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Abstract
Tailored Mixed-Integer Optimal Control policies for real-world applications usually
have to avoid very short successive changes of the active integer control. Minimum
dwell time (MDT) constraints express this requirement and can be included into
the combinatorial integral approximation decomposition, which solves mixed-integer
optimal control problems (MIOCPs) to ε-optimality by solving one continuous non-
linear program and one mixed-integer linear program (MILP). Within this work, we
analyze the integrality gap of MIOCPs under MDT constraints by providing tight
upper bounds on the MILP subproblem. We suggest different rounding schemes for
constructing MDT feasible control solutions, e.g., we propose a modification of Sum
Up Rounding. A numerical study supplements the theoretical results and compares
objective values of integer feasible and relaxed solutions.
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1 Introduction

We consider mixed-integer optimal control problems (MIOCPs) on the fixed and finite
time horizon T := [t0, t f ] ⊂ R of the following form

inf
x,v

Φ(x(t f ))

s. t. ẋ(t) = f(x(t), v(t)) for t ∈ T , (1.1)

x(t0) = x0, (1.2)

v ∈ VMDT ⊂ V . (1.3)

The differential states x ∈ W 1,∞(T , Rnx) with fixed initial values x0 ∈ R
nx

are governed by the right-hand side ordinary differential equation (ODE) function
f : R

nx × {v1, . . . , vnω } → R
nx , which is assumed to be continuous in the first

argument. We further assume that there exists a solution x for the above problem.
Let V = L∞(T , {v1, . . . , vnω }) and {v1, . . . , vnω } ⊂ R

nv so that the discrete control
function v : T → {v1, . . . , vnω } is assumed to be measurable and is further restricted
by minimum dwell time (MDT) constraints represented by the subset VMDT.We stress
that this function takes values out of a finite set with cardinality nω ∈ N and exclude
the trivial case nω = 1. We minimize Φ ∈ C0(Rnx,R) over the end state, which in
turn depends on the discrete control function v.

1.1 Related work

Optimal control problems with integer control choices have been investigated in many
research articles during the last few decades [12,14,31,40] since they naturally arise in
a range of applications. In order to apply the obtained control policy in practice,
additional switching constraints are usually needed, such as minimum dwell time
requirements that describe the necessity of activating an integer control for at least
a given minimal duration if at all and analogously for deactivation periods. Recent
case studies of MIOCPs with MDT considerations can be found, e.g., for pesticide
scheduling in agriculture [2], electric transmission lines [17], solar thermal climate
systems [8] and hybrid electric vehicles [30]. MDT constraints attracted also a lot of
attention as part of mixed-integer linear programs (MILPs), see [29] for a study of
unit-commitment problems and [25] for a corresponding polytope investigation. For
a recent work about model predictive control under MDT constraints see [10].

There are MIOCP related problems and approaches that have been discussed in
the literature. For example, the optimal control community has been successfully
solving so-called bang-bang problems for decades. In contrast to the above problem
formulation, the considered linear control problems are required to have the bang-bang
property, i.e., the derivative of the Hamiltonian is strictly positive or strictly negative
almost everywhere. The main challenge consists in guessing the correct switching
order and numerically detecting the switching points. This approach does not work for
problems that involve singular or path-constrained arcs. This can be overcome by using
a discrete global maximum principle (see [15] for further references). Still, the indirect
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Mixed-integer optimal control under minimum dwell time constraints 655

first-optimize-then-discretize approaches have some drawbacks compared to direct
methods and it is not clear how combinatorial constraints such as MDT constraints
could be incorporated. As part of direct methods, one common approach to tackle
MIOCPs under MDT constraints is to consider two separate levels of optimization. At
the upper level, amode insertion gradient is usually evaluated in order to fix a sequence
of active system modes with promising cost function value. At the lower level, the
algorithm aims at minimizing the cost functional with respect to the switching times
and continuous control input, if available. Such approaches can be found in [1,4,12,
14,40] and are usually referred to as transition-time optimization or variable time
transformation method. We remark such switched systems have also been intensively
investigated with respect to stability under average dwell time, see [20]. Another
approach to includeMDT constraints intoMIOCPs is to apply dynamic programming,
see [9], which is, however, computationally expensive.

1.2 Results for the CIA decomposition

Similar to the two-stage optimization method, the combinatorial integral approxi-
mation (CIA) decomposition [31,35] that uses the same approximation theory as the
embedding transformation technique [5], is based on the idea to solve the problem
in several optimization steps. The first idea is to use the partial outer convexification
method [31,34] that allows us to reformulate a problem with integer controls into an
equivalent problem with a {0, 1}nω - valued control function ω, which indicates that
exactly one discrete realization vi ∈ {v1, . . . , vnω } is active for each time point. For
this, we replace the Constraint (1.1) by

ẋ(t) =
nω∑

i=1

ωi (t)f(x(t), vi ) and
nω∑

i=1

ωi (t) = 1, for t ∈ T . (1.4)

Second, discretizing the MIOCP in the spirit of first-discretize-then-optimizemeth-
ods with, e.g., Direct Multiple Shooting [6] or Direct Collocation [37] results in a
mixed-integer nonlinear program (MINLP). We introduce a time discretization by the
ordered set GN := {t0 < · · · < tN = t f } denoting a grid with N intervals and lengths
Δ j := t j − t j−1, Δ̄ := max j Δ j as well as Δ := min j Δ j for j ∈ [N ]. The binary
control functions ωi (·) are assumed be piecewise constant, changing values only on
these grid points, so thatω(·) can be uniquely represented by amatrixw ∈ {0, 1}nω×N .
This MINLP becomes a nonlinear program (NLP), if the binary controls are relaxed.
We write a ∈ [0, 1]nω×N for denoting this relaxed value. After solving this NLP, the
resulting a� is approximated in the CIA step - which is an MILP - with binary control
values w. The main idea of this CIA problem is to minimize the integrality gap θ(w),
which is the accumulated control deviation between a� and w, i.e., minw θ(w), where

θ(w) := max
i=1,...,nω
k=1,...,N

∣∣∣∣∣∣

k∑

j=1

(a�
i, j − wi, j )Δ j

∣∣∣∣∣∣
.
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656 C. Zeile et al.

This work is based on the CIA decomposition due to its advantages:

1. MINLPs fall generally into the class ofNP-hard problems so that using approaches
that bypass the direct solution of such problems is computationally favorable.

2. Convergence results have been proven for MIOCPs without MDT constraints in
the sense that, under mild assumptions, the obtained solution was shown to be
arbitrarily close to the optimal solutionwith grid length Δ̄ going to zero [26,31,34].
Moreover, the solution of the NLP represents a useful a priori lower bound on the
objective, if solved to global optimality.1

3. An MILP enables the option to include intuitively a large variety of combinatorial
constraints. Numerical case studies showed that the resulting feasible solution is
close to the relaxed solution in case the applied combinatorial constraints are not
too restrictive [7,8].

For a generalization of the CIA decomposition to more optimization steps and MILP
variants see [41] as well as to the PDE constraint case see [18,19,27]. Recently, an
extension of the algorithm with the penalty alternating direction method has been
made [16], which can be regarded as a feasibility pump [13] variant for MIOCPs.

Instead ofminimizing θ(w) bymeans of solving anMILP, fast rounding algorithms
can be applied, such as sum-up rounding (SUR) [31] and next forced rounding (NFR)
[21], which generate binary solutions that still converge to the relaxed binary control
solution with vanishing grid length. The SUR scheme computes for j = 1, . . . , N

wi, j :=

⎧
⎪⎨

⎪⎩
1, if i= argmax

k=1,...,nω

{
j∑

l=1
a�
k,lΔl−

j−1∑
l=1

wk,lΔl

}
(break ties arbitrarily),

0, else,

for i=1, . . . , nω.

For defining the NFR algorithm, one needs for all i = 1, . . . , nω and iteratively for
j = 1, . . . , N the quantity

N j (i) :=
⎧
⎨

⎩
argmin
k= j,...,N

{∑k
l=1 a

�
i,lΔl −∑ j−1

l=1 wi,lΔl > Δ̄}, if
∑N

l=1 a
�
i,lΔl −∑ j−1

l=1 wi,lΔl > Δ̄,

∞, else.
(1.5)

A control with index i ∈ [nω] on interval j is defined to be next forced, if and only if

N j (i) = min
k∈[nω]N j (k) and N j (i) < ∞. (1.6)

Then, the NFR algorithm sets iteratively for j = 1, . . . , N the next forced control
equal to one (break ties arbitrarily) and if there is no such control, the active control
is chosen according to the SUR scheme. We summarize established integrality gap
bounds for these schemes in the form of θ(w) ≤ C(nω)Δ̄ in Table 1.

1 Solving an NLP to global optimality is in general computationally expensive. We are therefore content
with a local solution constructed by a solver such as IPOPT [38], as we elaborate in the numerical results
section.
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Mixed-integer optimal control under minimum dwell time constraints 657

Table 1 So far known integrality gap bounds for binary control approximation algorithms

Next-forced rounding (NFR) Sum-up rounding (SUR) SUR with vanishing constraints

C(nω) = 1, see [21],
∑nω

i=2
1
i , see [24], �nω/2�, see [28]

By vanishing constraints we refer to constraints of the form ωi (t)g(x(t)) ≤ 0, for i = 1, . . . , nω where g
is a smooth function

1.3 Contribution

We conduct a theoretical analysis of the integrality gap in the presence of MDT con-
straints. In particular, we prove the upper bound

min
w

θ(w) ≤ 2nω−3
2nω−2 (CUD + Δ̄),

where CUD denotes the maximum of the minimum up (MU) and minimum down
(MD) duration of all controls.We show that this bound is tight forMU time constraints.
As a consequence of this result, the tightest possible bound for the CIA problem is
C(nω) = 2nω−3

2nω−2 . The proof is constructive, as we introduce a generalization of the
NFR scheme to theMDT setting.We present a roundingmodification so thatMD times
can be included explicitly allowing us to deduce an improved integrality gap bound for
this case. In the same spirit, we modify SUR so that MDT requirements are satisfied
by the obtained binary solution. We test our algorithms on the three tank problem
from a benchmark library [33] and evaluate with increasingly restrictive MDT con-
straints how large the gap between the constructed integer feasible and relaxed solution
becomes.

1.4 Outline

We give a problem definition of the MIOCP in Sect. 2 and describe the proposed CIA
decomposition algorithm with (CIA) as subproblem in detail in Sect. 3. A generaliza-
tion of NFR to the MDT setting is presented in Sect. 4. It provides the tools to derive
upper bounds on the integrality gap in Sect. 5. The commonly used SUR scheme can
be extended to include also MDT constraints, which we present in Sect. 6 together
with a discussion of the integrality gap. Section 7 provides a numerical example and
we finish this article with conclusions in Sect. 8.

1.5 Notations

Let [n] := {1, . . . , n}, [n]0 := {0} ∪ [n], for n ∈ N. We use Gauss’ bracket notation,
i.e., �x� := max{k ∈ Z | k ≤ x}, x ∈ R, and analogously for 
x�.
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658 C. Zeile et al.

2 Mixed-integer optimal control problem

We introduce our problem at hand in the discretized and (partial) outer convexified
setting, but refer to [22,31] and, more recently, to [23,24] for extensive descriptions
of partial outer convexification, the continuous MIOCP setting and its relation to the
discretized problem.

2.1 Definition of binary and relaxed controls

We base the following definitions on the gridGN we already introduced in the previous
section.

Definition 1 (Convex combination constraint (Conv) and Matrix sets W , A) We
express the requirement that the columnwise entries of a matrix (mi, j ) ∈ [0, 1]nω×N

sum up to one by

∑

i∈[nω]
mi, j = 1, for j ∈ [N ], (Conv)

and call it convex combination constraint (Conv) in the sequel. Based on this constraint,
we define the sets

W :=
{
w ∈ {0, 1}nω×N | w fulfills (Conv)

}
, A := Conv(W ),

where we denote by Conv(W ) the convex hull of W .

We notice the geometric nature of W and A. They are the vertices respectively the
set of faces of the N -fold iterated standard simplex without the origin and spanned by
the nω unit vectors.

Definition 2 (Binaryω and relaxed control functionsα)Let the vector of binary control
functions ω and its corresponding vector of relaxed control functions α be defined by
their function space domains

Ω := {ω : T → {0, 1}nω | ω(t) = w·, j , for t ∈ [t j−1, t j ), t j−1, t j ∈ GN , j ∈ [N ], w ∈ W },
A := {α : T → [0, 1]nω | α(t) = a·, j , for t ∈ [t j−1, t j ), t j−1, t j ∈ GN , j ∈ [N ], a ∈ A},

where w·, j , respectively a·, j , denotes the j th column of w, respectively of a.2

2.2 Optimal control problem class

We take interest in the discretized binary control problem (DBCP) with MDT con-
straints and its naturally relaxed problem, the discretized relaxed control problem
(DRCP), which arises from replacing ω by α.

2 We note thatω andα are unspecified on tN . Since they are defined as L
∞ representatives of an equivalence

class inL∞, they can be unspecified on measure zero sets such as grid points of GN .
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Mixed-integer optimal control under minimum dwell time constraints 659

Definition 3 (Problems (DBCP) and (DRCP)) Let a fixed discretization grid GN be
given together with an MU time CU ≥ 0 and an MD time CD ≥ 0. We refer to the
following general problem class as (DBCP)

inf
x, ω

Φ(x(t f ))

s. t. (discretized) outer convexified dynamics (1.4),

initial value condition for x (1.2),

piecewise constant controls: ω ∈ Ω ,

MDT constraints:

wi,l ≥ wi,k+1 − wi,k, for i ∈ [nω], k ∈ [N − 1], l ∈ Jk+1(CU ),

(2.1)

1 − wi,l ≥ wi,k − wi,k+1, for i ∈ [nω], k ∈ [N − 1], l ∈ Jk+1(CD),

(2.2)

where we denote the intervals affected by the MDT C1 = CU ,CD from interval
k ∈ [N ] on with the set

Jk(C1) := {k} ∪ { j | t j−1 ∈ GN ∩ [tk−1, tk−1 + C1)}.

We define a control i ∈ [nω] to be active on the interval starting with t j−1 ∈ GN , if
and only if ωi (t) = 1 for t ∈ [t j−1, t j ) is true and the other way around for inactive
controls. If a binary control is active after a switch on t j , it has to stay active for a time
period of at least CU as required by (2.1), whereas (2.2) enforces the analogous case
for deactivating a control. Finally, we define (DRCP) as the canonical relaxation of
problem (DBCP) where we optimize over α ∈ A instead of ω ∈ Ω .

We remark that our study assumes no mode specific MU times Ci,U or MD times
Ci,D , but may include them by setting CU = maxi∈[nω] Ci,U and accordingly CD =
maxi∈[nω] Ci,D , even though this simplification may result in suboptimal solutions.

Without loss of generality, we omit in our problem definition further constraints
and continuous controls u ∈ L∞(T ,Rnu ). See [32] for a discussion of extensions
and [27] for PDE constraints.

3 Combinatorial integral approximation decomposition

We recapitulate the CIA decomposition algorithm to solve MIOCPs in Fig. 1. This
approach is justified by a convergence result in the situation without MDT constraints
establishing that the objective integer gap of (DBCP) compared to (DRCP) depends
linearly on the integrated control deviation under certain regularity assumptions [26,
31].
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660 C. Zeile et al.

Fig. 1 Schematic representation of the CIA decomposition. MIOCPs can be equivalently reformulated
into their partially outer convexified counterpart problem that is thereafter transformed into (DBCP) via
a temporal discretization. Next, allowing a convex combination a in (Conv) yields the relaxed problem
(DRCP). After solving this problem we obtain a�, which are then approximated with binary values w� in
the rounding problem (CIA). Finally, we use w� as fixed variables for solving (DBCP) as a continuous
variable problem

Thus, we are interested in an admissible ω represented by its corresponding value
w ∈ W with integrality gap bounded by the grid length in the sense of

min
w∈W max

i∈[nω], k∈[N ]

∣∣∣∣∣∣

∑

j∈[k]
(a�

i, j − wi, j )Δ j

∣∣∣∣∣∣
≤ C(nω)Δ̄, (3.1)

as already mentioned in the introduction, so that the solution of (DRCP) can be
arbitrarily well approximated by an integer solution through refining the discretization
grid [34]. The SUR scheme constructs solutions ω with this property; in fact, Kirches
et al. [24] showed C ∈ O(log(nω)) as conjectured in [34]. Hence, the integrality
gap obtained by this rounding scheme is going to be arbitrarily small with arbitrarily
small grid length, which is why SUR is often applied in the CIA decomposition as
rounding step after solving (DRCP). Rather than using SUR, it has been proposed [35]
to formulate the problem (3.1) as an MILP for an improved approximation and to be
able to consider also different norms (such as the Manhattan norm) and combinatorial
constraints. Therefore, we recall its definition and state its MDT variants.

Definition 4 (Problems (CIA), (CIA-U), (CIA-D), and (CIA-UD)) Let a� ∈ A be the
(local) optimal solution of (DRCP) and assumed to be given. Then, we define the
problem (CIA) to be

θ� := min
θ∈R≥0,w∈W θ

s. t. θ ≥ ±
∑

l∈[ j]
(a�

i,l − wi,l)Δl , for i ∈ [nω], j ∈ [N ].

The (CIA) problem with added MU time constraint (2.1) from Definition 3 is in
the remainder referred to as (CIA-U). Similarly, let us (CIA) with added MD time
constraint (2.2) call (CIA-D) and (CIA) with both (2.1) and (2.2) (CIA-UD).

Clearly, (CIA) is a reformulation of minimizing (3.1). In Sect. 5 we are going to
elaborate upper bounds for (3.1) in the presence of MDT constraints by investigating
its (CIA) variants. Since the lower bound on its objective is trivially zero (and can be
reached), bounds always refer to upper bounds in this article.
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Mixed-integer optimal control under minimum dwell time constraints 661

With respect to the constraints (2.1) and (2.2) we stress that there are other, in many
cases computationally more efficient, formulations of MDT constraints, e.g. in the
spirit of extended formulations [25]. The latter may lead to relaxations that are less
likely to deliver fractional solutions [25] and thus can be beneficial for including the
constraints (2.1) and (2.2) into the NLP solving procedure. But, as this study does not
focus on the NLP formulation, i.e., how a� is achieved, and since we propose to solve
(CIA-UD) by means of tailored rounding heuristics or a branch and bound algorithm
and not with a standard MILP solver exploiting extended formulations, we would
benefit neither numerically nor theoretically from alternative MILP formulations and
we therefore skip the presentation of these.

4 Dwell time next forced rounding

Weintroduced in (1.5)–(1.6) theNFRschemeas an algorithm that can compute approx-
imations to solutions of (CIA) in O(nωN 2) [21] and that constructs feasible solutions
of (CIA) with objective no larger than Δ̄. In this section, we introduce dwell time
next forced rounding (DNFR) as a generalization, aiming for a scheme that constructs
MDT constraint feasible solutions and from which we derive bounds for the (CIA)
objective and itsMDT variants. Several definitions are needed for DNFR andwe begin
with a definition of sequences of intervals that are grouped into blocks in the presence
of MDT constraints.

Definition 5 (Dwell time block interval sets) Let an MDT C1 ≥ 0 be given. We
define iteratively the dwell time invoked interval sets Jb and their last indices lb for
b = 1, . . . , nb and with l0 := 0:

Jb := {lb−1 + 1} ∪ { j | t j−1 ∈ GN ∩ [tlb−1 , tlb−1 + C1)},
lb := max{ j | j ∈ Jb},

where nb := min{b | lb = N } represents the number of interval blocks.

In the following we will sometimes write loosely block instead of dwell time block for
shortening our language. Next, we establish the lengths of dwell time blocks.

Definition 6 (Dwell time block length) Let a family of dwell time block interval sets
{Jb}b∈[nb] be given. We denote by Lb the length of dwell time block b ∈ [nb]
and name the maximum, respectively minimum, length of all dwell time blocks L ,
respectively L , i.e.,

Lb := tlb − tlb−1 , b ∈ [nb],
L := max

b∈[nb]
Lb, L := min

b∈[nb]
Lb.

By the definition of dwell time blocks, we see that Lb depends both on the time
discretization GN and on C1. If C1 ≤ Δ, then, the blocks are in fact the grid intervals,
i.e., L j = Δ j , j ∈ [N ] and nb = N . As soon as C1 > Δ holds, there is at
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662 C. Zeile et al.

least one block b with length of two subsequent intervals Lb = Δ j + Δ j+1, j ∈
[N − 1]. Overall, one recognizes thatL increases monotonically with increasing C1
and obviously stops as soon as C1 > t f − t0. The DNFR scheme relies crucially on
the block dependent accumulated control deviation, which is why we introduce it as
auxiliary variable in the next definition.

Definition 7 (Accumulated control deviation θi, j ,Θi,b, γi, j , Γi,b) Let a ∈ A and
w ∈ W . For controls i ∈ [nω] we define the accumulated control deviation on interval
j ∈ [N ] as

θi, j :=
j∑

l=1

(ai,l − wi,l)Δl , γi, j :=
j∑

l=1

ai,lΔl −
j−1∑

l=1

wi,lΔl ,

and further define θi,0 := 0 for all i ∈ [nω]. We introduce for blocks b ∈ [nb] the
analogous variables

Θi,b := θi,lb , Γi,b := Θi,b−1 +
∑

j∈Jb

ai, jΔ j .

In the sequel, we sometimes write forward control deviation for control i in order to
distinguish γi, j , Γi,b from the (accumulated) control deviation θi, j ,Θi,b.

The defined quantities of Definitions 5–7 are illustrated in Fig. 2.

Remark 1 If a small MDT C1 ≤ Δ is given, θi, j equals trivially Θi, j and the same
holds for γi, j and Γi, j . Nevertheless, with an MDT of C1 > Δ one needs interval and
block related variables to be able to clearly distinguish between both values.

Remark 2 Letw ∈ W andwe denote by θ(w) its (CIA) objective value.With the above
definition, we conclude θ(w) = maxi∈[nω], j∈[N ] |θi, j |. Generally, one notices that the
maximum of the |θi, j | values must be assumed at an interval before a switch happens
(i.e., w·, j �= w·, j+1) or on the last interval, since |θi, j | increases monotonically with
constant w·, j and increasing j . Hence, with constant w·, j on the dwell time blocks,
we also have that θ(w) = maxi∈[nω],b∈[nb] |Θi,b|.

We introduced in (1.5)–(1.6) the concept of a next-forced control that depends
on the maximum grid length Δ̄. We generalize this concept by using blocks and a
generic rounding threshold factor C2 > 0 instead of using always C2 = 1 as in the
NFR scheme. To this end we present a definition of different types of control variable
activations that depend on prior variables choices and on a ∈ A.

Definition 8 (Admissible, forced, and future forced activation) Let the rounding
threshold factor C2 > 0 and a ∈ A be given. The choice wi, j = 1 for i ∈ [nω], j ∈
Jb, b = 1, . . . , nb is admissible, if
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Mixed-integer optimal control under minimum dwell time constraints 663

Fig. 2 Left: example binary and relaxed control values on nine intervals Δ j , respectively three blocksLb .
Right: corresponding accumulated control deviation. The forward control deviation with respect to intervals
γi is greater or equal to θi with equality if the control i is inactive. Also, Γi,b is greater or equal to Θi,b ,
where the latter equals via definition the last θi before block b begins. Notice that Γi,2 sums up the weighted
α values for the intervals 3-6, which results in a large value

Γi,b ≥ −C2L + Lb

holds. Denote by Wb
a the set of admissible controls for block b. Similarly, the choice

wi, j = 1 for i ∈ [nω], j ∈ Jb, b = 1, . . . , nb is forced, if

Γi,b > C2L

holds. We define a control i ∈ Wb
a on block b to be l-future forced, if

Θi,b−1 +
l∑

k=b

∑

j∈Jk

ai, jΔ j > C2L

holds, with the special case l = b meaning i is actually forced on b. If the above
inequality holds for any l ≤ nb, we call the control i ∈ Wb

a on block b to be future
forced, and group these controls into the set Wb

f .

Definition 9 (Minimum down time forbidden control)We introduce the constant χD ∈
{0, 1}. If the CIA problem involves an MD time constraint with CD > Δ, we set
χD = 1 and otherwise χD = 0. We define i Db , b = 3, . . . , nω, as the index of the
control that has been activated on block b− 2 and deactivated on block b− 1 - if such
a control exists:

∃i ∈ [nω] : wi, j = 1, j ∈ Jb−2 ∧ wi, j = 0, j ∈ Jb−1 ⇒ i Db := i .

Then, let I D
b denote the χD dependent set of the minimum down time forbidden

control

I D
b :=

{
{i Db }, if χD = 1, and b ≥ 3,

∅, otherwise.
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664 C. Zeile et al.

Fig. 3 Exemplary visualization of the defined quantities. Left: binary and relaxed control values on four
blocks. Right: corresponding block accumulated control deviation. Control i is admissible on block b j , not
admissible on block b j+1, down time forbidden and b j+3-future forced on block b j+2 as well as forced
on block b j+3

Note that I D
b is either the empty set or contains exactly one control index. It may

seem unintuitive to declare only one control per block as minimum down time for-
bidden, because a sufficiently large chosen MD time can comprise more than two
intervals and therefore more than one control could be minimum down forbidden
on certain blocks. However, in such a situation, where several controls are mini-
mum down forbidden, it could happen that only one control may be allowed to be
active, resulting in a large control deviation. Consequently, a fine granular defini-
tion would be critical for deriving bounds for (CIA-UD) using the DNFR scheme.
We will specify such a worst case later in Example 1 as part of “Appendix B” and
argue thereby why we tolerate at most one minimum down time forbidden control
per block. We illustrate the different control activation types of Definitions 8 and 9 in
Fig. 3.

Finally, we use these control properties to declare the DNFR scheme in Algo-
rithm 1. In contrast to the original NFR, we do not iterate over all intervals, but
over all dwell time C1 invoked blocks (line 2) and check on each block whether
there is a forced control and activate it in this case (line 3–4). Otherwise, we test
if there is an earliest future forced control and if so, we set it to be active (line
5–8). Else, the algorithm selects the control with the maximum forward control
deviation (line 9–13), which represents a fallback to the classical SUR scheme.
In case the MD mode is turned on by setting χD = 1, we exclude the set
I D

b from our control selection task (line 3, 5, 11). This consideration of min-
imum down time forbidden controls is a further extension of the original NFR
scheme.
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Algorithm 1: Dwell time next forced rounding algorithm for (CIA-UD)
Input : Relaxed control values a ∈ A, time increments Δ j , j ∈ [N ], parameters C1,C2, χD .

Output: Feasible solution wDNFR of (CIA-UD) with approximation quality depending on
C1,C2, χD .

1 Initialize w = 0.
2 for all dwell time blocks b = 1, . . . nb do
3 if there is a control i ∈ [nω] \ I D

b with forced activation then
4 Set wi, j = 1, j ∈ Jb .

5 else if it exists a future forced control, i.e., Wb
f \ I D

b �= ∅ then
6 Identify the control with the earliest future forced activation (break ties arbitrarily):

7 i = argmin
{
b(i) ∈ [nb] | i ∈ Wb

a \ I D
b , i is b(i)-future forced

}
.

8 Set wi, j = 1, j ∈ Jb .
9 else

10 Find the admissible control with maximum control deviation (break ties arbitrarily):

11 i = argmax{Γi,b | i ∈ Wb
a \ I D

b }.
12 Set wi, j = 1, j ∈ Jb .
13 end
14 end
15 return: wDNFR = w;

5 Tight bounds on the integrality gap for (CIA) with dwell time
constraints

We now consider the question of how large the objective function value θ� of (CIA)
and its MDT variants can become. In other words we examine

θmax := max
a∈A

min
w∈W max

i∈[nω], j∈[N ] |θi, j | s.t. MDT constraints (2.1), (2.2).

It turns out that the DNFR scheme is particularly suitable for deriving these integrality
gap bounds. We state approximation results for (CIA) by means of DNFR constructed
solutions. These results are presented as two theorems in Sect. 5.1 with specified
parameter choices for C2 and χD . Afterwards, we deduce specific bounds for (CIA-
U), (CIA-D) and (CIA-UD) and evaluate how tight they are in the Sects. 5.2–5.3. We
begin this section with the trivial upper bound

θmax ≤
∑

j∈[N ]
Δ j = t f − t0

and another weak result in the following remark.

Remark 3 Neglecting for a moment MDT constraints, it is known from Minimax
theory [39] that

max
a∈A

min
w∈W max

i∈[nω], j∈[N ] |θi, j | ≤ min
w∈W max

a∈A
max

i∈[nω], j∈[N ] |θi, j |
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holds. In the right hand side, we maximize over a for given w and check, which
one of the latter leads to an overall minimum objective. In this way a manipu-
lates the control deviation to be as large as possible. That means with given w
it is possible to set aimin, j = 1, j ∈ [N ], where imin is the control with small-
est total accumulation

∑
j∈[N ] wi, jΔ j so that we obtain the (CIA) objective value

θ� = ∑
j∈[N ](1 − wimin, j )Δ j . With these arguments one may derive

θmax ≤
(
N −

⌊
N

nω

⌋)
Δ̄.

We omit the exact proof since this bound is generally weak as we will see later in this
section.

5.1 Integrality gap results through dwell time next forced rounding

We examine in Theorem 1 how large the control deviation can become as part of the
DNFRalgorithmduring anMD timephase.Based on this resultwederive inTheorem2
that DNFR constructs (CIA) feasible solutions with objective bounds depending on
the rounding thresholdC2 and whether down time forbidden controls are allowed, i.e.,
χD = 1. The proofs and the corresponding lemmata are moved to “Appendix A” to
enhance readability for readers interested in the results and algorithms.

Theorem 1 (Control accumulation of a minimum down time forbidden control) Let
a ∈ A, (C2, χD) = ( 3

2 , 1
)
and C1 ≥ 0 be given and assume there is a minimum down

time forbidden control iD ∈ I D
b on block b ≥ 3 after Algorithm 1 was executed.

Then, the forward control deviation satisfies

ΓiD,b ≤ 3
2L .

Proof See “Appendix A.2”. ��

Theorem 2 (Rounding gap of solution constructed by DNFR) Let a ∈ A and the
following parameter settings be given:

I. (C2, χD) =
(
2nω−3
2nω−2 , 0

)
,

II. (C2, χD) = ( 3
2 , 1

)
,

and C1 ≥ 0. Then, wDNFR obtained by Algorithm 1 is a feasible solution of (CIA) for
both cases with approximation quality

θ(wDNFR) ≤ C2L .

Proof See “Appendix A.3”. ��
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Fig. 4 Visualization of a minimal C1-overlapping grid

5.2 Implications for the Objectives of (CIA-U) and (CIA)

Theorem2 states only generic approximation results for (CIA)with anMDTparameter
C1.We are going to assess the consequences for (CIA-U) by specifyingC1 and proving
tightness of the resulting upper bound. Clearly, (CIA) is a special case of (CIA-U),
where CU = 0, so that results for (CIA-U) are inherited by (CIA).

Proposition 1 (Upper bound for (CIA-U)) Let any MU time CU ≥ 0, grid GN and
a ∈ A be given. Then, for (CIA-U) holds:

θ� ≤ 2nω − 3

2nω − 2

(
CU + Δ̄

)
.

Proof We consider the DNFR scheme with (C1,C2, χD) =
(
CU , 2nω−3

2nω−2 , 0
)
. Then,

wDNFR is a feasible solution by Theorem 2 and by the property of DNFR to activate
dwell time blocks of intervals with length at least C1 = CU . From the definition of
block lengths we conclude L < CU + Δ̄ so that the assertion follows directly from
Theorem 2. ��

In order to analyze the obtained bound with respect to tightness, we introduce a
grid where the MDT C1 overlaps the grid points by a small ε > 0. We determine the
length of the resulting blocks in the following lemma.

Definition 1 (Minimal C1-overlapping grid) Let us consider a non-degenerate MDT
length, i.e., C1 > 0, and let ε be C1 � ε > 0. Let further a time horizon [t0, t f ] be
given with length at least 4C1, i.e.,

t f ≥ t0 + 4C1.

We define a minimal C1-overlapping grid GN recursively as follows

t1 := t0 + C1 − ε,

t2 := t1 + C1,

t j :=
{
t j−1 + C1 − ε, if j odd,

t j−1 + C1, if j even,
for j = 3, . . . , N − 1,

where we set N − 1 := max{ j | t j < t f }, so that GN consists of N intervals (Fig. 4).
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Lemma 1 (Length of blocks of aminimalC1-overlapping grid) The dwell time invoked
blocks Jb, b ∈ [nb] of a minimal C1-overlapping grid as introduced in Definition 1
have the length

Lb = 2C1 − ε, b ∈ [nb − 1],
Lnb = t f − (t0 + (nb − 1)(2C1 − ε)) .

Moreover, we have that
Δ̄ = C1, L = 2C1 − ε.

Proof We keep in mind Definition 5 from which we deduce J1 = {1, 2}, because
t0+C1 (minimally) overlaps t1. The next dwell time block begins at t2 = t0+2C1−ε

and consists again of two intervals. This argumentation can be extended to the first
nb − 1 blocks and by the definition of block lengths we concludeLb = 2C1 − ε. The
length of the last blockLnb is directly computed by the definition of N − 1 to be the
last index of the grid point recursion before t f . Finally, the definition of a minimal
C1-overlapping grid and the obtained block lengths implies

Δ̄ = C1, L = 2C1 − ε.

��
With this preliminary work, we show that the deduced MU time bound is tight.

Proposition 2 (Tightness of the bound for (CIA-U)) Let an MU time CU ≥ 0 and a
grid GN be given with

t f − t0 ≥ 2CU (nω − 1).

Then, the objective bound for (CIA-U) mentioned in Proposition 1 is the tightest
possible bound.

Proof Let us first considerCU > 0 and construct an examplewith the desired objective
value by means of a minimal C1-overlapping grid, where we set C1 = CU . The
proposition assumes a time horizon length of at least 2C1(nω − 1) so that the grid
induced by Lemma 1 consists of at least nb ≥ nω − 1 blocks. Let a ∈ A be given as

(ai, j )i∈[nω], j∈[N ] :=

⎛

⎜⎜⎜⎝

1
2

1
2 0 · · · 0

1
2nω−2

1
2nω−2

1
nω−1 · · · 1

nω−1
...

...
...

. . .
...

︸ ︷︷ ︸
j ∈ J1

1
2nω−2

1
2nω−2

1
nω−1 · · · 1

nω−1

⎞

⎟⎟⎟⎠ .

Consequently, all controls i ∈ [nω], i �= 1, assume in a the same values on each
interval. After the first block, we set control i = 1 to zero, while all other variables are
set to 1

nω−1 for the remaining intervals, i.e. blocks. Next, we discuss how the optimal

123



Mixed-integer optimal control under minimum dwell time constraints 669

solution of (CIA-U) on the first nω − 1 blocks may be chosen. Let us calculate the
control deviation if we were to activate a control i = 2 . . . nω on the first block:

Θi,1 =
∣∣∣∣∣∣

∑

j∈J1

1

2nω − 2
Δ j − L1

∣∣∣∣∣∣
= 2nω − 3

2nω − 2
L1 = 2nω − 3

2nω − 2
(2CU − ε)

= 2nω − 3

2nω − 2
(CU + Δ̄ − ε).

In the second and third equality we used Lemma 1. The values of the relaxed controls
a for i = 2 . . . nω and blocks 1, . . . , nω − 1 sum up to

∑

b∈[nω−1]

∑

j∈Jb

ai, jΔ j = 1

2nω − 2
L1 +

∑

b=2,...,nω−1

1

nω − 1
Lb

= 1

2nω − 2
(CU + Δ̄ − ε) +

∑

b=2,...,nω−1

1

nω − 1
(CU + Δ̄ − ε)

= 2nω − 3

2nω − 2
(CU + Δ̄ − ε).

Thus, there are nω − 1 controls with this control accumulation on nω − 1 blocks,
but activating any of these controls on the first block yields already the same control
deviation. Hence, the objective of (CIA-U) with this a is at least 2nω−3

2nω−2 (CU + Δ̄ − ε),
where ε is arbitrarily small. If we combine this result with Proposition 1, we get that
2nω−3
2nω−2 (CU + Δ̄) is the tightest possible bound. Last, we argue for the degenerate case,

CU = 0, that we can create an example with length of all blocks set to Δ̄ and obtain
the same tight bound. ��
Corollary 1 (Tight bound on the rounding gap for (CIA)) Consider GN and a ∈ A.
The objective of (CIA) is bounded by

θ� ≤ 2nω − 3

2nω − 2
Δ̄.

If N ≥ nω − 1 holds, then this bound is tight.

Proof The bound follows from Proposition 1 with CU = 0 and if N ≥ nω − 1, we are
able to construct the same worst-case example as in the proof of Proposition 2, with
intervals applied instead of blocks. ��

5.3 Implications for the Objectives of (CIA-D) and (CIA-UD)

The bound obtained for (CIA-U) can be transferred in a straightforward manner to
(CIA-D) by using C1 = CD as MDT in the DNFR scheme. However, we notice the
increased number of degrees of freedom when dealing with MD times rather than MU
times: only the down time forbidden control is fixed for a certain time duration in
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comparison with the MU time constraint situation where all controls are fixed due to
the fixed active control. With this observation, we introduced in the DNFR scheme the
min down mode χD = 1 and are going to deduce in the sequel an alternative upper
bound compared to the one obtained by DNFR with χD = 0. As we are going to
detect, this alternative bound is independent of nω but not always an improvement,
so that we declare the minimum of both bounds as the upper bound in the following
proposition.

Proposition 3 (Bounds on the objective of (CIA-D) and (CIA-UD))Consider any grid
GN and a ∈ A. Let MU and MD times CU ,CD ≥ 0 be given. Then

1. (CIA-D) is bounded by

θ� ≤ min

{
3

4
CD + 3

2
Δ̄,

2nω − 3

2nω − 2

(
CD + Δ̄

)}
.

2. (CIA-UD) is bounded by

θ� ≤

⎧
⎪⎪⎨

⎪⎪⎩

2nω−3
2nω−2

(
CU + Δ̄

)
, if CU ≥ CD,

min
{
3
2CU + 3

2 Δ̄, 2nω−3
2nω−2

(
CD + Δ̄

)}
, if CD > CU > CD/2,

min
{
3
4CD + 3

2 Δ̄, 2nω−3
2nω−2

(
CD + Δ̄

)}
, if CD/2 ≥ CU .

Proof Generally, ifCD > CU or ifMUconstraints are absent, wemay apply theDNFR

scheme with (C1,C2, χD) =
(
CD, 2nω−3

2nω−2 , 0
)
, which constructs feasible solutions for

(CIA-D) respectively (CIA-UD) with objective bound 2nω−3
2nω−2 (CD + Δ̄). We are left

with the other case χD = 1:

1. If we set C1 = 1
2CD , we have L < 1

2CD + Δ̄. With this MDT and the choice
χD = 1 the DNFR scheme constructs a feasible solution for (CIA-D). Then, by
virtue of Theorem 2, case II., we deduce with C2 = 3

2 the bound 3
4CD + 3

2 Δ̄.
2. (a) If CU ≥ CD is given, we can set C1 = CU and all block lengths are at least

as large as those of the MD time CD . Therefore, the solution constructed by
DNFR with χD = 0 and C2 = 2nω−3

2nω−2 fulfills both the MU and MD time
constraint.

(b) We set χD = 1 and C1 = CU , C2 = 3
2 , when CD > CU > CD/2 is given.

By this choice, the solution of DNFR fulfills a MD time of 2CU because of

2L > 2CU > 2CD/2 = CD.

Furthermore, by setting C1 = CU it is clear that wDNFR does not violate the
MU time.

(c) CD/2 ≥ CU : DNFRwith down time configuration χD = 1 andC1 = CD/2 ≥
CU , C2 = 3

2 can be executed without violating the MU time constraint. ��
Since tightness results for the problems (CIA-D) and (CIA-UD) are not as straight-

forward obtained as for the problem (CIA-U), we move the discussion on the quality
of the bounds obtained in Proposition 3 to the “Appendix B”.

123



Mixed-integer optimal control under minimum dwell time constraints 671

6 Sum-up rounding in the Dwell time context

SUR is computationally less expensive (O(nωN )) than the DNFR scheme executed on
intervals. But, on the other hand, the last section showedDNFRconstructs solutions for
(CIA) with amaximum integrality gap that is less than the one of solutions constructed
by SUR for nω ≥ 3 (equality for the case nω = 2). Since the SUR scheme is very
often used for finding approximative solutions of (CIA), but does not necessarily fulfill
MDT constraints, we discuss in this section a canonical extension of the algorithm to
this setting.

6.1 Dwell time sum-up rounding (DSUR)

We introduce the concept of a currently activated control and dwell time blocks that
depend on the initial interval and the MDT duration C1.

Definition 10 (Initial interval dwell time block index sets) Let an MDT C1 ≥ 0 be
given. We define for all intervals k ∈ [N ] the initial interval dependent dwell time
index sets to be

J SUR
k (C1) := {k} ∪ { j | t j−1 ∈ GN ∩ [tk−1, tk−1 + C1)}.

Definition 11 (Currently activated control) We call a control index i currently acti-
vated at interval j = 2, . . . , N , if

wi, j−1 = 1

holds. Otherwise, or if j = 1, we call the binary control i currently deactivated.

In contrast to the DNFR scheme we are now interested in considering intervals
individually andwork independently of the constantχD . Hence, grouping ofminimum
down time forbidden controls for each interval into sets I SUR

j is necessary.

Definition 12 (SUR minimum down time forbidden control set) Let a MDT CD ≥ 0
be given. We define the set of down time forbidden controlsI SUR

j ⊂ [nω] on interval
j ∈ [N ] as follows:

I SUR
j := {i ∈ [nω] | ∃ k < j : t j−1 ≤ tk−1 + CD, tk−1 ∈ GN ∧ wi,k = 1}.

We say i ∈ [nω] isMD time admissible on j ∈ [N ], if i /∈ I SUR
j holds.

Note that the above definition assumes implicitly fixed control variables for previous
intervals [N ] � k < j . We haveI SUR

1 = ∅, because there are no down time forbidden
controls on the first interval. Moreover, the set I SUR

j may contain several controls,
but at most nω − 1.

Next, we give a definition of the DSUR scheme in Algorithm 2. It iterates over
all intervals j ∈ [N ] and selects initially the interval representing the beginning of
the time horizon, where a currently activated control does not yet exist. The control
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dependent MDT Ci is updated in line 3 for each iteration inside the while loop so
thatCi equals the maximum ofMU timeCU andMD timeCD for a currently activated
control, and otherwise it is set to the MU time CU . The algorithm sets Ci = CU for
all controls in the first while iteration. Next, in line 4, one searches for the MD
time admissible control i� with maximum forward control deviation on the upcoming
intervals covering the dwell time Ci� . If it is the currently activated one, we fix this
control to be active also on the current selected interval j and increase the interval index
(line 5–6). Else, the control is activated on the whole dwell time block represented
by its interval indicesJ SUR

j (Ci� ) and the interval index is updated accordingly (line
8–9). Lastly, DSUR updates the set of down time forbidden controls for the next
iteration in line 11. The algorithm stops as soon as the control choice has been made
for the last interval N .

Clearly,wDSUR is a feasible solution for (CIA), because exactly one control is active
per interval. It is also feasible for (CIA-U), because whenever a currently deactivated
control is activated, it dwells on active for at least the duration CU (line 8–9). The
solution also satisfies MD time constraints by the definition of I SUR

j and altogether

wDSUR is a feasible solution for (CIA-UD).
We transferred the main idea from the original SUR scheme to the problem setting

withMDT constraints by selecting in each iteration the control withmaximum forward
control deviation. In the presence of MU time requirements, we need to calculate
this forward accumulation for the set of next intervals with total length at least CU .
For a given MD time larger than the MU time, Algorithm 2 compares the forward
accumulation with length at least CD of the currently activated control with the ones
of other controls with length at least CU . The idea behind this approach is to prevent a

Algorithm 2: DSUR algorithm for (CIA-UD)
Input : Relaxed control values a ∈ A, time increments Δ j , j ∈ [N ], MU time CU , MD time CD .

Output: Feasible solution wDSUR of (CIA-UD).
1 Initialize w = 0, j = 1 and I SUR

j = ∅.
2 while j ≤ N do
3 Set Cia = max{CU ,CD} for the currently activated control ia , and set Ci = CU for all other

controls i �= ia .
4 Find the control with maximum deviation (break ties arbitrarily):

5 i� = argmax{θi, j−1 + ∑

l∈J SUR
j (Ci )

ai,lΔl | i ∈ [nω] \I SUR
j }

6 if i� = ia then
7 Set wi�, j = 1 and update j = j + 1.
8 else
9 Set wi�,l = 1, l ∈ J SUR

j (Ci�,1);
10 Update j = max{l | l ∈ J SUR

j (Ci�,1)} + 1.

11 end
12 Update the set of down time forbidden controls I SUR

j .

13 end
14 return: wDSUR = w;
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situation in which a control gets deactivated, but is going to accumulate a large control
deviation during its down time forbidden period.

Remark 4 (Run time of DSUR) Algorithm 2 is in O(nωN 2), since it sums up, on
each interval and for all controls, the relaxed control values a on the next dwell time
induced intervals.

6.2 Rounding gap bounds for Dwell time sum-up rounding

Kirches et al. [24] have proven the tightest possible bound on the integrality gap for
the original SUR. From this we can derive implications for DSUR in the absence of
MD conditions.

Theorem 3 (Tight bound for SUR integrality gap, cf. Theorem 7.1, [24]) LetwSUR be
constructed from a ∈ A by means of SUR for an equidistant discretization of [t0, t f ]
and let denote by θ(wSUR) its (CIA) objective value. Then, the rounding gap is bounded
by

θ(wSUR) ≤ Δ̄

nω∑

i=2

1

i
,

which is the tightest possible upper bound.

Corollary 2 (Tight bound for DSUR integrality gap without MD times) Let CD < Δ

and an MU time CU > 0 be given. Let the time horizon [t0, t f ] with a minimal CU -
overlapping grid be discretized and letwDSUR be constructed from a ∈ A by means of
DSUR. Then, the rounding gap θ(wDSUR) of its (CIA) objective value is bounded by

θ(wDSUR) ≤ (CU + Δ̄)

nω∑

i=2

1

i
,

which is the tightest possible upper bound.

Proof As in the proof of Theorem 3 in [24] a dynamic programming argument can be
applied, here with equidistant block length of (CU + Δ̄ − ε) as derived in Lemma 1.
With a time horizon length of nω(CU + Δ̄ − ε) we may analogously to the proof of
Theorem 3 construct an example indicating that the bound is tight as follows.

ai, j =

⎧
⎪⎨

⎪⎩

0, if 2i + 1 ≤ j ≤ N ,

1/(nω + 1 − j/2), if j is even,

1/(nω + 1 − ( j + 1)/2), if j is odd,

1 ≤ j ≤ N = 2nω.

The DSUR scheme constructs for this example a solution that switches directly after
each block with length (CU + Δ̄ − ε). Moreover, the controls i ∈ [nω − 1] are active
each on block i so that the last control nω accumulates the asserted rounding gap until
the end of block nω − 1. ��
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Remark 5 (DSUR as generalization of SUR) The last corollary implicitly states that
DSUR can be seen as a generalization of the original SUR algorithm, since it reduces
to the latter for a negligible MDT CU ,CD ≤ Δ.

Theorem 3 allows no direct conclusion for the case with absent MU times and an
active MD time CD > Δ. At least, it is possible to provide worst-case examples for
a in order to get a clue of how large the upper bound can be for the DSUR rounding
gap without MU times. This expresses the following proposition.

Proposition 4 (Rounding gap for DSUR without MU times) Consider an inactive
MU time constraint, i.e., CU ≤ Δ and an equidistant grid GN . We assume for the MD
time

CD > (2(nω − 1) − 1)Δ̄. (6.1)

Let for the grid hold

N ≥ (nω − 1)(1 + MD) + 
MD/2� − 1, (6.2)

where MD denotes the number of minimum down time intervals constructed by CD,
i.e. MD := 
CD/Δ̄�. Then, there is an a ∈ A that yields a (CIA-D) objective value
θ(wDSUR) of wDSUR constructed by DSUR with

θ(wDSUR) ≥
(
MD

2
+ (nω − 2)

)
Δ̄. (6.3)

Proof See “Appendix C”. ��

Remark 6 (Roundinggap forDSURwithMUandMDconstraints)Generally,when
the problem setting involves bothMU andMD time constraints, i.e.,CD,CU > Δ, the
worst-case rounding gap constructed by the DSUR scheme is at least the maximum
of the bounds obtained in Corollary 2 and in Proposition 4.

7 Computational Experiments

We consider a three tank flow system problem with three controlling modes in order
to evaluate the integrality gap in practice and to test the proposed rounding methods.
It models the dynamics of an upper, middle and lower level tank, connected to each
other with pipes. The goal is to minimize the deviation of certain fluid levels k2, k4
in the middle, respectively lower, level tank. This problem type was discussed in a
variety of publications for the optimal control of constrained switched systems [11,36]
and is taken from the benchmark https://mintOC.de library [33]. The problem reads
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min
x, ω

∫ T

0
k1(x2(s) − k2)

2 + k3(x3(s) − k4)
2 ds

s.t. ẋ1(t) = −√x1(t) + c1ω1(t) + c2ω2(t) − ω3(t)
√
c3x1(t), for a.e. t ∈ [0, T ],

ẋ2(t) = √
x1(t) −√

x2(t), for a.e. t ∈ [0, T ],
ẋ3(t) = √

x2(t) −√
x3(t) + ω3(t)

√
c3x1(t), for a.e. t ∈ [0, T ],

x(0) = x0,

1 =
3∑

i=1

ωi (t), ω(t) ∈ {0, 1}3, for a.e. t ∈ [0, T ].
(P)

The additional parameters are

k := (2, 3, 1, 3)T , c := (1, 2, 0.8)T , x0 := (2, 2, 2)T , T := 12.

Furthermore, we add the MU and MD time constraints (2.1)–(2.2) to the three tank
problem with varying CU and CD parameters. We leave open the question of the
regularity of the differential states x, but we assume that there exists a unique solution
that is continuous.

We solve this test problemwith the CIA decomposition.We applied DirectMultiple
Shooting for temporal discretization with varying number of grid intervals N together
with a fourth order Runge-Kutta scheme for obtaining the differential state’s evolution
and thus the objective value.3 We used CasADi v3.4.5 [3] to parse the NLP with
efficient derivative calculation of Jacobians and Hessians to the solver IPOPT 3.12.3
[38]. Here, the helper classesOpti stack are useful, as they allow a compact syntax
for NLP modeling. For finding the optimal solution of the resulting (CIA) problem
and itsMDT variants we used the branch and bound solver of the open source software
package pycombina4 [8]. We published the python source code of solving (P) via
the CIA decomposition online.5

We stress that the obtained feasible solutions for (P) via the CIA decomposition
are in general not global optimal solutions. In fact, the Problem (P) appears to be non-
convex so that IPOPTmay construct a local solution, just like the rounding via (CIA)
may do. Nevertheless, finding a global optimal solution is computational expensive as
argued in the introduction.

3 When applying the fourth order Runge-Kutta scheme we need to have for the differential states that
x ∈ C5(T , Rnx ) to generate a fourth order error term. In the introductionwe required only a continuous x ∈
W 1,∞(T , Rnx ); however,we could assume stronger regularity due to piecewise continuously differentiable
control functions fromDefinition 2.Also, theRunge-Kutta scheme in the context ofDirectMultiple Shooting
is applied on the piecewise continuously differentiable right-hand side of the ODE, where the control
function changes its values only at grid points. Nevertheless, our presented algorithms are independent of
the chosen numerical integration scheme and one may choose a more accurate scheme according to the
dynamical system at hand.
4 See https://github.com/adbuerger/pycombina.
5 See https://mintoc.de/index.php/Three_Tank_multimode_problem_(python/casadi).
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Fig. 5 Differential state and control trajectories for the test problem (P) with relaxed binary controls, i.e.
for problem (DRCP), on the left and approximated binary controls, i.e. for problem (DBCP), on the right
with MU time CU = 0.3 and a temporal discretization with N = 1280 intervals. The objective value for
(DRCP) amounts to Φ = 8.776, while the one of (DBCP) is Φ = 8.888

Figure 5 depicts the state and control trajectories with relaxed (DRCP) and binary
(DBCP) control values and a required MU time of CU = 0.3. We remark that the
binary solution’s objective value under MU time constraints is about 1.3% larger
than the one obtained by the relaxed solution and about 1.2% larger than the binary
solution’s objective value without MU time constraints.

We illustrate in Fig. 6 the effect of an increasing MU time on the objective values
of (CIA-U) and (DBCP). As expected, the finer the discretization grid and the smaller
the required MDT time, the better the objective values of both problems. A small MU
time results in a weak restriction for (DBCP) so that its objective value is close to the
one of (DRCP), which is Φ = 8.776. But, from CU = 0.7 on, a refinement of the
grid cannot compensate the MU time restriction anymore and the (DBCP) objective
value is about 25% larger than (DRCP) in this case. Interestingly, this objective value
increases hardly in CU ≥ 0.7, but it even decreases slightly after CU = 0.7 before
increasing again and staying constant from CU ≈ 2.0 on. We observe a few outlier
instances, e.g., N = 20 with CU = 1.2 or N = 40 with CU ∈ {0.4, 0.5}, where
the objective value appears to be unexpectedly large. This can be explained by the
coarse grid choices, which in turn stresses the importance of a fine time discretization
regarding the stability of the obtained solution for (DBCP).

On the other hand, (CIA-U) objective’s value increases roughly linearly in CU on
fine grids until it reaches θ� ≈ 0.87, which seems to be themaximumvalue for P in this
setting. Thus, while small values of the (CIA-U)’s objective correspond to promising
objective values of (DBCP), the relationship of (CIA-U) and (DBCP) appears to be
quite uncorrelated from CU ≥ 0.7 on. We computed similar results for (P) with MD
time constraints (not shown). We also tested whether including the relaxed MDT
constraints into the NLP or not has a significant impact on the solution - this was not
the case.

123



Mixed-integer optimal control under minimum dwell time constraints 677

Fig. 6 Objective values of (CIA-U) and (DBCP) based on the test problem (P) and different control dis-
cretizations N and MU time durations CU

Fig. 7 CIA objective function values θ for test problem (P) with time discretization N = 1280 and varying
MU timeCU (left), respectively varyingMD timeCD (right). The optimal solutions denoted with (CIA-U),
respectively (CIA-D), are obtained via pycombina’s branch and bound algorithm and compared with the
solutions constructed by DNFR and DSUR. We also show the upper bound (UB) for (CIA-U) respectively
(CIA-D) from Propositions 1–3 and the bounds derived for DSUR from Corollary 2 and Proposition 4. We
note that although Proposition 4 derives only a lower bound for the upper bound of DSUR with MD time
constraints, this bound is not violated by the computational results

We analyze the performance of DNFR and DSUR for both MU and MD time
constraints and with respect to θ� in Fig. 7. The obtained solutions are compared
with the global minima for (CIA-UD) from pycombina. We observe that DNFR
seems to perform better for MU time constraints, while DSUR performs better for
the instances with MD time requirements. We plotted also the theoretical upper bound
(UB) from Propositions 1 and 3, which are here 3

4 (C1+Δ̄),C1 = CU ,CD . As already
observed for Fig. 6, the minima of (CIA-U) and (CIA-D) do hardly increase, if at all,
for large MDTs and therefore diverge compared with the theoretical upper bound. We
explain this behavior by the problem specific given relaxed values, which induce here
an objective value of θ� ≈ 0.87 for (CIA-U) and (CIA-D) even if no switches are used
in the binary solution.

We show also the upper bound derived for DSUR with MU time constraints from
Corollary 2, i.e. 56 (CU + Δ̄), and the lower bound for the upper bound for DSUR with
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MD time constraints by Proposition 4, i.e. 12 (CD+Δ̄).While the solutions constructed
by DSUR may violate the upper bounds for (CIA-U) and (CIA-D), as happening for
theMU time case, the bounds for DSUR are not violated.We observe that the (CIA-D)
objective values are not only by far smaller than their upper bound, but even smaller
or equal to the DSUR bound by Proposition 4.

We implemented DNFR and DSUR in Python 3.6 as additional solvers for
pycombina. The execution of the heuristics took for all instances not more than
0.02 seconds on a workstation with 4 Intel i5-4210U CPUs (1.7 GHz) and 7.7 GB
RAM.We conclude that the heuristics can be used to quickly generate robust solutions
in terms of competitive objective values. They might also be useful for initializing
pycombina’s branch and bound algorithm with a good upper bound. However, a
numerical study is needed for verifying the added benefit, which could be elaborated
in future work.

8 Conclusions

In this article, we have derived tight bounds for the integrality gap of the CIA
decomposition applied to MIOCPs under MDT constraints. The presented proofs are
constructive and take advantage of the introduced DNFR scheme. Numerical experi-
ments show that the CIA decomposition performs notably well in terms of objective
quality for problemswith smallMDT requirements, since the deviation from its relaxed
solution is negligible. For more restrictive dwell time constraints, the algorithm may
provide feasible solutions that differ a lot from the relaxed solution. Hence, the con-
structed solution quality might be low compared to the optimal solution. Nevertheless,
when considering the runtime of MINLP solvers, the CIA decomposition solution is
computationally inexpensive and can be easily assessed with the relaxed solution for
its quality. We have extended the SUR scheme so that it constructs dwell time feasible
solutions and tested the proposed algorithm on a benchmark problem. The resulting
(CIA) problem solutions of this and the DNFR scheme are close to the optimal ones.
Hence, we propose that the DNFR or DSUR scheme may be beneficial in the context
of huge (CIA) problems or in the setting of model predictive control, where a branch
and bound algorithm struggles to find the optimal solution efficiently.

Acknowledgements Open Access funding provided by Projekt DEAL. The authors thank the anonymous
reviewers for their helpful comments on earlier drafts of the manuscript that served to significantly improve
and clarify the paper. This project has received funding from the European Research Council (ERC) under
the EuropeanUnion’sHorizon 2020 research and innovation programme (GrantAgreementNo 647573) and
from Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—314838170, GRK 2297
MathCoRe and SPP 1962.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/


Mixed-integer optimal control under minimum dwell time constraints 679

A Proof of Theorems 1 and 2

A.1 Lemmata for DNFR Approximation Results

We present a series of lemmata, which will be needed later in the proofs to Theorems 1
and 2.

Lemma 2 (Family of dwell time block sets) The family of dwell time block interval
sets {Jb}b∈[nb] as defined in Definition 5 is a partition of the set of all interval indices
[N ].
Proof This follows directly from the definition of dwell time block interval sets. ��
Lemma 3 (Block accumulated control deviation properties) For all b ∈ [nb] we have
that

∑

i∈[nω]
Γi,b = Lb,

∑

i∈[nω]
Θi,b = 0.

Proof Let us derive an auxiliary result for j ∈ [N ]:
∑

i∈[nω]
θi, j =

∑

i∈[nω]

∑

l∈[ j]
(ai,l − wi,l)Δl

(Conv)=
∑

l∈[ j]
Δl −

∑

l∈[ j]
Δl = 0. (A.1)

We use this and rearrange the sums in order to proof the first assertion:

∑

i∈[nω]
Γi,b =

∑

i∈[nω]

⎛

⎝θi,lb−1 +
∑

j∈Jb

ai, jΔ j

⎞

⎠ = 0 +
∑

i∈[nω]

∑

j∈Jb

ai, jΔ j

=
∑

j∈Jb

∑

i∈[nω]
ai, jΔ j

(Conv)=
∑

j∈Jb

Δ j

= Lb.

The auxiliary result is also useful for the second statement:

∑

i∈[nω]
Θi,b =

∑

i∈[nω]
θi,lb−1

(A.1)= 0.

��
Lemma 4 (Accumulated difference of Γ and Θover active controls) Let b1, b2 ∈ [nb]
and we define Sb1,b2 as the set of active controls between b1 and b2:

Sb1,b2 := {i ∈ [nω] | ∃b : b1 < b < b2 with wi, j = 1, ∀ j ∈ Jb}.
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Then, we have ∑

i∈Sb1,b2

(
Γi,b2 − Θi,b1

) ≤ L .

Proof Using Definition 7 of Γ ,Θ and rearranging sums yields

∑

i∈Sb1,b2

(
Γi,b2 − Θi,b1

) =
∑

i∈Sb1,b2

⎛

⎝
b2∑

b=b1+1

∑

j∈Jb

ai, jΔ j −
b2−1∑

b=b1+1

∑

j∈Jb

wi, jΔ j

⎞

⎠

=
b2∑

b=b1+1

∑

j∈Jb

Δ j

∑

i∈Sb1,b2

ai, j

︸ ︷︷ ︸
≤1

−
b2−1∑

b=b1+1

∑

j∈Jb

Δ j

∑

i∈Sb1,b2

wi, j

︸ ︷︷ ︸
=1

≤
b2∑

b=b1+1

∑

j∈Jb

Δ j −
b2−1∑

b=b1+1

∑

j∈Jb

Δ j

= Lb2 ≤ L .

��

Note that Sb1,b2 is trivially the empty set, if b2 ≤ b1 + 1, but the result remains
true in this case. We employ the concept of Sb1,b2 for a contradiction in the proofs of
Theorems 1 and 2.

Lemma 5 (Control with negative Γ value has not been future forced) Let (C1,C2, χD)

be given and assume that the forward control deviation of a control i ∈ [nω] and a
block b2 ≥ 2 after executing Algorithm 1 satisfies:

Γi,b2 ≤ C2L − L , and Γi,b2 < 0.

Then, there is an earlier activation of i on some block b1 < b2 and this activation has
not been b2-future forced on b1.

Proof Note that Γi,b is monotonically increasing in b for deactivated controls i . We
conclude from this and Γi,b2 < 0 that there is an earlier activation of i on some block
b1 < b2. We take a closer look on the forward control deviation on block b2:

C2L − L ≥ Γi,b2 =
b2∑

k=1

∑

j∈Jk

ai, jΔ j −
b1∑

k=1

∑

j∈Jk

wi, jΔ j

=
b2∑

k=1

∑

j∈Jk

ai, jΔ j −
b1−1∑

k=1

∑

j∈Jk

wi, jΔ j − Lb1 ,
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and rearranging terms implies

b2∑

k=1

∑

j∈Jk

ai, jΔ j −
b1−1∑

k=1

∑

j∈Jk

wi, jΔ j ≤ C2L − L + Lb1 ≤ C2L .

The last inequality shows us that i has been not b2-future forced on b1. ��

A.2 Proof of Theorem 1

Proof We proceed via induction.
Base case: We consider the first b on which a down time forbidden control iD ∈ [nω]
appears and let us assume

ΓiD,b > 3
2L (A.2)

holds and we prove that it results in a contradiction. It follows from Lemma 3

3
2L ≥ Lb =

∑

i �=iD

Γi,b + ΓiD,b,

so that there must be a control i1 �= iD with negative forward control deviation on b:

∃ i1 �= iD : Γi1,b < 0.

We apply Lemma 5 to the last inequality: i1 has not been b-future forced on its last
activation and we denote the block of this activation with b1. In other words, we know
that there is at least one block b1 and one control i1 that was not b-future forced on
b1 and still was activated on b1. Now, we denote by i1 the control of this property
with the last activation before b. By this definition, we observe that all controls being
activated after b1 would become forced until b. We notate

Fb1,b := {i ∈ [nω] | ∃k(i) : b1 < k(i) ≤ b on which i is forced or b-future forced}.

In particular, we have iD ∈ Fb1,b. For i ∈ Fb1,b\{iD} we conclude

Γi,b = Θi,b−1 +
∑

j∈Jb

ai, jΔ j =
b∑

k=1

∑

j∈Jk

ai, jΔ j −
k(i)−1∑

k=1

∑

j∈Jk

wi, jΔ j > 3
2L ,

and therefore
Γi,b > 3

2L − Lk(i), i ∈ Fb1,b\{iD}. (A.3)

The last inequality holds, since control i was last activated at block k(i). For block
b1 we know that i1 has been chosen, despite not being b-future forced. We use this
observation and our assumption of b > b1 being the first block with a down time
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forbidden control to conclude that all controls out of Fb1,b have been inadmissible on
b1. Hence, it results for i ∈ Fb1,b

Γi,b1 < − 3
2L + Lb1 , ⇒ Θi,b1 < − 3

2L + Lb1 . (A.4)

We sum up the inequalities (A.2) and (A.3) over Fb1,b and similarly for (A.4),
which yields

∑

i∈Fb1,b

Γi,b > 3
2L + (|Fb1,b| − 1)

(
3
2L − Lb2

)
, (A.5)

∑

i∈Fb1,b

Θi,b1 < |Fb1,b|
(
− 3

2L + Lb1

)
, (A.6)

where we set b2 := argmin{Lk | b1 < k ≤ b} and notate with |Fb1,b| the cardinality
of Fb1,b. Subtracting (A.6) from (A.5) results in

∑

i∈Fb1,b

(
Γi,b − Θi,b1

)
> 3

2L + (|Fb1,b| − 1)
(
3
2L − Lb2

)
− |Fb1,b|(− 3

2L + Lb1)

= 3
2L + (2|Fb1,b| − 1) 32L − (|Fb1,b| − 1)Lb2 − |Fb1,b|Lb1

≥ 3
2L + (2|Fb1,b| − 1) 12L

>L . (A.7)

We used Lb1 ,Lb2 ≤ L in the second inequality. We finish our calculations by
considering the property of Fb1,b comprising all control activations between time
blocks b1 + 1 and b − 1, therefore we can apply Lemma 4 with Fb1,b = Sb1,b and
obtain ∑

i∈Fb1,b

(
Γi,b − Θi,b1

) ≤ L , � (A.8)

which is a contradiction to inequality (A.7).
Step case: Let the assertion hold until any block b − 1 ∈ [nb] and we prove that

then the statement holds for b. Again, we consider iD ∈ [nω] and assume

ΓiD,b > 3
2L (A.9)

holds and we prove that it results in a contradiction. With a similar argumentation as
in the base case we deduce that there is a control i1 that has not been b-future forced
on block b1 < b and reuse the definition of Fb1,b. Thus, inequality (A.3) still holds.
Now, we distinguish between two cases why the controls out of Fb1,b have not been
activated on b1. If all controls i ∈ Fb1,b have been inadmissible on b1, we can argue as
in the base case. Hence, we focus on the other case: there is an i2 ∈ Fb1,b, which was
down time forbidden on b1 and all other controls i ∈ Fb1,b\{i2} were inadmissible.
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By the induction hypothesis and the previously derived inequality (A.4) we have

Θi2,b1 ≤ 3
2L , Θi,b1 < − 3

2L + Lb1 , i ∈ Fb1,b\{i2}.

Summing up these inequalities over Fb1,b results therefore in

∑

i∈Fb1,b

Θi,b1 < 3
2L + |Fb1,b − 1|

(
− 3

2L + Lb1

)
. (A.10)

Next, we argue that Fb1,b contains at least two controls: the case b1 = b − 1 is not
possible, since iD is via assumption forced and down time forbidden on b, hence
admissible on b − 1. Therefore, b1 ≤ b − 2 and there is a control i �= iD, i ∈ Fb1,b,
which is activated on b− 1. Altogether we have |Fb1,b| ≥ 2. With this observation we
subtract inequality (A.10) from (A.5):

∑

i∈Fb1,b

(
Γi,b − Θi,b1

)
> 3

2L + (|Fb1,b| − 1)
(
3
2L − Lb2

)

−
(
3
2L + (|Fb1,b| − 1)(− 3

2L + Lb1)
)

=3(|Fb1,b| − 1)L − (|Fb1,b| − 1)Lb2 − |Fb1,b − 1|Lb1

≥(|Fb1,b| − 1)L

≥L .

Notice that |Fb1,b| ≥ 2 is used in the last inequality. Finally, we build again on
Lemma 4, where it is justified to set Fb1,b = Sb1,b. Thus, the above inequality is a
contradiction to the inequality from the lemma and we have shown that the assertion
holds for all b ∈ [nb] on which a down time forbidden control exists. ��

A.3 Proof of Theorem 2

Proof The assertion can be shown for the parameter choices I. and II. in a very similar
way, which is why we prove both cases in parallel. Since the algorithm activates for
each block b ∈ [nω] either a forced, or future forced, or admissible control and the
family of blocks is a partition [N ] by Lemma 2, exactly one control is activated on
each interval j ∈ [N ] and therefore the (Conv) constraint satisfied. Hence, DNFR
guarantees feasibility of wDNFR. If down time forbidden controls are neglected, i.e.,
χD = 0,wDNFR yields an objective value with at most the claimed upper bound by the
definition of admissible and forced activation. The same holds for the choice χD = 1,
since the control deviation does not become greater than the claimed upper bound
during a MD time phase by Theorem 1. Therefore, we need only to prove that DNFR
always provides a solution. For this, we show that for each interval there is (1.) at least
one admissible control and (2.) at most one forced control.
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(1.) We prove by contradiction that there exists at least one admissible control: Let
us assume there is no admissible activation for block b ∈ [nb] and distinguish
between the cases:

I. With C2 = 2nω−3
2nω−2 we assume

Γi,b < −2nω − 3

2nω − 2
L + Lb, i ∈ [nω],

and we prove that it results in a contradiction. It follows from summing up all
controls and from Lemma 3:

Lb =
∑

i∈[nω]
Γi,b < nω

(
−2nω − 3

2nω − 2
L + Lb

)
= −nω

2nω − 3

2nω − 2
L + nωLb,

and subtracting nωLb from the right hand side yields

(1 − nω)L ≤ (1 − nω)Lb < −nω

2nω − 3

2nω − 2
L

= −nωL + nω

2(nω − 1)
L

nω≥2≤ (1 − nω)L . �

II. If there is no down time forbidden control on b, we can proceed as in I.
Otherwise, we may have one control iD that is down time forbidden. We
assume all other controls are inadmissible, i.e.,

Γi,b < − 3
2L + Lb, i ∈ [nω], i �= iD,

and we prove that it results in a contradiction. Hence, again by Lemma 3

Lb =
∑

i∈[nω]
Γi,b =

∑

i �=iD

Γi,b + ΓiD,b < (nω − 1)(− 3
2L + Lb) + ΓiD,b,

and therefore

3
2 (nω − 1)L − (nω − 2)Lb ≤ 3

2L < ΓiD,b. �

The last inequality is a contradiction to Theorem 1.

We conclude that theremust be an admissible activation for all blocks and thereby
for all intervals.

(2.) If there were more than one forced control at a time step, the algorithm would be
ambiguous at line 3–4. Moreover, DNFR would provide, in this case, a solution
that does not satisfy the upper bound on the objective. Therefore, we prove that
this case is impossible and we do so again by contradiction. Assume that there
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b ∈ [nb] is the block with smallest index on which at least two controls i1, i2 are
being forced, i.e.,

I . Γi1,b, Γi2,b > 2nω−3
2nω−2L , I I . Γi1,b, Γi2,b > 3

2L . (A.11)

In the proof of Theorem 1 we have already shown how to obtain a contradiction
with only one forward control deviation Γi,b greater than the rounding threshold.
So, case II. is settled with this theorem and we focus on case I. for which we
proceed very similarly as in the proof of Theorem 1. Let us first apply Lemma 3:

L ≥ Lb =
∑

i∈[nω]
Γi,b =

∑

i∈[nω],
i �=i1,i2

Γi,b +
∑

i=i1,i2

Γi,b >
∑

i∈[nω],
i �=i1,i2

Γi,b + 2
2nω − 3

2nω − 2
L .

Hence, we have

∑

i∈[nω],i �=i1,i2

Γi,b < L − 2
2nω − 3

2nω − 2
L = −2nω − 4

2nω − 2
L ,

which implies that there is at least one control i3 such that

Γi3,b < − 1

nω − 2

2nω − 4

2nω − 2
L = − 2

2nω − 2
L .

Then, by Lemma 5, there is an earlier activation of i3 on some block b3 < b
and this activation has not been b-future forced on b3. Let i3 denote the control
of this property with the last activation before b. This definition implies that all
controls that are active between b3 and b become forced until b. We use again
the notation

Fb3,b := {i ∈ [nω] | ∃k(i) : b3 < k(i) ≤ b

on which i is forced or b-future forced.}.

In particular, we find i1, i2 ∈ Fb3,b. For i ∈ Fb3,b\{i1, i2}, we apply the definition
of Fb3,b and Γ :

Γi,b = Θi,b−1 +
∑

j∈Jb

ai, jΔ j =
b∑

k=1

∑

j∈Jk

ai, jΔ j −
k(i)∑

k=1

∑

j∈Jk

wi, jΔ j .

Since control i was last activated on block k(i) and b- future forced on k(i), we
have

Γi,b >
2nω − 3

2nω − 2
L − Lk(i), i ∈ Fj3, j\{i1, i2}. (A.12)
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For block b3 we know that i3 has been chosen, even though not being b-future
forced. That implies i3 was selected on b3 because all controls out of Fb3,b were
not admissible at this block. Hence, it results for i ∈ Fb3,b

Γi,b3 < −2nω − 3

2nω − 2
L + Lb3 , ⇒ Θi,b3 < −2nω − 3

2nω − 2
L + Lb3 .

(A.13)

Now, we consider the sum of inequalities (A.11), (A.12) and sum up (A.13) over
Fb3,b, which yields

∑

i∈Fb3,b

Γi,b > 2
2nω − 3

2nω − 2
L + (|Fb3,b| − 2)

(
2nω − 3

2nω − 2
L − Lb2

)
, (A.14)

∑

i∈Fb3,b3

Θi,b3 < |Fb3,b|
(

−2nω − 3

2nω − 2
L + Lb3

)
, (A.15)

where b2 := argmin{Lk | b3 < k ≤ b}. Substracting (A.15) from (A.14), we
obtain

∑

i∈Fb3,b

(
Γi,b − Θi,b3

)
> 2

2nω − 3

2nω − 2
L + (|Fb3,b| − 2)

(
2nω − 3

2nω − 2
L − Lb2

)

− |Fb3,b|
(

−2nω − 3

2nω − 2
L + Lb3

)

= 2|Fb3,b|
2nω − 3

2nω − 2
L − (|Fb3,b| − 2)Lb2 − |Fb3,b| Lb3

≥ L

(
2|Fb3,b|

2nω − 3

2nω − 2
− 2|Fb3,b| + 2

)
(A.16)

= L

(
2 − |Fb3,b|

nω − 1

)

≥ L . (A.17)

In (A.16)we usedLb2 ,Lb3 ≤ L , while the last inequality holds due to |Fb3,b| ≤
nω−1.As in the proof of Theorem1,we invoke nowLemma4with Fb3,b = Sb1,b
in order to raise a contradiction to inequality (A.17). Overall, we have shown
that there is at most one forced activation per block and thereby per interval. This
completes the proof. ��

Remark 7 The proceeding in the proof of Theorem 2 shows us, on closer inspection,
that DNFRprovides a solutionwith control deviation bounded byC2L for the absence
of MD time constraints, i.e., χD = 0, and any chosen rounding threshold C2 ≥ 2nω−3

2nω−2
and any block length parameter C1 ≥ 0. This implies the previously known result by
NFR [21], θ(wNFR) ≤ Δ̄, evolves as special case of DNFR with C1 = 0, and C2 = 1.
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B Discussion on the Tightness of the obtained Minimum Down Time
Bounds

Proposition 5 (Tightness of the bound for (CIA-D)) Let us assume the MD time
constraint is active, i.e., CD > Δ is given. Then, the following is true:

1. The bound for (CIA-D) stated in Proposition 3 can not be improved by the DNFR
scheme with χD = 1 for nω ≥ 3.

2. The bound for (CIA-D) is tight up to at most the constant 1
4CD + Δ̄.

Proof The assumption of an active MD time constraint ensures that the bound cannot
be improved by the bound for MU times from Proposition 2. We use again the concept
of a minimal C1-overlapping grid, here with C1 = CD/2.

1. We want to prove that the DNFR scheme with χD = 1 and C2 < 3
2 may provide

solutions with a (CIA-D) objective greater than C2L . Let us consider first C2 ≤
3
2 − ε1, with 0 < ε1 ≤ 0.5. We present example values for a ∈ A with a time
horizon length of at least 12C1, so that at least six blocks with length L exist by
Lemma 1. Let 0 < ε2 < ε1 be small and let the relaxed control values a be given
as

(ai,b)i∈[nω],b∈[nb] =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 0.5 − ε1 + ε2 1 − ε2 2ε1 − 2ε2 0.5 0.5 · · · 0.5
0 0.5 + ε1 − ε2 0 1 − 2ε1 + 2ε2 0.5 0.5 · · · 0.5
0 0 ε2 0 0 0 · · · 0
0 0 0 0 0 0 · · · 0
...

...
...

...
...

...
. . .

...

0 0 0 0 0 0 · · · 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

With this example values we discuss the thereby constructed DNFR solution as
well its objective quality.

– First block: i1 is 2-future forced and activated.
– Second block: Both i1 and i2 are 4-future forced. The DNFR algorithm breaks
ties arbitrarily, so that activating i2 is legitimate.

– Third block: i1 is down time forbidden, while i2 is not admissible. DNFR
activates therefore i3.

– Fourth block: i1 is activated, since it is forced.
– Fifth block: We have in the meantime Θi1,4 = (0.5+ ε1 −2ε2)L and Θi2,4 =

(0.5− ε1 + ε2)L . Since ε2 satisfies ε2 < ε1, both controls are 6-future forced
on the fifth block. Let DNFR activate i2.

– Sixth block: i1 is still down time forbidden and can not be active, which implies

Θi1,6 = (0.5 + ε1 − 2ε2 + 1)L > ( 32 − ε1)L = C2L ,

so that the proposed control deviation bound is not fulfilled.

Finally, if ε1 > 0.5, thus C2 < 1, we can construct a similar example for which
the control i1 is already forced on the first block and the control deviation is again
greater than C2L .
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2. The MD time constraints are equivalent to MU time constraints with CU = CD

for a problem with only two controls nω = 2. Proposition 2 provides an example
for this case, where θ ≥ 1

2 (CU + Δ̄) holds. This example can be also applied for
more than two controls by setting the relaxed control values ai,b to zero, for i > 2.
Then, the difference to the upper bound 3

4CD + 3
2 Δ̄ from Proposition 3 is the one

stated in the assertion.

��
Proposition 5 tells us the DNFR scheme with C2 = 3

2 and χD = 1 can not be
improved. The following example motivates why we have chosen the set of the down
time forbidden control in such a way that the active control can only be changed after
a duration of CD/2 at the earliest. If it is possible to switch already after one interval
Δ j , DNFR may construct greedy solutions with a large control deviation at long MD
times CD . The following example shows the reason for this.

Example 1 Let nω = 3 and a rounding threshold C2 ≥ 2nω−3
2nω−2 be given. We alter

DNFR in the following way: instead over blocks we iterate forward over all intervals.
We keep for a given MD time C1 = CD the threshold C2L for forced, future forced
and admissible activation. In order to construct feasible solutions for (CIA-D), we
extend the definition ofI D

b by letting all controls to be down time forbidden that are
inactive and were active in the previous period of length CD . Next, we are going to
construct exemplary relaxed values for this modified DNFR scheme with large control
deviation. We first introduce recursively the indices

ji := min

{
j ∈ [N ] |

∑ j

l= ji−1
Δl > C2L

}
, i = 1, 2, 3,

where j0 := 1. Let the relaxed values be given as follows

(ai, j )i∈[nω], j∈[N ] =

⎛

⎜⎜⎝
1 · · ·

j1︷︸︸︷
1 0 · · ·

j2︷︸︸︷
0 0 · · ·

j3︷︸︸︷
0 · · ·

0 · · · 0 1 · · · 1 0 · · · 0 · · ·
0 · · · 0 0 · · · 0 1 · · · 1 · · ·

⎞

⎟⎟⎠ .

Then, the modified DNFR may construct the following solution:

(wi, j )i∈[nω], j∈[N ] =

⎛

⎜⎜⎝
1 0 0 · · ·

j4︷︸︸︷
0 · · ·

0 1 0 · · · 0 · · ·
0 0 1 · · · 1 · · ·

⎞

⎟⎟⎠ ,

where j4 := min{ j ∈ [N ] | ∑l∈[ j] Δl < CD + Δ1} is the last index before the MD
phase of i1 ends. At first, i1 is earliest future forced, but not anymore after being active
on j = 1. Then, i2 is activated on the second interval before i3 is the earliest future
forced control and needs to stay active until j4, since the other controls are down time
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forbidden. We notice that with small Δ1,Δ2 it can result j4 ≤ j2 and therefore

|θi3, j4 | = |
j4∑

l=3

(0 − 1)Δl | ≤ |CD + Δ̄ − Δ2| ≤ CD + Δ̄ − Δ.

If we compare the term on the right inequality side with the bound from Proposition 3,
i.e., 2nω−3

2nω−2 (CD + Δ̄) = 3
4 (CD + Δ̄), we conclude that the latter is less only if CD <

4Δ − Δ̄. Since Δ can be arbitrarily small and we assumed CD big compared with
the grid length, the modified DNFR scheme would construct no improving bounds.
Similar “greedy” examples can be constructed for nω > 3 and block lengths greater
than Δ.

Some comments on these tightness properties are in order.

Remark 8 (Quality of bound for (CIA-D)) The MD time configuration of DNFR,
i.e., χD = 1, yields smaller upper bounds compared with the DNFR algorithm with
MU time configuration, i.e. χD = 0 and C1 = CD , only for instances with more
than three controls and a large MD time CD compared with the grid length Δ̄. In
fact, we conjecture the upper bound for any nω to be θmax = 1

2CD + Δ̄, therefore
only slightly greater than the one for nω = 2. With this threshold, there would be no
forced control until the first down time forbidden control appears and we postulate that
active controls that become forced without activation during the nextCD time duration
may stay active without other controls becoming forced. Of course, this argumentation
justifies no proof - Proposition 5 together with Example 1 states that a generic solution
fulfilling this bound can not be found via the DNFR scheme and it is presumably hard,
if not even impossible, to construct it by another polynomial time algorithm.

Remark 9 (Quality of bound for (CIA-UD))The integrality gap bound for (CIA-UD)
as stated in Proposition 3 is tight for CU ≥ CD by the result of Proposition 2. For
CU < CD , the bound is not necessarily tight, but it is again difficult to prove tight
bounds due to the problem’s combinatorial structure.

Remark 10 If we deal with anMDTC1 that begins and ends exactly on the grid points,
the upper bounds become 2nω−3

2nω−2CU for (CIA-U), 3
4CD for (CIA-D), and accordingly

reduced for (CIA-UD).

C Proof of Proposition 4

Proof Using (6.1) and the definition of MD , we obtain MD ≥ 2(nω − 1). Notice
that even if CD/Δ̄ /∈ N, we still find for the cardinality of the dwell time index sets
|J SUR

k (CD)| = MD ∈ N for k ≤ N − MD because we deal with an equidistant grid.
Hence, we calculate the forward control deviation of the currently activated control in
the DSUR algorithm (line 3) on the next MD intervals.

We prove the claim by proving the following claims: For any nω ≥ 2, CD and N
fulfilling (6.1) and (6.2), there is an a ∈ A with

ai, j = 0, for i = 2, . . . , nω, j = 1, . . . , i − 1, (C.1)
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resulting in a constructed wDSUR with

wDSUR
i, j = 0, for i = 2, . . . , nω, j = 1, . . . , i − 1, (C.2)

and

θ2, j =
(
MD

2
+ (nω − 2)

)
Δ̄, j = (nω − 1)(1 + MD) + 
MD/2� − MD. (C.3)

This implies the Claim 6.3 by the definition of the objective value of (CIA-D). We
proceed via induction.

Base case:
nω = 2: By assumption we have MD ≥ 2Δ̄ and thus a nontrivial MD time. We
construct an a ∈ A on N = (1 + MD) + 
MD/2� − 1 intervals. If the Claim C.3
is true for this a, it does also hold for N ≥ (1 + MD) + 
MD/2� − 1 because we
can extend a by inserting arbitrary unit vector columns after the last column without
affecting Claim C.3. We consider

(ai, j )i∈[nω], j∈[N ] :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 0 · · · 0 1 · · · 1
0
︸ ︷︷ ︸
j ∈ J1

1 · · · 1
︸ ︷︷ ︸
j ∈ J2

0 · · · 0

)
,

J1 = {2, . . . , MD/2 + 1},
J2 = {MD/2 + 2, . . . , N }, if MD even,

(
1 0 · · · 0 0.5 1 · · · 1
0
︸ ︷︷ ︸
j ∈ J1

1 · · · 1 0.5
︸ ︷︷ ︸
j ∈ J2

0 · · · 0

)
,

J1 = {2, . . . , 
MD/2�},
J2 = {
MD/2� + 2, . . . , N }, if MD odd.

Because of a2,1 = 0, C.1 is true. The DSUR algorithm activates the first control on
interval j = 1. Then, i = 1 is the currently activated control. Assuming i = 1 is active
until 2 ≤ k − 1 ≤ MD/2 for MD being even, respectively 2 ≤ k − 1 ≤ 
MD/2� for
MD being odd, its dwell time block index set isJ SUR

k (CD) = {k, . . . , k + MD − 1}
and its forward control deviation on interval k as given in line 4 of DSUR amounts to

θ1,k−1 +
∑

l∈J SUR
k (CD)

a1,lΔ̄ = −(k − 2)Δ̄ + (MD/2 + (k − 2)) Δ̄ = MD

2
Δ̄.

On the other hand, the forward control deviation for i = 2 on these intervals k
amounts to

γ2,k = θ2,k−1 + a2,kΔ̄ =
{

(k − 2)Δ̄ + 0.5Δ̄ = MD/2, if MD odd and k − 1 = 
MD/2�,
(k − 2)Δ̄ + 1Δ̄ = (k − 1)Δ̄ ≤ MD/2, else.

We observe that the forward control deviation for control i = 1 for all these intervals
k is greater or equal to the one of i = 2 and we let DSUR deliberately choose i = 1
to be active in case of equality. Hence, wDSUR

1, j = 1, for j ∈ [N ]. This implies the

123



Mixed-integer optimal control under minimum dwell time constraints 691

control i = 2 stays inactive and in particular (C.2) is true. Combining this with the
above forward control deviation for i = 2 yields

θ2,1+
MD/2� = MD

2
Δ̄,

which settles the Claim (C.3) for nω = 2.
Inductive step: We show that, if the claim holds for nω − 1, then it is also true for

nω.
Let a(nω−1) ∈ [0, 1](nω−1)×((nω−2)(1+MD)+
MD/2�−1) denote amatrix forwhichDSUR
constructs a wDSUR that satisfies the Claims (C.1)–(C.3) for nω − 1. We construct an
a ∈ A on N = (nω − 1)(1+ MD) + 
MD/2� − 1 intervals and with nω controls. We
can argue similarly to the base case that we can neglect the case N > (nω − 1)(1 +
MD) + 
MD/2� − 1. Let Ik denote the identity matrix of dimension k × k and let 0k
denote the zero matrix of dimension k × n, where n is specified by the dimension of
the block matrix below the zero matrix. We consider the following matrix

(ai, j )i∈[nω], j∈[N ] :=
(
Inω

Inω−1 0nω−1 a(nω−1)

0 · · · 0
︸ ︷︷ ︸
j ∈ J

1 · · · 1 0 · · · 0
)

, J = {2nω, . . . , MD + 1},

where the third block of columns may be nonexistent, if 2nω > MD +1. The first two
blocks of columns, however, are well-defined due to MD ≥ 2(nω − 1) by (6.1) and
thus 2nω −1 ≤ MD +1. The above matrix is defined on N intervals, with N chosen as
above, since we add MD +1 intervals to the existing (nω −2)(1+MD)+
MD/2�−1
intervals from a(nω−1). At first, we see that (C.1) is satisfied by a. Second, we claim
that DSUR constructs the following wDSUR ∈ W :

(wDSUR
i, j )i∈[nω], j∈[N ] :=

(
Inω

0nω−1 wDSUR,(nω−1)

︸ ︷︷ ︸
j ∈ J

1 · · · 1 0 · · · 0
)

, J = {nω+1, . . . , MD+1},

where wDSUR,(nω−1) denotes the obtained solution of DSUR for a(nω−1). We first
justify this value for the intervals k = 1, . . . , nω:

– k = 1: DSUR selects the control i = 1 because of a1,1 = 1.
– k = 2: The control i = 1 is currently activated with a forward control deviation of

Δ̄, calculated on the next MD intervals. The forward control deviation for control
i = 2 amounts to γ2,2 = θ2,1 + a2,2Δ̄ = 0 + Δ̄. Therefore, DSUR may set the
control i = 2 to be active.

– k = 3: We use the induction hypothesis for a(nω−1) and Claim (C.1) that yields
a(nω−1)
2,MD+2 = 0. Thus, the forward control deviation of control i = 2 is Δ̄, which is
the same for i = 3. We let DSUR deliberately set the control i = 3 to be active.

– k = 4, . . . , nω: We argue analogously to the case k = 3.

Hence, (C.2) is established.After control i = nω has been activated on interval k = nω,
all other controls are down time forbidden until interval MD +1. Thus, control i = nω
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stays to be active up to and including interval MD + 1. Because the controls i =
1, . . . , nω −1 are only once active until interval MD +1, but

∑
k∈[MD+1] ai,kΔ̄ = 2Δ̄,

we conclude θi,MD+1 = Δ̄. This justifies why DSUR constructs wDSUR,(nω−1) after
interval MD + 1:

– The controls i = 2, . . . , nω − 1 are down time forbidden on the intervals k =
(MD + 1) + 1, . . . , (MD + 1) + i − 1, but are not activated in wDSUR,(nω−1) on
these intervals according to the induction hypothesis (C.2) anyway.

– The control deviation for control nω is negative, i.e., θnω,k = −(MD + 1 − nω)Δ̄

for k ≥ MD + 1 so that control nω is not activated after interval MD + 1.
– All other controls 1, . . . , nω−1 start with the same control deviation θi,MD+1 = Δ̄,
when DSUR iterates on interval MD + 2. Thus, DSUR constructs the same w
from a(nω−1) as it would construct from a(nω−1) starting with the first interval and
θi,0 = 0. This implies by the induction hypothesis DSUR generateswDSUR,(nω−1).

The induction hypothesis regarding (C.3) implies for wDSUR,(nω−1)

θ2, j =
(
MD

2
+ ((nω − 1) − 2)

)
Δ̄,

j = ((nω − 1) − 1)(1 + MD) + 
MD/2� − MD.

We argued that this control deviation value is increased inwDSUR by Δ̄ and before the
choice wDSUR,(nω−1) there exist MD + 1 columns in wDSUR. So, (C.3) is also true for
nω. ��
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