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Abstract
We develop a new family of variance reduced stochastic gradient descent meth-
ods for minimizing the average of a very large number of smooth functions. Our
method—JacSketch—is motivated by novel developments in randomized numerical
linear algebra, and operates by maintaining a stochastic estimate of a Jacobian matrix
composed of the gradients of individual functions. In each iteration, JacSketch effi-
ciently updates the Jacobian matrix by first obtaining a random linear measurement of
the true Jacobian through (cheap) sketching, and then projecting the previous estimate
onto the solution space of a linear matrix equation whose solutions are consistent
with the measurement. The Jacobian estimate is then used to compute a variance-
reduced unbiased estimator of the gradient. Our strategy is analogous to the way
quasi-Newton methods maintain an estimate of the Hessian, and hence our method
can be seen as a stochastic quasi-gradient method. Our method can also be seen as
stochastic gradient descent applied to a controlled stochastic optimization reformula-
tion of the original problem, where the control comes from the Jacobian estimates.
We prove that for smooth and strongly convex functions, JacSketch converges linearly
with a meaningful rate dictated by a single convergence theorem which applies to
general sketches. We also provide a refined convergence theorem which applies to
a smaller class of sketches, featuring a novel proof technique based on a stochastic
Lyapunov function. This enables us to obtain sharper complexity results for variants of
JacSketch with importance sampling. By specializing our general approach to specific
sketching strategies, JacSketch reduces to the celebrated stochastic average gradient
(SAGA) method, and its several existing and many new minibatch, reduced memory,

The first results of this paper were obtained in Fall 2015 and most key results were obtained by Fall 2016.
All key results were obtained by Fall 2017. The first author gave a series of talks on the results (before the
paper was released online) in November 2016 (Machine learning seminar at Télécom ParisTech),
December 2016 (CORE seminar, Université catholique de Louvain), March 2017 (Optimization, machine
learning, and pluri-disciplinarity workshop, Inria Grenoble - Rhone-Alpes), May 2017 (SIAM Conference
on Optimization, Vancouver), September 2017 (Optimization 2017, Faculdade de Ciencias of the
Universidade de Lisboa), and November 2017 (PGMO Days 2017, session on Continuous Optimization
for Machine Learning, EDF’Lab Paris-Saclay).

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-020-01506-0&domain=pdf
http://orcid.org/0000-0003-2320-5159


136 R. M. Gower et al.

and importance sampling variants. Our rate for SAGA with importance sampling is
the current best-known rate for this method, resolving a conjecture by Schmidt et al.
(Proceedings of the eighteenth international conference on artificial intelligence and
statistics, AISTATS 2015, San Diego, California, 2015). The rates we obtain for mini-
batch SAGA are also superior to existing rates and are sufficiently tight as to show a
decrease in total complexity as the minibatch size increases. Moreover, we obtain the
first minibatch SAGA method with importance sampling.

Keywords Stochastic gradient descent · Sketching · Variance reduction · Covariates

Mathematics Subject Classification 65Kxx · 90C15 · 90C25

1 Introduction

We consider the problem ofminimizing the average of a large number of differentiable
functions

x∗ = arg min
x∈Rd

[
f (x)

def= 1

n

n∑
i=1

fi (x)

]
, (1)

where f isμ—strongly convex and L—smooth. In solving (1),we restrict our attention
to first-order methods that use a (variance-reduced) stochastic estimate of the gradient
gk ≈ ∇ f (xk) to take a step towards minimizing (1) by iterating

xk+1 = xk − αgk, (2)

where α > 0 is a stepsize.
In the context of machine learning, (1) is an abstraction of the empirical risk min-

imization problem; x encodes the parameters/features of a (statistical) model, and fi
is the loss of example/data point i incurred by model x . The goal is to find the model
x which minimizes the average loss on the n observations.

Typically,n is so large that algorithmswhich rely on scanning through alln functions
in each iteration are too costly. The need for incremental methods for the training
phase of machine learning models has revived the interest in the stochastic gradient
descent (SGD) method [27]. SGD sets gk = ∇ fi (xk), where i is an index chosen from

[n] def= {1, 2, . . . , n} uniformly at random. SGD therefore requires only a single data
sample to complete a step and make progress towards the solution. Thus SGD scales
well in the number of data samples, which is important in several machine learning
applications since there many be a large number of data samples. On the downside, the
variance of the stochastic estimates of the gradient produced by SGD does not vanish
during the iterative process, which suggests that a decreasing stepsize regime needs
to be put into place if SGD is to converge. Furthermore, for SGD to work efficiently,
this decreasing stepsize regime needs to be tuned for each application area, which is
costly.
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Stochastic quasi-gradient methods: variance reduction… 137

1.1 Variance-reducedmethods

Stochastic variance-reduced versions of SGD offer a solution to this high variance
issue, which improves the theoretical convergence rate and solves the issuewith ad hoc
stepsize regimes. The first variance reduced method for empirical risk minimization
is the stochastic average gradient (SAG) method of Schmidt, Le Roux and Bach [29],
closely followed by Finito [7] andMiso [18]. The analysis of SAG is notoriously diffi-
cult, which is perhaps due to the estimator of gradient being biased. Soon afterwards,
the SAG gradient estimator was modified into an unbiased one, which resulted in the
SAGA method [6]. The analysis of SAGA is dramatically simpler than that of SAG.
Another popular method is SVRG of Johnson and Zhang [15] (see also S2GD [16]).
SVRGenjoys the same theoretical complexity bound as SAGA, but has amuch smaller
memory footprint. It is based on an inner–outer loop procedure. In the outer loop, a
full pass over data is performed to compute the gradient of f at the current point. In
the inner loop, this gradient is modified with the use of cheap stochastic gradients, and
steps are taken in the direction of the modified gradients. A notable recent addition to
the family of variance reduced methods, developed by Nguyen et al. [20], is known as
SARAH. Unlike other methods, SARAH does not use an estimator that is unbiased in
the last step. Instead, it is unbiased over a long history of the method.

A fundamentally different way of designing variance reduced methods is to use
coordinate descent [24,25] to solve the dual. This is what the SDCA method [33] and
its various extensions [32] do. The key advantage of this approach is that the dual
often has a seperable structure in the coordinate space, which in turn means that each
iteration of coordinate descent is cheap. Furthermore, SDCA is a variance-reduced
method by design since the coordinates of the gradient tend to zero as one approaches
the solution. One of the downsides of SDCA is that it requires calculating Fenchel
duals and their derivatives. This issue was later solved by introducing approximations
and mapping the dual iterates to the primal space as pointed out in [6]. This resulted in
primal variants of SDCA such as dual-free SDCA [31]. A primal-dual variant which
enables the use of arbitrary minibatch strategies was developed by Qu et al. [23], and
is known as QUARTZ.

Finally, variance reduced methods can also be accelerated, as has been shown for
the loop based methods such as Katyusha [3] or using the Universal catalyst [17].

1.2 Gaps in our understanding of SAGA

Despite significant research into variance-reduced stochastic gradient descentmethods
for solving (1), there are still big gaps in our understanding of variance reduction. For
instance, the current theory supporting the SAGA algorithm is far from complete.

SAGA with uniform probabilities enjoys the iteration complexity O((n +
Lmax
μ

) log 1
ε
), where Lmax

def= maxi Li and Li is the smoothness constant of fi . While
importance sampling versions of SAGA have proved in practice to produce a speed-up
over uniform SAGA [30], a proof of this speed-up has been elusive. It was conjectured
by Schmidt et al. [30] that a properly designed importance sampling strategy for SAGA

should lead to the rate O
((

n + L̄
μ

)
log 1

ε

)
, where L̄ = 1

n

∑
i Li . However, no such
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138 R. M. Gower et al.

result was proved. This rate is achieved by, for instance, importance sampling variants
of SDCA, QUARTZ [23] and SVRG [36]. However, the analysis only applies to a
more specialized version of problem (1) (e.g., one needs an explicit strongly convex
regularizer).

Second, existing minibatch variants of SAGA do not enjoy the same rate as that
offered by methods such as SDCA and QUARTZ. Are the above issues with SAGA
unavoidable, or is it the case that our understanding of themethod is far from complete?
Lastly, no minibatch variant of SAGA with importance sampling is known.

One of the contributions of this paper is giving positive answers to all of the above
questions.

1.3 Jacobian sketching: a new approach to variance reduction

Our key contribution in this paper is the introduction of a novel approach—which we
call Jacobian sketching—to designing and understanding variance-reduced stochas-
tic gradient descent methods for solving (1). We refer to our method by the name
JacSketch. We shall now briefly introduce some of the key insights motivating our
approach. Let F : Rd → R

n be defined by

F(x)
def= ( f1(x), . . . , fn(x)) ∈ R

n, (3)

and further let

∇F(x)
def= [∇ f1(x), . . . ,∇ fn(x)] ∈ R

d×n, (4)

be the Jacobian of F at x .
The starting point of our new approach is the following trivial observation: the

gradient of f at x can be computed from the Jacobian ∇F(x) by a simple linear
transformation:

1

n
∇F(x)e = ∇ f (x), (5)

where e is the vector of all ones inRn . This alone is not useful to come up with a better
way of estimating the gradient. Indeed, formula (5) has two issues. First, the Jacobian
is not available. If we wanted to compute it, we would need to pay the cost of one pass
through the data. Second, even if the Jacobian was available, merely multiplying it by
the vector of all ones would cost O(nd) operations, which is again a cost equivalent
to one pass over data.

Now, let us replace the vector of all ones in (5) by ei ∈ R
n , the unit coordinate/basis

vector in Rn . If the index i is chosen randomly from [n], then

∇F(x)ei = ∇ fi (x), (6)

which is a stochastic gradient of f at x . In other words, by performing a random linear
transformation of the Jacobian, we have arrived at the classical stochastic estimate of
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Stochastic quasi-gradient methods: variance reduction… 139

the gradient. This approach does not suffer from the first issue mentioned above as the
Jacobian is not needed at all in order to compute ∇ fi (x). Likewise, it does not suffer
from the second issue; namely, the cost of computing the stochastic gradient is merely
O(d), and we can avoid a costly pass through the data.1

However, this approach suffers from a new issue: by constructing the estimate this
way, we do not learn from the (random) information collected about the Jacobian in
prior iterations, through having access to random linear transformations thereof. In
this paper we take the point of view that this is the reason why SGD suffers from large
variance. Our approach towards alleviating this problem is to maintain and update an
estimate J ∈ R

d×n of the Jacobian ∇F(x).
Given xk ∈ R

d , ideally we would like J to satisfy

J = ∇F(xk), (7)

that is, we would like it to be equal to the true Jacobian. However, at the same time we
do not wish to pay the price of computing it. Hence, assuming we have an estimate
Jk ∈ R

d×n of the Jacobian available, we instead pick a random matrix Sk ∈ R
n×τ

from some distributionD of matrices2 and consider the following sketched version of
the linear system (7), with unknown J:

JSk = ∇F(xk)Sk ∈ R
d×τ . (8)

This equation generalizes both (5) and (6). The left hand side contains the sketched
systemmatrix Sk and the unknownmatrix J, and the right hand side contains a quantity
we can measure (through a random linear measurement of the Jacobian, which we
assume is cheap). Of course, the true Jacobian solves (8). However, in general, and in
particular when τ � n which is the regime we want to be in for practical reasons, the
system (8) will have infinite J solutions.

We pick a unique solution Jk+1 as the closest solution of (8) to our previous estimate
Jk , with respect to a weighted Frobenius norm with a positive definite weight matrix
W ∈ R

n×n :

Jk+1 = arg min
J∈Rd×n

‖J − Jk‖W−1

subject to JSk = ∇F(xk)Sk, (9)

where

‖X‖W−1
def=
√
Tr
(
XW−1X	). (10)

1 For the purposes of this narrative it suffices to assume that stochastic gradients can be sampled at cost
O(d).
2 We will not bother about the distribution from which it is picked at the moment. It suffices to say that
virtually all distributions are supported by our theory. However, if we wish to obtain a practical method,
some distributions will make much more sense than others.
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In doing so, we have built a learning mechanism whose goal is to maintain good
estimates of the Jacobian throughout the run of method (2). These estimates can be
used to efficiently estimate the gradient by performing a linear transformation similar
to (5), but with ∇F(x) replaced by the latest estimate of the Jacobian. In practice, it
is important to design sketching matrices so that the Jacobian sketch ∇F(x)Sk can be
calculated efficiently.

The “sketch-and-project” strategy (9) for updating our Jacobian estimate is analo-
gous to the way quasi-Newton methods update the estimate of the Hessian (or inverse
Hessian) [8,9,12]. From this perspective, our method can be viewed as a stochastic
quasi-gradient method.3

Problem (9) admits the explicit closed-form solution (see Lemma 14):

Jk+1 = Jk + (∇F(xk) − Jk)�Sk , (11)

where

�S
def= S(S	WS)†S	W, (12)

is a projection matrix, and † denotes the Moore–Penrose pseudoinverse.

The key insight of our work is to propose an efficient Jacobian learning mech-
anism based on ideas borrowed from recent results in randomized numerical
linear algebra.

Having established our update of the Jacobian estimate, we now need to use this to
form an estimate of the gradient. Unfortunately, using Jk+1 in place of ∇F(xk) in (5)
leads to a biased gradient estimate (something we explore later in Sect. 2.5). To obtain
an unbiased estimator of the gradient, we introduce a stochastic relaxation parameter
θSk ≥ 0 and use

gk
def= 1 − θSk

n
Jke + θSk

n
Jk+1e = 1

n
Jke + 1

n

(
∇F(xk) − Jk

)
θSk�Sk e, (13)

as an approximation of the gradient. Taking expectations in (13) over Sk ∼ D (for this
we use the notation ED [·] ≡ ESk∼D [·]), we get

ED
[
gk
]

= 1

n
Jke + 1

n
(∇F(xk) − Jk)ED

[
θSk�Sk e

]
. (14)

Thus provided that

ED
[
θSk�Sk e

] = e, (15)

3 The term “quasi-gradient methods” was popular in the 1980s [21], and refers to algorithms for solving
certain stochastic optimization problems which rely on stochastic estimates of function values and their
derivatives. In this paper we give the term a different meaning by drawing a direct link with quasi-Newton
methods.
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we have ED
[
gk
] (14)= 1

n∇F(xk)e
(5)= ∇ f (xk), and hence, gk is an unbiased estimate of

the gradient. If (15) holds, we say that θSk is a bias-correcting random variable and Sk

is an unbiased sketch.Our new JacSketchmethod is method (2) with gk computed via
(13) and the Jacobian estimate updated via (11). This method is formalized in Sect. 2
as Algorithm 1.

This strategy indeed works, as we show in detail in this paper. Under appropriate
conditions (on the stepsize α, properties of f and randomness behind the sketch
matrices Sk and so on), the variance of gk diminishes to zero (e.g., see Lemma 6),
which means that JacSketch is a variance-reduced method. We perform an analysis
for smooth and strongly convex functions f , and obtain a linear convergence result
(Theorem 1). We summarize our complexity results in detail in Sect. 1.5.

1.4 SAGA as a special case of JacSketch

Of particular importance in this paper are minibatch sketches, which are sketches of
the form Sk = ISk , where Sk is a random subset of [n], and ISk is a random column
submatrix of the n × n identity matrix with columns indexed by Sk . For minibatch
sketches, JacSketch corresponds to minibatch variants of SAGA. Indeed, in this case,
and if W = Diag(w1, . . . , wn), we have �Sk e = eSk , where eS = ∑

i∈S ei (see
Lemma 7). Therefore,

gk = 1

n
Jke + θSk

n

∑
i∈Sk

(
∇ fi (x

k) − Jk:i
)

. (16)

In view of (11), and since �Sk = ISk I
	
Sk

(see Lemma 7), the Jacobian estimate gets
updated as follows

Jk+1
:i =

{
Jk:i i /∈ Sk,

∇ fi (xk) i ∈ Sk .
(17)

Standard uniform SAGA is obtained by setting Sk = {i} with probability 1/n for
each i ∈ [n], and letting θSk ≡ n. SAGA with arbitrary probabilities is obtained by
instead choosing Sk = {i} with probability pi > 0 for each i ∈ [n], and letting
θSk ≡ 1

pi
. However, virtually all minibatching and importance sampling strategies can

be treated as special cases of our general approach.
The theory we develop answers the open questions raised earlier. In particular, we

answer the conjecture of Schmidt et al. [30] about the rate of SAGA with importance
sampling in the affirmative. In particular, we establish the iteration complexity (n +
4L̄
μ

) log 1
ε
. This complexity is obtained for different importance sampling distributions

that have not been proposed in the current literature for SAGA. In order to achieve
this, we develop a new analysis technique which makes use of a stochastic Lyapunov
function (see Sect. 5). That is, our Lyapunov function has a random element which
is independent of the randomness inherited from the iterates of the method. This is
unlike any other Lyapunov function used in the analysis of stochastic methods we
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are aware of. Further, we prove that SAGA converges with any initial matrix J0 in
place of the matrix of gradients of functions fi at the starting point. We also show that
our results give better rates for minibatch SAGA than are currently known, even for
uniform minibatch strategies. We also allow for a family of completely new uniform
minibatching strategies which were not considered in connection with SAGA before,
and consider also SAGA with importance sampling for minibatches4 (based on a
partition of [n]). Lastly, as a special case, our method recovers standard gradient
descent, together with the sharp iteration complexity of 4L

μ
log 1

ε
.

Our general approach also enables a novel reduced memory variant of SAGA as a
special case. Let Sk = eSk , and chooseW = I. Since �Sk e = eSk , the formula for gk

is the same as in the case of SAGA, and is given by (16). What is notably different
about this sketch (compared to ISk ) is that, since �eSk

= 1
|Sk |eSk e

	
Sk

, the update of the
Jacobian estimate is given by

Jk+1 (11)= Jk − 1

|Sk |
∑
i∈Sk

(
Jk:i − ∇ fi (x

k)
)
e	
Sk .

Thus, the same update is applied to all the columns of Jk that belong to Sk . Equiv-
alently, this update can be written as

Jk+1
: j =

{
1

|Sk |
∑

i∈Sk ∇ fi (xk) if j ∈ Sk,

Jk: j if j /∈ Sk .
(18)

In particular, if Sk only ever picks sets which correspond to a partition of [n],
and we initialize J0 so that all the columns belonging to the same partition are the
same, then they will be the same within in each partition for all k. In such a case,
we do not need to maintain all the identical copies. Instead, we can update and use
a condensed/compressed version of the Jacobian, with one column per partition set
only, to reduce the total memory usage. This method, with non-uniform probabilities,
is analyzed in our framework in Sect. 5.6.

1.5 Summary of complexity results

All convergence results obtained in this paper are summarized in Table 1.
Our convergence results depend on several constants which we will now briefly

introduce. The precise definitions can be found in the main text. For ∅ �= C ⊆ [n] =
{1, 2, . . . , n}, define fC (x)

def= 1
|C|
∑

i∈C fi (x). We assume fC is LC—smooth.5 We

let Li = L{i}, L = L [n], Lmax = maxi Li and L̄ = 1
n

∑
i Li . Note that Li ≤ Lmax,

L̄ ≤ Lmax ≤ nL̄ , LC ≤ 1
|C|
∑

i∈C Li and L ≤ L̄ . For a sampling6 S ⊆ [n], we
let supp(S) = {C ⊆ [n] : P [S = C] > 0}. That is, the support of a sampling

4 For some prior results on importance sampling for minibatches, in the context of QUARTZ, see [5].
5 A formal definition can be found in Assumption 4.2.
6 In this paper, a sampling is a random set-valued mapping with the sets being subsets of [n].
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Table 1 Special cases of our JacSketch method, and the associated iteration complexity

ID Method Sketch S ∈ R
n×τ Iteration complexity (× log 1

ε ) Reference
W � 0

1 JacSketch Any unbiased max
{
4L1
μ , 1

κ + 4ρL2
κμn2

}
Theorem 1

Any

2 JacSketch IS maxC∈supp(S)

(
1
pC

+ τ
npC

4LC
μ

)
Theorem 6

(Any probabilities for
τ—partition)

I

3 Gradient descent I 4L
μ Theorems 1 and 6

I Sections 4.6 and 5.6

4 SAGA IS n + 4Lmax
μ Theorems 1 and 6

(Uniform sampling) I Sections 4.6 and 5.6

5 SAGA IS n + 4L̄
μ Theorem 6

(Importance
sampling)

I (129)

6 Minibatch SAGA IS max

{
4LGmax

μ , n
τ + 4ρ

μn maxi
(
Li
wi

)}
Theorem 1

(τ—uniform
sampling)

Diag(wi ) (100)

7 Minibatch SAGA IS max

{
4LGmax

μ , n
τ + n−τ

(n−1)τ
4Lmax

μ

}
Theorem 1

(τ—nice sampling) I (101)

8 Minibatch SAGA IS max

{
4LGmax

μ , n
τ + n−τ

nτ
4(L̄+Lmax)

μ

}
Theorem 1

(τ—nice sampling) Diag(Li ) (102)

9 Minibatch SAGA IS
n
τ + 4Lmax

μ Theorem 1

(τ—partition
sampling)

I (103)

10 Minibatch SAGA Diag(Li )
n
τ + 4maxC∈supp(S)

1
τ

∑
i∈C Li

μ Theorem 1

(τ—partition
sampling)

IS (104)

11 Minibatch SAGA IS
n
τ + 4 1

|supp(S)|
∑

C∈supp(S) LC
μ Theorem 6

(Importance
τ—partition
sampling)

I (131)

All methods converge linearly. In the iteration complexity column we list the number of iterations sufficient
to obtain an ε accurate solution, ignoring a log 1

ε factor
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are all the sets which are selected by this sampling with positive probability. Finally,
LG
max = maxi 1

c1

∑
C∈supp(S),i∈C LC , where c1 is the cardinality of the set {C : C ∈

supp(S), i ∈ C} (which is assumed to be the same for all i). So, LG
max is the maximum

over i of averages of values LC for those sets C which are picked by S with positive
probability and which contain i . Clearly, LG

max ≤ Lmax (see Theorem 3).

General theorem. Theorem 1 is our most general result, allowing for any(unbiased)
sketch S (see (15)), and any weight matrixW � 0. The resulting iteration complexity
given by this theorem is

max

{
4L1

μ
,
1

κ
+ 4ρL2

κμn2

}
× log

(
1

ε

)
,

and is also presented in the first row of Table 1. This result depends on two expected
smoothness constants L1 (measuring the expected smoothness of the stochastic gra-
dient of our stochastic reformulation; see Assumption 3.1) and L2 (measuring the
expected smoothness of the Jacobian; see Assumption 3.2). The complexity also
depends on the stochastic contraction number κ (see (48)) and the sketch residual
ρ (see (37) and (55)). We devote considerable effort to give simple formulas for these
constants under some specialized settings (for special combinations of sketches S and
weight matricesW). In fact, the entire Sect. 4 is devoted to this. In particular, all rows
of Table 1 where the last column mentions Theorem 1 arise as special cases of the
general iteration complexity in the first row.

– Gradient descent As a starting point, in row 3 we highlight that one can recover
gradient descent as a special case of JacSketch with the choice S = I (with
probability 1) and W = I. We get the rate 4L

μ
log 1

ε
, which is tight.

– SAGA with uniform sampling Let us now focus on a slightly more interesting
special case: row 4. We see that SAGA with uniform probabilities appears as a

special case, and enjoys the rate
(
n + 4Lmax

μ

)
log 1

ε
, recovering an existing result.

– SAGAwith importance samplingUnfortunately, the generality ofTheorem1comes
at a cost: we are not able to obtain an importance sampling version of SAGA as a
special case which would have a better iteration complexity than uniform SAGA.
This will be remedied by our second complexity theorem, which we shall discuss
later below.

– Minibatch SAGARows 6–11 correspond tominibatch versions of SAGA. In partic-
ular, row 6 contains a general statement (albeit still a special case of the statement
in row 1), covering virtually all minibatch strategies. Rows 7–11 specialize this
result to two particular minibatch sketches (i.e., S = IS), each with two choices
of W. The first sketch corresponds to samplings S which choose from among all
subsets of [n] uniformly at random. This sampling is known in the literature as
τ -nice sampling [22,25]. The second sketch corresponds to S being a τ—partition
sampling. This sampling picks uniformly at random subsets of [n] which form a
partition of [n], and are all of cardinality τ . The complexities in rows 7 and 8 are
comparable (each can be slightly better than the other, depending on the values of
the smoothness constants {Li }). On the other hand, in the case of τ—partition, the
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choice W = Diag(Li ) is better than W = I: the complexity in row 10 is better
than that in row 9 because maxC∈supp(S)

1
τ

∑
i∈C Li ≤ Lmax.

– Optimal minibatch size for SAGA Our analysis for mini-batch SAGA also gives
the first iteration complexities that interpolate between the (n+ 4Lmax

μ
) log 1

ε
com-

plexity of SAGA and the 4L
μ
log 1

ε
complexity of gradient descent, as τ increases

from 1 to n. Indeed, consider the complexity in rows 7 and 8 for τ = 1 and
τ = n. Our iteration complexity of mini-batch SAGA is the first result that is pre-
cise enough to inform an optimal mini-batch size (see Sect. 6.2). In contrast, the
previous best complexity result for mini-batch SAGA [14] interpolates between
(n+ 4Lmax

μ
) log 1

ε
and 4Lmax

μ
log 1

ε
as τ increases from 1 to n, and thus is not precise

enough as to inform the best minibatch size. We make a more detailed comparison
between our results and [14] in Sect. 4.7.

Specialized theoremWe nowmove to the second main complexity result of our paper:
Theorem 6. The general complexity statement is listed in row 2 of Table 1:

max
C∈supp(S)

(
1

pC
+ τ

npC

4LC

μ

)
× log

(
1

ε

)
, (19)

where pC = P [S = C]. This theorem is a refined result specialized to minibatch
sketches (S = IS) with τ—partition samplings S. This is a sampling which picks
subsets of [n] of size τ forming a partition of [n], uniformly at random. This theorem
also includes gradient descent as special case since when S = [n] with probability
1 (hence, p[n] = 1) we have that τ = n and L [n] = L . Hence, (19) specializes to
4L
μ

log 1
ε
. But more importantly, our focus on τ—partition samplings enables us to

provide stronger iteration complexity guarantees for non-uniform probabilities.

– SAGA with importance sampling The first remarkable special case of (19) is sum-
marized in row 5, and corresponds to SAGA with importance sampling. The
complexity obtained, (n + 4L̄

μ
) log 1

ε
, answers a conjecture of Schmidt et al. [30]

in the affirmative. In this case, the support of S are the singletons {1}, {2}, . . . , {n},
p{i} = pi for all i , τ = 1 and L{i} = Li . Optimizing the complexity bound over the
probabilities p1, . . . , pn , we obtain the importance sampling pi = μn+4τ Li∑

j μn+4τ L j
.

– Minibatch SAGAwith importance sampling In row 11we state the complexity for a
minibatch SAGAmethod with importance sampling. This is the first result for this
method in the literature. Note that by comparing rows 4 and 10, we can conclude
that the complexity of minibatch SAGA with importance sampling is better than
for minibatch SAGA with uniform probabilities. Indeed, this is because7

1

|supp(S)|
∑

C∈supp(S)

LC ≤ L̄ ≤ max
C∈supp(S)

1

τ

∑
i∈C

Li . (20)

7 We prove inequality (20) in the Appendix; see Lemma 13.
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1.6 Outline of the paper

Wepresent an alternative narrativemotivating the development of JacSketch in Sect. 2.
This narrative is based on a novel technical tool which we call controlled stochastic
optimization reformulations of problem (1). We then develop a general convergence
theory of JacSketch in Sect. 3. This theory admits practically any sketches S (includ-
ing minibatch sketches mentioned in the introduction) and weight matrices W. The
main result in this section is Theorem 1. In Sect. 4 we specialize the general results
to minibatch sketches. Here we also compute the various constants appearing in the
general complexity result for JacSketch for specific classes of minibatch samplings. In
Sect. 5 we develop an alternative theory for JacSketch, one based on a novel stochas-
tic Lyapunov function. The main result in this section is Theorem 6. Computational
experiments are included in Sect. 6.

1.7 Notation

We will introduce notation when and as needed. If the reader would like to recall any
notation, for ease of reference we have a notation glossary in Sect. 1. As a general
rule, all matrices are written in upper-case bold letters. By log t we refer to the natural
logarithm of t .

2 Controlled stochastic reformulations

In this sectionweprovide an alternative narrative behind the development of JacSketch;
one through the lens of what we call controlled stochastic reformulations.

We design our family of methods so that two keys properties are satisfied, namely

unbiasedness, E
[
gk
] = ∇ f (xk), and diminishing variance: E

[∥∥gk − ∇ f (xk)
∥∥2
2

]
−→ 0 as xk → x∗. These are both favoured statistical properties. Moreover, currently
only methods that have diminishing variance exhibt fast linear convergence (exponen-
tial decay of the error) on strongly convex problems. On the other hand, unbiasedness
is not necessary for a fast method in practice since several biased stochastic gradient
methods such as SAG [29] perform well in practice. Still, the absence of bias greatly
facilitates the analysis of JacSketch.

2.1 Stochastic reformulation using sketching

It will be useful to formalize the condition mentioned in Sect. 1.3 which leads to gk

being an unbiased estimator of the gradient.

Assumption 2.1 (Unbiased sketch) Let W � 0 be a weighting matrix and let D be
the distribution from which the sketch matrices S are drawn. There exists a random
variable θS such that

ED [θS�S] e = e. (21)
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When this assumption is satisfied, we say that (S, θS,W) constitutes an “unbiased
sketch”, and we call θS the bias-correcting random variable.When the triple is obvious
from the context, sometimes we shall simply say that S is an unbiased sketch.

The first key insight of this section is that besides producing unbiased estimators
of the gradient, unbiased sketches produce unbiased estimators of the loss function as
well. Indeed, by simply observing that f (x) = 1

n 〈F(x), e〉, we get

f (x)
(1)= 1

n

n∑
i=1

fi (x) = 1

n
〈F(x), e〉 (21)= 1

n
〈F(x),ED [θS�Se]〉

= ED
[
1

n
〈F(x), θS�Se〉

]
.

In other words, we can rewrite the finite-sum optimization problem (1) as an equivalent
stochastic optimization problemwhere the randomness comes fromD rather than from
the representation-specific uniform distribution over the n loss functions:

min
x∈Rd

f (x) = ED [ fS(x)] , where fS(x)
def= θS

n
〈F(x),�Se〉 . (22)

The stochastic optimization problem (22) is a stochastic reformulation of the original
problem (1). Further, the stochastic gradient of this reformulation is given by

∇ fS(x) = θS

n
∇F(x)�Se. (23)

With these simple observations, our options at designing stochastic gradient-type algo-
rithms for (1) have suddenly broadened dramatically. Indeed, we can now solve the
problem, at least in principle, by applying SGD to any stochastic reformulation:

xk+1 = xk − α∇ fSk (x
k). (24)

But now we have a parameter to play with, namely, the distribution of S. The choice
of this parameter will influence both the iteration complexity of the resulting method
as well as the cost of each iteration. We now give a few examples of possible choices
of D to illustrate this.

Example 1 (gradient descent) Let S be equal to I (or any other n×n invertible matrix)
with probability 1 and letW � 0 be chosen arbitrarily. Then θS ≡ 1 is bias-correcting
since

ED [θS�Se] = �Se
(12)= S(S	WS)†S	We = SS−1W−1(S	)−1S	We = Ie = e.

With this setup, the SGD method (24) becomes gradient descent:

xk+1 = xk − α∇ fSk (x
k)

(5)+(23)= xk − α∇ f (xk). (25)
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Example 2 (SGD with non-uniform sampling) Let S = ei (unit basis vector in R
n)

with probability pi > 0 and let W = I. Then θei = 1/pi is bias-correcting since

ED [θS�Se]
(12)=

n∑
i=1

pi
1

pi
ei (e

	
i ei )

−1e	
i e =

n∑
i=1

ei e
	
i e = Ie = e.

Let Sk = {ik} be picked at iteration k. Then the SGD method (24) becomes SGD
with non-uniform sampling:

xk+1 = xk − α∇ fSk (x
k)

(23)= xk − α

npik
∇ fik (x

k). (26)

Note that with this setup, and when pi = 1/n for all i , the stochastic reformulation is
identical to the original finite-sum problem. This is the case because fei (x) = fi (x).

Example 3 (minibatch SGD) Let S = eS = ∑
i∈S ei , where S = C ⊆ [n] with

probability pC . Let W = I. Assume that the cardinality of the set {C ⊆ [n] : C ∈
supp(S), i ∈ C} does not depend on i (and is equal to c1 > 0). Then θeS = 1/(c1 pS)
is bias-correcting since

ED [θS�Se]
(12)=

∑
C∈supp(S)

pC
1

c1 pC
eC (e	

C eC︸ ︷︷ ︸
|C|

)−1 e	
C e︸︷︷︸
|C|

=
∑

C∈supp(S)

1

c1
eC = e.

Note that �eS e = eS . Assume that set Sk is picked in iteration k. Then the SGD
method (24) becomes minibatch SGD with non-uniform sampling:

xk+1 = xk − α∇ fSk (x
k)

(23)= xk − α

nc1

∑
i∈Sk

1

pSk
∇ fi (x

k). (27)

Finally, note that gradient descent (25) is a special case of (27) if we set p[n] = 1 and
pC = 0 for all other subsets C of [n]. Likewise, SGD with non-uniform probabilities
(26) is a special case of (27) if we set p{i} = pi > 0 for all i and pC = 0 for all other
subsets C of [n].

2.2 The controlled stochastic reformulation

Though SGD applied to the stochastic reformulation can generate several known
algorithms in special cases, there is no reason to believe that the gradient estimates gk

will have diminishing variance (excluding the extreme case such as gradient descent).
Here we handle this issue using control variates, a commonly used tool to reduce
variance in Monte Carlo methods [13] and introduced in [35] for designing variance
reduced stochastic gradient algorithm.
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Given a random function zS(x), we introduce the controlled stochastic reformula-
tion:

min
x∈Rd

f (x) = ED
[
fS,z(x)

]
, where fS,z(x)

def= fS(x) − zS(x) + ED [zS(x)] .

(28)

Since

∇ fS,z(x)
def= ∇ fS(x) − ∇zS(x) + ED [∇zS(x)] (29)

is an unbiased estimator of the gradient ∇ f (x), we can apply SGD to the controlled
stochastic reformulation instead, which leads to the method

xk+1 = xk − α(∇ fSk (x) − ∇zSk (x) + ED [∇zS(x)]).

Reformulation (22) and method (24) is recovered as a special case with the choice
zS(x) ≡ 0.However,wenowhave the extra freedom to choose zS(x) so as to control the
variance of this stochastic gradient. In particular, if∇zS(x) and∇ fS(x) are sufficiently
correlated, then (29) will have a smaller variance than ∇ fS(x). For this reason, we
choose a linear model for zS(x) that mimicks the stochastic function fS(x).

Let J ∈ R
d×n be a matrix of parameters of the following linear model

zS(x)
def= θS

n

〈
J	x,�Se

〉
, ∇zS(x) = θS

n
J�Se. (30)

Note that this linear model has the same structure as fS(x) in (22) except that F(x) has
been replaced by the linear function J	x .8 If S is an unbiased sketch (see (21)), we get
ED [∇zS(x)] = 1

n Je, which plugged into (28) and (29) together with the definition
(22) of fS gives the following unbiased estimate of f (x) and ∇ f (x):

fS,J(x)
def= fS,z(x) = θS

n

〈
F(x) − J	x,�Se

〉
+ 1

n

〈
J	x, e

〉
, (31)

and

∇ fS,J(x)
def= ∇ fS,z(x) = θS

n
(∇F(x) − J)�Se + 1

n
Je. (32)

We collect this observation that (32) is unbiased in the following lemma for future
reference.

Lemma 1 If S is an unbiased sketch (see Definition 2.1), then

ED
[∇ fS,J(x)

] = ∇ f (x), (33)

8 SVRG is also built on a linear covariate model [15].
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for every J ∈ R
d×n and x ∈ R

d . That is, (32) is an unbiased estimate of the gradi-
ent (1).

Now it remains to choose the matrix J, which we do by minimizing the variance of
our gradient estimate.

2.3 The Jacobian estimate, variance reduction and the sketch residual

Since (32) gives an unbiased estimator of ∇ f (x) for all J ∈ R
d×n , we can attempt to

choose J that minimizes its variance. Minimizing the variance of (32) in terms of J
will, for all sketching matrices of interest, lead to J = ∇F(x). This follows because

ED
[∥∥∇ fS,J(x) − ∇ f (x)

∥∥2
2

]
(32)= ED

[∥∥∥∥1n J(I − θS�S)e − 1

n
∇F(x)(I − θS�S)e

∥∥∥∥
2

2

]

= 1

n2
ED

[
‖(J − ∇F(x))(I − θS�S)e‖22

]
= 1

n2
Tr
(
(J − ∇F(x))	(J − ∇F(x))B

)
= 1

n2
‖J − ∇F(x)‖2B, (34)

where

B def= ED
[
(I − θS�S)ee

	(I − θS�
	
S )
]
(21)= ED

[
θ2S�See

	�	
S

]
− ee	 � 0,

(35)

and we have used the weighted Frobenius norm with weight matrix B (see (10)).
For most distributions D of interest, the matrix B is positive definite.9 Letting

vS
def= (I − θS�S)e, we can bound the largest eigenvalue of matrix B via Jensen’s

inequality as follows:

λmax(B)
(35)= λmax(ED

[
vSv

	
S

]
) ≤ ED

[
λmax(vSv

	
S )
]

= ED
[
‖vS‖22

]
.

Combined with (34), we get the following bound on the variance of ∇ fS,J:

ED
[∥∥∇ fS,J(x) − ∇ f (x)

∥∥2
2

]
≤ ED

[‖vS‖22]
n2

‖J − ∇F(x)‖2I .

This suggests that the variance is low when J is close to the true Jacobian ∇F(x), and
when the second moment of vS is small. If S is an unbiased sketch, then ED [vS] = 0,

9 Excluding such trivial cases as when S is an invertible matrix and θS = 1 with probability one, in which
case B = 0.
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and hence ED
[‖vS‖22] is the variance of vS. So, the lower the variance of 1

n θS�Se as
an estimator of 1

n e, the lower the variance of ∇ fS,J(x) as an estimator of ∇ f (x).
Let us now return to the identity (34) and its role in choosing J. Minimizing the

variance in a single step is overly ambitious, since it requires setting J = ∇F(x), which
is costly. So instead, we propose to minimize (34) iteratively. But first, to make (34)
more manageable, we upper-bound it using a norm defined by the weight matrix W
as follows

‖J − ∇F(x)‖2B ≤ ρ ‖J − ∇F(x)‖2W−1 , (36)

where

ρ
def= λmax

(
W1/2BW1/2

)
≥ 0 (37)

is the largest eigenvalue of W1/2BW1/2. We refer to the constant ρ as the sketch
residual, and it is a key constant affecting the convergence rate of JacSketch as captured
by Theorem 1. The sketch residual ρ represents how much information is “lost” on
average due to sketching and due to how well W−1 approximates B. We develop
formulae and estimates of the sketch residual for several specific sketches of interest
in Sect. 4.5.

Example 4 (Zero sketch residual) Consider the setup from Example 1 (gradient
descent). That is, let S be invertible with probability one and let θS = 1 be the
bias-reducing variable. Then �Se = e and hence B = 0, which means that ρ = 0.

Example 5 (Large sketch residual) Consider the setup fromExample 2 (SGDwith non-
uniform probabilities). That is, let S = ei (unit basis vector in R

n) with probability
pi > 0 and let W = I. Then θei = 1/pi is a bias-reducing variable, and it is easy to
show that B = Diag(1/p1, . . . , 1/pn) − ee	. If we choose pi = 1/n for all i , then
ρ = n.

We have switched from the B norm to a user-controlled W−1 norm because min-
imizing under the B norm will prove to be impractical because B is a dense matrix
for most all practical sketches. With this norm change we now have the option to
set W as a sparse matrix (e.g., the identity, or a diagonal matrix), as we explain in
Remark 1 further down. However, the theory we develop allows for any symmetric
positive definite matrixW.

We can now minimize (36) iteratively by only using a single sketch of the true
Jacobian at each iteration. Suppose we have a current estimate Jk of the true Jacobian
and a sketch of the true Jacobian ∇F(xk)Sk . With this we can calculate an improved
Jacobian estimate using a projection step

Jk+1 = arg
J∈Rd×n

min
Y∈Rm×τ

1

2

∥∥∥J − ∇F(xk)
∥∥∥2
W−1

subject to J = Jk + YS	
k W, (38)

the solution of which, as it turns out, depends on∇F(xk) through its sketch∇F(xk)Sk
only. That is, we choose the next Jacobian estimate Jk+1 as close as possible to the
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true Jacobian ∇F(xk) while restricted to a matrix subspace that passes through Jk .
Thus in light of (36), the variance is decreasing. The explicit solution to (38) is given
by

Jk+1 = Jk − (Jk − ∇F(xk))�Sk . (39)

See Lemma B.1 in the appendix of an extended preprint version of this paper [10]
or Theorem 4.1 in [12] for the proof. Note that, as alluded to before, Jk+1 depends
on ∇F(xk) through its sketch only. Note that (39) updates the Jacobian estimate by
re-using the sketch ∇F(xk)Sk which we also use when calculating the stochastic
gradient (32).

Note that (39) gives the same formula for Jk+1 as (11)whichwe obtained by solving
(9); i.e., by projecting Jk onto the solution set of (8). This is not a coincidence. In fact,
the optimization problems (9) and (38) are mutually dual. This is also formally stated
in Lemma B.1 in [10].

In the context of solving linear systems, this was observed in [11]. Therein, (9)
is called the sketch-and-project method, whereas (38) is called the constrain-and-
approximate problem. In this sense, the Jacobian sketching narrative we followed in
Sect. 1.3 is dual to the Jacobian sketching narrative we are pursuing here.

Remark 1 (On the weight matrix and the cost) Loosely speaking, the denser the
weighting matrix W, the higher the computational cost for updating the Jacobian
using (39). Indeed, the sparsity pattern of W controls how many elements of the
previous Jacobian estimate Jk need to be updated. This can be seen by re-arranging (39)
as

Jk+1 = Jk + YkS	
k W, (40)

where Yk = (∇F(xk)Sk − JkSk)(S	
k WSk)† ∈ R

d×τ . Although we have no control
over the sparsity of Yk , the matrix S	

k W can be sparse when both Sk and W are
sparse. This will be key in keeping the update (40) at a cost propotional to d × τ ,
as oppossed to n × d when W is dense. This is why we consider a diagonal matrix
W = Diag(w1, . . . , wn) in all of the special complexity results in Table 1. While it
is clear that some non-diagonal sparse matrices W could also be used, we leave such
considerations to future work.

2.4 JacSketch algorithm

Combining formula (32) for the stochastic gradient of the controlled stochastic refor-
mulation with formula (39) for the update of the Jacobian estimate, we arrive at our
JacSketch algorithm (Algorithm 1).

Typically, one should not implement the algorithm as presented above. The most
efficient implementation of JacSketchwill depend heavily on the structure ofW, distri-
butionD and so on. For instance, in the special case of minibatch SAGA, as presented
in Sect. 1.4, the update of the Jacobian (77) has a particularly simple form. That is, we
maintain a single matrix J ∈ R

d×n and keep replacing its columns by the appropriate
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Algorithm 1 JacSketch: Variance Reduced Gradient Method via Jacobian Sketching
1: Input: (D,W, θS)

2: Initialize: x0 ∈ R
d , Jacobian estimate J0 ∈ R

d×n , stepsize α > 0
3: for k = 0, 1, 2, . . . do
4: Sample a fresh copy Sk ∼ D
5: Calculate ∇F(xk )Sk � Sketch the Jacobian
6: Jk+1 = Jk + (∇F(xk ) − Jk )�Sk = Jk (I − �Sk ) + ∇F(xk )�Sk � Update Jacobian estimate

7: gk = 1
n J

ke + θSk
n (∇F(xk ) − Jk )�Sk e = 1−θSk

n Jke + θSk
n Jk+1e � Update gradient estimate

8: xk+1 = xk − αgk � Take a step

stochastic gradients, as computed. Moreover, in the case of linear predictors, as is
well known, a much more memory-efficient implementation is possible. In particular,
if fi (x) = φi (a	

i x) for some loss function φi and a data vector ai ∈ R
d and all i ,

then ∇ fi (x) = φ′
i (a

	
i x)ai , which means that the gradient always points in the same

direction. In such a situation, it is sufficient to keep track of the scalar loss derivatives
φ′
i (a

	
i x) only. Similar comments can be made about the step (16) for computing the

gradient estimate gk .

2.5 A window into biased estimates and SAG

We will now take a small detour from the main flow of the paper to develop an
alternative viewpoint of Algorithm 1 and also make a bridge to biased methods such
as SAG [29].

The simple observation that

∇ f (xk) = 1

n
∇F(xk)e, (41)

suggests that ĝk = 1
n J

k+1e, where Jk+1 ≈ ∇F(xk) would give a good estimate of
the gradient. To decrease the variance of ĝk , we can also use the same update of the
Jacobian estimate (39) since

E

[∥∥∥ĝk − ∇ f (xk)
∥∥∥2
2

]
= 1

n2
E

[∥∥∥(Jk+1 − ∇F(xk))e
∥∥∥2
2

]

= 1

n2
E

[∥∥∥(Jk+1 − ∇F(xk))W−1/2W1/2e
∥∥∥2
2

]

≤ e	We

n2
E

[∥∥∥Jk+1 − ∇F(xk)
∥∥∥2
W−1

]
.

Thus, if E
[∥∥Jk+1 − ∇F(xk)

∥∥2
W−1

]
converges to zero, so will E

[∥∥ĝk − ∇ f (xk)
∥∥2
2

]
.

Though unfortunately, the combination of the gradient estimate ĝk = 1
n J

k+1e and a
Jacobian estimate updated via (39) will almost always give a biased estimator. For
example, if we define D by setting S = ei with probability 1

n and letW = I, then we
recover the celebrated SAG method [29] and its biased estimator of the gradient.
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The issue with using 1
n J

k+1e as an estimator of the gradient is that it decreases the
variance too aggressively, neglecting the bias. However, this can be fixed by trading
off variance for bias. One way to do this is to introduce the random variable θS as a
stochastic relaxation parameter

ĝk = 1 − θSk

n
Jke + θSk

n
Jk+1e. (42)

If θS is bias correcting, we recover the unbiased SAGA estimator (13). By allowing
θS to be closer to one, however, we will get more bias and lower variance. We leave
this strategy of building biased estimators for future work. It is conceivable that SAG
could be analyzed using reasonably small modifications of the tools developed in this
paper. Doing this would be important due to at least four reasons: (i) SAG was the
first variance-reduced method for problem (1), (ii) the existing analysis of SAG is not
satisfying, (iii) one may be able to obtain a better rate, (iv) one may be able to develop
and analyze novel variants of SAG.

3 Convergence analysis for general sketches

In this section we establish a convergence theorem (Theorem 1) which applies to
general sketching matrices S (that is, arbitrary distributions D from which they are
sampled). By design, we keep the setting in this section general, and only deal with
specific instantiations and special cases in Sect. 4.

3.1 Two expected smoothness constants

We first formulate two expected smoothness assumptions tying together f , its Jaco-
bian ∇F(x) and the distribution D from which we pick sketch matrices S. These
assumptions, and the associated expected smoothness constants, play a key role in the
convergence result.

Our first assumption concerns the expected smoothness of the stochastic gradients
∇ fS of the stochastic reformulation (22).10

Assumption 3.1 (Expected smoothness of the stochastic gradient) There is a constant
L1 > 0 such that

ED
[∥∥∇ fS(x) − ∇ fS(x

∗)
∥∥2
2

]
≤ 2L1( f (x) − f (x∗)), ∀x ∈ R

d . (43)

It is easy to see from (23) and (32) that

10 A similar relation to (43) holds for the stochastic optimization reformulation of linear systems studied by
Richtárik and Takáč [26]. Therein, this relation holds as an identity with L1 = 1 (see Lemma 3.3 in [26]).
However, the function fS considered there is entirely different and, moreover, f (x∗) = 0 and∇ fS(x∗) = 0
for all S.
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‖∇ fS(x) − ∇ fS(y)‖22 = 1
n2

‖(∇F(x) − ∇F(y))θS�Se‖22
= ∥∥∇ fS,J(x) − ∇ fS,J(y)

∥∥2
2 (44)

for all J ∈ R
d×n and x, y ∈ R

d , and hence the expected smoothness assumption can
equivalently be understood from the point of view of the controlled stochastic refor-
mulation. The above assumption is not particularly restrictive. Indeed, in Theorem 2
we provide formulae for L1 for smooth functions f and for a class of minibatch sam-
plings S = IS . These formulae can be seen as proofs that Assumption 3.1 is satisfied
for a large class of practically relevant sketches S and functions f .

Our second expected smoothness assumption concerns the Jacobian of F .

Assumption 3.2 (Expected smoothness of the Jacobian) There is a constant L2 > 0
such that

ED
[∥∥(∇F(x) − ∇F(x∗))�S

∥∥2
W−1

]
≤ 2L2( f (x) − f (x∗)), ∀x ∈ R

d , (45)

where the norm is the weighted Frobenius norm defined in (10).

It is easy to see (see Lemma 4, Eq. (60)) that for any matrix M ∈ R
d×n , we have

ED
[
‖M�S‖2W−1

]
= ‖M‖2

ED[HS]
, where

HS
def= S(S	WS)†S	 (12)= �SW−1. (46)

Therefore, (45) can be equivalently written in the form

∥∥∇F(x) − ∇F(x∗)
∥∥2
ED[HS]

≤ 2L2( f (x) − f (x∗)), ∀x ∈ R
d , (47)

which suggests that the above condition indeed measures the variation/smoothness of
the Jacobian under a specific weighted Frobenius norm.

3.2 Stochastic contraction number

By the stochastic contraction number associated withW andD we mean the constant
defined by

κ = κ(D,W)
def= λmin(ED [�S]). (48)

In the next lemma we show that 0 ≤ κ ≤ 1 for all distributions D for which the
expectation (48) exists.

Lemma 2 For all distributions D, we have the bounds 0 ≤ κ ≤ 1.

Proof It is not difficult to show that W1/2HSW1/2 (46)= W1/2�SW−1/2 is the
orthogonal projection matrix that projects onto Range

(
W1/2S

)
. Consequently, 0 �

123



156 R. M. Gower et al.

W1/2HSW1/2 � I and, after taking expectation, we get 0 � W1/2
ED [HS]W1/2 � I.

Finally, this implies that

0 ≤ λmax(I − W1/2
ED [HS]W1/2) = 1 − λmin(W1/2

ED [HS]W1/2) ≤ 1. (49)

��
In our convergence theorem we will assume that κ > 0. This can be achieved

by choosing a suitable distribution D and it holds trivially for all the examples we
develop. The condition κ > 0 essentially says that the distribution is sufficiently
rich. This contraction number was first proposed in [11] in the context of randomized
algorithms for solving linear systems. We refer the reader to that work for details on
sufficient assumptions about D guaranteeing κ > 0. Below we give an example.

Example 6 Let W � 0, and let D be given by setting S = ei with probability pi > 0.
Then

κ
(48)= λmin

(
W1/2

ED [�S]W−1/2
)

= λmin

(
n∑

i=1

pi
e	
i Wei

W1/2ei e
	
i W

1/2

)
.

Since the vectors W1/2ei span R
n and pi > 0 for all i , the matrix is positive definite

and hence κ > 0. In particular, when W = I, then the expected projection matrix is
equal to Diag(p1, . . . , pn) and κ = mini pi > 0. If instead of unit basis vectors {ei }
we use vectors that spanRn , using similar arguments we can also conclude that κ > 0.

3.3 Convergence theorem

Our main convergence result, which we shall present shortly, holds for μ-strongly
convex functions. However, it turns out our results hold for the somewhat larger family
of functions that are quasi-strongly convex.

Assumption 3.3 (Quasi-strong convexity) Function f for some μ > 0 satisfies

f (x∗) ≥ f (x) + 〈∇ f (x), x∗ − x
〉+ μ

2

∥∥x∗ − x
∥∥2
2 , ∀x ∈ R

d , (50)

where x∗ = argminx∈Rd f (x).

We are now ready to present the main result of this section.

Theorem 1 (Convergence of JacSketch forGeneral Sketches)LetW � 0. Let f satisfy
Assumption 3.3. Let Assumption 2.1 be satisfied (i.e., S is an unbiased sketch and
θS is the associated bias-correcting random variable). Let the expected smoothness
assumptions be satisfied: Assumptions 3.1 and 3.2. Assume that κ > 0. Let the sketch
residual be defined as in (37), i.e.,

ρ = ρ(θS,D,W)
(37)= λmax

(
W1/2

(
ED

[
θ2S�See

	�S

]
− ee	)W1/2

)
≥ 0. (51)
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Choose any x0 ∈ R
d and J0 ∈ R

d×n. Let {xk, Jk}k≥0 be the random iterates
produced by JacSketch (Algorithm 1). Consider the Lyapunov function

Ψ k def=
∥∥∥xk − x∗

∥∥∥2
2
+ α

2L2

∥∥∥Jk − ∇F(x∗)
∥∥∥2
W−1

. (52)

If the stepsize satisfies

0 ≤ α ≤ min

{
1

4L1
,

κ

4L2ρ/n2 + μ

}
, (53)

then

E

[
Ψ k
]

≤ (1 − μα)k · Ψ 0, (54)

If we choose α to be equal to the upper bound in (53), then

k ≥ max

{
4L1

μ
,
1

κ
+ 4ρL2

κμn2

}
log

(
1

ε

)
⇒ E

[
Ψ k
]

≤ εΨ 0. (55)

Recall that the iteration complexity expression from (55) is listed in row1ofTable 1.
The Lyapunov functionwe use is simply the sumof the squared distance between xk

to the optimal x∗ and the distance of our Jacobian estimate Jk to the optimal Jacobian
∇F(x∗).Hence, the theorem says that both the iterates {xk} and the Jacobian estimates
{Jk} converge.

3.4 Projection lemmas and the stochastic contraction number �

In this section we collect some basic results on projections. Recall from (12) that
�S = S(S	WS)†S	W and from (46) that HS = S(S	WS)†S	.

Lemma 3

�SW−1(I − �S)
	 = 0. (56)

Furthermore,

ED
[
�SW−1�	

S

]
= ED [HS] and

ED
[
(I − �S)W−1(I − �S)

	] = W−1 − ED [HS] . (57)

Proof Using the pseudoinverse property A†AA† = A† we have that

�SW−1�	
S

(12)= S(S	WS)†S	WS(S	WS)†S	 (46)= �SW−1 = HS, (58)
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and as a consequence (56) holds. Moreover,

(I − �S)W−1(I − �S)
	 (56)= W−1(I − �S)

	 (46)= W−1 − HS. (59)

Finally, taking expectation over (58) and (59) gives (57). ��
Lemma 4 For any matrices M,N ∈ R

d×n we have the identities

‖M(I − �S) + N�S‖2W−1 = ‖M(I − �S)‖2W−1 + ‖N�S‖2W−1

and

ED
[
‖N�S‖2W−1

]
= ‖N‖2

ED[HS] . (60)

Furthermore,

ED
[
‖M(I − �S) + N�S‖2W−1

]
≤ (1 − κ)‖M‖2W−1 + ‖N‖2

ED[HS]. (61)

Proof First, note that

‖M(I − �S) + N�S‖2W−1 = ‖M(I − �S)‖2W−1 + ‖N�S‖2W−1

+Tr
(
M	N�SW−1(I − �S)

	)
(56)= ‖M(I − �S)‖2W−1 + ‖N�S‖2W−1 .

By taking expectations in D, we get

ED
[
‖M(I − �S) + N�S‖2W−1

]
= ED

[
‖M(I − �S)‖2W−1

]
+ ED

[
‖N�S‖2W−1

]
(57)= ‖M‖2W−1−ED[HS]

+ ‖N‖2
ED[HS]

≤ (1 − κ)‖M‖2W−1 + ‖N‖2
ED[HS],

where in the last step we used the estimate

W−1 − ED [HS] = W−1/2(I − W1/2
ED [HS]W1/2)W−1/2

� λmax(I − W1/2
ED [HS]W1/2)W−1 (49)= (1 − κ)W−1.

��

3.5 Key lemmas

We first establish two lemmas. The first lemma provides an upper bound on the quality
of new Jacobian estimate in terms of the quality of the current estimate and function
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suboptimality. If the second term on the right hand side was not there, the lemma
would be postulating a contraction on the quality of the Jacobian estimate.

Lemma 5 Let Assumption 3.2 be satisfied. Then iterates of Algorithm 1 satisfy

ED
[∥∥∥Jk+1 − ∇F(x∗)

∥∥∥2
W−1

]
≤ (1 − κ)

∥∥∥Jk − ∇F(x∗)
∥∥∥2
W−1

+ 2L2( f (x
k) − f (x∗)), (62)

where κ is defined in (48).

Proof Subtracting ∇F(x∗) from both sides of (39) gives

Jk+1 − ∇F(x∗) (39)= (Jk − ∇F(x∗))︸ ︷︷ ︸
M

(I − �Sk ) + (∇F(xk) − ∇F(x∗))︸ ︷︷ ︸
N

�Sk . (63)

Taking norms on both sides, then expectation with respect to Sk and then using
Lemma 4, we get

ED
[∥∥∥Jk+1 − ∇F(x∗)

∥∥∥2
W−1

]
(61)≤ (1 − κ) ‖M‖2W−1 + ‖N‖2

ED
[
HSk

]
(45)≤ (1 − κ)

∥∥∥Jk − ∇F(x∗)
∥∥∥2
W−1

+ 2L2( f (x
k) − f (x∗)).

��
We now bound the second moment of gk . The lemma implies that as xk approaches

x∗ and Jk approaches ∇F(x∗), the variance of gk approaches zero. This is a key
property of JacSketch which elevates it into the ranks of variance-reduced methods.

Lemma 6 Let S be an unbiased sketch. Let Assumption 3.1 be satisfied (i.e., assume
that inequality (43) holds for some L1 > 0). Then the second moment of the estimated
gradient is bounded by

ED
[∥∥∥gk∥∥∥2

2

]
≤ 4L1( f (x

k) − f (x∗)) + 2
ρ

n2

∥∥∥Jk − ∇F(x∗)
∥∥∥2
W−1

, (64)

where ρ is defined in (51).

Proof Adding and subtracting
θSk
n ∇F(x∗)�Sk e in (13) gives

gk = 1

n
Jke − θSk

n
(Jk − ∇F(x∗))�Sk e︸ ︷︷ ︸

b

+ θSk

n
(∇F(xk) − ∇F(x∗))�Sk e︸ ︷︷ ︸

a

.
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Taking norms on both sides and using the bound ‖a + b‖22 ≤ 2‖a‖22 + 2‖b‖22 gives
∥∥∥gk∥∥∥2

2
≤ 2

n2

∥∥∥(∇F(xk) − ∇F(x∗))�Sk θSk e
∥∥∥2
2︸ ︷︷ ︸

ak

+ 2

n2

∥∥∥θSk (Jk − ∇F(x∗))�Sk e − Jke
∥∥∥2
2︸ ︷︷ ︸

bk

. (65)

In view of Assumption 3.1 (combine (43) and (44)), we have

ED
[
ak
]

≤ 4L1( f (x
k) − f (x∗)), (66)

where the expectation is taken with respect to Sk . Let us now bound ED
[
bk
]
. Using

the fact that ∇F(x∗)e = 0, we can write

ED
[
bk
]

= 2

n2
ED

[∥∥∥(Jk − ∇F(x∗))θSk �Sk e − (Jk − ∇F(x∗))e
∥∥∥2
2

]

= 2

n2
ED

[∥∥∥(Jk − ∇F(x∗))(θSk �Sk − I)e
∥∥∥2
2

]

= 2

n2
ED

[
e	(θSk �Sk − I)	(Jk − ∇F(x∗))	(Jk − ∇F(x∗))(θSk �Sk − I)e

]
= 2

n2
ED

[
Tr
(
e	(θSk �Sk − I)	(Jk − ∇F(x∗))	(Jk − ∇F(x∗))(θSk �Sk − I)e

)]
= 2

n2
ED

[
Tr
(
e	(θSk �Sk − I)	W1/2W−1/2(Jk − ∇F(x∗))	

(Jk − ∇F(x∗))W−1/2W1/2(θSk �Sk − I)e
)]

= 2

n2
ED

[
Tr
(
W−1/2(Jk − ∇F(x∗))	(Jk − ∇F(x∗))W−1/2W1/2(θSk �Sk − I)ee	

(θSk �Sk − I)	W1/2
)]

= 2

n2
Tr
(
W−1/2(Jk − ∇F(x∗))	(Jk − ∇F(x∗))W−1/2

ED
[
W1/2(θSk �Sk − I)ee	

(θSk �Sk − I)	W1/2
])

.

If we now let v = W1/2(θSk�Sk − I)e and M = (Jk − ∇F(x∗))W−1/2, then we can
continue:

ED
[
bk
]

= 2

n2
Tr
(
M	MED

[
vv	]) ≤ 2

n2
Tr
(
M	M

)
λmax

(
ED

[
vv	])

(10)= 2

n2

∥∥∥Jk − ∇F(x∗)
∥∥∥2
W−1

λmax

(
ED

[
vv	])

= 2ρ

n2

∥∥∥Jk − ∇F(x∗)
∥∥∥2
W−1

, (67)
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where in the last step we have used the assumption that θSk is bias-correcting:

λmax

(
ED

[
vv	]) (21)= λmax

(
W1/2

ED
[
θ2Sk�Sk ee

	�	
Sk

]
W1/2 − W1/2ee	W1/2

)
(51)= ρ. (68)

It now only remains to substitute (66) and (67) into (65) to arrive at (64). ��

3.6 Proof of Theorem 1

With the help of the above lemmas, we now proceed to the proof of the theorem. In
view of (50), we have

〈∇ f (y), y − x∗〉 ≥ f (y) − f (x∗) + μ

2

∥∥y − x∗∥∥2
2 . (69)

By using the relationship xk+1 = xk −αgk , the fact that gk is an unbiased estimate
of the gradient ∇ f (xk), and using one-point strong convexity (69), we get

ED
[∥∥∥xk+1 − x∗

∥∥∥2
2

]
(2)= ED

[∥∥∥xk − x∗ − αgk
∥∥∥2
2

]
(33)=

∥∥∥xk − x∗
∥∥∥2
2
− 2α

〈
∇ f (xk), xk − x∗〉+ α2

ED
[∥∥∥gk∥∥∥2

2

]
(69)≤ (1 − αμ)

∥∥∥xk − x∗
∥∥∥2
2
+ α2

ED
[∥∥∥gk∥∥∥2

2

]
−2α( f (xk) − f (x∗)). (70)

Next, applying Lemma 6 leads to the estimate

ED
[∥∥∥xk+1 − x∗

∥∥∥2
2

]
(64)≤ (1 − αμ)

∥∥∥xk − x∗
∥∥∥2
2
+ 2α (2αL1 − 1) ( f (xk) − f (x∗))

+ 2α2 ρ

n2

∥∥∥Jk − ∇F(x∗)
∥∥∥2
W−1

. (71)

Let σ = 1/(2L2). Adding σαED
[∥∥Jk+1 − ∇F(x∗)

∥∥2
W−1

]
to both sides of the above

inequality and substituting in the definition of Ψ k from (52), it follows that

ED
[
Ψ k+1

] (71)≤ (1 − αμ)

∥∥∥xk − x∗
∥∥∥2
2
+ 2α (2αL1 − 1) ( f (xk) − f (x∗))

+ 2α2 ρ

n2

∥∥∥Jk − ∇F(x∗)
∥∥∥2
W−1

+ σαED
[∥∥∥Jk+1 − ∇F(x∗)

∥∥∥2
W−1

]
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(Lemma 5)≤ (1 − αμ)

∥∥∥xk − x∗
∥∥∥2
2
+ 2α (L2σ + 2αL1 − 1)︸ ︷︷ ︸

I

( f (xk) − f (x∗))

+ σα
(
1 − κ + 2

αρ

σn2

)
︸ ︷︷ ︸

II

∥∥∥Jk − ∇F(x∗)
∥∥∥2
W−1

. (72)

We now choose α so that I ≤ 0 and II ≤ 1 − αμ, which can be written as

α ≤ 1 − L2σ

2L1
and α ≤ κ

2ρ/(σn2) + μ
. (73)

If α satisfies the above two inequalities, then (72) takes on the simplified form
ED

[
Ψ k+1

] ≤ (1− αμ)Ψ k . By taking expectation again and using the tower rule, we
getE

[
Ψ k
] ≤ (1−αμ)kΨ 0.Note that as long as k ≥ 1

αμ
log 1

ε
,wehaveE

[
Ψ k
] ≤ εΨ 0.

Recalling that σ = 1/(2L2), and choosing α to be the minimum of the two upper
bounds (73) gives the upper bound on (53), which in turn leads to (55). ��

4 Minibatch sketches

In this section we focus on special cases of Algorithm 1 where one computes ∇ fi (xk)
for i ∈ Sk , where Sk is a random subset (mini-batch) of [n] chosen in each iteration
according to some fixed probability law. As we have seen in the introduction, this is
achieved by choosing Sk = ISk .

We say that S is a minibatch sketch if S = IS for some random set (sampling) S,
where IS ∈ R

n×|S| is a column submatrix of the n × n identity matrix I associated
with columns indexed by the set S. That is, the distributionD from which the sketches
S are sampled is defined by

P [S = IC ] = pC , C ⊆ [n],

where
∑

C⊆[n] pC = 1 and pC ≥ 0 for all C .

4.1 Samplings

We now formalize the notion of a random set, which we will refer to by the name
sampling. A sampling is a random set-valued mapping with values being the subsets

of [n]. A sampling S is uniquely characterized by the probabilities pC
def= P [S = C]

associated with every subset C of [n].
Definition 1 (Types of samplings) We say that sampling S is non-vacuous if

P [S = ∅] = 0 (i.e., p∅ = 0). Let pi
def= P [i ∈ S] = ∑

C :i∈C pC . We say that S
is proper if pi > 0 for all i . We say that S is uniform if pi = p j for all i, j . We say
that S is τ—uniform if it is uniform and |S| = τ with probability 1. In particular, the
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unique sampling which assigns equal probabilities to all subsets of [n] of cardinality
τ and zero probabilities to all other subsets is called the τ—nice sampling.

We refer the reader to [22,25] for a background reading on samplings and their
properties.

Definition 2 (Support) The support of a sampling S is the set of subsets of [n] which
are chosen by S with positive probability: supp(S)

def= {C : pC > 0}. We say that S
has uniform support if

c1
def= |{C ∈ supp(S) : i ∈ C}| = |{C ∈ supp(S) : j ∈ C}|

for all i, j ∈ [n]. In such a case we say that the support is c1—uniform.

To illustrate the above concepts, we now list a few examples with n = 4.

Example 7 The sampling defined by setting p{1,2} = p{3,4} = 0.5 is non-vacuous,
proper, 2—uniform (pi = 0.5 for all i and |S| = 2 with probability 1), and has 1—
uniform support. If we change the probabilities to p{1,2} = 0.4 and p{3,4} = 0.6, the
sampling is no longer uniform (since p1 = 0.4 �= 0.6 = p3), but it still has 1—uniform
support, is proper and non-vacuous. Hence, a sampling with uniform support need not
be uniform. On the other hand, a uniform sampling need not have uniform support. As
an example, consider sampling S defined via p{1} = 0.4, p{2,3} = p{3,4} = p{2,4} =
0.2. It is uniform (since pi = 0.4 for all i). However, while element 1 appears in a
single set of its support, elements 2, 3 and 4 each appear in two sets. So, this sampling
does not have uniform support.

Example 8 A uniform sampling need not be τ—uniform for any τ . For example, the
sampling defined by setting p{1,2,3,4} = 0.5, p{1,2} = 0.25 and p{3,4} = 0.25 is
uniform (since pi = 0.75 for all i), but as it assigns positive probabilities to sets of at
least two different cardinalities, it is not τ—uniform for any τ .

Example 9 Further, the sampling defined by setting p{1,2} = 1/6, p{1,3} = 1/6,
p{1,4} = 1/6, p{2,3} = 1/6, p{2,4} = 1/6, p{3,4} = 1/6 is non-vacuous, 2—uniform
(pi = 1/2 for all i and |S| = 2 with probability 1), and has 3—uniform support.
The sampling defined by setting p{1,2} = 1/3, p{2,3} = 1/3, p{3,1} = 1/3 is non-
vacuous, proper, 2—uniform (pi = 2/3 for all i and |S| = 2 with probability 1) and
has 2—uniform support.

Note that a sampling with uniform support is necessarily proper as long as c1 > 0.
However, it need not be non-vacuous. For instance, the sampling S defined by setting
p∅ = 1 has 0—uniform support and is vacuous. From now on, we only consider
samplings with the following properties.

Assumption 4.1 S is non-vacuous and has c1—uniform support with c1 ≥ 1.

Note that if S is a non-vacuous sampling with 1—uniform support, then its support
is necessary a partition of [n]. We shall pay specific attention to such samplings in
Sect. 5 as for themwe can develop a stronger analysis than that provided byTheorem1.
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4.2 Minibatch sketches and projections

In the next result we describe some basic properties of the projection matrix �S =
S(S	WS)†S	W associated with a minibatch sketch S.

Lemma 7 LetW = Diag(w1, . . . , wn). Let S be any sampling, S = IS be the associ-
ated minibatch sketch, and let P be the probability matrix11 associated with sampling
S: Pi j = P [i ∈ S & j ∈ S]. Then

(i) �S = ISI	S . This is a diagonal matrix with the i th diagonal element equal to 1
if i ∈ S, and 0 if i /∈ S.

(ii) �Se = eS
def= ∑

i∈S ei .
(iii) ED

[
�See	�S

] = ∑
C⊆[n] pCeCe	

C = P
(iv) ED [�S] = Diag(P)

(v) The stochastic contraction number defined in (48) is given by κ = mini pi
(vi) Let S satisfy Assumption 4.1. Then the random variable

θS
def= 1

c1 pS
, (74)

defined on supp(S), is bias-correcting. That is, ED [�SθSe] = e.

Proof (i) This follows by noting that I	S WIS is the |S| × |S| diagonal matrix with
diagonal entries corresponding to wi for i ∈ S, which in turn can be used to
show that (I	S WIS)−1I	S W = I	S .

(ii) This follows from (i) by noting that I	S e is the vector of all ones in R|S|.
(iii) Using (ii),wehave�See	�S = eSe	

S . By linearity of expectation,
(
ED

[
eSe	

S

])
i j

= ED
[
(eSe	

S )i j
] = ED

[
1i, j∈S

] = P [i ∈ S & j ∈ S] = Pi j , where 1i, j∈S = 1
if i, j ∈ S and 1i, j∈S = 0 otherwise.

(iv) This follows from (i) by taking expectations of the diagonal elements of �S.
(v) Follows from (iv).
(vi) Indeed,

ED [θS�Se]
(ii)=

∑
C∈supp(S)

pCθCeC
(74)= 1

c1

∑
C∈supp(S)

eC = e, (75)

where the last equation follows from the assumption that the support of S is
c1—uniform. ��

The following simple observation will be useful in the computation of the constant
L1. The proof is straightforward and involves a double counting argument.

Lemma 8 Let S be a sampling satisfying Assumption 4.1. Moreover, assume that S is
a τ—uniform sampling. Then |supp(S)|

c1
= n

τ
. Consequently, κ = p1 = p2 = · · · =

pn = τ
n = c1|supp(S)| , where κ is the stochastic contraction number associated with the

minibatch sketch S = IS.

11 The notion of a probability matrix associated with a sampling was first introduced in [25] in the context
of parallel coordinate descent methods, and further studied in [22].
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4.3 JacSketch for minibatch sampling =minibatch SAGA

As we have mentioned in Sect. 1.4 already, JacSketch admits a particularly simple
form for minibatch sketches, and corresponds to known and new variants of SAGA.
Assume that S satisfies Assumption 4.1 and let W = Diag(w1, . . . , wn). In view of
Lemma 7(vi), this means that the random variable θS = 1

c1 pS
is bias-correcting, and

due to Lemma 7(ii), we have �Sk e = eSk = ∑
i∈Sk ei . Therefore,

gk
(13)= 1

n
Jke + θSk

n

∑
i∈Sk

(∇ fi (x
k) − Jk:i )

= 1

n

⎛
⎝∑

i /∈Sk
Jk:i +

∑
i∈Sk

(
1 − 1

c1 pSk

)
Jk:i + 1

c1 pSk
∇ fi (x

k)

⎞
⎠ . (76)

By Lemma 7(i), �Sk = ISk I
	
Sk
. In view of (11), the Jacobian estimate gets updated as

follows

Jk+1
:i =

{
Jk:i i /∈ Sk,

∇ fi (xk) i ∈ Sk .
(77)

The resulting minibatch SAGA method is formalized as Algorithm 2.

Algorithm 2 JacSketch: Mini-batch SAGA
1: Parameters: Sampling S satisfying Assumption 4.1, W = Diag(w1, . . . , wn), stepsize α > 0
2: Initialization: Choose x0 ∈ R

d , J0 ∈ R
d×n � Initialization

3: for k = 0, 1, 2, . . . do
4: Sample a fresh set Sk ∼ S
5: gk = 1

n J
ke + 1

nc1 pSk

∑
i∈Sk (∇ fi (x

k ) − Jk:i ) � Update gradient estimate

6: Jk+1
:i =

{
Jk:i i /∈ Sk
∇ fi (x

k ) i ∈ Sk .
� Update Jacobian estimate

7: xk+1 = xk − αgk � Take a step

Below we specialize the formula for gk to a few interesting special cases.

Example 10 (StandardSAGA)Standard uniformSAGAis obtained by setting Sk = {i}
with probability 1/n for each i ∈ [n]. Since the support of this sampling is 1—uniform,
we set c1 = 1. This leads to the gradient estimate

gk = 1

n
Jke + ∇ fi (x

k) − Jk:i . (78)

Example 11 (Non-uniform SAGA) However, we can use non-uniform probabilities
instead. Let Sk = {i} with probability pi > 0 for each i ∈ [n]. Since the support of
this sampling is 1—uniform, we have c1 = 1. So, the gradient estimate has the form
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gk = 1

n
Jke + 1

npi
(∇ fi (x

k) − Jk:i ). (79)

Example 12 (Uniformminibatch SAGA, version 1) LetC1, . . . ,Cq be nonempty sub-
sets of forming a partition [n]. Let Sk = C j with probability pC j > 0. The support
of this sampling is 1—uniform, and hence we can choose c1 = 1. This leads to the
gradient estimate

gk = 1

n
Jke + 1

npC j

∑
i∈C j

(∇ fi (x
k) − Jk:i ).

Example 13 (Uniform minibatch SAGA, version 2) Let Sk be chosen uniformly at
random from all subsets of [n] of cardinality τ ≥ 2. That is, Sk is the τ -nice sampling,
and the probabilities are equal to pSk = 1/

(n
τ

)
. This sampling has c1—uniform support

with c1 = (n−1
τ−1

) = τ
n

(n
τ

)
. Thus, nc1 pSk = τ , and we have

gk = 1

n
Jke + 1

τ

∑
i∈Sk

(∇ fi (x
k) − Jk:i ). (80)

Example 14 (Gradient descent) Consider the same situation as in Example 13, but with
τ = n. That is, we choose Sk = [n] with probability 1, and c1 = 1. Then

gk = 1

n
Jke + 1

n

n∑
i=1

(∇ fi (x
k) − Jk:i ) = ∇ f (xk).

4.4 Expected smoothness constantsL1 andL2

Here we compute the expected smoothness constants L1 and L2 in the case of S being
a minibatch sketch S = IS , and assuming that f is convex and smooth. We first
formalize the notion of smoothness we will use.

Assumption 4.2 For ∅ �= C ⊆ [n] define

fC (x)
def= 1

|C |
∑
i∈C

fi (x). (81)

For each ∅ �= C ⊆ [n] and all x ∈ R
d , the function fC is LC—smooth and convex.

That is, there exists LC ≥ 0 such that the following inequality holds

‖∇ fC (x) − ∇ fC (x∗)‖22
≤ 2LC

(
fC (x) − fC (x∗) − 〈∇ fC (x∗), x − x∗〉) , ∀x ∈ R

d . (82)

Let Li = L{i} for i ∈ [n].
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The above assumption is somewhat non-standard. Note that, however, if we instead
assume that each fi is convex and Li -smooth, then the above assumption holds for
LC = 1

|C|
∑

i∈C Li . In some cases, however, we may have better estimates of the
constants LC than those provided by the averages of the Li values. The value of these
constants will have a direct influence on L1 and L2, which is why we work with this
more refined assumption instead.

Lemma 9 (Smoothness of the Jacobian) Assume that fi is convex and Li—smooth for

all i ∈ [n]. Define Lmax
def= maxi Li and DL

def= Diag(L1, . . . , Ln) ∈ R
n×n . Then

∥∥∇F(x) − ∇F(x∗)
∥∥2
D−1
L

≤ 2n( f (x) − f (x∗)), ∀x ∈ R
d . (83)

Proof Indeed,

∥∥∇F(x) − ∇F(x∗)
∥∥2
D−1
L

(10)=
∥∥∥(∇F(x) − ∇F(x∗))D−1/2

L

∥∥∥2 (10)=
n∑

i=1

1

Li

∥∥∇ fi (x) − ∇ fi (x
∗)
∥∥2
2

≤ 2
n∑

i=1

( fi (x) − fi (x
∗) − 〈∇ fi (x

∗), x − x∗〉) (1)= 2n( f (x) − f (x∗)),

where in the last step we used the fact that
∑n

i=1 ∇ fi (x∗) = n∇ f (x∗) = 0. ��

Theorem 2 (Expected smoothness) Let S = IS be a minibatch sketch where S is a
sampling satisfying Assumption 4.1 (in particular, the support of S is c1—uniform).
Consider the bias-correcting random variable θS given in (74). Further, let f satisfy
Assumption 4.2. Then the expected smoothness assumptions (Assumptions 3.1 and 3.2)
are satisfied with constants L1 and L2 given by12

L1 = 1

nc21
max
i

⎧⎨
⎩

∑
C∈supp(S) : i∈C

|C |LC

pC

⎫⎬
⎭ , L2 = n max

i

{
pi Li

wi

}
, (84)

where Li = L{i}. If moreover, S is τ—nice sampling, then13

L1 = LG
max

def= max
i

⎧⎨
⎩ 1

c1

∑
C∈supp(S) : i∈C

LC

⎫⎬
⎭ , L2 = τ max

i

{
Li

wi

}
. (85)

12 Recall that pi = P [i ∈ S] for i ∈ [n], pC = P [S = C] for C ⊆ [n] andW = Diag(w1, . . . , wn) � 0.
13 Note that c1 = |{C ∈ supp(S) : 1 ∈ C}|, and hence L1 has the form of a maximum over averages.
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Proof Let R = ∇F(x) − ∇F(x∗) and A = ED
[
‖∇ fS(x) − ∇ fS(x∗)‖22

]
. Then

A
(44)= ED

[
θ2S

n2
‖R�Se‖22

]
(74)=

∑
C∈supp(S)

pC
c21 p

2
Cn

2

∥∥R�IC e
∥∥2
2

=
∑

C∈supp(S)

1

c21 pCn
2
Tr
(
e	�	

ICR
	R�IC e

)

=
∑

C∈supp(S)

1

c21 pCn
2
Tr
(
R	R�IC ee

	�	
IC

)

Lem 7(iii)=
∑

C∈supp(S)

1

c21 pCn
2
Tr
(
R	ReCe	

C

)

=
∑

C∈supp(S)

1

c21 pCn
2

∥∥(∇F(x) − ∇F(x∗))eC
∥∥2
2

=
∑

C∈supp(S)

|C |2
c21 pCn

2

∥∥∇ fC (x) − ∇ fC (x∗)
∥∥2
2 .

Using (82) and (81), we can continue:

A
(82)≤

∑
C∈supp(S)

2LC |C |2
c21 pCn

2
( fC (x) − fC (x∗) − 〈∇ fC (x∗), x − x∗〉)

(81)= 2

c21n
2

∑
C∈supp(S)

LC |C |2
pC

1

|C |
∑
i∈C

( fi (x) − fi (x
∗) − 〈∇ fi (x

∗), x − x∗〉)
= 2

c21n
2

∑
C∈supp(S)

∑
i∈C

( fi (x) − fi (x
∗) − 〈∇ fi (x

∗), x − x∗〉) LC |C |
pC

= 2

c21n
2

n∑
i=1

∑
C∈supp(S) : i∈C

( fi (x) − fi (x
∗) − 〈∇ fi (x

∗), x − x∗〉) LC |C |
pC

= 2

c21n
2

n∑
i=1

( fi (x) − fi (x
∗) − 〈∇ fi (x

∗), x − x∗〉) ∑
C∈supp(S) : i∈C

LC |C |
pC

≤ 2

c21n
max
i

⎧⎨
⎩

∑
C∈supp(S) : i∈C

LC |C |
pC

⎫⎬
⎭ 1

n

n∑
i=1

( fi (x) − fi (x
∗)

− 〈∇ fi (x
∗), x − x∗〉), (86)

where in this last inequality we have used convexity of fi for i ∈ [n]. Since

1

n

n∑
i=1

(
fi (x) − fi (x

∗) − 〈∇ fi (x
∗), x − x∗〉)
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= f (x) − f (x∗) − 〈∇ f (x∗), x − x∗〉 = f (x) − f (x∗),

the formula for L1 now follows by comparing (86) to (43). In order to establish the
formula for L2, we estimate

ED
[
‖R�S‖2W−1

]
(10)= ED

[∥∥∥R�SW−1/2
∥∥∥2
I

]
(10)= Tr

(
R	RED

[
�SW−1�	

S

])
(57)= Tr

(
R	RED [HS]

)
= Tr

(
D−1/2

L R	RD−1/2
L D1/2

L ED [HS]D
1/2
L

)
≤ ‖R‖2

D−1
L

λmax

(
D1/2

L ED [HS]D
1/2
L

)
(83)≤ 2nλmax

(
D1/2

L ED [HS]D
1/2
L

)
( f (xk) − f (x∗)). (87)

From Lemma 7(iv) we have ED [HS] = ED [�S]W−1 = PW−1 =
Diag

(
p1
w1

, . . . ,
pn
wn

)
, and hence D1/2

L ED [HS]D
1/2
L = Diag

(
p1L1
w1

, . . . ,
pn Ln
wn

)
. Com-

paring to the definition of L2 in (45) to (87), we conclude that

L2 = nλmax

(
D1/2

L PW−1D1/2
L

)
= nmax

i

{
pi Li

wi

}
.

The specialized formulas (85) for τ—nice sampling follow as special cases of the
general formulas (84) since |C|

pC
= 1

τ

(n
τ

) = n!
(τ−1)!(n−τ)! = n

(n−1
τ−1

) = nc1 and pi = τ/n
for all i . ��

In the next result we establish some inequalities relating the quantities L , Lmax, LC

and LG
max. In particular, the results says that for a certain family of samplings S (the

same for which we have defined the quantity LG
max in (85)), the expected smoothed

constant LG
max is lower-bounded by the average of LC over C ∈ G = supp(S), and

upper-bounded by Lmax.

Theorem 3 Let S be a τ—uniform sampling (τ ≥ 1) with c1—uniform support (c1 ≥
1). Let G = supp(S). Then

f (x) = 1

|G|
∑
C∈G

fC (x). (88)

Moreover,

L ≤ 1

|G|
∑
C∈G

LC ≤ LG
max ≤ Lmax. (89)

The last inequality holds without the need to assume τ—uniformity.
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Proof Using the fact that S has c1—uniform support, and utilizing a double-counting
argument, we observe that

∑
C∈G |C | fC (x) = c1

∑n
i=1 fi (x). Multiplying both

sides by 1
nc1

, and since |C | = τ for all C ∈ G, we get τ |G|
c1n

1
|G|
∑

C∈G fC (x) =
1
n

∑n
i=1 fi (x) = f (x). To obtain (88), it now only remains to use the identity

τ |G|
c1n

= 1 (90)

which was shown in Lemma 8. The first inequality in (89) follows from (88) using
standard arguments (identical to those that lead to the inequality L ≤ L̄).

Let us now establish the second inequality in (89). Define LG
i

def= 1
c1

∑
C∈G : i∈C LC .

Again using a double-counting argument we observe that τ
∑

C∈G LC = c1
∑n

i=1 L
G
i .

Multiplying both sides of this equality by |G|
c1n

and using identity (90), we get
1

|G|
∑

C∈G LC = 1
n

∑n
i=1 L

G
i ≤ maxi L

G
i = LG

max. We will now establish the last

inequality by proving that LG
i ≤ Lmax for any i :

LG
i = 1

c1

∑
C∈G : i∈C

LC ≤ 1

c1

∑
C∈G : i∈C

1

|C |
∑
i∈C

Li

≤ 1

c1

∑
C∈G : i∈C

1

|C |
∑
i∈C

Lmax

= Lmax
1

c1

∑
C∈G : i∈C

1

|C |
∑
i∈C

1

︸ ︷︷ ︸
=1

≤ Lmax
1

c1

∑
C∈G : i∈C

1

︸ ︷︷ ︸
=1

≤ Lmax.

Note that we did not need to assume τ—uniformity to prove that LG
max ≤ Lmax. ��

4.5 Estimating the sketch residual�

In this section we compute the sketch residual ρ for several classes of samplings S.
Let G = supp(S). We will assume throughout this section that S is non-vacuous, has
c1—uniform support (with c1 ≥ 1), and is τ—uniform.

Further, we assume that W = Diag(w1, . . . , wn), and that the bias-correcting
random variable θS is chosen as θS = 1

c1 pS
= |G|

c1
(see (75) and Lemma 8). In view of

the above, since �IC e = eC , the sketch residual is given by

ρ
(51)= λmax

(
W1/2

(
|G|2
c21

ED
[
�See

	�S

]
− ee	

)
W1/2

)

= λmax

⎛
⎝W1/2

⎛
⎝ |G|

c21

∑
C∈G

eCe
	
C − ee	

⎞
⎠W1/2

⎞
⎠
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= λmax

⎛
⎝
⎛
⎝ |G|

c21

∑
C∈G

eCe
	
C − ee	

⎞
⎠W

⎞
⎠ , (91)

where the last equality follows by permuting the multiplication of matrices within the
λmax.

In the following text we calculate upper bounds for ρ for τ—partition and τ—nice
samplings. Note that Theorem 1 still holds if we use an upper bound of ρ in place of
ρ.

Theorem 4 If S is the τ—partition sampling, then

ρ ≤ n

τ
max
C∈G

∑
i∈C

wi . (92)

Proof Using Lemma 8, and since c1 = 1, we get |G|
c21

= n
τ
. Consequently,

ρ
(91)≤ n

τ
λmax

⎛
⎝∑

C∈G
eCe

	
CW

⎞
⎠ = n

τ
λmax

⎛
⎝∑

C∈G
eCw	

C

⎞
⎠ , (93)

where wC = ∑
i∈C wi ei and we used that −W1/2ee	W1/2 is negative semidefinite.

WhenW = I, the above bound is tight. By Gershgorin’s theorem, every eigenvalue λ

of the matrix is bounded by at least one of the inequalities λ ≤ ∑
i∈C wi for C ∈ G.

Consequently, from (93) we have that ρ ≤ n
τ
maxC∈G

∑
i∈C wi . ��

Next we give an useful upper bound on ρ for a large family of uniform samplings
(for proof, see “Appendix C”).

Theorem 5 Let G be a collection of subsets of [n] with the property that the number of
sets C ∈ G containing distinct elements i, j ∈ [n] is the same for all i, j . In particular,
define

c2
def= |{C : {1, 2} ⊆ C, C ∈ G}|. (94)

Now define a sampling S by setting S = C ∈ G with probability 1
|G| . Moreover, assume

that the support of S is c1—uniform. Consider the minibatch sketch S = IS.

(i) IfW = Diag(w1, . . . , wn), then

ρ ≤ max
i=1,...,n

⎧⎨
⎩
( |G|
c1

− 1

)
wi +

∑
j �=i

w j

∣∣∣∣∣ |G|c2
c21

− 1

∣∣∣∣∣
⎫⎬
⎭ . (95)

(ii) IfW = I, then

ρ = max

{ |G|
c1

(
1 + (n − 1)

c2
c1

)
− n,

|G|
c1

(
1 − c2

c1

)}
. (96)
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Note that as long as τ ≥ 2, the τ—nice sampling S satisfies the assumptions of the
above theorem. Indeed, G is the support of S consisting of all subsets of [n] of size τ ,
|G| = (n

τ

)
, c1 = (n−1

τ−1

)
, and c2 = (n−2

τ−2

)
. As a result, bound (95) simplifies to

ρ ≤
(n
τ

− 1
)

max
i=1,...,n

⎧⎨
⎩wi + 1

n − 1

∑
j �=i

w j

⎫⎬
⎭ , (97)

and (96) simplifies to

ρ = n

τ

n − τ

n − 1
. (98)

4.6 Calculating the iteration complexity for special cases

In this section we consider minibatch SAGA (Algorithm 2) and calculate its iteration
complexity in special cases using Theorem 1 by pulling together the formulas for
L1,L2, κ and ρ established in previous sections. In particular, assume S is τ—uniform
and has c1—uniform support with c1 ≥ 1. In this case, formula (85) for L1,L2 from

Lemma 2 applies and we have L1 = LG
max and L2 = τ maxi

{
Li
wi

}
.

Moreover, by Lemma 8, κ = τ
n . By Theorem 1, if we use the stepsize

α = min

{
1

4L1
,

κ

4L2ρ/n2 + μ

}

= 1

4
min

⎧⎨
⎩ 1

LG
max

,
1

ρ
n max j=1,...,n

{
L j
w j

}
+ μ

4
n
τ

⎫⎬
⎭ , (99)

then the iteration complexity is given by

max

{
4L1

μ
,
1

κ
+ 4ρL2

κμn2

}
log

(
1

ε

)

= max

{
4LG

max

μ
,
n

τ
+ 4ρ

μn
max
i

{
Li

wi

}}
log

(
1

ε

)
. (100)

Complexity (100) is listed in line 9 of Table 1. The complexities in lines 3, 5 and
10–13 arise as special cases of (100) for specific choices of S:

– In line 3 we have gradient descent. This arises for the choice W = I and S = [n]
with probability 1. In this case, τ = n, LG

max = L and ρ = 0. So, (100) simplifies
to 4L

μ
log

( 1
ε

)
.

– In line 5 we have uniform SAGA.We chooseW = I and S = {i} with probability
1/n. We have τ = 1 and LG

max = Lmax. In view of Theorem 4, ρ ≤ n. So, (100)

simplifies to
(
n + 4Lmax

μ

)
log

( 1
ε

)
.

123



Stochastic quasi-gradient methods: variance reduction… 173

– In line 10 we chooseW = I and S is the τ -nice sampling. In this case, Theorem 5
says that ρ = n

τ
n−τ
n−1 (see (98)). Therefore, (100) reduces to

max

{
4LG

max

μ
,
n

τ
+ n − τ

(n − 1)τ

4Lmax

μ

}
log

(
1

ε

)
. (101)

– In line 11 we chooseW = Diag(Li ) and S is the τ -nice sampling. Theorem 5 says

that ρ ≤ n−τ
τ

(
n−2
n−1 Lmax + n

n−1 L̄
)
(see (97)). Therefore, (100) reduces to

max

⎧⎨
⎩4LG

max

μ
,
n

τ
+ n − τ

τn

4
(
n−2
n−1 Lmax + n

n−1 L̄
)

μ

⎫⎬
⎭ log

(
1

ε

)
. (102)

To simplify the above expression, one may further use the bound n−2
n−1 Lmax +

n
n−1 L̄ ≤ Lmax + L̄ . In Table 1 we have listed the complexity in this simplified
form.

– In line 12 of Table 1 we let W = I and S is the τ -partition sampling. In view of
Theorem 4, ρ ≤ n

τ
τ = n and hence (100) reduces to

max

{
4LG

max

μ
,
n

τ
+ 4Lmax

μ

}
log

(
1

ε

)
. (103)

– In line 13 of Table 1 we let W = Diag(Li ) and S is the τ -partition sampling. In
view of Theorem 4, ρ ≤ n

τ
maxC∈G

∑
i∈C Li and hence (100) reduces to

max

{
4LG

max

μ
,
n

τ
+ 4maxC∈G

∑
i∈C Li

μτ

}
log

(
1

ε

)
. (104)

Note that the previous bound for W = I is better than this bound since
maxC∈G

∑
i∈C Li ≤ τ Lmax.

4.7 Comparison with previous mini-batch SAGA convergence results

Recently in [14], a method that includes a mini-batch variant of SAGA was proposed.
This work is the most closely related to our minibatch SAGA. The methods described
in [14] can be cast in our framework. In the language of our paper, in [14] the authors
update the Jacobian estimate according to (77), where Sk is sampled according to a
uniform probability with pi = τ/n, for all i = 1, . . . , n. What [14] do differently
is that instead of introducing the bias-corecting random variable θS to maintain an
unbiased gradient estimate, the gradient estimate is updated using the standard SAGA
update (78) and this sampling process is done independently of how Sk is sampled
for the Jacobian update. Thus at every iteration a gradient ∇ fi (xk) is sampled to
compute (78), but is then discarded and not used to update the Jacobian update so as
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to maintain the independence between Jk and gk . By introducing the bias-correcting
random variable θS in our method we avoid the data-hungry strategy used in [14].

The analysis provided in [14] shows that, by choosing the stepsize appropriately,
the expectation of a Lyapunov function similar to (52) is less than ε > 0 after

1

2

⎛
⎝n

τ
+ K +

√
n2

τ 2
+ K 2

⎞
⎠ log

(
1

ε

)
(105)

iterations, where K
def= 4Lmax

μ
. When τ = 1 this gives an iteration complexity of

O(n + K ) log 1
ε
, which is essentially the same complexity as the standard SAGA

method. The main issue with this complexity is that it decreases only very modestly
as τ increases. In particular, on the extreme end when τ = n, since K ≥ 4, we can
approximate (1 + K )2 ≈ 1 + K 2 and the resulting complexity (105) becomes

(
1 + 4Lmax

μ

)
log

(
1

ε

)
.

Yet we know that τ = n corresponds to gradient descent, and thus the iteration
complexity should be O( L

μ
log(1/ε)), which is what we recover in the analysis of

all our mini-batch variants. In Fig. 1a–c in the experiments in Sect. 6 we illustrate
how (105) descreases very modestly as τ increases.

5 A refined analysis with a stochastic Lyapunov function

In this section we perform a refined analysis of JacSketch applied with a minibatch
sketch S = IS where the sampling S is over partitions of [n] into sets of size τ .14

Assumption 5.1 LetG be a partition of [n] into sets of size τ . Assume that the sampling

S picks sets from the partition G uniformly at random. That is, pC
def= P [S = C] for

C ∈ G = supp(S). A sampling with these properties is called a τ—partition sampling.

In the terminology introduced in Sect. 4.1, a τ—partition sampling is non-vacuous,
proper and τ—uniform. Its support is a partition of [n], and is 1—uniform. It satisfies
Assumption 4.1. Restricting our attention to τ—partition samplings will allow us to
perform a more in-depth analysis of JacSketch using a stochastic Lyapunov function.

One of the key reasons why we restrict our attention to τ -partition samplings is the
fact that

I	C1
IC2 =

{
I ∈ R

τ×τ , C1 = C2,

0 ∈ R
τ×τ , C1 �= C2,

(106)

14 This is only possible when n is a multiple of τ .
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forC1,C2 ∈ G. Recall fromLemma 7 that ifW = I, then�IC = ICI	C . Consequently,
for C1,C2 ∈ G we have

C1 �= C2 ⇒ �IC1
�IC2

= 0, C1 = C2 ⇒ (I − �IC1
)�IC2

= 0. (107)

This orthogonality property will be fundamental for controlling the convergence of
the gradient estimate in Lemma 10.

5.1 Convergence theorem

Recall from (32) that the stochastic gradient of the controlled stochastic reformulation
(28) of the original finite-sum problem (1) is given by

∇ fIS ,J(x) = 1

n
Je + 1

pSn
(∇F(x) − J)�IS e (108)

provided that we use the minibatch sketch S = IS and bias-correcting variable θS =
θIS = 1/pS given by Lemma 7(vi). This object will appear in our Lyapunov function,
evaluated at x = x∗ and J = Jk . We are now ready to present the main result of this
section.

Theorem 6 (Convergence for minibatch sketches with τ -partition samplings) Let

(i) S be a minibatch sketch (i.e., S = IS),15 where S is a τ—partition sampling with
support G = supp(S).

(ii) fC
def= 1

|C|
∑

i∈C fi be LC—smooth and μ—strongly convex (for μ > 0) for all
C ∈ G.

(iii) W = I, θS = 1
pS
.

(iv) {xk, Jk} be the iterates produced by JacSketch.

Consider the stochastic Lyapunov function

Ψ k
S

def=
∥∥∥xk − x∗

∥∥∥2
2
+ 2σSα

∥∥∥∥1n Jke − ∇ fIS ,Jk (x
∗)
∥∥∥∥
2

2
, (109)

where σS = n
4τ LS

is a stochastic Lyapunov constant. If we use a stepsize that satisfies

α ≤ min
C∈G

pC

μ + 4LC τ
n

, (110)

then

E

[
Ψ k
S

]
≤ (1 − μα)k · E

[
Ψ 0
S

]
. (111)

15 We can alternatively set S = eS and the same results will hold.
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This means that if we choose the stepsize equal to the upper bound (110), then

k ≥ max
C∈G

{
1

pC
+ 4LC

μ

τ

npC

}
log

(
1

ε

)
⇒ E

[
Ψ k
S

]
≤ ε · E

[
Ψ 0
S

]
. (112)

5.2 Gradient estimate contraction

Here we will show that our gradient estimate contracts in the following sense.

Lemma 10 Let S be the τ—partition sampling, and σ(S)
def= σS ≥ 0 be any non-

negative random variable. Then

E

[
σS

∥∥∥∥1n Jk+1e − ∇ fIS ,Jk+1(x∗)
∥∥∥∥
2

2

]
≤ E

[
σS(1 − pS)

∥∥∥∥1n Jke − ∇ fIS ,Jk (x
∗)
∥∥∥∥
2

2

]

+E

[
σS pS

∥∥∥∇ fIS ,Jk (x
k) − ∇ fIS ,Jk (x

∗)
∥∥∥2
2

]
.

(113)

Proof For simplicity, in this proof we let ∇Fk = ∇F(xk) and ∇F∗ = ∇F(x∗).
Rearranging (108), we have

1

n
Jk+1e − ∇ fIS ,Jk+1(x∗) (108)= 1

npS
(Jk+1 − ∇F∗)�IS e

(39)= 1

npS

(
Jk − (Jk − ∇Fk)�ISk

− ∇F∗)�IS e

= 1

npS
(Jk − ∇F∗)(I − �ISk

)�IS e

+ 1

npS
(∇Fk − ∇F∗)�ISk

�IS e. (114)

Taking norm squared on both sides gives

∥∥∥ 1
n
Jk+1e − ∇ fIS ,Jk+1 (x∗)

∥∥∥2
2

= 1

n2 p2S

∥∥∥
A︷ ︸︸ ︷

(Jk − ∇F∗)(I − �ISk
)�IS e

∥∥∥2
2︸ ︷︷ ︸

I

+ 1

n2 p2S

∥∥∥
R︷ ︸︸ ︷

(∇Fk − ∇F∗) �ISk
�IS e

∥∥∥2
2︸ ︷︷ ︸

II

+2
1

n2 p2S

〈
(Jk − ∇F∗)(I − �ISk

)�IS e(∇Fk − ∇F∗)�ISk
�IS e

〉
︸ ︷︷ ︸

III

.

(115)
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First, it follows from (107) that expression III is zero. We nowmultiply expressions
I and II by σS and bound certain conditional expectations of these terms. Since S and
Sk are independent samplings, we have

E

[
σS

n2 p2S

∥∥∥A(I − �ISk
)�IS e

∥∥∥2
2

| A
]

=
∑
C∈G

∑
C ′∈G

pC pC ′
σC

n2 p2C

∥∥A(I − �IC ′ )�IC e
∥∥2
2

(107)=
∑
C∈G

σC

n2 pC

∥∥A�IC e
∥∥2
2

∑
C ′∈G,C ′ �=C

pC ′

=
∑
C∈G

σC

n2 pC
(1 − pC )

∥∥A�IC e
∥∥2
2

=
∑
C∈G

pCσC (1 − pC )
1

n2 p2C

∥∥∥A�IC e
∥∥∥2
2

(114)= E

[
σS(1 − pS)

∥∥∥ 1
n
Jke − ∇ fIS ,Jk (x

∗)
∥∥∥2
2

| Jk
]

. (116)

Taking conditional expectation over expression II yields

E

[
σS

n2 p2S

∥∥∥R�ISk
�IS e

∥∥∥2
2

| R, Sk

]

=
∑
C∈G

pC
σC

n2 p2C

∥∥∥R�ISk
�IC e

∥∥∥2
2

(107)= σSk

n2 pSk

∥∥∥R�ISk
�ISk

e
∥∥∥2
2

= σSk

n2 pSk

∥∥∥R�ISk
e
∥∥∥2
2

= σSk pSk

∥∥∥∇ fISk ,Jk (x
k) − ∇ fISk ,Jk (x

∗)
∥∥∥2
2
, (117)

where in the last equation we used the identity

∥∥∇ fIC ,J(x) − ∇ fIC ,J(y)
∥∥2
2

=
∥∥∥ 1
npC

(∇F(x) − ∇F(y))�Ce
∥∥∥2
2
, ∀J ∈ R

d×n,∀C ∈ G, (118)

which in turn is a specialization of (44) to the minibatch sketch S = IS and the specific
choice of the bias-correcting variable θS = 1/pS . It remains to take expectation of
(116) and (117), apply the tower property, and combine this with (115). ��

5.3 Bounding the secondmoment of gk

In the next lemma we bound the second moment of our gradient estimate gk .

Lemma 11 The second moment of the gradient estimate is bounded by

E

[∥∥∥gk∥∥∥2
2

| Jk, xk
]

≤ 2E

[∥∥∥∇ fIS ,Jk (x
k) − ∇ fIS ,Jk (x

∗)
∥∥∥2
2

| Jk, xk
]
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+ 2E

[∥∥∥∇ fIS ,Jk (x
∗) − 1

n
Jke

∥∥∥2
2

| Jk, xk
]

. (119)

Proof Adding and subtracting 1
npSk

∇F(x∗)�ISk
e from (108) gives

gk = 1

n
Jke − 1

npSk
(Jk − ∇F(x∗))�ISk

e + 1

npSk
(∇F(xk) − ∇F(x∗))�ISk

e.

Taking norm squared on both sides, and using the bound ‖a + b‖22 ≤ 2‖a‖22 + 2‖b‖22
gives

∥∥∥gk∥∥∥2
2

≤ 2

n2 p2Sk

∥∥∥(∇F(xk) − ∇F(x∗))�ISk
e
∥∥∥2
2

+ 2

n2

∥∥∥ 1
pSk

(Jk − ∇F(x∗))�ISk
e − Jke

∥∥∥2
2

(118)= 2
∥∥∥∇ fISk ,Jk (x

k) − ∇ fISk ,Jk (x
∗)
∥∥∥2
2

+ 2

n2

∥∥∥ 1
pSk

(Jk − ∇F(x∗))�ISk
e − Jke

∥∥∥2
2︸ ︷︷ ︸

A

. (120)

Taking expectation of the A term, we get

E

⎡
⎢⎢⎣
∥∥∥∥∥∥∥∥

1
pS

(Jk − ∇F(x∗))�IS e︸ ︷︷ ︸
X

− Jke︸︷︷︸
E[X ]

∥∥∥∥∥∥∥∥

2

2

| Jk , xk
⎤
⎥⎥⎦ ≤ E

[∥∥∥ 1
pS

(Jk − ∇F(x∗))�IS e
∥∥∥2
2

| Jk , xk
]

(114)= n2E

[∥∥∥∥∇ fIS ,Jk (x
∗) − 1

n
Jke

∥∥∥∥
2

2
| Jk , xk

]
,

where we used the inequality E
[‖X − E [X ]‖22

] ≤ E
[‖X‖22

]
. The result follows by

combining the above with (120). ��

5.4 Smoothness and strong convexity of fIC,J

Recalling the setting of Theorem 6, we assume that each fC is μ—strongly convex
and LC—smooth:

fC (y) + 〈∇ fC (y), x − y〉 + μ

2
‖x − y‖22 ≤ fC (x)

≤ fC (y) + 〈∇ fC (y), x − y〉 + LC

2
‖x − y‖22
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for all C ∈ G. It is known (see Section 2.1 in [19]) that the above conditions imply the
following inequality:

〈∇ fC (x) − ∇ fC (y), x − y〉 ≥ μLC

μ + LC
‖x − y‖22

+ 1

μ + LC
‖∇ fC (x) − ∇ fC (y)‖22 , (121)

for all x, y ∈ R
d . A consequence of these assumptions that will be useful to us is

that the function fIC ,J is τμ
npC

—strongly convex and τ LC
npC

—smooth. This can in turn
be used to establish the next lemma, which will be used in the proof of Theorem 6:

Lemma 12 Under the assumptions of Theorem 6 (in particular, assumptions on f and
S), we have

〈∇ f (x) − ∇ f (y), x − y〉 ≥ μ

2
‖x − y‖22

+ED
[

npS
2τ LS

∥∥∇ fIS ,J(x) − ∇ fIS ,J(y)
∥∥2
2

]
, (122)

for all x, y ∈ R
d and J ∈ R

d×n.

Proof Applying (121) to the function fIS ,J gives

〈∇ fIS ,J(x) − ∇ fIS ,J(y), x − y
〉 ≥ τ

npS

μLS

μ + LS
‖x − y‖22

+ npS
τ(μ + LS)

∥∥∇ fIS ,J(x) − ∇ fIS ,J(y)
∥∥2
2

≥ τμ

2npS
‖x − y‖22

+ npS
2τ LS

∥∥∇ fIS ,J(x) − ∇ fIS ,J(y)
∥∥2
2 .

Taking expectation over both sides over S, noting that ED
[

1
pS

]
= ∑

C∈G 1 = n
τ
, and

recalling that ∇ fIS ,J(x) is an unbiased estimator of ∇ f (x), we get the result. ��

5.5 Proof of Theorem 6

Let Ek [·] denote expectation conditional on Jk and xk . We can write

Ek

[∥∥∥xk+1 − x∗
∥∥∥2
2

]
(2)= Ek

[∥∥∥xk − x∗ − αgk
∥∥∥2
2

]
(33)=

∥∥∥xk − x∗
∥∥∥2
2
− 2α

〈
∇ f (xk), xk − x∗〉+ α2

Ek

[∥∥∥gk∥∥∥2
2

]
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(122)≤ (1 − μα)

∥∥∥xk − x∗
∥∥∥2
2
− αEk

[
npS
τ LS

∥∥∥∇ fIS ,Jk (x
k) − ∇ fIS ,Jk (x

∗)
∥∥∥2
2

]

+α2
Ek

[∥∥∥gk∥∥∥2
2

]
(119)≤ (1 − μα)

∥∥∥xk − x∗
∥∥∥2
2
+ 2α2

Ek

[∥∥∥∥1n Jke − ∇ fIS ,Jk (x
∗)
∥∥∥∥
2

2

]

+ 2αEk

[(
α − npS

2τ LS

)∥∥∥∇ fIS ,Jk (x
k) − ∇ fIS ,Jk (x

∗)
∥∥∥2
2

]
. (123)

Next, after taking expectation in (123), applying the tower property, and subsequently

adding the term 2αE
[
σS
∥∥ 1
n J

k+1e − ∇ fIS ,Jk+1(x∗)
∥∥2
2

]
to both sides of the resulting

inequality, we get

E

[
Ψ k+1
S

]
≤ E

[
(1 − μα)

∥∥∥xk − x∗
∥∥∥2
2

]

+2αE

[(
α − npS

2τ LS

)∥∥∥∇ fIS ,Jk (x
k) − ∇ fIS ,Jk (x

∗)
∥∥∥2
2

]

+ 2α2
E

[∥∥∥∥1n Jke − ∇ fIS ,Jk (x
∗)
∥∥∥∥
2
]

+ 2αE

[
σS

∥∥∥∥1n Jk+1e − ∇ fIS ,Jk+1(x∗)
∥∥∥∥
2

2

]

(113)≤ E

⎡
⎣(1 − μα)︸ ︷︷ ︸

I

∥∥∥xk − x∗
∥∥∥2
2

⎤
⎦

+ 2αE

⎡
⎢⎢⎢⎣σS

(
1 − pS + α

σS

)
︸ ︷︷ ︸

II

∥∥∥∥1n Jke − ∇ fIS ,Jk (x
∗)
∥∥∥∥
2

2

⎤
⎥⎥⎥⎦

+ 2αE

⎡
⎢⎢⎢⎣
(

α + σS pS − npS
2τ LS

)
︸ ︷︷ ︸

III

∥∥∥∇ fIS ,Jk (x
k) − ∇ fIS ,Jk (x

∗)
∥∥∥2
2

⎤
⎥⎥⎥⎦ . (124)

Next, we determine a bound on α so that III ≤ 0. Choosing

α + σC pC − npC
2τ LC

≤ 0, ∀C ∈ G ⇒ α ≤ npC
2τ LC

− σC pC , ∀C ∈ G, (125)

guarantees that III ≤ 0, and thus the last term in term in (124) can be safely dropped.
Next, to build a recurrence and conclude the convergence proof, we bound the stepsize
α so that II ≤ I; that is,

1 − pC + α

σC
≤ 1 − αμ, ∀C ∈ G ⇒ α ≤ σC pC

μσC + 1
, ∀C ∈ G. (126)
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Consequently,

E

[
Ψ k+1
S

]
≤ E

[
(1 − μα)

∥∥∥xk − x∗
∥∥∥2
2

]

+2αE

[
σS(1 − μα)

∥∥∥∥1n Jke − ∇ fIS ,Jk (x
∗)
∥∥∥∥
2

2

]

= (1 − μα)E
[
Ψ k
S

]
.

Since σS = n
4τ LS

, in view of (125) and (126) the combined bound on α is

α ≤ min

{
npC
4τ LC

,
pC

μ + 4 τ
n LC

}
= pC

μ + 4 τ
n LC

, ∀C ∈ G.

Hence, we have established the recursion (111).

5.6 Calculating the iteration complexity in special cases

In this section we consider the special case of JacSketch analyzed via Theorem 6—
minibatch SAGA with τ—partition sampling—and look at further special cases by
varying the minibatch size τ and probabilities. Our aim is to justify the complexities
appearing in Table 1. In view of Theorem 6 the iteration complexity is given by

max
C∈G

(
1

pC
+ τ

npC

4LC

μ

)
log

(
1

ε

)
, (127)

where G = supp(S). Complexity (127) is listed in line 2 of Table 1. The complexities
in lines 4, 6, 8 and 14 arise as special cases of (127) for specific choices of τ and
probabilities pC .

– In line 4we have gradient descent. This is obtained by choosingG = {[n]} (whence
p[n] = 1, τ = n and L [n] = L),which iswhy (127) simplifies to

(
1 + 4L

μ

)
log

( 1
ε

)
.

– In line 6 we consider uniform SAGA. That is, we choose τ = 1 and pi = 1/n for
all i . We have G = {{1}, {2}, . . . , {n}} and L{i} = Li . Therefore, (127) simplifies

to
(
n + 4Lmax

μ

)
log

( 1
ε

)
. This is essentially the same16 complexity result given in

[6].
– In line 8 we consider SAGA with importance sampling. This is the same setup as
above, except we choose

pi = μn + 4Li∑n
j=1 nμ + 4L j

, (128)

16 With the difference being that in [6] the iteration complexity is 2
(
n + Lmax

/
μ
)
log

(
1
ε

)
, thus a small

constant change.
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which is the optimal choice minimizing the complexity bound in p1, . . . , pn .
With these optimal probabilities, the stepsize bound becomes α ≤ 1

nμ+4L̄
, and by

choosing the maximum allowed stepsize the resulting iteration complexity is(
n + 4L̄

μ

)
log

(
1

ε

)
. (129)

Now consider the probabilities pi = Li∑n
j=1 L j

suggested in [30]. Using our bound,

these lead to the complexity

max
i=1,...,n

{∑n
j=1 L j

Li
+ 4

∑n
j=1 L j

μn

}
log

1

ε
=
(

nL̄

Lmin
+ 4L̄

μ

)
log

(
1

ε

)
. (130)

Comparing this with (129), we see that this non-uniform sampling offers a signifi-
cant speed up over uniform sampling if nμ ≤ Lmin. However, our complexity
(129) is always better than both the uniform sampling sampling complexity
(n + Lmax/μ) log

( 1
ε

)
and (130).

– Finally, in line 14 of Table 1 we optimize over probabilities pC directly; that is
we extend the importance sampling described above to any τ . Minimizing the
complexity bound over the probabilities, and noting that |G| = n

τ
, this leads to the

rate (
n

τ
+ 4 1

|G|
∑

C∈G LC

μ

)
log

(
1

ε

)
. (131)

This iteration complexity also applies to the reduced memory variant of
SAGA (18). This is because Theorem 6 also holds for sketches S = eS where
S is a τ—partition sampling. To see this, note that our analysis in this section
relies on the orthogonality property (107) which also holds for S = eS since (for
W = I) we have:

�eC1
�eC2

= 1

τ
eC1(e

	
C1
eC2︸ ︷︷ ︸

=0

)e	
C2

1

τ
= 0, for C1,C2 ∈ G, C1 �= C2.

Lemmas 10, 11 and 12 depend on the sketch through ∇ fS,J(x∗) only, which in
turn depends on the sketch through �Se, and it is easy to see that if either S = IS
or S = eS , we have �Se = eS .

6 Experiments

We perform several experiments to validate the theory, and also test the practical
relevanceof non-uniformSAGA(79)with the optimizedprobability distribution (128).
All of our code for these experiments was written in Julia and can be found on github
in https://github.com/gowerrobert/StochOpt.jl.
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In our experiments we test either ridge regression

f (x) = 1

2n

∥∥∥A	x − y
∥∥∥2
2
+ λ

2
‖x‖22 , (132)

or logistic regression

f (x) = 1

n

n∑
i=1

log
(
1 + e−yi 〈ai ,x〉

)
+ λ

2
‖x‖22 , (133)

whereA = [a1, . . . , an] ∈ R
d×n, y ∈ R

n is the given data andλ > 0 the regularization
parameter.

6.1 New non-uniform sampling using optimal probabilities

First we compare non-uniform SAGA using the new optimized importance probabili-
ties (128) against using the probabilities pi = Li

/
L as suggested in [30]. When nμ is

significantly smaller than Li for all i then the two sampling are very similar. But when
nμ is relatively large, then the optimized probabilities (128) can be much closer to a
uniform distribution as compared to using pi = Li

/
L . We illustrate this by solving a

ridge regression problem (132), using generated data such that

A	x = y + ε, (134)

where the elements of A and x are sampled from the standard Gaussian distribution
N (0, 1), and the elements of ε are sampled from N (0, 10−3). It is not hard to see
that the smoothness constants {Li } are given by Li = ‖ai‖22 + λ for i ∈ [n]. We
scale the columns of A so that ‖a1‖22 = 1 and ‖ai‖22 = 1

n2
, for i = 2, . . . , n, and

set the regularization parameter λ = 1
n2

. Consequently, Lmax = 1 + 1
n2
, Li = 2

n2
for

i = 1, . . . , n, L = (n+1)2−1
n3

and μ = 1
nλmin(AA	) + 1

n2
. In this case the iteration

complexity of non-uniform SAGA with the optimal probabilities (129) is given by(
n + 4

(n + 1)2 − 1

μn3

)
log

(
1

ε

)
. (135)

The complexity (130) which results from using the probabilities pi = Li
/
L is given

by

(n + 1)2 − 1

n3

(
n3

2
+ 4

μ

)
log

(
1

ε

)
. (136)

Now we consider the regime where n → ∞, in which case μ → O( 1
n2

) and conse-

quently (135)→ O(n) log 1
ε
and in contrast (136) → O(n2) log 1

ε
.

We illustrate this in Fig. 1a-c where we set n = 10, n = 100 and n = 1000,
respectively, and plot the complexities given in (135) and (136) . To accompany this
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(a) (b) (c)

Fig. 1 The iteration complexity of minibatch SAGA (80) vs the mini-batch size τ for two ridge regression
problems (132). We used λ = Lmax/n

(a) (b) (c)

Fig. 2 Comparing the performance of SAGA with importance sampling based on the optimized prob-
abilities (128) (SAGA-opt), pi = Li /L (SAGA-Li) and pi = 1/n (SAGA-uni) for an artificially
constructed ridge regression problem as n grows. Markers represent monitored points and not the iterations
of the algorithms

plot, in Fig. 2a-c we also plot an execution of SAGA-uni (SAGA with uniform
probabilities), SAGA-Li (SAGA with pi = Li/L) and SAGA-opt (SAGA with
optimized probabilities). In all figures we see that SAGA-opt is the fastest method.
We can also see that SAGA-Li stalls in Fig. 2b and c when n is larger, performing
even worst as compared to SAGA-uni.

6.2 Optimal mini-batch size

Our analysis of the mini-batch SAGA is precise enough as to inform an optimal
mini-batch size. For instance, consider τ—nice sampling and the resulting iteration
complexity (102). Theorem3 states that for any τ ∈ [n], the termswithin themaximum
in (102) are bounded by

Lmax ≥ LG
max ≥ L (137)

Lmax + μn

4
≥ C(τ )

def= 1

τ

n − τ

n − 1
Lmax + μ

4

n

τ
≥ μ

4
. (138)

Moreover, the upper and lower bounds are realized for τ = 1 and τ = n, respec-
tively. Consequently, for τ small, we have LG

max ≤ C(τ ). On the other hand, for τ large
we have LG

max ≥ C(τ ). Furthermore, C(τ ) decreases super-linearly in τ while LG
max

tends to decrease more modestly. Consequently, the point where LG
max overtakes C(τ )

is often the best for the overall complexity of the method. To better appreciate these
observations, we plot the evolution of the iteration complexity (102), the total com-
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plexity and the iteration complexity as predicted by Hofmann et al. [14] (see (105)) as
τ increases in Fig. 3a–c for three different linear least squares problems. Since each
step of mini-batch SAGA computes τ stochastic gradients, so the total complexity is
τ times the iteration complexity. In each figure we can see that our iteration complex-
ity initially decreases super-linearly, then at some point the complexity is dominated
by LG

max and the iteration complexity decreases sublinearly. Up to this point we can
observe an improvement in overall total complexity. This is in contrast to the iteration
complexity given by Hofmann et al. that shows practically no improvement in even
the iteration complexity as τ increases.

Though these experiments indicate only modest improvements in total complexity,
and suggests that τ = 2 or τ = 3 is optimal, wemust bear inmind that this corresponds
to 10% and 20% of the data for these small dimensional problems. We conjecture that
for larger problems, this improvement in total complexity will also be larger.

To use these insights in practice, we need to be able to efficiently determine the
τ which corresponds to the point at which the convergence regimes switches from
being dominated by C(τ ) to being dominated by LG

max. This surmounts to choosing
τ so that LG

max = 1
τ
n−τ
n−1 Lmax + μ

4
n
τ
. Estimating Lmax and μ is often possible, but the

cost of computing LG
max has a combinatorial dependency on n and τ. Thus to have a

practical way of choosing τ , we first need to bound LG
max. This can be done for losses

with linear classifiers using concentration bounds. We leave this for future work.

6.3 Comparative experiments

We now compare the performance of SAGA-opt to several known methods such as
SVRG [15], grad (gradient descent with fixed stepsizes) and AMprev (an improved
version of SVRG that uses second order information) [28]. For the stepsize of
SAGA-opt and SAG-opt, we found the stepsize α ≤ 1

nμ+4L̄
given by theory

to be a bit too conservative. Instead do we away with the 4 and used α = 1
nμ+L̄

instead. For the remaining methods we used a grid search over Lmax × 2m for
m = 21, 19, 17, . . . ,−10,−11.

To illustrate how biased gradient estimates can perform well in practice, we also
test SAG-opt: a method that uses the same Jacobian updates as SAGA-opt, but
instead uses the biased gradient estimate gk = 1

n J
k+1e. See Sect. 2.5 for more details

on biased gradient estimates.
In Fig. 3a–c we compare the methods on three logistic regression problems (133)

based on three different data sets taken from LIBSVM [4]. In all these problems the
two methods with optimized non-uniform sampling SAG-opt and SAGA-opt were
faster in terms of both epochs and time. The next best methodwasAM-prev, followed
by SVRG and grad. It is interesting to see how well SAG-opt performs in practice,
despite having biased gradient estimates. This is why we believe it is important to
advance the analyse of biased gradient estimates as future work.
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(a)

(b)

(c)

Fig. 3 Comparison of the methods on logistic regression problems (133) with data taken from LIBSVM
[4]

7 Conclusion

We now provide a brief summary of some of the key contributions of this paper and
a few selected pointers to possible future research directions.

We developed and analyzed JacSketch—a novel family of variance reduced meth-
ods based on Jacobian sketching—and provided a link between variance reduction for
empirical risk minimization and recent results from the field of randomized numer-
ical linear algebra on sketch-and-project type methods for solving linear systems.
In particular, it turns out that variance reduction is obtained by taking an SGD step
on a stochastic optimization problem whose solution is the unknown Jacobian. As a
consequence of our analysis, we resolved the conjecture of [30] in the affirmative by
proving a properly designed importance sampling for SAGA leading to the iteration
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complexity ofO(n+ L̄
μ
) log

( 1
ε

)
. For this purpose we developed a new proof technique

using a stochastic Lyapunov function. Our complexity result for uniform mini-batch
SAGA perfectly interpolates between the best known convergence rates of SAGA and
gradient descent, and is sufficiently precise as to inform the choice of the batch size
that minimizes the over all complexity of the method. Additionally we design and
analyse a reduced memory variant of SAGA as a special case.

For future work we see many possible avenues including the following.

Structured sparse weight matrices One may wish to explore combinations of a weight
matrix and different sketches to design new efficient methods further improving itera-
tion complexity. For this the weighting matrix will have to be highly structured (e.g.,
block diagonal or very sparse) so that the Jacobian update (39) can be computed
efficiently.

Bias-variance trade-off One can try to explore the bias-variance trade-off as opposed
to merely focus on the extremes only: SAG (minimum variance) and SAGA (no bias).
There is also no empirical evidence that unbiased estimators outperform the biased
ones.

Johnson–Lindenstrauss sketches One can design completely new methods using dif-
ferent sparse sketches, such as the fast Johnson–Lindenstrauss transform [2] or the
Achlioptas transform [1]. The resulting method can then be analyzed through Theo-
rem 1. But first these sketches need to be adapted to ensure we get an efficient method.
In particular, computing ∇F(x)S is only efficient if Smost of the rows of S are zeros.
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Appendix A: Proof of inequality (20)

Lemma 13 Let S be a sampling whose support G = supp(S) is a partition of [n].
Moreover, assume all sets of this partition have cardinality τ . Then

1

|G|
∑
C∈G

LC ≤ L̄ ≤ max
C∈G

1

τ

∑
i∈C

Li .
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Proof By assumption, |G| = n
τ
. The first inequality follows from

∑
C∈G LC ≤∑

C∈G 1
τ

∑
i∈C Li = 1

τ

∑n
i=1 Li = n

τ
L̄. On the other hand,

L̄ = 1

n

n∑
i=1

Li = 1

n

∑
C∈G

∑
i∈C

Li = 1

|G|
∑
C∈G

1

τ

∑
i∈C

Li ≤ max
C∈G

1

τ

∑
i∈C

Li . ��

Appendix B: Duality of sketch-and-project and constrain-and-
approximate

Lemma 14 Let Jk,∇F ∈ R
d×n and S ∈ R

n×τ . The sketch-and-project problem

Jk+1 = arg min
J∈Rd×n

1

2

∥∥∥J − Jk
∥∥∥2
W−1

subject to ∇FS = JS, (139)

and the constrain-and-approximate problem

Jk+1 = arg
J∈Rd×n

min
Y∈Rd×τ

1

2
‖J − ∇F‖2W−1 subject to J = Jk + YS	W, (140)

have the same solution, given by:

Jk+1 = Jk − (Jk − ∇F)S(S	WS)†S	W. (141)

Proof The proof is given in Theorem 4.1 in [12]. ��

Appendix C: Proof of Theorem 5

First we will establish that

|G|
c21

∑
C∈G

eCe
	
CW = |G|c2

c21

⎛
⎜⎜⎜⎜⎜⎜⎝

c1
c2

w1 w2 · · · wn−1 wn

w1
c1
c2

w2 · · · wn−1 wn
...

. . .
...

w1 · · · c1
c2

wn−1 wn

w1 w2 · · · wn−1
c1
c2

wn

⎞
⎟⎟⎟⎟⎟⎟⎠

. (142)

Indeed, for every i we have that e	
i

|G|
c21

(∑
C∈G eCe	

CW
)
ei = wi

|G|
c21

∑
C∈G : i∈C 1 =

wi
|G|
c1

, and for every i �= j wehave e	
i

|G|
c21

(∑
C∈G eCe	

CW
)
e j = w j

|G|
c21

∑
C∈G : i, j∈C 1

= w j
|G|c2
c21

. Using (142), (91) and the Gershgorin circle theorem to bound ρ from

above we get ρ ≤ maxi

{( |G|
c1

− 1
)

wi +∑
i �= j w j

∣∣∣∣ |G|c2
c21

− 1

∣∣∣∣
}

, as claimed. When
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W = Iwe can get tighter results by using that
(

|G|
c21

∑
C∈G eCe	

C − ee	
)
is a circulant

matrix with associated vector v =
(

|G|
c1

− 1, |G|c2
c21

− 1, . . . , |G|c2
c21

− 1

)
∈ R

n . There

is an elegant formula for calculating eigenvalues λ j of circulant matrices [34] using
v, given by

λ j = v1 +
n−1∑
k=1

ωk
jvn−k+1 = |G|

c1
− 1

+
(

|G|c2
c21

− 1

)
n−1∑
k=1

ωk
j , for j = 0, . . . , n − 1, (143)

whereω j = e
2π i j
n are the n-th roots of unity and i is the imaginary number. From (143)

we see that there are only two distinct eigenvalues. Namely, for j = 0 we have

λ0
(143)= |G|

c1
− 1 +

(
|G|c2
c21

− 1

)
(n − 1) = |G|

c1

(
1 + (n − 1)

c2
c1

)
− n.

The other eigenvalue is given by any j �= 0 since

λ j
(143)= |G|

c1
− 1 −

(
|G|c2
c21

− 1

)
+
(

|G|c2
c21

− 1

)
n−1∑
k=0

ωk
j︸ ︷︷ ︸

=0

= |G|
c1

(
1 − c2

c1

)
. ��

Appendix D: Notation glossary

See the Table 2.

Table 2 Frequently used notation

f (x) 1
n
∑n

i=1 fi (x) (convex loss function

f : Rd → R)

(1)

x∗ Minimizer of f (1)

μ Strong convexity constant of f Table 1 and Assumption 3.3 and Theorem 6

α Stepsize (2)

gk Stochastic estimator of ∇ f (xk ) (2), (13), (16), (33)

[n] {1, 2, . . . , n}
F(x) ( f1(x), . . . , fn(x))	 ∈ R

n (function
F : Rd → R

n )
(3)

∇F(x) [∇ f1(x), . . . ,∇ fn(x)] ∈ R
d×n (Jacobian

of F at x)
(4)
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Table 2 continued

e (1, 1, . . . , 1)	 ∈ R
n (vector of all ones) (5)

f ∗/ f k Shorthand for f (x∗) / f (xk )

W n × n symmetric positive definite “weight”
matrix

(10), (12)

‖X‖W−1 (Tr
(
XW−1X	))1/2 (weighted Frobenius

norm)

(10)

S A random (sketching) n × τ matrix picked
from D

�S S(S	WS)†S	W (stochastic projection
matrix)

θS Bias-correcting random variable (15) and Assumption 2.1

ED [·] ES∼D [·] (expectation over S ∼ D)

S or Sk Sampling (a random subset of [n])
τ E [|S|] (minibatch size)

C Subset of [n]
eC

∑
i∈C ei (ei is the i th unit coordinate
vector in R

d )

pC /pi P [S = C]/P [i ∈ S] Sections 1.4 and 4

IC Column submatrix of I with columns
indexed by C

Section 4 and Theorem 6

G = supp(S) {C ⊆ [n] : pC > 0} (support of sampling
S)

Section 4

fC
1

|C |
∑

i∈C fi (subsampled loss function) Section 4 and Theorems 3 and 6

LC Smoothness constant of fC Sections 1.5 and 4.4 and Theorems 3 and 6

Li Smoothness constant of fi Sections 1.5 and 4.4

Lmax maxi Li Sections 1.5 and 4.4 and Theorem 3

L Smoothness constant of f = 1
n
∑

i fi Sections 1.5 and 4.4 and Theorem 3

L̄ 1
n
∑

i=1 Li Sections 1.5 and 4.4 and Theorem 3

L1 Expected smoothness constant of the
stochastic gradient

Assumption 3.1 and Theorem 1

L2 Expected smoothness constant of the
Jacobian

Assumption 3.2 and Theorem 1

LGi
1
c1

∑
C : C∈G, i∈C LC

LGmax maxi L
G
i (= L1 for τ—uniform S with

c1—uniform support)
Sections 1.5 and 4.4 and Theorems 2 and 3

κ Stochastic contraction number Section 3.2 and Lemma 2 and Theorem 1

ρ Sketch residual (37) and Theorem 1 and Lemma 6

Ψ k / Ψ k
S Lyapunov function/stochastic Lyapunov

function
(52)/(109)

c1 |{C : C ∈ supp(S), 1 ∈ C}| Definition 2

c2 |{C : C ∈ supp(S), 1 ∈ C; 2 ∈ C}| (94)
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