Proxµ f (x) = argmin
y∈X

(

f (y) +
1

2µ
‖x − y‖2

)

, (30)

where x ∈ X. We shall use ∂ f for the subdifferential mapping from convex analysis.
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Definition 6.1. An abstract subdifferential ∂# associates a subset ∂# f (x) of X to f at x ∈ X,
and it satisfies the following properties:

(i) ∂# f = ∂ f if f is a proper lower semicontinuous convex function;

(ii) ∂# f = ∇ f if f is continuously differentiable;

(iii) 0 ∈ ∂# f (x) if f attains a local minimum at x ∈ dom f ;

(iv) for every β ∈ R,

∂#

(

f + β
‖ · −x‖2

2

)

= ∂# f + β(Id−x).

The Clarke–Rockafellar subdifferential, Mordukhovich subdifferential, and Fréchet
subdifferential all satisfy Definition 6.1(i)–(iv), see, e.g., [8], [21, 20], so they are ∂#.
Related but different abstract subdifferentials have been used in [1, 15, 29].

Recall that f is 1
λ -hypoconvex (see [25, 30]) if

f ((1 − τ)x + τy) ≤ (1 − τ) f (x) + τ f (y) +
1

2λ
τ(1 − τ)‖x − y‖2, (31)

for all (x, y) ∈ X × X and τ ∈ ]0, 1[.

Proposition 6.2. If f : X → ]−∞,+∞] is a proper lower semicontinuous 1
λ -hypoconvex

function, then

∂# f = ∂
(

f +
1

2λ
‖ · ‖2

)

−
1

λ
Id . (32)

Consequently, for a hypoconvex function the Clarke–Rockafellar, Mordukhovich, and
Fréchet subdifferential operators all coincide.

Proof. For the convex function f + 1
2λ‖ · ‖

2, apply Definition 6.1(i) and (iv) to obtain

∂
(

f +
1

2λ
‖ · ‖2

)

= ∂#

(

f +
1

2λ
‖ · ‖2

)

= ∂# f +
1

λ
Id

from which (32) follows. �

Let f ∗ denote the Fenchel conjugate of f . The following result is well known in
R

n, see, e.g., [25, Exercise 12.61(b)(c), Example 11.26(d) and Proposition 12.19], and
[30]. In fact, it also holds in a Hilbert space.

Proposition 6.3. The following are equivalent:

(i) f is 1
λ -hypoconvex.
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(ii) f + 1
2λ‖·‖

2 is convex.

(iii) Id+λ∂# f is maximally monotone.

(iv) (∀µ ∈ ]0, λ[) Proxµ f is λ/(λ − µ)-Lipschitz continuous with

Proxµ f = Jµ∂# f = (Id+µ∂# f )−1. (33)

(v) (∀µ ∈ ]0, λ[) Proxµ f is single-valued and continuous.

Proof. “(i)⇔(ii)”: Simple algebraic manipulations.

“(ii)⇒(iii)”: As

∂
(

f +
1

2µ
‖ · ‖2

)

= ∂#

(

f +
1

2µ
‖ · ‖2

)

= ∂# f +
1

µ
Id

is maximally monotone, Id+µ∂# f is maximally monotone.

“(iii)⇒(iv)”: By Definition 6.1(iii) and (iv), y ∈ Proxµ f (x) implies that

0 ∈ ∂#

(

f (y) +
1

2µ
‖y − x‖2

)

= ∂# f (y) +
1

µ
(y − x).

Thus, one has
(∀x ∈ X) Proxµ f (x) ⊆ (Id+µ∂# f )−1(x). (34)

Using

Id+µ∂# f =
λ − µ

λ

(

Id+
µ

λ − µ
(Id+λ∂# f )

)

yields

(Id+µ∂# f )−1 = JA ◦
( λ

λ − µ
Id

)

,

where A =
µ

λ−µ(Id+λ∂# f ) is maximally monotone by the assumption. Since JA is

nonexpansive on X, (Id+µ∂# f )−1 is λ/(λ − µ)-Lipschitz. Together with (34), we
obtain Proxµ f = (Id+µ∂# f )−1.

“(iv)⇒(v)”: Clear.

“(v)⇒(ii)”: Let x ∈ X and let µ ∈ ]0, λ[. We have

eµ f (x) =
1

2µ
‖x‖2 −

(

f +
1

2µ
‖ · ‖2

)∗( x

µ

)

, (35)

and eµ is locally Lipschitz, see, e.g., [16, Proposition 3.3(b)]. By [4, Proposition 5.1],

(v) implies that eµ f is Fréchet differentiable with ∇eµ f = µ−1(Id− Proxµ f ). Then
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(

f + 1
2µ‖ · ‖

2
)∗

is Fréchet differentiable by (35). It follows from [28, Theorem 1] that

f + 1
2µ‖ · ‖

2 is convex. Since this hold for every µ ∈]0, λ[, (ii) follows. �

We now provide a new refined characterization of hypoconvex functions in terms
of the cocoercivity of their proximal operators; equivalently, of the conical nonex-
pansiveness of the displacement mapping of their proximal operators.

Theorem 6.4. Let µ ∈ ]0, λ[. Then the following are equivalent.

(i) f is 1
λ -hypoconvex.

(ii) Id− Proxµ f is λ
2(λ−µ)

-conically nonexpansive.

(iii) Proxµ f is
λ−µ

λ -cocoercive.

Proof. “(i)⇔(ii)”: Using 0 <
µ
λ < 1 we have

f is 1
λ -hypoconvex

⇔ Id+λ∂# f is maximally monotone (by Proposition 6.3)

⇔
µ
λ Id+µ∂# f is maximally monotone

⇔ µ∂# f is maximally
(

−
µ
λ

)

-monotone

⇔ (µ∂# f )−1 is maximally
(

−
µ
λ

)

-comonotone (by Lemma 2.7)

⇔ J(µ∂# f )−1 is λ
2(λ−µ)

-conically nonexpansive (by Corollary 3.10(ii))

⇔ Id−Jµ∂# f is λ
2(λ−µ)

-conically nonexpansive (by Proposition 2.10(i) )

⇔ Id− Proxµ f is λ
2(λ−µ)

-conically nonexpansive. (by (33))

“(ii)⇔(iii)”: Use Lemma 3.3. �

Corollary 6.5. Suppose that f : X → R is Fréchet differentiable such that ∇ f is Lipschitz
with a constant 1/λ. Then the following hold:

(i) Id+λ∇ f is maximally monotone.

(ii) f is 1
λ -hypoconvex.

(iii) f + 1
2λ‖·‖

2 is convex.

(iv) (∀µ ∈ ]0, λ[) Proxµ f is single-valued.

(v) (∀µ ∈ ]0, λ[) Proxµ f is
λ−µ

λ -cocoercive.
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(vi) (∀µ ∈ ]0, λ[) Proxµ f = Jµ∂# f = (Id+µ∇ f )−1.

(vii) (∀µ ∈ ]0, λ[) Id− Proxµ f is λ
2(λ−µ)

-conically nonexpansive.

Proof. Definition 6.1(ii) implies that (∀x ∈ X) ∂# f (x) = {∇ f (x)}. (i): Indeed, λ∇ f
is nonexpansive. Now the conclusion follows from [2, Example 20.29]. (ii)–(vii):
Combine (i) with Proposition 6.3 and Theorem 6.4. �

Finally, we give two examples to illustrate our results.

Example 6.6. Suppose that X = R. Let λ > 0 and set, for every λ, fλ : x 7→ exp(x) −
1

2λ x2. Then f is 1
λ -hypoconvex by Proposition 6.3, f ′λ : x 7→ exp(x) − x

λ , and we have
Id+λ f ′λ = λ exp is maximally monotone. Moreover, for every µ ∈ ]0, λ] we have

Proxµ fλ
(x) =

(

Id+µ f ′λ
)−1

(x) =
(

(1 −
µ
λ) Id+µ exp

)−1
(x) (36a)

=

{

ln
(

x
µ

)

, if µ = λ;

λx
λ−µ − Lambert W

(λµ exp(λx/(λ−µ))
λ−µ

)

, if µ ∈ ]0, λ[,
(36b)

where the first identity in (36a) follows from Corollary 6.5(vi).

Example 6.7. Let D be a nonempty closed convex subset of X, let λ > 0 and set, for every
λ, fλ = ιD − 1

2λ‖·‖
2. Then f is 1

λ -hypoconvex by Proposition 6.3, and ∂# fλ = ND − 1
λ Id

by Proposition 6.2. Moreover, for every λ > 0, we have Id+λ∂# fλ = ND is maximally
monotone. Finally, using (33) and [2, Example 23.4] we have for every µ ∈ ]0, λ[

Proxµ fλ
=

(

Id+µ∂# fλ

)−1
=

(

(1 −
µ
λ) Id+µND

)−1
(37a)

=
(

(1 −
µ
λ)(Id+ND)

)−1
= PD ◦

(

λ
λ−µ Id

)

. (37b)

In particular, if D is a closed convex cone we learn that Proxµ fλ
= λ

λ−µ PD.
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