
ar
X

iv
:1

81
1.

03
25

4v
4

 [
m

at
h.

O
C

]
 2

 A
ug

 2
02

0

Fully Asynchronous Stochastic Coordinate Descent:

A Tight Lower Bound on the Parallelism

Achieving Linear Speedup ∗†

Yun Kuen Cheung

Singapore University of

Technology and Design

Richard Cole Yixin Tao

Courant Institute, NYU

Abstract

We seek tight bounds on the viable parallelism in asynchronous implementations of coordi-
nate descent that achieves linear speedup. We focus on asynchronous coordinate descent (ACD)
algorithms on convex functions which consist of the sum of a smooth convex part and a possibly
non-smooth separable convex part.

We quantify the shortfall in progress compared to the standard sequential stochastic gradient
descent. This leads to a simple yet tight analysis of the standard stochastic ACD in a partially
asynchronous environment, generalizing and improving the bounds in prior work. We also give
a considerably more involved analysis for general asynchronous environments in which the only
constraint is that each update can overlap with at most q others. The new lower bound on the
maximum degree of parallelism attaining linear speedup is tight and improves the best prior
bound almost quadratically.

∗Part of the work done while Yun Kuen Cheung held positions at Courant Institute, NYU, at Faculty of Computer
Science, University of Vienna and at Max Planck Institute for Informatics, Saarland Informatics Campus. He was
supported in part by NSF Grant CCF-1217989, the Vienna Science and Technology Fund (WWTF) project ICT10-
002, Singapore NRF 2018 Fellowship NRF-NRFF2018-07 and MOE AcRF Tier 2 Grant 2016-T2-1-170. Additionally
the research leading to these results has received funding from the European Research Council under the European
Union’s Seventh Framework Programme (FP7/2007-2013) / ERC Grant Agreement no. 340506.

†Richard Cole and Yixin Tao’s work was supported in part by NSF Grants CCF-1217989, CCF-1527568 and
CCF-1909538.

1

http://arxiv.org/abs/1811.03254v4

1 Introduction

We consider the problem of finding an (approximate) minimum point of a convex function F :
R
n → R of the form

F (x) = f(x) +

n∑

k=1

Ψk(xk),

where f : Rn → R is a smooth convex function1, and each Ψk : R → R is a univariate convex
function, but may be non-smooth. Such functions occur in many data analysis and machine learning
problems, such as linear regression (e.g., the Lasso approach to regularized least squares [28]) where
Ψk(xk) = |xk|, logistic regression [21], ridge regression [26] where Ψk(xk) is a quadratic function,
and Support Vector Machines [12] where Ψk(xk) is often a quadratic function or a hinge loss
(essentially, max{0, xk}).

Due to the enormous size of modern problems, there has been considerable interest in parallel
algorithms for the problem in order to achieve speedup, ideally in proportion to the number of
processors or cores at hand, called linear speedup. One of the most natural parallel algorithms is to
simply have each of the multiple cores perform coordinate descent in an (almost) uncoordinated way.
In this work, we analyze the natural parallel version of the standard stochastic version of coordinate
descent (SCD): each core, at each of its iterations, chooses the next coordinate to update uniformly
at random2.

One important issue in parallel implementations is whether the different cores are all using up-
to-date information for their computations. To ensure this requires considerable synchronization,
locking, and consequent waiting. Avoiding the need for the up-to-date requirement, i.e., enabling
asynchronous updating, was a significant advance. The advantage of asynchronous updating is
to reduce and potentially eliminate the need for waiting. At the same time, as some of the data
being used in calculating updates will be out of date, one has to ensure that the out-of-datedness
is bounded in some fashion. This is captured by the assumption of q-bounded asynchrony: each
update can overlap with at most q others; q is at most the number of cores times the ratio of the
lengths of the longest and shortest updates.

The performance of an asynchronous algorithm is typically measured against its sequential
counterpart by the linear speedup benchmark: if p cores are used in the asynchronous algorithm,
the running time is a factor of Θ(p) faster than the sequential counterpart. In the context of
minimizing a convex function, the running time is measured by the convergence rate towards the
minimum point.

The asynchronous version of SCD is called Stochastic Asynchronous Coordinate Descent (SACD).
The question we address in this paper is:

What is the maximum possible value of q̃ such that whenever q ≤ q̃,
SACD is guaranteed to achieve linear speedup
under the q-bounded asynchrony assumption?

In some prior analyses, in addition to q-bounded asynchrony, several other seemingly natural as-
sumptions were (implicitly) made, but they are unlikely to hold in practice. Several works have
successfully avoided the use of some or all of these assumptions, but at the cost of having a substan-
tially smaller q̃. The main contribution of this paper is to derive the asymptotically best possible
value of q̃, while avoiding the use of every one of these assumptions. We now state our result for

1In fact, having a continuous gradient suffices.
2There are also versions of the sequential algorithm in which different coordinates can be selected with different

probabilities.

1

strongly convex functions informally.

Theorem 1 (Informal). Let q be an upper bound on how many other updates a single update
can overlap. Lres and Lmax are Lipschitz parameters defined in Section 2. Let F (x) = f(x) +∑n

k=1Ψk(xk) be a strongly convex function with strongly convex parameter µF , and suppose f(x)
has strongly convex parameter µf . Without using any additional assumption, we have: if q =

O
(√nLmax

Lres

)
, then E

[
F (xT+1)− F ∗] ≤

(
1− 1

3
µF

n(µF−µf+Lmax)

)T ·
(
F (x1)− F ∗).

Standard sequential analyses [19, 25] achieve similar bounds with the 1
3 replaced by 2; i.e., up to

a factor of 6, this is the same rate of convergence. Furthermore, the bound on q is asymptotically
tight, as we show in a companion work [10].

Next, we discuss the assumptions which were used or avoided by the prior works concerning
SACD. We will also compare their bounds on q̃ with ours.

Three Assumptions in Prior Work The first analyses to prove rate of convergence bounds
for stochastic asynchronous computations were those by Avron et al. [1] (for the Gauss-Seidel al-
gorithm), and by Liu et al. [18] and Liu and Wright [17] (for coordinate descent). Liu et al. [18]
imposed a “consistent read” constraint on the asynchrony; the other two works considered a more
general “Inconsistent Read” model. Subsequent to Liu and Wright’s work, several implicit assump-
tions, discussed below, were identified by Mania et al. [20] and Sun et al. [27].

Next, we give precise descriptions of the three assumptions used in prior work, and explain why
they might not hold in practice. Before doing so, we note that when a core makes an update, it
typically comprises four steps: (1) choose a coordinate k to update uniformly at random; (2) read
the values of the coordinates needed for Step 3 from the main memory; (3) use the coordinate
values read in Step 2, denoted by x̃, to compute the gradient ∇kf(x̃); and (4) use the computed
gradient to make an update to the value of coordinate k in the main memory. In the sequential
case, the values read in Step 2 are the most updated, so the t-th update will read the values from
right after the (t − 1)-st update. But in an asynchronous setting, the values read by each update
can be outdated; Assumption 1 was used by Liu et al. [18] to constrain the form of this datedness.
In this setting, we let xt denote the coordinate values in memory right after the (t− 1)-st update.

Assumption 1. [Consistent Read (CR)] All the coordinate values read by an update computation
may have some delay, but they must appear simultaneously at some moment. Precisely, the values
read by the t-th update must be of the form xt−τ for some τ ≥ 0.

It is not hard to see why Assumption 1 does not hold in practice: in Step 2, the values of
different coordinates are read one-by-one, not simultaneously. This is why all the later work,
including ours, uses the inconsistent read model: the values read by the t-th update can be any of
the (xt−τ1

1 , · · · , xt−τn
n), where each τj ≥ 0 and some or all of the τj’s can be distinct.

To describe Assumption 2, note that each update takes a non-trivial amount of time to finish,
which we call the timespan of the update. Moreover, the timespan of different updates are typically
not the same: in an experimental study, Sun et al. [27] showed that iteration lengths in coordinate
descent problem instances varied by factors of 2 to 10. Thus, in general, the ordering of the updates
based on their starting times (the ST order) is not the same as the ordering of the updates based
on their commit times (the CT order). It is clear that in the ST order the random choice of
coordinate for each update is independent of the other updates, and thus it is uniformly random,
which is a helpful property we desire when analyzing SACD. In contrast, as illustrated in Example 1
in Section 2, in the CT order the choice of coordinate for one update can be influenced by other
recently committed updates, and therefore, conditioned on the history of previous updates, the

2

choice need not be uniformly random; indeed, it is unclear what the distribution of choices of the
coordinate to update becomes. We call this the Undoing of Uniformity. However, as first pointed
out in Mania et al. [20] (see their Section 3.1), several earlier works implicitly made the following
Assumption 2, which states that the CT order enjoys the same favorable property as the ST order.

Assumption 2. [Uniformity Preservation (UP)] When the updates are enumerated using the CT
order, the random choice of coordinate for each update is independent of the other updates, and
thus it is uniformly random.

Avron et al. [1] also raised a similar issue w.r.t. their asynchronous Gauss-Seidel algorithm.
To avoid using Assumption 2, one simple solution is to use the ST order instead of the CT order,

as was done in [20, 27] for the analysis of SACD on smooth functions. For non-smooth functions,
we need a slight twist to the ST order which we call the Single Coordinate Consistent (SCC) order;
see Section 2 for its definition and justification. However, both the ST and SCC orders create
several subtle challenges in the analysis of SACD. Note that just before the t-th update makes its
random choice of coordinate, denoted by kt, some earlier updates might not have committed yet.
We remark that the choice of kt might affect the updated values computed by those earlier updates.
To see why, suppose that kt = 1, and the t-th update timespan is short. Further, assume no
nearby updates pick coordinate 1. Then it is possible that the t-th update commits earlier than the
(t−1)-st update, and therefore the (t−1)-st update might read the value of coordinate 1 computed
by the t-th update. For any other random choice of kt, i.e., if kt 6= 1, then as coordinate 1 has not
been updated recently, the (t− 1)-st update will read an earlier value of coordinate 1. As the reads
by the (t− 1)-st update can differ due to different choices of kt, the change made by the (t− 1)-st
update is influenced by the choice of kt. Moreover, due to analogous reasoning, for the t-th update,
the coordinate values it reads when kt = 1 can differ from those it reads when kt 6= 1.

The subtlety here is: when we use the ST order, the “future” (an update which appears later in
the ST order) can influence the “past” (an update which appears earlier). This apparent confusion
of causality creates substantial challenges in obtaining a complete and rigorous analysis; several
prior work chose to bypass the issue with Assumption 3 or the stronger Assumption 3* below.
Again, the fact that Assumption 3 had been used in earlier work was first pointed out in Mania et
al. [20] (see their Assumption 5.1).

Assumption 3. [Common Value (CV)] The random choice of coordinate for an update does not
affect the values read by the update.

Assumption 3* [Strong Common Value (SCV)] In addition to Assumption 3, the values read by
an update are independent of subsequent choices of coordinate.

Yet another order, named After Read (AR), was proposed by Leblond et al. [16], albeit for a
different problem. Translated to the SACD algorithm, it would require swapping the order of Steps
1 and 2; i.e., in Step 1 all coordinate values are read, and then in Step 2 a random coordinate
is chosen to be updated. Clearly, this will be highly inefficient if the problem is sparse. The AR
order would use the times at which Step 2 is started to order the updates; there is no Undoing of
Uniformity in this order. However, it will not suffice for non-smooth functions (see our justification
of the SCC order in Section 2).

Table 1 provides a comparison of our results with prior work.

Related Work Convex optimization is one of the most widely used methodologies in applica-
tions across multiple disciplines; we refer readers to Nesterov’s text [22] for an excellent overview.
Coordinate Descent is a method that has been widely studied; see Wright [31] for a recent survey.

3

Maximum Avoiding Assumption
Parallelism q Non

Step Size with linear Smooth CR? UP? SCV?
speedup Ψk

Liu et al. [18] Γ ≥ Lmax Θ
(
Lmax

√
n

Lres

)
NO NO NO NO

Liu and Wright [17] Γ ≥ 2Lmax Θ
(
Lmax

√
n

Lres

)1/2
YES YES NO NO

Mania et al. [20] Γ ≥ Θ
(
L2

µf

)
See caption NO YES YES NO

Sun et al. [27] Γ ≥ Θ(qL) 1 NO YES YES YES

Our Result Γ ≥ Lmax Θ
(
Lmax

√
n

Lres

)
YES YES YES YES

Table 1: Comparisons of the analyses of SACD. See Definition 1 for the specifications of Lipschitz
parameters L, Lmax, Lres and Lres; µf is the strong convexity parameter. When there is no non-
smooth Ψk, the update increment is the computed gradient divided by Γ. Thus, the larger the Γ,
the less aggressive the update. Mania et al. achieve linear speedup compared to the case q = 1
for q = O(n1/6); however, the case q = 1 is slower by a factor of Θ(L2/(µfLmax)) compared to a
standard stochastic algorithm. In [17], Liu and Wright implicitly used the Strong Common Value
(SCV) assumption, namely that the choice of coordinate for update t does not affect the value
of x̃t read by update t nor the values read by earlier updates. This is the reason they can use
the parameter Lres to bound gradient differences. To avoid using the SCV assumption, we have
introduced a new but similar parameter Lres.

Relevant works concerning sequential stochastic coordinate descent include Nesterov [23], Richtárik
and Takác [25], and Lu and Xiao [19].

Distributed and asynchronous computation has a long history in optimization, going back at
least to the work of Chazan and Miranker [6] in 1969, with subsequent milestones in the work of
Baudet [2], and of Tsitsiklis, Bertsekas and Athans [30, 3]; subsequent results include [5, 4]. For
a survey formalizing pre-2000 work, see Frommer and Szyld [14]. Also see Avron et al. [1] for an
informative discussion of asynchronous linear system solvers.

In the last few years, there have been multiple analyses of various asynchronous parallel im-
plementations of stochastic coordinate descent [18, 17, 20, 27]. We have already mentioned the
results of Liu et al. [18] and Liu and Wright [17]. Both obtained bounds for both convex and
“optimally” strongly convex functions3, attaining linear speedup so long as there are not too many
cores. Liu et al. [18] obtained bounds similar to ours (see their Corollary 2 and our Section 2),
but the version they analyzed is more restricted than ours in two respects: first, they imposed the
strong assumption of consistent reads, and second, they considered only smooth functions (i.e., no
non-smooth univariate components Ψk). The version analyzed by Liu and Wright [17] is the same
as ours, but their result requires both the UP and SCV assumptions. Their bound degrades when
the parallelism exceeds Θ(n1/4).4 Our bound has a similar flavor but with a limit of Θ(n1/2).

The analysis by Mania et al. [20] removed the UP assumption and needs only the SCV as-
sumption. However, the maximum parallelism was much reduced (to at most n1/6), and their
results applied only to smooth strongly convex functions, and furthermore is efficient only on non-
sparse problem instances. We note that a major focus of their work concerned a simple analysis of

3This is a weakening of the standard strong convexity.
4This is expressed in terms of a parameter τ , renamed q in this paper, which is essentially the possible parallelism;

the connection between them depends on the relative times to calculate different updates.

4

HOGWILD!, an asynchronous stochastic gradient descent algorithm used in data-intensive machine
learning tasks, namely to learn functions of the form

∑N
e=1 fe(x), where x ∈ R

n, and each fe is
convex and corresponds to a loss function for one training data instance. HOGWILD! is due to
Niu et al. [24]; it was the first asynchronous and lock-free SGD algorithm, and it achieves linear
speedup on sparse problems.

The analysis in Sun et al. [27] removed the CV assumption and partially removed the UP
assumption. However, this came at the cost of achieving no parallel speedup. They also noted that
a hard bound on the parameter q could be replaced by a probabilistic bound, which in practice
seems more plausible.

As already mentioned, a companion work [10] shows the bound on q in this paper is tight.
Another widely studied approach to speeding up gradient and coordinate descent is the use of

acceleration. Recently, attempts have been made to combine acceleration and parallelism [15, 13,
11]. But at this point, these results do not extend to non-smooth functions.

In a companion work, Cheung and Cole [8] analyzed asynchronous tatonnement in a class of
economies for which tatonnement is equivalent to gradient descent. They gave worst-case analyses
for a special family of convex functions arising in these settings [9], while this work focuses on
stochastic analyses.

Our Technical Contributions There are two key contributions in our work. First, we identify
an amortization approach for demonstrating convergence amid asynchrony. Briefly, each update
yields a progress term, modulo an error cost which occurs due to asynchrony. A fraction of the
progress per update is used to demonstrate overall progress, while in expectation the remaining
fraction of the total progress can be shown to compensate for the error costs of all the updates.
In short, it is the amortization of progress against errors that leads to our convergence analysis.
With this perspective, it is intuitively clear why we need the bounded asynchrony assumption and
the Lipschitz parameter bounds: the former to control how error blows up with the datedness of
information being used, and the latter to control how one update affects the gradient measurements
of other updates. When we use the SCV assumption as was done by Liu and Wright [17], the
amortization approach leads to a clean and fairly short analysis, and also improves the parallelism
bound given in [17]; see Section 3.2.

While there is no short answer as to why our approach improves the parallel bound (partly
because our analysis is substantially different from the one in [17]), we point out a notable difference
between our analysis and those in [17] and [20]. In the two prior works, error bounds are global in
the sense that they involve distance terms between the current point and the optimal point (see
equation (A.18) in [17], and all the lemmas in Appendix A.1 of [20]). In contrast, all our error
bounds can be kept local, i.e., they can be expressed only in terms of the magnitude of an update
and its range of variation, and also of gradient changes due to updates, but the optimal point is
not involved in the error bounds at all.

The second key contribution is to provide a rigorous analysis that removes the UP and SCV
assumptions. We give a brief explanation of why this is technically challenging. The standard
stochastic analysis relies on showing an inequality of the following form: E

[
F (xt+1)− F (x∗) |xt

]
≤

(1 − δt) · [F (xt) − F (x∗)] for some positive δt. To remove the UP assumption, Mania et al. [20]
used the ST order, while we use a slight twist (the SCC order); but with either of these orders, a
direct use of the standard stochastic analysis is not possible, since with these orders the “future”
can affect the “past”.

Fundamentally, this apparent confusion in causality occurs because the standard choice of timing
notation, i.e., a single integer parameter for ordering all updates, is inherently insufficient to rep-
resent the wide range of causality patterns in the asynchronous setting. Consequently, we need to

5

develop a more sophisticated notation which allows us to conveniently capture all possible causality
patterns and derive useful error bounds. The SCV assumption removes the possibility of the future
affecting the past, and thus guarantees that xt is the same regardless the choice of coordinate at
time t, which is why it can lead to the aforementioned simple analysis.

One key idea is to judiciously overestimate the error terms affecting the t-th update so that
they do not depend on the choice of coordinate by the t-th update, which then allows averaging of
the error over this choice. A second observation is that these errors can be expressed in terms of
a mutual recursion, which, with the right bounds on q, remain bounded. Very briefly, the mutual
recursion provides a way of capturing the maximum possible errors among all possible causality
patterns. We will explain how in Section 4.

Organization of the Paper In Section 2, we describe our model of asynchronous coordinate
descent and state our results. In Section 3, we give a high-level sketch of the structure of our
analysis, and show that with the Strong Common Value assumption we can obtain a simple analysis
of SACD; this analysis achieves the maximum possible speedup (i.e., linear speedup with up to
Θ(
√
n) cores). Note that this is the same assumption as in Mania et al.’s result [20] and less

restrictive than the assumptions in Liu and Wright’s analysis [17]. Then, in Section 4, we give
the full analysis of SACD. All omitted proofs can be found in the appendix. Also, for the reader’s
convenience, at the end of this paper, we provide a table of the notation and parameters we use.

2 Model and Main Results

Recall that we are considering convex functions F : Rn → R of the form F (x) = f(x)+
∑n

k=1Ψk(xk),
where f : Rn → R is a smooth convex function, and each Ψk : R→ R is a univariate and possibly
non-smooth convex function. We let x∗ denote a minimum point of F and X∗ denote the set of all
minimum points of F . Without loss of generality, we assume that F ∗, the minimum value of F , is
0.

We review some standard terminology. Let ej denote the unit vector along coordinate j.

Definition 1. The function f is L-Lipschitz-smooth if for any x,∆x ∈ R
n, ‖∇f(x+∆x)−∇f(x)‖ ≤

L · ‖∆x‖. For any coordinates j, k, the function f is Ljk-Lipschitz-smooth if for any x ∈ R
n and

r ∈ R, |∇kf(x + r · ej) − ∇kf(x)| ≤ Ljk · |r|; as is conventional, we write Lk , Lkk. f is Lres-
Lipschitz-smooth if, for all j, ||∇f(x+ r · ej)−∇f(x)|| ≤ Lres · |r|. Let Lmax , maxj,k Ljk; we note

that if f is twice differentiable, then Lmax = maxj Ljj. Let Lres , maxk

(∑n
j=1(Lkj)

2
)1/2

.

Note that if the convex function is s-sparse, meaning that each term ∇kf(x) depends on at
most s variables, then Lres ≤

√
sLmax. When n is huge, it seems plausible that the only feasible

problems are going to be sparse ones.

The Difference Between Lres and Lres In general, Lres ≥ Lres. Lres = Lres when the rates of
change of the gradient are constant, as for example in quadratic functions such as xTAx+ bx+ c.
We need Lres because we do not make the Common Value assumption, as we explain at the end of
the simple analysis in Section 3.

By a suitable rescaling of variables, we may assume that Ljj is the same for all j and equals Lmax.
This is equivalent to using step sizes proportional to Ljj without rescaling, a common practice.

Next, we define strong convexity.

Definition 2. Let f : Rn → R be a convex function. f is strongly convex with parameter µf > 0,
if for all x, y, f(y)− f(x) ≥ 〈∇f(x), y − x〉+ 1

2µf ||y − x||2.

6

The Update Rule Recall that in a standard coordinate descent, be it sequential or parallel
and synchronous, the update rule, applied to coordinate j, first computes the accurate gradient
gtj , ∇jf(x

t), and then performs the update given below.

Wj(d, g, x) , − gd − Γd2/2 − Ψj(x+ d) + Ψj(x);

xt+1
j ← xtj + argmax

d
Wj(d, g

t
j , x

t
j) , xtj + d̂j(g

t
j , x

t
j),

and ∀k 6= j, xt+1
k ← xtk, where Γ ≥ Lmax is a parameter controlling the step size. As is well known,

if Ψj ≡ 0, then d̂j(g
t
j , x

t
j) = −gtj/Γ, i.e., it is simply an update in proportion to the gradient.

However, in an asynchronous environment, an updating core (or processor) might retrieve out-
dated information x̃t instead of xt, so the gradient the core computes will be g̃tj = ∇jf(x̃

t), instead
of the accurate value ∇jf(x

t). Our update rule, which is naturally motivated by its sequential
counterpart, is

xt+1
j ← xtj + d̂j(g̃j , x

t
j) ≡ xtj +∆xtj and ∀k 6= j, xt+1

k ← xtk. (1)

We call this the the t-th update (in the SCC order), and denote it by Ut.

We let Ŵj(g, x) , max
d

W (d, g, x) ≡ Wj(d̂j(g, x), g, x).

Note that Wj(0, g, x) = 0; thus Ŵj(g, x) ≥ 0 always. It is well known that in the synchronous case,

Ŵj(∇jf(x
t), xtj) is a lower bound on the reduction in the value of F , which we treat as the progress.

Finally, we let kt denote the coordinate being updated at time t.

Algorithm 1 SACD Algorithm.

Input: The initial point x1 = (x11, x
1
2, · · · , x1n).

Multiple processors use a shared memory. Each processor iteratively repeats the following
six-step procedure, without any global coordination:

Step 1: Choose a coordinate j ∈ {1, 2, · · · , n} uniformly at random.
Step 2: Retrieve coordinate values x̃t from the shared memory.
Step 3: Compute the gradient ∇jf(x̃

t).
Step 4: Request a write lock on the memory that stores the (up-to-date) value of the

j-th coordinate.5

Step 5: Retrieve the j-th coordinate value, then update it using rule (1).6

Step 6: Release the lock acquired in Step 4.

The SACD Algorithm The coordinate descent process starts at an initial point x1 = (x11, x
1
2, · · · , x1n).

Multiple cores then iteratively update the coordinate values. We assume that at each time, there
is exactly one coordinate update which is being written (in Step 5 of the SACD algorithm). In
practice, since there will be little coordination between cores, it is possible that multiple coordi-
nate values are updated at the same moment ; but by using an arbitrary tie-breaking rule, we can
immediately extend our analyses to these scenarios.

5Instead of having a lock in lines 4–6, a compare-and-swap operation can be used to perform the update in Line
5. This has the effect of using the hardware lock that is part of the compare-and-swap operation.

6Even if the processor had retrieved the value of the j-th coordinate from the shared memory in Step 2, the
processor needs to retrieve it again here, because it needs the most updated value when applying update rule (1).

7

In Algorithm 1, we provide the complete description of SACD. The retrieval times for Step 2 plus
the gradient-computation time for Step 3 can be non-trivial, and also in Step 4 a core might need
to wait if the coordinate it wants to update is locked by another core. Thus, during this period of
time other coordinates are likely to be updated. For each update, we call the period of time spent
performing the six-step procedure the span of the update. We say that update A interferes with
update B if the commit time of update A lies in the span of update B.

Later in this section, we discuss why locking is needed and when it can be avoided; we also
explain why the random choice of coordinate should be made before retrieving coordinate values.

Managing the Undoing of Uniformity: The Single Coordinate Consistent Order Before
stating our result formally, we need to disambiguate our timing scheme. In every asynchronous
iterative system, including our SACD algorithm, each procedure runs over a span of time rather
than atomically. Generally, these spans are not consistent — it is possible for one update to start
later than another one but to commit earlier. To create an analysis, we need a scheme that orders
the updates in a consistent manner.

Using the commit times of the updates for the ordering seems the natural choice, since this
ensures that future updates do not interfere with the current update. This is the choice made in
many prior works. However, as discussed by Mania et al. [20], this causes uniformity to be undone,
as shown in the following example.

Example 1. Suppose there are three cores and four coordinates, suppose that the workload for
updating x1 is 2.99 time units, the workloads for updating x2, x3, x4 are 1 time unit (the 2.99 is to
avoid ties), and suppose every update takes the same 0.5 time units for Steps 4–6. Assuming the
cores all start at the same time, then P [k1 = 1] = 1/43, which is the probability that all cores choose
to update the first coordinate. Contrariwise, P [k2 = 1 | k1 = 1] = 1. And, in general, the probability
distribution which the random variable kt follows is strongly dependent on the recent history.

When there are many more cores and coordinates than the simple case we just considered, and
when the other asynchronous effects7 are taken into account, it is highly uncertain what is the exact
or even an approximate distribution for kt+1 conditioned on knowledge of the history of k1, · · · , kt.

To bypass the above issue, we introduce the Single Coordinate Consistent Order, SCC for short,
defined as follows. We begin from the updates ordered by start time. Then, for each coordinate
separately, we rearrange the updates to this coordinate so that they are in commit order, while
collectively occupying the same places in the start ordering. The next example illustrates all three
orders. The start times given by the ST order correspond to actual times; but henceforth, the index
t will refer to the position of an update in the SCC order, and to the values computed by these
updates.

Example 2. In Figure 1 we show six updates to two variables, x1 and x2, starting at times t = 1
to 6, and ending at times 7–12. The updates are named U1–U6. In the order listings below, to
facilitate comparisons, we give each update an argument comprising the variable it updates.

Update Orders:

ST: U1(x2), U2(x1), U3(x1), U4(x2), U5(x1), U6(x2)

CT: U1(x2), U3(x1), U6(x2), U2(x1), U5(x1), U4(x2)

SCC: U1(x2), U3(x1), U2(x1), U6(x2), U5(x1), U4(x2)

The updates to x1 are in the same positions in the ST and SCC orders, in the same order in the
CT and SCC orders. Likewise for x2.

8

t = 1

t = 2

t = 3

t = 4

t = 5

t = 6

t = 7

t = 8

t = 9

t = 10

t = 11

t = 12

U1

U2U3

U4U5 U6

updates to x1 updates to x2

Figure 1: Illustration of the ST, CT and SCC orders

We can also understand the SCC order in terms of start times 1, 2, . . . , T . The t-th update in
the ST order starts at time t and commits at some integer time in the range [t+ 1, t+ q + 1] (this
follows from our assumption that the asynchrony is q-bounded). Remember that the “times” are
simply providing an ordering; they are not measured in a common unit. Ut, the t-th update in the
SCC order, has an integer start time in the range [max{1, t− q + 1}, t+ q − 1] and commits at an
integer time in the range [t+ 1, t+ q + 1] (see Lemma 1).

Clearly the history has no influence on the choice of kt+1. However, there is a new issue: future
updates can interfere with the current update. Here the term future is used w.r.t. the SCC order;
recall that an update Ua to one coordinate with an earlier starting time can commit later than
another later starting update Ub to a different coordinate, and therefore Ub could interfere with Ua.

Further Remarks about the SACD Algorithm In many optimization problems, e.g., those
involving sparse matrices, the number of coordinate values needed for computing the gradient in
Step 3 of Algorithm 1 is much smaller than n, i.e., in Step 2, the core needs to retrieve only a tiny
portion of the full set of coordinate values. Also, the sets of coordinate values needed for computing
the gradients along different coordinates can be very different. Therefore, the random choice of
coordinate (in Step 1) should be made ahead of the process of retrieving required information from
the shared memory.

If the convex function F does not have the univariate non-smooth components, each update
simply adds a number, which depends only on the computed gradient, to the current value in the
memory. Then the update can be done atomically (e.g., by fetch-and-add8), and no lock is required.

However, for general scenarios with univariate non-smooth components, the update to xj must
depend on the value of xj in memory right before the update (see (1)). Then the update cannot
be done atomically, and a lock is necessary. We note that when the number of cores is far fewer
than n, say when it is ǫ

√
n for some ǫ < 1, delays due to locking can occur, but are unlikely to be

7E.g., communication delays, interference from other computations (say due to mutual exclusion when multiple
cores commit updates to the same coordinate), interference from the operating system and CPU scheduling.

8The fetch-and-add CPU instruction atomically increments the contents of a memory location by a specified value.

9

significant.9 As already mentioned, even if the update is carried out using a Compare-and-Swap
operation, the lock is still present within the hardware implementation of this operation.

Justifying the SCC Order We begin by justifying why Step 5 in the update algorithm needs to
use the most up-to-date value of x1 (or more generally, of xj), via the the following convex function
example.

Example 3. Let F be a convex function on n − 1 variables. Then define the n variable convex
function F as follows.

F (x) =
1

2
x21 +Ψ1(x1) + F (x2, . . . , xn)

where Ψ1(x1) =

{
0 if − 1 ≤ x1 ≤ 1

2
∞ otherwise

Suppose Γ = 1, and suppose xt1 = −1. Further suppose the t-th and (t + 1)-st updates are both to
x1, and suppose they both read the value xt1 for their gradient computation. Then they compute
increments argmax{d − d2/2 − Ψ(x1 + d) + Ψ(x1)}. If they both used the value −1 for x1 they
would both increment x1 by +1; the two updates would result in x1 being set to 1, a value for which
F =∞.

Note that update rule (1) implies that the sequence x1, x2, . . . , xT+1 is obtained by applying
the computed increments ∆x1,∆x2, . . .∆xT , one at a time, and in this order. For this order to
be consistent with Step 5 using the most up-to-date value, we need that in this order, for each
individual coordinate, the updates be in their up-to-date order, i.e. in their commit order. This is
why we use the SCC order for our analysis. In the next example, we will show that an analysis
based on the ST order need not work when F has a non-smooth part Ψ.

Example 4. Let F be a convex function on n − 1 variables. Then define the n variable convex
function F as follows.

F (x) =
1

2
x21 +Ψ1(x1) + F (x2, . . . , xn)

where Ψ1(x1) =

{
0 if x1 ≥ −1
∞ otherwise

Suppose Γ = 1, and suppose x01 = −1. Further suppose there are three consecutive updates to x1:

• Updates 1–3 start at times 1–3 respectively.

• At time 4, Updates 2 and 3 read the value of x1 (which equals −1) and calculate the gradient
w.r.t. x1 (∇x1

f = −1).

• At times 5 and 6 respectively, Updates 2 and 3 apply the update on x1 (x
′
1 ← x1−argmaxd{ 1Γ∇x1

f ·
d−Γd2/2−Ψ1(x1 + d)+Ψ1(x1)}). A simple calculation shows that both these updates incre-
ments x1 by 1. Therefore, after time 6, the most up to date value of x1 is −1 + 1 + 1 = 1.

• At time 7, Update 1 reads the value of x1 (which now equals 1 after applying Updates 2 and
3) and calculates the gradient w.r.t. x1 (∇x1

f = 1);

9The standard birthday paradox result states that if ǫ
√

n cores each chooses a random coordinate among [n]
uniformly, the probability of a collision is Θ(ǫ2).

10

• Finally, at time 8, Update 1 applies the update on x1. After this, the most up to date value
of x1 is 0.

In this example, the values of ∆x for Updates 1–3 are respectively −1, 1, and 1. If we use the ST
order and apply Update 1 first, then after this update, the value of x1 becomes x01 − 1 = −2, which
is less than −1 and thus F (x) = ∞. In contrast, with the SCC order, as these updates are to the
same coordinate, we will apply these ∆x based on the commit time order, and then F (x) will never
be ∞.

2.1 Results

We assume that our algorithms are run until exactly T coordinates are selected and then updated
for some pre-specified T . The initial value of x is denoted by x1, and the first update in each order
is said to be at time t = 1 w.r.t. that order. The commit times are constrained by the following
assumption.

Assumption 4. There exists a non-negative integer q such that the only updates that might inter-
fere with the update at time t in the ST order are those that commit at times t+ 1, t+ 2, . . . , t+ q.

When asynchronous effects are moderate, and if the various gradients have a similar computa-
tional cost, the parameter q will typically be bounded above by a small constant times the number
of cores.

As we are using the SCC order, we need to express the constraint in terms of the latter ordering.

Lemma 1. Let Ut be the t-th update in the SCC order. Its (integer) start time lies in the range
[max{1, t− q + 1}, t+ q − 1] and its commit time is in the range [t+ 1, t+ q + 1]. Also, update Us
in the SCC order might interfere with Ut only if s ∈ [t− 2q + 1, t+ q − 1].

For simplicity, we relax the first range to [t − 2q, t + q]. Also the earlier an update starts, the
greater the variation in values in might read, and so for our analysis, we will assume the start time
is max{1, t− q+1}. We cannot set Ut’s commit time in a similar way, however, as its commit time
could affect which other updates might read its committed value.

Theorem 2 (SACD Upper Bound). Given initial point x1, Algorithm 1 is run for exactly T iter-

ations by multiple cores. Suppose that Assumption 4 holds, Γ ≥ Lmax, and q ≤ min
{√

n
270 ,

Γ
√
n

270Lres

}
.

(i) If F is strongly convex with parameter µF , and f is strongly convex with parameter µf , then

E

[
F (xT+1)

]
≤
[
1− 1

3n
· µF

µF + Γ− µf

]T
· F (x1).

(ii) Now suppose that F is convex. Let R be the radius of the level set for x1, Level(x1) = {x | f(x) ≤
f(x1)}. Then

E
[
F (xT+1)

]
≤ 1

1 + min
{

1
12n ,

F (x1)
24nΓR2

}
· T
· F (x1).

In a companion paper [10], we show that the first bound is tight up to constant factors. Specifi-

cally, for any constant c ≥ 1, for q ≥ 74Γ
√
n

Lres
+96c ln n+435, we give a family of convex functions for

which, with probability at least 1− 1/nc, the first nc updates make essentially no progress toward
the optimum. This result holds even for smooth convex functions. There remains a constant factor
separating the upper and lower bounds, and in this range we do not know how much if any parallel
speed-up is possible.

Problem Instances with large Lres and Lres Both Lres and Lres can be as large as
√
n · Lmax.

For problem instances of this type, the bound on q becomes Θ(1); i.e., it does not demonstrate any
parallel speedup.

11

3 The Basic Framework

Recall that kt denotes the index of the coordinate that is updated at time t. We let gtkt := ∇ktf(x
t)

denote the value of the gradient along coordinate kt computed at time t using up-to-date values
of the coordinates, and g̃tkt denote the actual value computed, which may use some out-of-date
coordinate values.

3.1 Classical Analysis of Stochastic Sequential Coordinate Descent

This classical analysis proceeds by first showing that for any chosen kt, F (xt)−F (xt+1) ≥ Ŵkt(g
t
kt
, xtkt).

Taking the expectation yields

E
[
F (xt)− F (xt+1)

]
≥ 1

n

n∑

j=1

Ŵj(g
t
j , x

t
j)

≥ 1

n
· µF

µF + Γ− µf
· F (xt) (by [25, Lemmas 4,6])

,
α

n
· F (xt). (2)

Note that in strongly convex case, we have defined α ,
µF

µF+Γ−µf
. It follows that E

[
F (xt+1)

]
≤

(1− α
n) · E

[
F (xt)

]
; iterating this inequality yields E

[
F (xt+1)

]
≤ (1− α

n)
t · F (x1).

3.2 Warm-up: A Simple Analysis for the Strongly Convex Case with the Strong

Common Value Assumption

The following analysis already generalizes and improves the results shown in Liu et al. [18] and Liu
and Wright [17].

Suppose there are a total of T updates. We view the whole stochastic process as a branching
tree of height T . Each node in the tree corresponds to the moment when some core randomly picks
a coordinate to update, and each edge corresponds to a possible choice of coordinate. We use π to
denote a path from the root down to some leaf of this tree. A superscript of π on a variable will
denote the instance of the variable on path π. Note that for each path π we reorder the coordinate
instances so that they are in the SCC order. For each path π and for each coordinate k, this simply
reorders the instances of xk on path π.

Contrary to intuition, in general we cannot associate a single value of x with each node of the
tree because future choices of coordinate to update can affect the recent past; thus we need to
specify the path in order to know a coordinate value. In contrast, the SCV assumption ensures
there is a single value of x for each node. A double superscript of (π, t) will denote the instance of
the variable at time t on path π, i.e., right before the t-th update.

As we will be computing expected values by averaging over the n random coordinate choices for
the t-th update Ut, we introduce a notation to capture this choice: π(k, t) will denote the path with
the time t coordinate on path π replaced by coordinate k. Note that π(kt, t) = π. (Recall that kt
is the coordinate chosen by update Ut on path π.)

Recall that xπ,t denotes the value of x on path π when precisely the first t − 1 updates in the
SCC order have been applied; however, xπ,t may or may not actually be present in memory at any
time. Also, recall that xπ,t+1

kt
= xπ,tkt

+ ∆xπ,tkt
, and xπ,t+1

k = xπ,tk for k 6= kt, where ∆xπ,tkt
is the

increment computed by Ut. So x
π(k,t),t
kt

denotes the value of xkt on path π(k, t) immediately prior

to update Ut, and x
π(k,t),s
ks

denotes the value of xks on path π(k, t) immediately prior to update Us.

12

Similarly, gπ,tkt
, ∇ktf(x

π,t) denotes the true (accurate) gradient on path π immediately prior to

update Ut, g̃π,tkt
the inaccurate gradient used by Ut on path π, and g̃

π(k,t),t
k the inaccurate gradient

used by Ut on path π(k, t).
To handle the case where inaccurate gradients are used, we employ the following two lemmas.

Lemma 2. If Γ ≥ Lmax, F (xπ,t)− F (xπ,t+1) ≥ Ŵkt(g
π,t
kt

, xπ,tkt
)− 1

Γ · (g
π,t
kt
− g̃π,tkt

)2.

Lemma 3. If Γ ≥ Lmax, F (xπ,t)−F (xπ,t+1) ≥ Γ
4

(
∆xπ,tkt

)2
− 1

Γ ·(g
π,t
kt
− g̃π,tkt

)2, where ∆xπ,tkt
denotes

the increment computed by update Ut.

Proving these results for smooth functions is straightforward. The version for non-smooth
functions is less simple, and makes use of the SCC order; it follows from Lemma 17 in Appendix A.

Combining Lemmas 2 and 3 yields

F (xπ,t)− F (xπ,t+1) ≥ 1

2
· Ŵkt(g

π,t
kt

, xπ,tkt
) +

Γ

8

(
∆xπ,tkt

)2
− 1

Γ
· (gπ,tkt

− g̃π,tkt
)2. (3)

As we will see, the following claim is one reason why this analysis, which uses the SCV assump-
tion, is much simpler than that for the fully asynchronous setting.

Claim 1. With the SCV assumption, (i) for any τ ≤ t, x̃π(k,t),τ is the same for any coordinate k,
and thus equals x̃π,τ ; (ii) for any τ ≤ t, xπ(k,t),τ is the same for any coordinate k, and thus equals
xπ,τ .

Proof. Part (i) follows directly from the SCV assumption.
For part (ii), we argue inductively on τ as follows. Suppose the claim holds for earlier times.

By part (i), for any two coordinates k, k′, x̃π(k
′,t),τ−1 = x̃π(k,t),τ−1 for τ ≤ t. Thus the computed

gradients for update Uτ−1 are the same on paths π(k′, t) and π(k, t). Also, as the claim holds for
earlier times, the values read on both paths for Step 5 of update Uτ−1 are the same, meaning that
these updates are identical and hence so are the outcome of these updates; i.e., xπ(k

′,t),τ = xπ(k,t),τ .
As this is true for all τ ≤ t, the claim follows.

We take expectations over all paths π on both sides of inequality (3). We compute the ex-

pectation of 1
2 · Ŵkt(g

π,t
kt

, xπ,tkt
) as follows. We group each collection of n paths which differ only

on their t-th coordinate choice; in other words, if π is a path in a group, then the n paths in
the group are π(1, t), π(2, t), . . . , π(n, t). We first take the expectation within each group, which

is the summation 1
2n ·

∑n
k=1 Ŵk(g

π(k,t),t
k , x

π(k,t),t
k). By Claim 1(ii), xπ(k,t),t = xπ,t for any coordi-

nate k, and hence g
π(k,t),t
k = ∇kf(x

π(k,t),t) = ∇kf(x
π,t) = gπ,tk . Thus the summation simplifies to

1
2n ·
∑n

k=1 Ŵk(g
π,t
k , xπ,tk), which is at least α

2n ·F (xπ,t) by inequality (2). Then we take the expectation
over all groups to obtain

E
[
F (xπ,t+1)

]
≤
(
1− α

2n

)
· E
[
F (xπ,t)

]

− E

[Γ
8
·
(
∆xπ,tkt

)2
− 1

Γ
· (gπ,tkt

− g̃π,tkt
)2
]
. (4)

To obtain E
[
F (xT+1)

]
≤
(
1− α

2n

)T · F (x1), it suffices to show that

T∑

t=1

Γ

8
· E
[(

∆xπ,tkt

)2](
1− α

2n

)T−t
≥

T∑

t=1

1

Γ
· E
[
(gπ,tkt

− g̃π,tkt
)2
] (

1− α

2n

)T−t
. (5)

13

In the remainder of this section we give a simple proof of the above inequality. We first prove
Lemma 4 below, which bounds the expectation, within each group of n paths, of the gradient
differences squared.

Lemma 4. With the Strong Common Value assumption,

Ek[(g̃
π(k,t),t
k − g

π(k,t),t
k)2] ≤ 3qL2

res

n

∑

s∈[t−2q,t+q]\{t}
Ek[(∆x

π(k,t),s
ks

)2].

Proof. By definition, g
π(k,t),t
k = ∇kf(x

π(k,t),t), the gradient of up-to-date point xπ(k,t),t, and g̃
π(k,t),t
k =

∇kf(x̃
π(k,t),t), the gradient of the point actually read from main memory, out-of-date point x̃π(k,t),t.

By Lemma 1, the updates Us, for s < t − 2q, have been written into memory before update Ut
starts. Thus, the difference between xπ(k,t),t and x̃π(k,t),t is due to a subset U of the updates Us
with s ∈ [t− 2q, t+ q] \ {t}. Let

U = {t1, t2, ..., t|U |}.

Viewing ∆x
π(k,t),ti
kti

as the n-vector with a non-zero entry for coordinate kti and zero elsewhere,

we have:

xπ(k,t),t = x̃π(k,t),t +

|U |∑

i=1

{
∆x

π(k,t),ti
kti

if ti < t;

−∆x
π(k,t),ti
kti

if ti > t.

We define: xπ(k,t),t[j] = x̃π(k,t),t +

j∑

i=1

{
∆x

π(k,t),ti
kti

if ti < t;

−∆x
π(k,t),ti
kti

if ti > t.

Then, xπ(k,t),t[0] = x̃π(k,t),t and xπ(k,t),t[|U |] = xπ(k,t),t. By the definition of Lres and the triangle
inequality, we obtain

∥∥∥∇f(x̃π(k,t),t)−∇f(xπ(k,t),t)
∥∥∥
2

≤
(|U |−1∑

j=0

∥∥∥∇f(xπ(k,t),t[j + 1])−∇f(xπ(k,t),t[j])
∥∥∥
)2

≤
(|U |∑

i=1

Lres

∣∣∣∆x
π(k,t),ti
kti

∣∣∣
)2

≤ 3q
∑

s∈[t−2q,t+q]\{t}
L2
res

(
∆x

π(k,t),s
ks

)2
. (6)

The last inequality followed from applying the Cauchy-Schwarz inequality to the RHS, and
relaxing U to [t− 2q, t+ q] \ {t}.

By Claim 1(i), x̃π(k
′,t),t = x̃π(k,t),t. By Claim 1(ii), xπ(k

′,t),t = xπ(k,t),t. Thus,

14

Ek

[
(g̃

π(k,t),t
k − g

π(k,t),t
k)2

]
= Ek

[
|∇kf(x̃

π(k,t),t)−∇kf(x
π(k,t),t)|2

]

=
1

n

∑

k′

|∇k′f(x̃
π(k′,t),t)−∇k′f(x

π(k′,t),t)|2

=
1

n

∑

k′

|∇k′f(x̃
π(k,t),t)−∇k′f(x

π(k,t),t)|2

=
1

n
· ‖∇f(x̃π(k,t),t)−∇f(xπ(k,t),t)‖2

≤ 3qL2
res

n

∑

s∈[t−2q,t+q]\{t}
(∆x

π(k,t),s
ks

)2 (by 6). (7)

To obtain the bound in (5), it suffices to have

T∑

t=1

Γ

8
· Ek

[(
∆x

π(k,t),t
k

)2] (
1− α

2n

)T−t

≥ 3qL2
res

nΓ

T∑

t=1

(
1− α

2n

)T−t ∑

s∈[t−2q,t+q]\{t}
Ek

[
(∆x

π(k,t),s
ks

)2
]

and in turn it suffices that 9q2L2
res

n /(1 − α
2n)

2q ≤ Γ2

8 . Since α
2n ≤ 1

2n and q ≪ n, it suffices that
9q2L2

res

n /1
2 ≤ Γ2

8 , or q ≤
√
nΓ

12Lres
. The bound in Theorem 1 then follows readily (with Lres replaced by

Lres, and setting Γ = Lmax).

Why Lres is needed in general In (7), we are seeking to bound Diff =
∑

k′ ‖∇k′f(x̃
π(k′,t),t) −

∇k′f(x
π(k′,t),t)‖2. The SCV assumption ensures that x̃π(k

′,t),t and xπ(k
′,t),t are independent of k′,

but this need not hold in the fully asynchronous setting. As it happens, in the fully asynchronous
setting, we will be able to obtain bounds of the form |x̃π(k′,t),t−xπ(k

′,t),t| ≤∑s∆s, i.e., independent
of k′, where the sum is over s with t − 2q ≤ s ≤ t + q and s 6= t (the bounds ∆s are larger than

analogous terms |∆x
π(k,t),s
ks

| when the SCV assumption holds). On using the Lipschitz parameters,

this gives a bound of the form Diff ≤ 3q
∑

s,k′ L
2
sk′∆

2
s ≤ 3q

∑
s L

2
res∆

2
s, which is weaker than the

corresponding bound of 3q
∑

s L
2
res(∆x

π(k,t),s
ks

)2 when the SCV assumption holds.

4 The Framework for the General Analysis

At a high level, the new framework has the same general structure as the basic framework described
in Section 3.2. It consists of three parts. In the first part, we obtain the following variant of (4)
without using the SCV assumption.

E
[
F (xt+1)

]
≤
(
1− α

3n

)
· E
[
F (xt)

]
+ E

[Γ
8

(
∆xπ,tkt

)2
− Errt

]
.

Errt will be specified in Lemma 5 below.
The second part, which is the heart of the analysis, bounds E [Errt] in terms of E

(
∆xπ,sks

)2
,

for a suitable range of s values, and other terms (Ds)
2, which we will define later, and which are

themselves bounded in terms of E
[(
∆xπ,uku

)2]
and (Du)

2 for a suitable range of u values.

15

The third part deduces the bounds in Theorem 2, by means of a suitable potential function
(a.k.a. a Lyapunov function) and an amortized analysis.

4.1 Part 1: Demonstrating Substantial Progress

Recall that π(k, t) denotes the path in which coordinate kt at time t is replaced by coordinate k; to
reduce clutter we now abbreviate this as π(k). Note that π(kt) = π. We let prev(t, k) denote the
time of the most recent update to coordinate k, if any, in the time range [t− 2q, t− 1]; otherwise,
we set it to t.

Lemma 5.

E
[
F (xt)− F (xt+1)

]

≥ 1

3n2
E

[n∑

k=1

n∑

kt=1

Ŵk(g
π(kt),t
k , x

π(kt),t
k)

]
+ E

[Γ
8

(
∆xπ,tkt

)2
− Errt

]
,

where Errt =
1

3n2

[∑

t−2q≤s<t
&s=prev(t,ks)

n∑

kt=1

(
3

2Γ

(
g̃
π(kt),s
ks

− g
π(kt),t
ks

)2
︸ ︷︷ ︸

A

+ 2Γ
(
x
π(ks),t
ks

− x
π(kt),t
ks

)2
︸ ︷︷ ︸

B

+
3Γ

2

(
∆x

π(kt),s
ks

)2
︸ ︷︷ ︸

C

)]

+
1

n2

n∑

k=1

n∑

kt=1

2

3Γ

(
g
π(k),t
k − g

π(kt),t
k

)2

︸ ︷︷ ︸
D

+
1

Γ

(
gπ,tkt
− g̃π,tkt

)2

︸ ︷︷ ︸
E

.

By (2),

n∑

k=1

n∑

kt=1

Ŵk(g
π(kt),t
k , x

π(kt),t
k) ≥

n∑

kt=1

αF (xπ(kt),t),

which gives E
[
F (xt+1)

]
≤
(
1− α

3n

)
E
[
F (xt)

]
+ E

[Γ
8

(
∆xπ,tkt

)2
− Errt

]
.

To prove Lemma 5, we start from (3), and then apply the following two lemmas regarding

shifting the parameters in Ŵ . (See Appendix A for proofs.)

Lemma 6 (Ŵ Shifting on the g parameter). For any gj , g
′
j ,

Ŵj(gj , xj) ≥
2

3
· Ŵj(g

′
j , xj) −

4

3Γ
· (gj − g′j)

2.

Lemma 7 (Ŵ Shifting on the x parameter). Suppose there are ℓ updates to coordinate k over the
time interval [t− 2q, t− 1]. Then

if ℓ = 0, Ŵ (gπ,tk , x
π(k),t
k) = Ŵ (gπ,tk , xπ,tk)

if ℓ > 0, Ŵ (gπ,tk , x
π(k),t
k) ≥ Ŵ (gπ,tk , xπ,tk)− 3

2Γ
· (g̃π,prev(t,k)k − gπ,tk)2

− 2Γ(xπ,tk − x
π(k),t
k)2 − 3Γ

2
· (∆x

π,prev(t,k)
k)2.

16

4.2 Part 2: Bounding Errt, the Error Term

We begin by stating the following lemma, which bounds the difference in the increments computed
by two updates to a coordinate xj when the inputs to Step 5 vary. To avoid notational clutter, we

write Ψ and d̂ in lieu of Ψj and d̂j (to review its definition see the update rule in Section 2); also,
by x1 and x2 we mean two possible values of xj, and by g1 and g2 two possible values of gj .

Lemma 8. For any g1, g2, x1, x2 ∈ R and Γ ∈ R
+, |d̂(g1, x1)− d̂(g2, x2)| ≤ |x1 − x2|+ 1

Γ · |g1 − g2|,
and hence (

d̂(g1, x1)− d̂(g2, x2)
)2
≤ 2(x1 − x2)

2 +
2

Γ2
· (g1 − g2)

2 .

If Ψ is the zero function, then |d̂(g1, x1)− d̂(g2, x2)| = 1
Γ · |g1 − g2|.

4.2.1 Additional Notation

In this subsection, we will be defining notation of the form ∆•
maxx

π,s
ks

, where • refers to various
parameters we will specify as needed, and the max refers to taking a suitable maximum. Without
spelling it out, we will assume the analogous notation with ∆•

min is also being defined. In addi-
tion, we will define ∆•

spanx
π,s
ks

, ∆•
maxx

π,s
ks
−∆•

minx
π,s
ks

, and ∆•
varx

π,s
ks

, max{|∆•
minx

π,s
ks
|, |∆•

maxx
π,s
ks
|,

∆•
spanx

π,s
ks
}.

The next step in our analysis is to generalize Lemma 4 to settings in which the SCV Assumption
needs not hold, so as to bound the “error” terms in Errt. We seek to carry out an analysis analogous
to (7). The first difficulty we face is that the bound we obtain is going to depend on the span of
possible values of ∆xπ,sks

, which we denote by ∆spanx
π,s
ks

, where ∆maxx
π,s
ks

is the maximum possible
value for this increment over all asynchronous schedules on path π, assuming the first t − 2q − 1
updates are already fixed. Thus, in addition to bounds on the various gradient differences, we will
need to bound ∆spanx

π,s
ks

. We begin with this task.
Notice that we have assumed that the first t − 2q − 1 updates are known rather than the first

s − 2q − 1. To reflect this, we denote the maximum possible value of the update by ∆t
maxx

π,s
ks

,
and analogously, we write ∆t

spanx
π,s
ks

. We are interested in (s, t) pairs with t − 2q ≤ s ≤ t + q, or
equivalently, s − q ≤ t ≤ s + 2q; these are the updates Us whose value may not be determined at
the start of update Ut and which may affect update Ut. We call t the reference time for update Us.

For notational convenience, rather than give a bound on ∆t
spanx

π,s
ks

, we will bound ∆u
spanx

π,t
kt

instead. So, suppose that the first u − 2q − 1 updates have been fixed, for some u with t − q ≤
u ≤ t+ 2q. Let xπ,u,tmax,kt

and xπ,u,tmin,kt
, resp., be the largest and smallest values that xπ,tkt

could attain

with the first u− 2q − 1 updates already fixed; similarly, let g̃π,u,tmax,kt
and g̃π,u,tmin,kt

be the largest and
smallest gradient values that could be computed by update Ut with the first u − 2q − 1 updates
already fixed.

Lemma 8 implies

(
∆u

spanx
π,t
kt

)2
≤ 2
(
xπ,u,tmax,kt

− xπ,u,tmin,kt

)2
+

2

Γ2

(
g̃π,u,tmax,kt

− g̃π,u,tmin,kt

)2
.

We use a Lipschitz bound to obtain

(
g̃π,u,tmax,kt

− g̃π,u,tmin,kt

)2 ≤
[∑

t−2q≤s≤t+q
and s 6=t

Lkskt max
{∣∣∆u

maxx
π,s
ks

∣∣,
∣∣∆u

minx
π,s
ks

∣∣,

∆u
spanx

π,s
ks

}]2
.

17

The reason for the three terms is that in determining each gradient, for each s in the given range,
the relevant update could be read or not read; so the difference due to this coordinate could stem
from its maximum value, its minimum value, or their difference.

By the Cauchy-Schwartz inequality,

(
∆u

spanx
π,t
kt

)2
≤ 2
(
xπ,u,tmax,kt

− xπ,u,tmin,kt

)2

+
6q

Γ2

∑

t−2q≤s≤t+q
and s 6=t

L2
kskt max

{∣∣∆u
maxx

π,s
ks

∣∣2,
∣∣∆u

minx
π,s
ks

∣∣2,
(
∆u

spanx
π,s
ks

)2}
. (8)

Legitimate Averaging via Exclusion Recall that in Section 3.2, a crucial step for obtaining a
good parallelism bound was to perform averaging over the n paths in each group, i.e., to replace the
terms L2

kskt
by L2

res by averaging over kt. To do this here we would need ∆u
maxx

π,s
ks

and ∆u
minx

π,s
ks

to
have the same value on every path π(k). But this need not be the case, because the computation of
∆u

maxx
π,s
ks

could read the result of update Ut, and therefore depend on the choice of kt. To address
this, we will create terms which upper bound ∆u

maxx
π,s
ks

and which have the same value on every
path π(k), and similarly for ∆u

minx
π,s
ks

.
Our first key observation, concerns Us and Ut: one of them commits first. Suppose Us commits

first; then the value computed by Us does not use the value computed by Ut, either directly as an
input, or indirectly because its inputs do not use this value either. Otherwise, Us has no impact on
∆u

spanx
π,t
kt

.
We introduce new terminology to capture this observation. If update Us commits before Ut, we

will say that Ut is excluded from the computation of Us. To capture the exclusion of Ut, we define

∆
u,{t}
max xπ,sks

to be the maximum value Us can compute on path π, assuming that Us commits before
Ut, and the first u− 2q − 1 updates are fixed.

The updates that cause the output of Us to vary are those that might commit before or after
Us; these are always a subset of the Uv with v ∈ [s − 2q, s + q]. We also observe that if update Us
commits before Ut, then Us commits before any update Uv with v > t+q. We can safely incorporate

this constraint in the notation ∆u
max and ∆

u,{t}
max . The notation extends to ∆span and ∆var in the

natural way.
Note that π(k) and π(k′) are identical paths apart from the coordinate chosen at time t. The

phrase “Ut is excluded from the computation of Us” could cause us to conjecture that ∆
u,{t}
max x

π(k),s
ks

are identical for all k, and similarly for the ∆
u,{t}
min x

π(k),s
ks

. If it were so, we could rewrite (8) as
follows, and average over kt:

(
∆u

spanx
π,t
kt

)2
≤ . . . +

6q

Γ2

∑

t−2q≤s≤t+q
and s 6=t

L2
res ·max

{
. . . ,

(
∆

u,{t}
span x

π,s
ks

)2}
.

However, this conjecture needs not be true with the current definition, so the above averaging is
not yet valid. For, as explained in the next paragraph, a problem can arise if there is a coordinate
kv = kt with t < v ≤ t+ q; when averaging over all kt we are certain to encounter paths with this
property. (As an aside, we note that the conjecture is true when Ψ ≡ 0 and the ST order is used.)

Suppose kv = kt, v 6= t, and suppose Ut is excluded. Given the SCC order, it would appear Uv
should also be excluded. But then suppose there is some other update Us with t− 2q ≤ s ≤ t+ q,

ks 6= kt, and on some path π(k) where k 6= kt, in computing ∆
u,{t}
max xπ,sks

, Us reads the result of

18

update Uv. Then to be sure the same maximum value were computed by Us on path π, we would
need it to read this excluded value. So this value cannot be excluded. Instead, we define the
computation to act as if it were in the SCC order, but with update Ut simply not present, i.e., as
if there were a total of T − 1 updates over the whole computation. (This only pertains to updates
Us with t− 2q ≤ s ≤ t+ q and s 6= t.)

This looks promising, as we would anticipate that ∆
u,{t}
max xπ,sks

≤ ∆u
maxx

π,s
ks

, and so it would seem
the last term on the RHS can be bounded recursively. But unfortunately, this property need not
hold if there are updates to the same coordinate on π in the range [t + 1,min{s, u} + q]. To
understand the issue we revisit Example 3. Suppose updates Ut and Ut+1 are both to coordinate
x1, with xt1 = −1 as before. If both updates are present, and both read value x1 = −1 for their
gradient computation, then Ut computes an increment of 1 and Ut+1 an increment of 1

2 . However,

if Ut is excluded, then Ut+1 computes an increment of 1; i.e., ∆
u,{t}
max xπ,t+1

kt+1
> ∆u

maxx
π,t+1
kt+1

, contrary
to the desired property.

To avoid the difficulty illustrated by the above example, we will need to modify the definition

of ∆
u,{t}
max xπ,sks

. These modifications enable Lemma 9 below, which ensures ∆
u,{t}
max xπ,sks

has the prop-
erties we need to carry out the averaging in the analysis. Recall that depending on the choice
of asynchronous schedule, Us may or may not read values computed by updates in the range
[s− 2q,min{s, u}+ q] \ {t}. We will want to pretend that Us can make this choice for an expanded
range of updates, namely a subset of [s − 4q,min{s, u} + q] \ {t}. In effect, this enlarges the set
of possible asynchronous schedules. To be very precise: let l be the maximum commit time for
updates U1,U2, . . . ,Uu−4q−1; Us may read or not read any values computed by updates Ur that
commit after time l for r ∈ [s− 4q,min{s, u} + q] \ {t}. We call this Ur’s extended computation.

So as to identify the updates Ur with r ≥ u − 4q that commit by time l, we introduce the
following set Aπ,u of updates: Aπ,u = {r |u − 4q ≤ r < u − 2q and Ur has committed before
some Up for p < u − 4q}, which means the updates in Aπ,u have committed before Uu starts
its extended computation. Also, rather than just excluding Ut, we allow any additional subset
S = {v |u− 4q ≤ v ≤ u+ q}\Aπ,u of updates to be excluded; we follow this by maximizing over all
such S. This also implies that the range of s in which we are interested becomes u−4q ≤ s ≤ u+q.

Note that if s ∈ Aπ,u then ∆
u,{t}
span x

π,s
ks

= 0.
Later on, we will be allowing the exclusion of sets R other than just {t}, so we also incorporate

this in our definitions. For R,S disjoint from Aπ,u, we define:

∆u,R,S
max xπ,sks

,

the maximum value that ∆xπ,sks
can assume when the

first (u− 4q − 1) updates and all updates in Aπ,u on
path π have been fixed, and update Uv is excluded
from the computation of Us for v ∈ R ∪ S and for
v > u+ q;

∆u,R
maxx

π,s
ks

, maxS⊆[u−4q,u+q]\Aπ,u∪{s}∆
u,R,S
max xπ,sks

.

∆u
maxx

π,s
ks

, ∆u,∅
maxx

π,s
ks

Now we have the desired properties:

Lemma 9. i. If t ∈ R and u ≤ t+ 2q, then ∆u,R
maxx

π(k),s
ks

is identical on every path π(k).

ii. If s ≤ t then ∆t,R
maxx

π,s
ks
≤ ∆s,R

maxx
π,s
ks

.

iii. If R ⊂ R′ then ∆u,R′

maxx
π,s
ks
≤ ∆u,R

maxx
π,s
ks

.

iv. ∆u,R
maxx

π,s
ks
≤ ∆u,∅

maxx
π,s
ks

.

19

Proof. i. We begin by showing that the set Aπ(k),u is the same for all k. Recall that u ≤ t + 2q.
By Lemma 1, the start time for Ut is at least t − q + 1 ≥ u − 3q + 1. For p < u − 4q, again by
Lemma 1, Up has commit time at most u− 4q − 1+ q+1 = u− 3q. So if Ur commits before Up for
some p ≤ u− 4q, Ur has commit time at most u− 3q − 1. Thus Ur’s commit time is unaffected by
the choice of coordinate by Ut, and therefore Aπ(k),u is the same for all k.

Now, recall that π(k) is the path in which coordinate kt at time t on path π is replaced by
coordinate k. By definition, if t ∈ R, then Ut is excluded from the computation of ∆u,R

maxx
π,s
ks

. As

the paths π(k) are identical apart from their t-th coordinate, and as the sets Aπ(k),u are the same

for all these paths, it follows that ∆u,R
maxx

π(k),s
ks

is exactly the same for every k.
ii. This follows from the next two observations: (a) the update does not read any of the variable

values computed by updates Uv for v > s + q and therefore reducing the top end of the range
in going from reference time t to s does not change the possible updates computed by Us; (b)
Aπ,s∩ [t−4q, t−2q) ⊆ Aπ,t, and therefore there are at least as many updates that are not yet fixed
with reference time s compared to reference time t; furthermore, the fixed values in Aπ,t \Aπ,s are
all values that could be computed in the computation with reference time s.

iii. Recall the definition of ∆u,R
maxx

π,s
ks

, and let S′ be the set for which ∆u,R′

maxx
π,s
ks

= ∆u,R′,S′

max xπ,sks
.

Now, we let S = (R′∪S′) \R; thus S ∪R = S′∪R′. Clearly, ∆u,R′,S′

max xπ,sks
= ∆u,R,S

max xπ,sks
≤ ∆u,R

maxx
π,s
ks

.
iv. This follows immediately from iii.

Recall that we defined ∆u,R
spanx

π,s
ks

= ∆u,R
maxx

π,s
ks
−∆u,R

minx
π,s
ks

and ∆u,R
var x

π,s
ks

= max
{∣∣∆u,R

maxx
π,s
ks

∣∣,
∣∣∆u,R

minx
π,s
ks

∣∣,∆u,R
spanx

π,s
ks

}
.

We want to have one term to cover every update in which xπ,sks
is involved. Accordingly, we define

∆
R
maxx

π,s
ks

:= max
u:u−4q≤s

≤u+q

∆u,R
maxx

π,s
ks

= max
u:s−q≤u

≤s+4q

∆u,R
maxx

π,s
ks

= max
s−q≤u≤s

∆u,R
maxx

π,s
ks

,

where we use Lemma 9(ii) for the final equality.

We let ∆u,R
spanx

π,s
ks

= ∆u,R
maxx

π,s
ks
− ∆u,R

minx
π,s
ks

, ∆
R
spanx

π,s
ks

= ∆
R
maxx

π,s
ks
− ∆

R
minx

π,s
ks

and ∆
R
varx

π,s
ks

=

max
{∣∣∆R

maxx
π,s
ks

∣∣,
∣∣∆R

minx
π,s
ks

∣∣,∆R
spanx

π,s
ks

}
. We simplify the notation whenR = ∅, defining ∆maxx

π,s
ks

,

∆
∅
maxx

π,s
ks

, ∆spanx
π,s
ks

, ∆
∅
spanx

π,s
ks

and ∆varx
π,s
ks

, ∆
∅
varx

π,s
ks

. Clearly, if u ⊆ [s− q, s], then

∆u,R
spanx

π,s
ks
≤ ∆

R
spanx

π,s
ks
≤ ∆spanx

π,s
ks

and ∆u,R
var x

π,s
ks
≤ ∆

R
varx

π,s
ks
≤ ∆varx

π,s
ks

. (9)

Finally, we will want to know the expected effect of update Ut. Thus, we define

(Dt)
2

, E

[(
∆maxx

π,t
kt
−∆minx

π,t
kt

)2]
and

(
∆X

t

)2
, E

[(
∆xπ,tkt

)2]
.

Since exactly T updates are made, we assume that (Dt)
2 ,
(
∆X

t

)2 ≡ 0 for t = 0 and t ≥ T + 1
throughout the analysis.

Next, we introduce analogous notation for the gradients.

20

g̃u,R,S,π,s
max,ks

,

the maximum value of g̃π,sks
can assume when the

first (u− 4q − 1) updates on path π have been fixed, and
update Uv is excluded from the computation of Us for
v ∈ R ∪ S and for v > u+ q; for all r ∈ Aπ,u, the
value of the update Ur is already fixed;

g̃u,R,π,s
max,ks

, maxS⊆[u−4q,u+q]}\Aπ,u∪{s} g̃
u,R,S,π,s
max,ks

;

gR,π,s
max,ks

, maxs−q≤u≤s g̃
u,R,π,s
max,ks

;

gπ,smax,ks
, g∅,π,smax,ks

and gπ,s
span,ks

, gπ,smax,ks
− gπ,smin,ks

.

4.2.2 Bounding (Dt)
2 = E

[(
∆spanx

π,t
kt

)2]

We are now ready to bound (Dt)
2. Let ν1 :=

20q2

n and ν2 =
24q2L2

res

nΓ2 .

Lemma 10.

Γ · (Dt)
2 ≤

(ν1
q

+
ν2
q

)
Γ

∑

s∈[t−5q,t+q]\{t}

[(
Ds

)2
+
(
∆X

s

)2]
.

Proof. Recall that ∆spanx
π,t
kt

= maxt−q≤r≤t∆
r
maxx

π,t
kt
−mint−q≤r′≤t∆

r′
minx

π,t
kt

. We call r and r′ the
reference parameters. By Lemma 8, we obtain a bound of

max
t−q≤r,r′≤t

[
2
(
xr,π,tkt

− xr
′,π,t

kt

)2
+

2

Γ2
·
(
g̃r,∅,π,tkt

− g̃r
′,∅,π,t

kt

)2]
, (10)

where xr,π,tkt
is the value of xπ,tkt

right before Step 5 of update Ut when r is the reference parameter;
the maximum is also over the maximum and minimum possible values of the four terms in the
above expression.

The first difference on the RHS of the above expression is going to involve updates to coordinate
xkt , i.e., updates Uks with ks = kt and min{r− 4q, r′− 4q} ≤ s < t. We will consider the maximum

and minimum possible values for these updates. This suggests a bound of
(
∆r

maxx
π,s
ks
−∆r′

minx
π,s
ks

)2
for each such s. But recall that the definition of ∆r

maxx
π,s
ks

allows the exclusion of updates Uv for a
worst case set of v when computing Us (this is the effect of the maximization over S in the definition

of ∆r
max), and therefore the first difference in (10) may be as large as

(
∆r

maxx
π,s
ks

)2
or
(
∆r′

minx
π,s
ks

)2
,

meaning that the actual bound is
(
max

{∣∣∆r
maxx

π,s
ks

∣∣,
∣∣∆r′

minx
π,s
ks

∣∣, ∆r
maxx

π,s
ks
−∆r′

minx
π,s
ks

})2
.

By Lemma 9(ii), we can modify the range of r, r′ from [t− q, t] to [min{s, t− q}, s] ⊂ [s − q, s]
as s < t. Thus the first term in (10) is bounded by

(∑

t−5q≤s<t
ks=kt

∆
{t}
varx

π,s
ks

)2
.

We use a similar argument to bound the second term in (10). The value of gr,∅,π,tkt
can vary due

to the updates ∆rxπ,sks
for r− 4q ≤ s ≤ r+ q and s 6= t; equivalently, s− q ≤ r ≤ s+4q. Recall also

that t− q ≤ r ≤ t. Thus, for s > t, the relevant range of r is [s − q, t] ⊂ [s − q, s], and for s < t,
as before, the relevant range is also at most [s− q, s]. Using the Lipschitz bound for the gradients,
we obtain:

max
t−q≤r,r′≤t

(
g̃r,∅,π,tkt

− g̃r
′,∅,π,t

kt

)2 ≤
(∑

t−5q≤s≤t+q
s 6=t

Lkskt∆
{t}
varx

π,s
ks

)2
. (11)

21

Thus, using the Cauchy-Schwartz inequality for the second inequality below, we obtain

(
∆spanx

π,t
kt

)2
≤ 2
(∑

t−5q≤s<t
ks=kt

∆
{t}
varx

π,s
ks

)2
+

2

Γ2

(∑

t−5q≤s≤t+q
s 6=t

Lkskt∆
{t}
varx

π,s
ks

)2

≤ 10q
∑

t−5q≤s<t
ks=kt

(
∆

{t}
varx

π,s
ks

)2
+

12q

Γ2

∑

t−5q≤s≤t+q
s 6=t

L2
kskt

(
∆

{t}
varx

π,s
ks

)2
.

Now we average over all n choices of kt; consequently, π is now being viewed as a random variable
where kt on π is being chosen uniformly at random, while the coordinates at times other than t are

fixed. Notice that on all the paths π being considered in the averaging, the value of each ∆
r,{t}
max x

π,s
ks

is the same as their computation does not involve the update to xtkt, and because at most the first
(t − 4q) updates have been fixed in any of these terms, none of the updates that could affect the

update to xtkt in its extended computation have been fixed; similarly for ∆
r,{t}
min xπ,sks

. Consequently,

for each s, the term ∆varx
ks
π,s is the same on each path. Thus the averaging is simply averaging the

values Lkskt as kt varies. Recall that by Definition 1, L2
res = maxk

∑n
j=1(Lkj)

2; this yields

Ekt

[(
∆spanx

π,t
kt

)2]

≤ 10q

n

∑

t−5q≤s<t

(
∆

{t}
varx

π,s
ks

)2
+

12q

nΓ2

∑

t−5q≤s≤t+q
s 6=t

L2
res ·

(
∆

{t}
varx

π,s
ks

)2

≤ 10q

n

∑

t−5q≤s<t

(
∆varx

π,s
ks

)2
+

12q

nΓ2

∑

t−5q≤s≤t+q
s 6=t

L2
res ·

(
∆varx

π,s
ks

)2
(by (9)). (12)

Now, ∆xπ,sks
∈
[
∆s

minx
π,s
ks

, ∆s
maxx

π,s
ks

]
⊆
[
∆minx

π,s
ks

, ∆maxx
π,s
ks

]
; thus,∣∣∆minx

π,s
ks

∣∣,
∣∣∆maxx

π,s
ks

∣∣ ≤
∣∣∆xπ,sks

∣∣ +
(
∆spanx

π,s
ks

)
. Also,

(
∆minx

π,s
ks

)2
,(

∆maxx
π,s
ks

)2 ≤ 2
(
∆xπ,sks

)2
+ 2

(
∆spanx

π,s
ks

)2
. So,

(
∆varx

π,s
ks

)2 ≤ 2
(
∆xπ,sks

)2

+ 2
(
∆spanx

π,s
ks

)2
. Consequently,

Ekt

[(
∆spanx

π,t
kt

)2]
≤ Ekt

[
20q

n

∑

t−5q≤s<t

(
∆spanx

π,s
ks

)2
+
(
∆xπ,sks

)2

+
24qL2

res

nΓ2

∑

t−5q≤s≤t+q
s 6=t

(
∆spanx

π,s
ks

)2
+
(
∆xπ,sks

)2
]
.

Taking the expectation over every group, which on the RHS amounts to taking the expectation
over every path π, yields

(Dt)
2 = E

[(
∆spanx

π,t
kt

)2]
≤ 20q

n

∑

t−5q≤s≤t

(
E

[(
∆spanx

π,s
ks

)2]
+ E

[(
∆xπ,sks

)2])

+
24qL2

res

nΓ2

∑

t−5q≤s≤t+q
s 6=t

(
E

[(
∆spanx

π,s
ks

)2]
+ E

[(
∆xπ,sks

)2])
.

Lemma 10 follows.

22

4.2.3 Gradient Bounds

In the previous subsection, one of the terms being bounded was (g̃r,∅,π,tkt
− g̃r

′,∅,π,t
kt

)2 = (gπ,tmax,kt
−

gπ,tmin,kt
)2.

Here, we will bound term E,
(
gπ,tkt
− g̃π,tkt

)2
. Unfortunately, gπ,tkt

might not be in
[
gπ,tmin,kt

, gπ,tmax,kt

]

and so we cannot simply apply Lemma 10. The reason is that gπ,tkt
is a function of xπ(kt),t, and this

up-to-date x value could depend on the value of update Ut; for recall that Ut might finish before
some updates Us with s < t, and the latter updates could then read the updated value of the
coordinate being updated by Ut. As already explained, there are also other ways that the choice of
kt by update Ut could affect earlier updates.

We start by upper bounding term E by
(∑

l0∈[t−2q,t−1] Lkl0 ,kt
∆t,∅

varx
π,l0
kl0

)2
. The challenge is that

changing either coordinate kl0 or kt may change the value of ∆t,∅
maxx

π,l0
kl0

or of ∆t,∅
minx

π,l0
kl0

which implies

that a simple averaging of the terms L2
kl0 ,kt

to obtain a term L2
res as was done to obtain (12) is

not possible. Instead, we will bound this term recursively. The somewhat more general result
we will need is stated in the following lemma. Its proof, which is quite involved, is deferred to
Appendix A.4.

Let Λ2 =
L2
res

Γ2 + 1, r = 160q2Λ2

n , ν3 =
3
16(

r2

1−r + r), and ν4 =
6r
1−r .

Lemma 11. For any u ∈ [t− 2q, t], if r < 1, then

E

[(∑

l0∈[t−4q,t+q]\{u}
Lkl0 ,ku

∆t,∅
varx

π,l0
kl0

)2]

≤ ν3Γ
2

q

∑

s∈[t−7q,t+q]\{u}

[
(Ds)

2 +
(
∆X

s

)2]
+ ν4Γ

2
[
(Du)

2 +
(
∆X

u

)2]
.

Then, on substituting for Dt from Lemma 10, we obtain the following bound on term E.

Claim 2. [Bounding Term E] If r < 1, term E is bounded by:

ν3Γ

q

∑

s∈[t−7q,t+q]\{t}

[
(Ds)

2 +
(
∆X

s

)2]

+ ν4Γ
(ν1
q

+
ν2
q

) ∑

s∈[t−5q,t+q]\{t}

[
(Ds)

2 +
(
∆X

s

)2]
+ ν4Γ

(
∆X

t

)2
.

With more effort one can also bound the gradient difference terms A and D as follows, as shown
in the appendix.

Claim 3. [Bounding Term A] If r < 1, term A is bounded by:

2(ν3 + ν4)Γ

n

∑

s∈[t−7q,t+q]\{t}

[(
Ds

)2
+
(
∆X

s

)2]
+

Γ

n

∑

s∈[t−2q,t−1]

(
∆X

s

)2

+
2ν3Γ

n

(ν1
q

+
ν2
q

) ∑

s∈[t−5q,t+q]\{t}

[(
Ds

)2
+
(
∆X

s

)2]
+

2ν3Γ

n

(
∆X

t

)2
.

23

Claim 4. [Bounding Term D] If r < 1, term D is bounded by:

2ν2Γ

3q

∑

s∈[t−2q,
t−1]

[(
Ds

)2
+
(
∆X

s

)2]
+

4ν3Γ

3q

∑

s∈[t−7q,
t+q]\{t}

[(
Ds

)2
+
(
∆X

s

)2]

+
4ν4Γ

3

(
ν1
q

+
ν2
q

) ∑

s∈[t−5q,t+q]\{t}

[(
Ds

)2
+
(
∆X

s

)2]
+

4ν4Γ

3

(
∆X

t

)2
.

In Section 4.2.2, to obtain a bound on E

[
∆spanx

π,t
kt

]
, we bound ∆spanx

π,t
kt

in terms of ∆spanx
π,s
ks

for s ∈ [t−5q, t+q]. In contrast, in the proof of Lemma 11, we start by bounding ∆varx
π,l0
kl0

in terms

of various ∆spanx
π,l1
kl1

; but then, for each l1, we bound ∆spanx
π,l1
kl1

in terms of various ∆spanx
π,l2
kl2

; we

continue recursively until one of the following two cases occurs.
1. When the recursion reaches a term ∆spanx

π,s
ks

with s < u − q, as this term does not depend on

Uu, one can safely average over ku, thereby replacing the multiplier L2
k0ku

by 1
nL

2
res.

2. When the recursion reaches a term ∆spanx
π,u
ku

it needs to stop. Now to remove the multiplier

L2
k0ku

we simply upper bound it by L2
max. Unfortunately, there is no averaging and so we “lose”

a factor of 1
n , which could otherwise more than compensate for a growth by a factor of q2, as

in the non-recursive analysis. We save one Θ(q) factor by using an unbalanced Cauchy-Schwartz
inequality described in the appendix. (This might not appear to be sufficient, but in fact it is.
The reason is that for each time u, this error term originates from u itself. The other error terms
originate from Θ(q) times in a range u ± Θ(q), and so are Θ(q) times as numerous, so in fact we
are saving a Θ(q2) factor.)

4.2.4 Finalizing the bound on Errt

We finish Part 2 of the analysis by expressing the bound on E [Errt] in terms of (Ds)
2 and

(
∆X

s

)2
.

Recall that Λ2 =
L2
res

Γ2 + 1 and r = 160q2Λ2

n , and we make q sufficiently small to ensure that r < 1.

Lemma 12.

E [Errt] ≤
(15r

1− r

)
Γ
(
∆X

t

)2
+̟Γ

∑

s∈[t−7q,t+q]\{t}

[(
Ds

)2
+
(
∆X

s

)2]

where ̟ =
1

q

[
2r

3
+

3r2

1280
+

9r3

25600
+

3r2

1− r
+

r3

426(1 − r)
+

r4

2844(1 − r)

]
.

Proof. We begin with the bound in Lemma 5. We have already bounded terms A, D, and E.
Terms B and C are bounded as follows.

Claim 5. [Bounding Term B] Term B is bounded by

E

[
2

3n2

∑

t−2q≤s<t
&s=prev(t,ks)

n∑

kt=1

Γ ·
(
x
π(ks),t
ks

− x
π(kt),t
ks

)2
]
≤ ν1

15q

∑

s∈[t−2q,t−1]

Γ ·
(
Ds

)2
.

Claim 6. [Bounding Term C] Term C is bounded by

E

[
Γ

2n2

∑

t−2q≤s<t
&s=prev(t,ks)

n∑

kt=1

(
∆x

π(kt),s
ks

)2
]
≤ Γ

2n

∑

t−2q≤s≤t−1

(
∆X

s

)2
.

24

Summing up these bounds yields

E [Errt] ≤
(
2ν3
n

+
4ν4
3

+ ν4

)
Γ
(
∆X

t

)2

+

[
max

{
ν1
15q

,
3

2n

}
+

2ν2
3q

+
2(ν3 + ν4)

n
+

7ν3
3q

+

(
2ν3
nq

+
7ν4
3q

)
(ν1 + ν2)

]

︸ ︷︷ ︸
G

· Γ
∑

s∈[t−7q,t+q]

(
(Ds)

2 +
(
∆X

s

)2)
. (13)

Via some elementary calculations, presented in Claim 7 in Appendix A.5, we show that the
quantity G above can be bounded by

1

q

[
2r

3
+

3r2

1280
+

9r3

25600
+

3r2

1− r
+

r3

426(1 − r)
+

r4

2844(1 − r)

]

and that 2ν3
n + 7ν4

3 ≤ 15r
1−r as 1 ≤ q < n and r ≤ 1, which implies the bounds stated in the lemma.

4.3 Part 3: The Amortization

We let ̺ = 1
8 − 15r

1−r . From Lemmas 5 and 12, we obtain:

E
[
F (xt)− F (xt+1)

]
≥ 1

3n2
· E
[n∑

k=1

n∑

kt=1

Ŵk(g
π(kt,t),t
k , x

π(kt,t),t
k)

]

+ ̺Γ
(
∆X

t

)2 −̟Γ
∑

s∈[t−7q,t+q]

[(
Ds

)2
+
(
∆X

s

)2]
. (14)

The term
(
∆X

s

)2
and (Ds)

2 in (14) will be paid for by the progress terms from time s by means

of an amortization. Also, we will account for the term (Dt)
2 using the bound from Lemma 10:

Γ · (Dt)
2 ≤

(
ν1
q

+
ν2
q

)
Γ

∑

s∈[t−5q,t+q]\{t}

((
Ds

)2
+
(
∆X

s

)2)
. (15)

For the purpose of amortizing the (Ds)
2 terms, for some constant γ > 0 which we will specify

later, we add terms +γΓ (Dt)
2 − γΓ (Dt)

2 to the bound from (14), and then we use (15) to bound
(γ +̟)Γ (Dt)

2, which yields

E
[
F (xt)− F (xt+1)

]
≥ 1

3n2
· E
[n∑

k=1

n∑

kt=1

Ŵk(g
π(kt,t),t
k , x

π(kt,t),t
k)

]

+ (̺−̟) Γ
(
∆X

t

)2
+ γΓ

(
Dt

)2 −̟Γ
∑

s∈[t−7q,t+q]\{t}

[(
Ds

)2
+
(
∆X

s

)2]

− (̟ + γ)

[(
ν1
q

+
ν2
q

)
Γ

∑

s∈[t−5q,t+q]\{t}

((
Ds

)2
+
(
∆X

s

)2)
]
. (16)

25

In the standard convergence analysis for a sequential stochastic coordinate descent, one shows
that

E
[
F (xt)− F (xt+1)

]
≥ 1

3n
· E
[n∑

k=1

Ŵk(g
π(kt,t),t
k , x

π(kt,t),t
k)

]

=
1

3n2
· E
[n∑

k=1

n∑

kt=1

Ŵk(g
π(kt,t),t
k , x

π(kt,t),t
k)

]
.

To obtain an analogous bound, we have to show all the additional terms in (16) make a non-
positive contribution over the T steps of the algorithm, analogous to the use of (5) in the basic
framework. To this end, we apply the following theorem regarding rates of convergence. This
theorem uses amortization terms A+ and A−, to define a potential function H(t), which could also
be viewed as a Lyapunov function. We note that the same result, but without the amortization
terms A+ and A−, can be found in [25]. A+ represents progress that has occurred, but which is
being saved to pay for future errors; A−, in contrast, represents the effect of errors in the past,
which will be paid for by future progress.

Theorem 3. Suppose that Γ ≥ Lmax. Let q be a fixed integer parameter. Let A+(t), A−(t) be
non-negative functions with A+(1) = 0, A−(T +1) = 0, and let H(t) := E

[
F (xt)

]
+A+(t)−A−(t).

Suppose that

a. H(t) ≥ 0 for all t ≥ 1;

b. for all t ≥ 1, H(t+ 1) ≤ H(t), i.e., H(t) is a decreasing function of t;

c. there exist constants α, β > 0 such that for any t ≥ 1,

H(t)−H(t+ 1) ≥ α

n
E

[n∑

k=1

Ŵk(∇kf(x
t), xtk)

]
+

β

n
·A+(t).

(i) If F is strongly convex with parameter µF , and f has strongly convex parameter µf , then for all
T ≥ 0,

E
[
F (xT+1)

]
≤ H(T + 1) ≤

[
1−min

{
α

n
· µF

µF + Γ− µf
,
β

n

}]T
· F (x1).

(ii) Now suppose that F is convex. Let R be the radius of the level set for x1. Formally, let
X = {x |F (x) ≤ F (x1)}; then R = supx∈X infx∗∈X∗ ‖x− x∗‖. Then, for all T ≥ 0,

E
[
F (xT+1)

]
≤ H(T + 1) ≤ F (x1)

1 + min
{

β
2n·F (x1)

, α
4n·F (x1)

, α
8nΓR2

}
· F (x1) · T

.

We will be applying Theorem 3 with α = β = 1
3n .

In order to obtain condition (c) of Thereom 3 from (16), it suffices to show
[(

1− 1

3n

)
A+(t)−A−(t)

]
−
[
A+(t+ 1)−A−(t+ 1)

]

≥ − (̺−̟) Γ
(
∆X

t

)2 − γΓ
(
Dt

)2
+̟Γ

∑

s∈[t−7q,t+q]\{t}

[(
Ds

)2
+
(
∆X

s

)2]

+ (̟ + γ)

[(
ν1
q

+
ν2
q

)
Γ

∑

s∈[t−5q,t+q]\{t}

((
Ds

)2
+
(
∆X

s

)2)
]
. (17)

26

Lemma 13. Inequality (17) holds if 7q < n, c = ̟+(γ+̟)
(
ν1
q + ν2

q

)
Γ, γ = ̺−̟, Λ =

L2
res

Γ2 +1,

r = 160q2Λ
n ≤ 1

225 , and

A+(t) =
t−1∑

s=t−7q

s+7q∑

v=t

1
(
1− 1

3n

)v−t+1

[
c
(
Ds

)2
+ c

(
∆X

s

)2]
,

A−(t) =
t−1∑

s=t−q

s+q∑

v=t

[
c (Dv)

2 + c
(
∆X

v

)2]
.

We note that as Dt = 0 and ∆X
t = 0 for t = 0 and for t ≥ T + 1, with the above definition,

A+(1) = 0 and A−(T + 1) = 0.
We are now ready to conclude the proof of our main result.

Proof of Theorem 2. We set α = β = 1
3 .

By Lemma 13, if r ≤ 1
225 , the conditions for applying Theorem 3 hold: (c) holds by construction;

this implies that (b) holds as the RHS of (c) is non-negative; finally, as A−(T+1) = 0, H(T+1) ≥ 0,
and together with (b) this implies (a). As A−(T+1) = 0, we conclude that E

[
F (xT+1)

]
≤ H(T+1);

this inequality also holds in expectation, thus we are done.

We now apply Theorem 3, which yields the stated results. Recall that r =
160q2

(

L2
res

Γ2 +1

)

n . Thus,

to achieve r ≤ 1
225 it suffices to have q ≤ min

{
Γ
√
n

270Lres
,
√
n

270

}
.

Note that we have not sought to fully optimize the constants.

Acknowledgment

We thank several anonymous reviewers for their helpful and thoughtful suggestions regarding earlier
versions of this paper.

References

[1] Haim Avron, Alex Druinsky, and Anshul Gupta. Revisiting asynchronous linear solvers: Prov-
able convergence rate through randomization. J. ACM, 62(6):51:1–51:27, 2015.

[2] Gérard M. Baudet. Asynchronous iterative methods for multiprocessors. J. ACM, 25(2):226–
244, 1978.

[3] Dimitri P. Bertsekas and John N. Tsitsiklis. Parallel and Distributed Computation:Numerical
Methods. Prentice Hall, 1989.

[4] Dimitri P. Bertsekas and John N. Tsitsiklis. Gradient convergence in gradient methods with
errors. SIAM J. Optimization, 10(3):627–642, 2000.

[5] Vivek S. Borkar. Asynchronous stochastic approximations. SIAM J. Control and Optimization,
36(3):662–663, 1998.

[6] D. Chazan and W. Miranker. Chaotic relaxation. Linear Agebra Appl., 2(2):199–222, 1969.

27

[7] Gong Chen and Marc Teboulle. Convergence analysis of a proximal-like minimization algorithm
using Bregman’s function. SIAM J. Optimization, 3(3):538–543, 1993.

[8] Yun Kuen Cheung and Richard Cole. Amortized analysis of asynchronous price dynamics. In
26th Annual European Symposium on Algorithms, ESA 2018, August 20-22, 2018, Helsinki,
Finland, pages 18:1–18:15, 2018.

[9] Yun Kuen Cheung, Richard Cole, and Nikhil R. Devanur. Tatonnement beyond gross substi-
tutes? gradient descent to the rescue. In STOC, pages 191–200, 2013.

[10] Yun Kuen Cheung, Richard Cole, and Yixin Tao. Parallel Stochastic Asynchronous Coordinate
Descent: Tight Bounds on the Possible Parallelism. arXiv e-prints, page arXiv:1811.05087,
November 2018.

[11] Richard Cole and Yixin Tao. An Analysis of Asynchronous Stochastic Accelerated Coordinate
Descent. arXiv e-prints, page arXiv:1808.05156, Aug 2018.

[12] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Mach. Learn., 20(3):273–297,
September 1995.

[13] Cong Fang, Yameng Huang, and Zhouchen Lin. Accelerating asynchronous algorithms for
convex optimization by momentum compensation. arXiv preprint arXiv:1802.09747, 2018.

[14] Andreas Frommer and Daniel B. Szyld. On asynchronous iterations. Journal of Computational
and Applied Mathematics, 123(1-2):201–216, 2000. Numerical Analysis 2000. Vol. III: Linear
Algebra.

[15] Robert Hannah, Fei Feng, and Wotao Yin. A2bcd: An asynchronous accelerated block coor-
dinate descent algorithm with optimal complexity. 2018.

[16] Rémi Leblond, Fabian Pedregosa, and Simon Lacoste-Julien. Improved asynchronous parallel
optimization analysis for stochastic incremental methods. J. Mach. Learn. Res., 19:81:1–81:68,
2018.

[17] Ji Liu and Stephen J. Wright. Asynchronous stochastic coordinate descent: Parallelism and
convergence properties. SIAM Journal on Optimization, 25(1):351–376, 2015.

[18] Ji Liu, Stephen J. Wright, Christopher Ré, Victor Bittorf, and Srikrishna Sridhar. An asyn-
chronous parallel stochastic coordinate descent algorithm. Journal of Machine Learning Re-
search, 16:285–322, 2015.

[19] Zhaosong Lu and Lin Xiao. On the complexity analysis of randomized block-coordinate descent
methods. Mathematical Programming, 152(1-2):615–642, 2015.

[20] H. Mania, X. Pan, D. Papailiopoulos, B. Recht, K. Ramchandran, and M. Jordan. Perturbed
iterate analysis for asynchronous stochastic optimization. SIAM Journal on Optimization,
27(4):2202–2229, 2017.

[21] Lukas Meier, Sara Van De Geer, and Peter Bhlmann. The group lasso for logistic regression.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70(1):53–71, 2008.

[22] Yu. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Springer US,
2004.

28

[23] Yu. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems.
SIAM J. Optimization, 22(2):341–362, 2012.

[24] Feng Niu, Benjamin Recht, Christopher Re, and Stephen J. Wright. Hogwild: A lock-free
approach to parallelizing stochastic gradient descent. In NIPS, pages 693–701, 2011.

[25] Peter Richtárik and Martin Takáč. Iteration complexity of randomized block-coordinate de-
scent methods for minimizing a composite function. Mathematical Programming, 144(1-2):1–
38, 2014.

[26] Craig Saunders, Alexander Gammerman, and Volodya Vovk. Ridge regression learning algo-
rithm in dual variables. In Proceedings of the Fifteenth International Conference on Machine
Learning, ICML ’98, pages 515–521, San Francisco, CA, USA, 1998. Morgan Kaufmann Pub-
lishers Inc.

[27] Tao Sun, Robert Hannah, and Wotao Yin. Asynchronous coordinate descent under more
realistic assumptions. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems 30,
pages 6182–6190. Curran Associates, Inc., 2017.

[28] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society, Series B, 58:267–288, 1994.

[29] Paul Tseng and Sangwoon Yun. A coordinate gradient descent method for nonsmooth sepa-
rable minimization. Math. Program., 117(1-2):387–423, 2009.

[30] John N. Tsitsiklis, Dimitri P. Bertsekas, and Michael Athans. Distributed asynchronous de-
terministic and stochastic gradient optimization algorithms. IEEE Transactions on Automatic
Control, 31(9):803–812, 1986.

[31] Stephen J Wright. Coordinate descent algorithms. Mathematical Programming, 151(1):3–34,
2015.

29

A Omitted Proofs and Subsidiary Lemmas

We begin with the proof of Lemma 1. Next, in Appendix A.1, we prove Lemmas 2 and 3, the
basic progress lemmas. In Appendix A.2, we prove Lemma 5, the progress lemma for the general
analysis. Then, in Appendix A.3, we give several bounds on how much Ŵ can change when one of
its arguments is altered, leading to proofs of Lemmas 6–8. We follow this, in Appendix A.4, with
the proof of the recursive bound given in Lemma 21, which is used to show Lemma 2. We continue,
in Appendix A.5, with the proofs of the claims from Section 4.2.4. Finally, in Appendix A.6, we
prove Theorem 3 and Lemma 13.

Proof of Lemma 1. Let Ub be an update to coordinate xj with start and finish times sb and fb,
resp. Let Ua be the update to coordinate xj with the earliest start time before sb that commits
later than Ub, if any. Let Uc be the update to coordinate xj with the latest start time after sb that
commits earlier than Ub, if any. Let the start and finish times for Ua and Uc be (sb, fb), and (sc, fc),
resp. Note that the start and commit times of an update differ by at most q + 1 as there are at
most q interfering updates for each update.

Suppose the SCC order for Ub is s. If Ua does not exist then s ≥ sb; it is convenient to set
(sa, fa) = (sb, fb) in this case. Similarly, If Uc does not exist then s ≤ sb; it is convenient to set
(sc, fc) = (sb, fb) in this case. Then it is always the case that sa ≤ s ≤ sc.

Case i. s < sb.
Then sa ≤ s < sb < fb < fa ≤ sa + q + 1. It follows that sb ≤ sa + q − 1 and hence s ≥ sb − q + 1.
Also fb ≤ sb + q + 1 ≤ sa + q − 1 ≤ s+ q − 1.

Case ii. s > sb.
Then sb < s ≤ sc < fc < fb ≤ sb + q + 1. It follows that s ≤ sb + q − 1 and fb ≤ s+ q.

Case iii. s = sb.
Then fb ≤ s+ q + 1.

Therefore, for any updates, their SCC order s and their commit time fb satisfy s < fb ≤ s+q+1.
Now we determine the SCC range for updates that might interfere Ub. Note that they have commit
time in the range [sb + 1, fb − 1].

Case i. s < sb.
The commit time for possibly interfering updates is in the range [sb +1, fb − 1] ⊆ [s, s+ q− 2] and
hence their SCC rank is in the range [s− (q + 1), s + q − 3] = [s− q − 1, s+ q − 3].

Case ii. s > sb.
The commit time for possibly interfering updates is in the range [sb + 1, fb − 1] ⊆ [s− q + 2, s+ q]
and hence their SCC rank is in the range [s − q + 2− (q + 1), s + q − 1] = [s− 2q + 1, s + q − 1].

Case iii. s = sb.
The commit time for possibly interfering updates is in the range [sb +1, fb − 1] ⊆ [s+ 1, s+ q] and
hence their SCC rank is in the range [s+ 1− (q + 1), s + q − 1] = [s− q, s+ q − 1].

For all q ≥ 1, this range is contained in [s− 2q + 1, s + q − 1].

A.1 The Basic Progress Lemmas, Lemmas 2 and 3

We recall two known results.

Lemma 14 (Three-Point Property, [7, Lemma 3.2]). For any proper, convex and lower semi-
continuous function Y : R→ R and for any d− ∈ R, let
d+ := argmaxd∈R

{
−Y (d) − Γ(d− d−)2

}
. Then for any d′ ∈ R,

Y (d′) + Γ(d′ − d−)2 ≥ Y (d+) + Γ(d+ − d−)2 + Γ(d′ − d+)2.

30

Lemma 15 ([29, Lemma 4]). For any g1, g2, x ∈ R and Γ ∈ R
+,∣∣∣d̂(g1, x)− d̂(g2, x)

∣∣∣ ≤ 1
Γ · |g1 − g2| .

We can now lower bound Ŵj(g, x) in terms of d̂j(g, x).

Lemma 16. For any g, x ∈ R and Γ ∈ R
+, Ŵj(g, x) ≥ Γ

2

(
d̂j(g, x)

)2
.

Proof. We apply Lemma 14 with d− = d′ = 0, with Γ replaced by 1
2Γ, and Y (d) = gd − Ψ(x) +

Ψ(x + d). Then Wj(d, g, x) = −Y (d) − Γd2/2, and hence d+, as defined in Lemma 14, equals

d̂j(g, x). These yield

Y (0) ≥ Y (d̂j(g, x)) + Γ ·
(
d̂j(g, x)

)2
.

Since Y (0) = 0 and −Y (d̂j(g, x)) = Ŵj(g, x) +
Γ
2

(
d̂j(g, x)

)2
, we are done.

We are now ready to show Lemmas 2 and 3; they follow directly from Lemma 17 below. We
will use the following well-known observation: for any 1 ≤ k ≤ n, x ∈ R

n and r ∈ R,

f(x+ r · ek) ≤ f(x) +∇kf(x) · r +
Lk

2
· r2, (18)

where ek is unit vector along coordinate k.

Lemma 17. Suppose there is an update to coordinate j at time t according to rule (1), and suppose
that Γ ≥ Lmax. Let gj = ∇jf(x

t) and g̃j = ∇jf(x̃). Then

F (xt)− F (xt+1) ≥ Γ

4
(d̂j(g̃j , x

t
j))

2 − 1

Γ
· (gj − g̃j)

2

and F (xt)− F (xt+1) ≥ Ŵj(gj , x
t
j)−

1

Γ
· (gj − g̃j)

2.

Proof. To avoid clutter, we use the shorthand dj := d̂j(gj , x
t
j) and d̃j := d̂j(g̃j , x

t
j). By update rule

(1), d̃j = ∆xtj.

F (xt+1) = f(xt+1) + Ψj(x
t+1
j) +

∑

k 6=j

Ψk(x
t+1
k)

≤ f(xt) + gj d̃j +
Γ

2
(d̃j)

2 +Ψj(x
t
j + d̃j) +

∑

k 6=j

Ψk(x
t
k)

(By (18), (1), and the assumption Γ ≥ Lmax ≥ Lj)

= F (xt) + g̃j d̃j +
Γ

2
(d̃j)

2 −Ψj(x
t
j) + Ψj(x

t
j + d̃j) + (gj − g̃j)d̃j

= F (xt)− Ŵj(g̃j , x
t
j) + (gj − g̃j)d̃j .

Hence, F (xt)− F (xt+1) ≥ Ŵj(g̃j , x
t
j)− (gj − g̃j)d̃j .

31

Then we can apply Lemma 16 to prove the first inequality in Lemma 17:

F (xt)− F (xt+1) ≥ Ŵj(g̃j , x
t
j)− (gj − g̃j)d̃j ≥

Γ

2
(d̃j)

2 − |gj − g̃j | · |d̃j |

≥ Γ

2
(d̃j)

2 − 1

2

[
2

Γ
· (gj − g̃j)

2 +
Γ

2
(d̃j)

2

]
(by the AM-GM ineq.)

=
Γ

4
(d̃j)

2 − 1

Γ
· (gj − g̃j)

2.

We prove the second inequality in Lemma 17 as follows:

F (xt)− F (xt+1) ≥ Ŵj(g̃j , x
t
j)− (gj − g̃j)d̃j ≥Wj(dj , g̃j , x

t
j)− (gj − g̃j)d̃j

= Wj(dj , gj , x
t
j) + (gj − g̃j)dj − (gj − g̃j)d̃j

= Ŵj(gj , x
t
j) + (gj − g̃j)(dj − d̃j) ≥ Ŵj(gj , x

t
j)− |gj − g̃j | · |dj − d̃j |

≥ Ŵj(gj , x
t
j)−

1

Γ
(gj − g̃j)

2. (By Lemma 15.)

A.2 The Expected Progress, Lemma 5

Proof of Lemma 5. Recall that we write π(k, t) to denote the path in which coordinate kt at time
t is replaced by coordinate k, and to reduce clutter we abbreviate this as π(k). Recall also that we
let prev(t, k) denote the time of the most recent update to coordinate k, if any, in the time range
[t− 2q, t− 1]; otherwise, we set it to t. From (3),

E
[
F (xt)− F (xt+1)

]

≥ 1

2n
Eπ

[n∑

kt=1

Ŵkt(g
π(kt),t
kt

), x
π(kt),t
kt

)

]
+

Γ

8

(
∆X

t

)2 − 1

Γ
E

[(
gπ,tkt
− g̃π,tkt

)2]

=
1

2n
Eπ

[n∑

k=1

Ŵk(g
π(k),t
k , x

π(k),t
k)

]
+

Γ

8

(
∆X

t

)2 − 1

Γ
E

[(
gπ,tkt
− g̃π,tkt

)2]

≥ 1

2n
Eπ

[n∑

k=1

1

n

n∑

kt=1

(
2

3
Ŵk(g

π(kt),t
k , x

π(k),t
k)− 4

3Γ

(
g
π(k),t
k − g

π(kt),t
k

)2)]

+
Γ

8

(
∆X

t

)2 − 1

Γ
Eπ

[(
gπ,tkt
− g̃π,tkt

)2]
(by Lemma 6).

For the next bound, we will be applying Lemma 7 to shift the x
π(k),t
k parameter in Ŵk to

xπ,tk = x
π(kt),t
k . Note that applying this lemma introduces additional terms (the case l > 0) only

if xk is updated at some time s ∈ [t − 2q, t − 1]; this means that k = ks where t − 2q ≤ s < t,
and to avoid double counting the effect of updates to the same coordinate, we can further limit s
to s = prev(t, k), or equivalently that t − 2q ≤ s < t and s = prev(t, ks). This yields the claimed
result.

A.3 Bounding How Much Ŵ and d̂ Vary as a Function of Their Arguments

The next five lemmas concern an arbitrary coordinate xj . To avoid notational clutter, we write

W , Ŵ , d̂, and Ψ in lieu of Wj Ŵj , d̂, and Ψj, resp. Also, by x1 and x2 we will mean two possible
values of xj , and by g1 and g2 two possible values of gj .

32

We first present the proofs of Lemma 6 and 8. To prove Lemma 7, we will need two additional
lemmas, to be presented below.

Proof of Lemma 6.

Ŵ (g1, x) = max
d∈R

W (d, g1, x) ≥W (d̂(g2), g1, x)

= −g1 · d̂(g2)− Γ · d̂(g2)2/2 + Ψ(x)−Ψ(x+ d̂(g2))

= −g2 · d̂(g2)− Γ · d̂(g2)2/2 + Ψ(x)−Ψ(x+ d̂(g2))

+ (g2 − g1) ·
[
d̂(g1) + (d̂(g2)− d̂(g1))

]

≥ Ŵ (g2, x)− |g1 − g2| ·
∣∣d̂(g1)

∣∣− |g1 − g2| ·
∣∣d̂(g2)− d̂(g1)

∣∣

≥ Ŵ (g2, x)− |g1 − g2| ·
∣∣d̂(g1)

∣∣− 1

Γ
(g1 − g2)

2 (By Lemma 15)

≥ Ŵ (g2, x)−
1

Γ
(g1 − g2)

2 − Γ

4
(d̂(g1))

2 − 1

Γ
(g1 − g2)

2 (AM-GM ineq.)

≥ Ŵ (g2, x)−
2

Γ
(g1 − g2)

2 − 1

2
Ŵ (g1, x). (By Lemma 16)

Next, we demonstrate Lemma 8; it is a simple corollary of Lemma 15 and the following lemma.

Lemma 18. For any g, x1, x2 ∈ R,
∣∣d̂(g, x1)− d̂(g, x2)

∣∣ ≤ |x1 − x2| .

Proof. For i = 1, 2, let di := d̂(g, xi). By the definition of d̂, for i = 1, 2, there exists a subgradient
Ψ′(xi + di) such that

g + Γ · di +Ψ′(xi + di) = 0.

If d1 = d2, we are done. If d1 > d2, then Ψ′(x1 + d1) < Ψ′(x2 + d2). Since Ψ is convex,
x1 + d1 ≤ x2 + d2 and hence 0 < d1 − d2 ≤ x2 − x1.

If d2 > d1, by the same argument as above we have 0 < d2 − d1 ≤ x1 − x2.

Lemma 8 is a simple corollary of Lemmas 15 and 18.

Proof of Lemma 8.

(
d̂(g1, x1)− d̂(g2, x2)

)2
=
(
d̂(g1, x1)− d̂(g1, x2) + d̂(g1, x2)− d̂(g2, x2)

)2

≤ 2
(
d̂(g1, x1)− d̂(g1, x2)

)2
+ 2

(
d̂(g1, x2)− d̂(g2, x2)

)2

≤ 2 (x1 − x2)
2 +

2

Γ2
(g1 − g2)

2 .

The next two lemmas will be needed to prove Lemma 7.

Lemma 19 (Ŵ Shifting on x parameter). Let Ŵ (g, x1) = W (d̆1, g, x1) and Ŵ (g, x2) = W (d̆2, g, x2).
Then

Ŵ (g, x1) + Ψ(x2)−Ψ(x1) ≥ Ŵ (g, x2)− g(x2 − x1)− Γd̆2(x2 − x1)−
Γ

2
· (x2 − x1)

2.

33

Proof. We use Lemma 14 with d− = 0, d+ = d̆1, and Y (d) = gd−Ψ(x1)+Ψ(x1+ d). We note that
Y (d′)+ Γ

2 · d′2 = −W (d′, g, x1). Also, we observe that −W (d′, g, x1) is strongly convex with strong

convexity parameter Γ. As W (d′, g, x1) is maximized at d̆1, we conclude that −W (d′, g, x1) ≥
−W (d̆1, g, x1) +

Γ
2 (d̆1 − d′)2 = −Ŵ (g, x1) +

Γ
2 (d̆1 − d′)2. Thus

Y (d′) +
Γ

2
· (d′)2 ≥ − Ŵ (g, x1) +

Γ

2
· (d′ − d̆1)

2.

The above inequality holds for any d′. In particular, we pick d′ = x2 − x1 + d̆2, yielding

Ŵ (g, x1) ≥ −g(x2 − x1 + d̆2) + Ψ(x1) − Ψ(x2 + d̆2)−
Γ

2
· (x2 − x1 + d̆2)

2

+
Γ

2
· (x2 − x1 + d̆2 − d̆1)

2.

By adding Ψ(x2)−Ψ(x1) to both sides, we obtain

Ŵ (g, x1) + Ψ(x2)−Ψ(x1)

≥ −g(x2 − x1 + d̆2) + Ψ(x2)−Ψ(x2 + d̆2)−
Γ

2
· (x2 − x1 + d̆2)

2

+
Γ

2
· (x2 − x1 + d̆2 − d̆1)

2

= Ŵ (g, x2)− g(x2 − x1)− Γd̆2(x2 − x1)−
Γ

2
· (x2 − x1)

2 +
Γ

2
· (x2 − x1 + d̆2 − d̆1)

2

≥ Ŵ (g, x2)− g(x2 − x1)− Γd̆2(x2 − x1)−
Γ

2
· (x2 − x1)

2.

Lemma 20 (Ψ Shifting). Let Ŵ (g1, x1) = W (d̂1, g1, x1) and Ŵ (g2, x2) = W (d̂2, g2, x2). Then

Ψ(x2 + d̂2)−Ψ(x1 + d̂1) ≤ g2(x1 − x2 + d̂1 − d̂2) +
Γ

2
· (x1 − x2 + d̂1)

2.

Proof. By the definition of d̂2, we have the following inequality, which directly implies the one
stated in the lemma.

−g2d̂2 −
Γ

2
· (d̂2)2 −Ψ(x2 + d̂2) ≥ − g2(x1 − x2 + d̂1)−

Γ

2
· (x1 − x2 + d̂1)

2 −Ψ(x1 + d̂1).

Proof. of Lemma 7. Suppose the latest update to coordinate k occurred at time t̆. Also suppose
that

• the changes to xk from xt−2q
k to x

π(k),t
k are d11, d12, · · · , d1ℓ;

• the changes to xk from xt−2q
k to xπ,tk are d21, d22, · · · , d2ℓ.

Furthermore, let

gak := ∇kf(x
π,t) and d̆ := argmax

d
W (d, gak , x

π,t
k).

In other words, x
π(k),t
k = xt−2q

k +
∑ℓ

r=1 d1r and xπ,tk = xt−2q
k +

∑ℓ
r=1 d2r.

34

By Lemma 19,

Ŵ (gak , x
π(k),t
k) + Ψ(xπ,tk)−Ψ(x

π(k),t
k) ≥ Ŵ (gak , x

π,t
k)− gak · (xπ,tk − x

π(k),t
k)

− Γd̆ · (xπ,tk − x
π(k),t
k) − Γ

2
· (xπ,tk − x

π(k),t
k)2.

On the other hand, let gbk be the gradient used to compute the update d2ℓ. By Lemma 20, on

setting x2 = xπ,tk − d2ℓ and x1 = x
π(k),t
k − d1ℓ, and noting that d̂1 = d1ℓ and d̂2 = d2ℓ, we obtain

Ψ(xπ,tk)−Ψ(x
π(k),t
k) ≤ gbk(x

π(k),t
k − xπ,tk) +

Γ

2
(x

π(k),t
k − xπ,tk + d2ℓ)

2.

Combining the above two inequalities, and letting δ := xπ,tk − x
π(k),t
k , yields

Ŵ (gak , x
π(k),t
k) ≥ Ŵ (gak , x

π,t
k) + (gbk − gak) · δ − Γd̆ · δ − Γ

2
· δ2 − Γ

2
· (d2ℓ − δ)2

≥ Ŵ (gak , x
π,t
k)− 1

2Γ
(gbk − gak)

2 − Γ

2
δ2 − Γ(d̆− δ)δ − Γδ2 − Γ

2
δ2

− Γ

2
(d2ℓ)

2 +
Γ

2
· 2d2ℓ · δ −

Γ

2
δ2

= Ŵ (gak , x
π,t
k)− 1

2Γ
(gbk − gak)

2 − 3

2
Γδ2 − Γ

2
(d2ℓ)

2 − Γ(d̆− δ)δ + Γ(d2ℓ − δ)δ

≥ Ŵ (gak , x
π,t
k)− 1

2Γ
(gbk − gak)

2 − 3

2
Γδ2 − Γ

2
(d2ℓ)

2 − Γ|d̆− d2ℓ| · |δ|

≥ Ŵ (gak , x
π,t
k)− 1

2Γ
(gbk − gak)

2 − 2Γδ2 − Γ

2
(d2ℓ)

2 − Γ

2
(d̆− d2ℓ)

2.

By Lemma 8,
Γ

2
· (d̆− d2ℓ)

2 ≤ Γ · (d2ℓ)2 +
1

Γ
· (gak − gbk)

2.

Thus, Ŵ (gak , x
π(k),t
k) ≥ Ŵ (gak , x

π,t
k)− 3

2Γ
· (gbk − gak)

2 − 2Γδ2 − 3Γ

2
· (d2ℓ)2. (19)

A.4 The Recursive Analysis yielding a proof of Lemma 11

Recall that the definition of ∆u,∅
maxx

π,s
ks

(see Section 4.2.1) assumes the first u−4q updates are already
fixed.

To prove Lemma 11, we will make use of a recursive bound on
(∑

l0∈[u−q,t+q]\{u}
Lkl0 ,ku

(
∆t,∅

spanx
π,l0
kl0

))2

,

a bound that expresses the effect of performing one level of recursion, along with additional compu-
tation — suitable overestimates, and the calculation of some expectations. This bound is presented
in the next lemma. It is applied repeatedly in order to prove Lemma 11.

Both lemmas make use of two techniques. It will be helpful to explain them upfront.

Unbalanced Cauchy-Schwartz Inequality To bound an expression of the form(∑
1≤j≤q′ zj

)2
, rather than have the bound q′

∑
1≤j≤q′ z

2
j , we would like to multiply a few of the zj

35

by just a constant. We achieve this with two applications of the usual Cauchy-Schwartz Inequality,
and we illustrate this for the case that “a few” means two of the zj .

(∑

1≤j≤q′

zj

)2
≤ 2(zk + zl)

2 + 2
(∑

1≤j≤q′

j 6=k,l

zj

)2
≤ 4(z2k + z2l) + 2(q′ − 2)

∑

1≤j≤q′

j 6=k,l

z2j

≤ 4(z2k + z2l) + 2q′
∑

1≤j≤q′

j 6=k,l

z2j (this is just a convenient over-estimate).

Recentering Suppose a ≤ b, c ≤ d. Then b2 ≤ [c+ (d− a)]2 ≤ 2c2 +2(d− a)2. we use this bound
when b denotes a value (of the form ∆xk) which varies over the different paths across which we
want to average, while the values c and d − a are unvarying. This is a technique we already used
in Section 4.2.2.

Lemma 21 is a bound on a sum of ∆var terms. However, we will start by obtaining a recursive
bound on an analogous sum of ∆span terms. To this end, we define

Vm , E

[∑

l0∈[u−q,t+q]\{u}

(∑

l1,l2,··· ,lm∈[u−q,t+q],
all ls distinct, all ls 6=u,l0;
all ls≤ts−1+q, where

ts−1=min{t,l0,l1,··· ,ls−1};
Sm⊆{ls|kls=kls−1

}.

(∏

ls∈Rm\Sm

where Rm

={l1,l2,··· ,lm}.

L2
kls ,kls−1

Γ2

)

· L2
kl0 ,ku

(
∆

tm,Rm\{lm}
span xπ,lmklm

)2)]
. (20)

We note that the second summation is over all choices of ls, 1 ≤ s ≤ m, and of Sm which satisfy
the stated conditions. This comment also applies to similar subsequent summations.

Note that V3q = 0 and V0 = E

[∑
l0∈[u−q,t+q]\{u} L

2
kl0 ,ku

(
∆

min{t,l0},∅
span xπ,l0kl0

)2]
.

Also, lm−1 ≤ min{lm−1, tm−2 + q} ≤ tm−1 + q. (21)

Lemma 21 below gives our recursive bound; it is then used to prove Lemmas 22 and 11. Finally,
we prove Lemma 21 via Lemma 23, which is stated right before the proof of Lemma 21.

Lemma 21. For t− 2q ≤ u ≤ t,

Vm−1 ≤ 40qVm + E

[∑

s∈[t−7q,t+q]\{u}
120qΓ2

(
Λ2
)m+1

(4q)m

nm+1

((
∆spanx

π,s
ks

)2
+
(
∆xπ,sks

)2)
]

(22)

+ E

[
24L2

max

(
Λ2
)m

(4q)m

nm

((
∆spanx

π,u
ku

)2
+
(
∆xπ,uku

)2)
]
. (23)

Lemma 21 readily yields a bound on V0. Recall that r = 160q2Λ2

n .

Lemma 22.

V0 ≤
3r2Γ2

160(1 − r)q2

∑

s∈[t−7q,t+q]
\{u}

[(
Ds

)2
+
(
∆X

s

)2]
+

3rΓ2

5q(1 − r)
·
[
(Du)

2 +
(
∆X

u

)2]
.

36

Proof. We will apply Lemma 21 recursively to V0. Note that as m increases by 1, each sum

is multiplied by Λ2·(4q)
n , and the first term has a multiplier of 40q (which is why we chose r =

40q · Λ2(4q)
n). We obtain

V0 ≤ (1 + r + r2 + · · ·) · E
[(∑

s∈[t−7q,t+q]\{u}

480q2Γ2(Λ2)2

n2

((
∆spanx

π,s
ks

)2
+
(
∆xπ,sks

)2)

+
96q(Λ2)L2

max

n

((
∆spanx

π,u
ku

)2
+
(
∆xπ,uku

)2))]

≤ 3r2Γ2

160(1 − r)q2

∑

s∈[t−7q,t+q]\{u}

[(
Ds

)2
+
(
∆X

s

)2]
+

3rΓ2

5q(1 − r)

[(
Du

)2
+
(
∆X

u

)2]
,

as Lmax ≤ Γ, r < 1, and replacing 160q2Λ2/n by r.

Recall that Rm−1 = {l0, l1, · · · , lm−1} and tm−1 = min{t, l0, l1, · · · , lm−1}. In the proofs of
Lemmas 11 and 21, we define ∆̃tm−1xπ,sks

as follows. If s /∈ Aπ,tm−1 , then ∆̃tm−1xπ,sks
is the value

of ∆xπ,sks
when Us reads all its inputs and makes its update immediately after first tm−1 − 4q − 1

updates committed; otherwise, ∆̃tm−1xπ,sks
= ∆

tm−1,Rm−1

max xπ,sks
. We make the following observation.

Observation 1. For m ≥ 1,
i. If s ∈ [tm−1 − 4q, tm−1 + q] \ {u}, then ∆̃tm−1xπ,sks

∈
[
∆

tm−1,Rm−1

min xπ,sks
,∆

tm−1,Rm−1
max xπ,sks

]
;

ii. If s ∈ [tm−1 − 4q, tm−1 + q] \ {u}, then ∆̃tm−1xπ,sks
is independent of Uu and Uv for v ∈ Rm−1;

iii. If s ∈ [t− 4q, t+ q] \ {u}, then ∆̃txπ,sks
∈
[
∆

tm−1,∅
min xπ,sks

,∆
tm−1,∅
max xπ,sks

]
;

iv. If s ∈ [t− 4q, t+ q], then ∆̃txπ,sks
is independent of Uu.

Proof. i. When s ∈ Aπ,tm−1 , ∆̃txπ,sks
= ∆

tm−1,Rm−1
max xπ,sks

m and so the result is immediate. We also

note, for use in (ii), that in this case ∆̃txπ,sks
is independent of Rm−1.

While if s /∈ Aπ,tm−1 , we argue as follows. Note that every element in Rm−1 is at least tm−1.
By Lemma 1, the updates in Rm−1 have commit time at least tm−1 + 1, while each of the first
tm−1 − 4q − 1 updates have commit time at most tm−1 − 4q − 1 + q + 1 = tm−1 − 3q. Thus, in this
case too, the updates in Rm−1 are excluded from the computation of update Us.

Also, by the definition of ∆̃txπ,sks
, Us reads all its inputs and makes its update immediately after

first tm−1 − 4q − 1 updates committed, all updates in Aπ,tm−1 have been fixed before Us starts its
reads. Consequently (i) holds in this case too.

ii. We have already shown the independence for v ∈ Rm−1 in the proof of (i).
For update Uu, first recall that tm−1 − 2q ≤ u. If s ∈ Aπ,tm−1 , we want to show that

∆
tm−1,Rm−1

max xπ,sks
is independent of Uu. By the definition of Aπ,tm−1 , Us commits earlier than some

update Up where p < tm−1 − 4q. By Lemma 1, the commit time of Up is at most p + q + 1 ≤
tm−1 − 3q ≤ u − q, hence Us must commit before time u − q, and hence it is independent of Uu
whose start time is at least u − q + 1 by Lemma 1. If s /∈ Aπ,t, ∆̃txπ,sks

depends only on the first
tm−1 − 4q − 1 < u− 2q updates, and these updates must be independent of Uu by Lemma 1.

iii. The argument is similar to (i).
iv. The argument is similar to (ii).

37

Proof of Lemma 11. For brevity, we write V =

(∑
l0∈[t−4q,t+q]\{u} Lkl0 ,ku

∆t,∅
varx

π,l0
kl0

)2

. Recall that

V =

(∑

l0∈[t−4q,t+q]\{u}
Lkl0 ,ku

∆t,∅
varx

π,l0
kl0

)2

=

(∑

l0∈[t−4q,t+q]\{u}
Lkl0 ,ku

max
{
∆t,∅

spanx
π,l0
kl0

,
∣∣∆t,∅

maxx
π,l0
kl0

∣∣,
∣∣∆t,∅

minx
π,l0
kl0

∣∣
})2

.

By Observation 1(iii), recentering and applying the Cauchy-Schwarz inequality,

V ≤ 10q
∑

l0∈[t−4q,t+q]\{u}
L2
kl0 ,ku

[(
∆t,∅

spanx
π,l0
kl0

)2
+
(
∆̃txπ,l0kl0

)2]

≤ 10q
∑

l0∈[u−q,t+q]\{u}
L2
kl0 ,ku

(
∆t,∅

spanx
π,l0
kl0

)2
+ 10q

∑

s∈[t−4q,u−q)

L2
ks,ku

(
∆t,∅

spanx
π,s
ks

)2

+ 10q
∑

s∈[t−4q,t+q]\{u}
L2
ks,ku

(
∆̃txπ,sks

)2
.

Note that by Lemma 9(ii), ∆t,∅
spanx

π,l0
kl0
≤ ∆

min{t,l0},∅
span xπ,l0kl0

. For s < u− q, ∆t,∅
spanx

π,s
ks

is independent

of update Uu, as ∆t,∅
spanx

π,s
ks

is independent of updates Uv for v > s + q. Also, as already noted,

∆̃txπ,sks
is independent of ku by Observation 1(iv). Thus, taking the expectation of the previous

bound as ku varies, yields

Eku[V] ≤ Eku

[
10q

∑

l0∈[u−q,t+q]\{u}
L2
kl0 ,ku

(
∆

min{t,l0},∅
span xπ,l0kl0

)2]

+ Eku

[
10q

∑

s∈[t−4q,u−q)

L2
res

n

(
∆t,∅

spanx
π,s
ks

)2]

+ Eku

[
10q

∑

s∈[t−4q,t+q]\{u}

L2
res

n

(
∆̃txπ,sks

)2]
.

Note that for s ∈ [t−4q, t+ q]\{u}, ∆̃txπ,sks
,∆xπ,sks

∈ [∆minx
π,s
ks

,∆maxx
π,s
ks

]. Thus, by recentering,

38

(
∆̃txπ,sks

)2
≤ 2

(
∆xπ,sks

)2
+ 2

(
∆spanx

π,s
kl0

)2
. Then we average over all paths π:

E[V] ≤ E

[
10q

∑

l0∈[u−q,t+q]\{u}
L2
kl0 ,ku

(
∆

min{t,l0},∅
span xπ,l0kl0

)2]

+ E

[
30q

∑

s∈[t−4q,t+q]\{u}

L2
res

n

((
∆spanx

π,s
ks

)2
+
(
∆xπ,sks

)2)
]

≤ 3r2Γ2

16(1 − r)q

∑

s∈[t−7q,t+q]
\{u}

[(
Ds

)2
+
(
∆X

s

)2]
+

6rΓ2

1− r

[(
Du

)2
+
(
∆X

u

)2]

+ 30q
∑

s∈[t−4q,t+q]\{u}

L2
res

n

[(
Ds

)2
+
(
∆X

s

)2]
(by Lemma 22)

≤ 3r2Γ2

16(1 − r)q

∑

s∈[t−7q,t+q]
\{u}

[(
Ds

)2
+
(
∆X

s

)2]
+

6rΓ2

1− r
·
[(
Du

)2
+
(
∆X

u

)2]

+
3rΓ2

16q

∑

s∈[t−4q,t+q]\{u}

[(
Ds

)2
+
(
∆X

s

)2] (
as r =

160Λ2q2

n
and Λ =

L2
res

Γ2
+ 1.

)

In the next lemma we bound
(
∆

tm−1,Rm−1\{lm−1}
span x

π,lm−1

klm−1

)2
.

Lemma 23. Suppose l0, l1, · · · ∈ [u−q, t+q]\{u}, ts = min{t, l0, l1, · · · , ls}, Rm−1 = {l0, l1, · · · , lm−1}
and ls ≤ ts + q for s < m. Then

39

(
∆

tm−1,Rm−1\{lm−1}
span x

π,lm−1

klm−1

)2

≤ 40q
∑

lm∈[tm−1−4q,min{lm−1−1,u−q−1}]\({u}∪Rm−1)
and klm=klm−1[(

∆
tm−1,Rm−1

span xπ,lmklm

)2

︸ ︷︷ ︸
F

+
(
∆̃tm−1xπ,lmklm

)2

︸ ︷︷ ︸
G

]

+ 40q
∑

lm∈[min{lm−1−1,u−q−1}+1,lm−1−1]\({u}∪Rm−1)
and klm=klm−1[(

∆
tm−1,Rm−1

span xπ,lmklm

)2
︸ ︷︷ ︸

H

+
(
∆̃tm−1xπ,lmklm

)2
︸ ︷︷ ︸

I

]

+ 8 · 1(klm−1
=ku and u≤lm−1) ·

[(
∆

tm−1,Rm−1

span xπ,uku

)2
+
(
∆tm−1,Rm−1

max xπ,uku

)2]

︸ ︷︷ ︸
J

+
40q

Γ2

(∑

lm∈[tm−1−4q,min{tm−1+q,u−q−1}]\({lm−1,u}∪Rm−1)(
L2
klmklm−1

(
∆

tm−1,Rm−1

span xπ,lmklm

)2

︸ ︷︷ ︸
K

+L2
klmklm−1

(
∆̃tm−1xπ,lmklm

)2

︸ ︷︷ ︸
L

))

+
40q

Γ2

(∑

lm∈[min{tm−1+q,u−q−1}+1,tm−1+q]\({lm−1,u}∪Rm−1)(
L2
klmklm−1

(
∆

tm−1,Rm−1

span xπ,lmklm

)2

︸ ︷︷ ︸
M

+L2
klmklm−1

(
∆̃tm−1xπ,lmklm

)2

︸ ︷︷ ︸
N

))

+
8

Γ2
· 1(u≤tm−1+q) · L2

kuklm−1

[(
∆

tm−1,Rm−1

span xπ,uku

)2
+
(
∆tm−1,Rm−1

max xπ,uku

)2
]

︸ ︷︷ ︸
O

. (24)

Proof. Recall that tm−1 = min{t, l0, l1, · · · , lm−1}, and Rm−1 contains lm−1. Also recall that

∆
tm−1,R
var xπ,sks

= max
{
∆tm−1,R

max xπ,sks
−∆

tm−1,R
min xπ,sks

,
∣∣∆tm−1,R

max xπ,sks

∣∣ ,
∣∣∣∆tm−1,R

min xπ,sks

∣∣∣
}
.

First, let’s expand the term

(
∆

tm−1,Rm−1\{lm−1}
span x

π,lm−1

klm−1

)2

=
(
∆tm−1,Rm−1\{lm−1}

max x
π,lm−1

klm−1

−∆
tm−1,Rm−1\{lm−1}
min x

π,lm−1

klm−1

)2
,

By Lemma 8, and recalling that the definition of ∆
tm−1

var xπ,lmklm
allows the choice of whether to read

the results of updates Us with s ∈ [tm−1 − 4q, tm−1 + q], we obtain

40

(
∆

tm−1,Rm−1\{lm−1}
span x

π,lm−1

klm−1

)2

≤ 2

(∑

lm∈[tm−1−4q,
lm−1−1]\Rm−1

and klm=klm−1

∆
tm−1,Rm−1

var xπ,lmklm

)2

+
2

Γ2

(
g̃
tm−1 ,Rm−1,π,lm−1

max,klm−1

− g̃
tm−1,Rm−1,π,lm−1

min,klm−1

)2

≤ 2

(∑

lm∈[tm−1−4q,
lm−1−1]\Rm−1

and klm=klm−1

∆
tm−1,Rm−1

var xπ,lmklm

)2

+
2

Γ2

(∑

lm∈[tm−1−4q,
tm−1+q]\Rm−1

Lklmklm−1
·∆tm−1,Rm−1

var xπ,lmklm

)2

. (25)

By applying the unbalanced Cauchy-Schwarz inequality, the first term on the RHS of (25) can
be bounded as follows (the 5q in the first inequality occurs because by (21), lm−1 ≤ tm−1 + q, and
hence the range for lm is of size at most 5q):

2

(∑

lm∈[tm−1−4q,lm−1−1]\Rm−1

and klm=klm−1

∆
tm−1,Rm−1

var xπ,lmklm

)2

≤ 4 · (5q)
∑

lm∈[tm−1−4q,
lm−1−1]\({u}∪Rm−1)
and klm=klm−1

(
∆

tm−1,Rm−1

var xπ,lmklm

)2

+ 4 · 1(klm−1
=ku and u≤lm−1−1) ·

(
∆

tm−1,Rm−1

var xπ,uku

)2
. (26)

Again, by using an unbalanced Cauchy-Schwarz inequality, the second term on the RHS of (25)
can be bounded as follows:

2

Γ2

(∑

lm∈[tm−1−4q,tm−1+q]\Rm−1

Lklmklm−1
·∆tm−1,Rm−1

var xπ,lmklm

)2

≤ 4(5q)

Γ2

∑

lm∈[tm−1−4q,
tm−1+q]

\({u}∪Rm−1)

L2
klmklm−1

(
∆

tm−1,Rm−1

var xπ,lmklm

)2

+
4

Γ2
· 1(u≤tm−1+q) · L2

kuklm−1

(
∆

tm−1,Rm−1

var xπ,uku

)2
. (27)

Observation 1(i) implies that for any s = lm ∈ [tm−1 − 4q, tm−1 + q] \ {u},
(
∆

tm−1,Rm−1

min xπ,sks

)2
,

(
∆

tm−1,Rm−1
max xπ,sks

)2 ≤
(∣∣∆tm−1,Rm−1

span xπ,sks

∣∣ +
∣∣∆̃tm−1xπ,sks

∣∣
)2

, and consequently by recentering,

(
∆

tm−1,Rm−1

var xπ,sks

)2
≤ 2
(
∆

tm−1,Rm−1

span xπ,sks

)2
+ 2
(
∆̃tm−1xπ,sks

)2
. (28)

41

Similarly, since ∆
tm−1,Rm−1

max xπ,uku
∈
[
∆

tm−1,Rm−1

min xπ,uku
,∆

tm−1,Rm−1

max xπ,uku

]
,

(
∆

tm−1,Rm−1

var xπ,uku

)2
≤ 2
(
∆

tm−1,Rm−1

span xπ,uku

)2
+ 2
(
∆tm−1,Rm−1

max xπ,uku

)2
. (29)

In summary, (25) is bounded by (26) and (27); we split the range of the first term in each of
these bounds, and bound the ∆var terms as in (28) and (29). This yields the result.

We can now prove Lemma 21.

Proof of Lemma 21. Next, we bound the LHS of the inequality in Lemma 21. To obtain our bound,
we start with (24) and multiply both sides by

(∏

ls∈Rm−1\Sm−1

where Rm−1

={l1,l2,··· ,lm−1}.

L2
klskls−1

Γ2

)
L2
kl0ku

,

and sum over all choices of l0, l1, · · · , lm−1, and over all choices of a set Sm−1 defined shortly, where
these parameters satisfy the following constraints.
i. l0, l1, · · · , lm−1 ∈ [u− q, t+ q].
ii. All the ls are distinct and ls 6= u for all s.
iii. Let ts−1 = min{t, l0, l1, · · · , ls−1}; ls ≤ ts−1 + q for all s.
iv. Sm−1 ⊆ {ls|kls = kls−1

}.
v. Let Rm−1 = {l1, l2, . . . , lm}; for all s ≥ 1, ls ∈ Rm−1 \ Sm−1.

This multiplication of the LHS term of (23) yields

E

[∑

l0∈[u−q,t+q]\{u}

(∑

l1,l2,··· ,lm−1∈[u−q,t+q],
all ls distinct, all ls 6=u,l0;
all ls≤ts−1+q, where

ts−1=min{t,l0,l1,··· ,ls−1}
all Sm−1⊆{ls|kls=kls−1

}.

(∏

ls∈Rm−1\Sm−1

where Rm−1

={l1,l2,··· ,lm−1}.

L2
klskls−1

Γ2

)

L2
kl0ku

(
∆

tm−1,Rm−1\{lm−1}
span x

π,lm−1

klm−1

)2
)]

,

which is Vm−1.
On the RHS, we start by looking at terms H and M to obtain the recursive term Vm on the RHS

of the Lemma 21. We use the inequality
(
∆

tm−1,Rm−1

span xπ,lmklm

)2 ≤
(
∆

tm,Rm−1

span xπ,lmklm

)2
, which holds by

Lemma 9(ii). The multiplication applied to these two terms yields

42

≤ E

[
40q

∑

l0∈[u−q,t+q]
\{u}

(∑

l1,l2,··· ,lm∈[u−q,t+q],
all ls distinct, all ls 6=u,l0;

all ls≤ts−1+q,where
ts−1=min{t,l0,l1,··· ,ls−1};
all Sm−1⊆{ls|kls=kls−1

and s≤m−1};
klm=klm−1

.

(∏

ls∈Rm−1\Sm−1

where Rm−1

={l1,l2,··· ,lm−1}.

L2
klskls−1

Γ2

)
L2
kl0ku

·
(
∆

tm,Rm−1

span xπ,lmklm

)2
)]

+ E

[
40q

∑

l0∈[u−q,t+q]\{u}

(∑

l1,l2,··· ,lm∈[u−q,t+q],
all ls distinct, all ls 6=u,l0;
all ls≤ts−1+q, where

ts−1=min{t,l0,l1,··· ,ls−1};
Sm−1⊆{ls|kls=kls−1

and s≤m−1}.

(∏

ls∈Rm−1\Sm−1

where Rm−1

={l1,l2,··· ,lm−1}.

L2
klskls−1

Γ2

)

· L2
kl0ku

·
L2
klmklm−1

Γ2

(
∆

tm,Rm−1

span xπ,lmklm

)2
)]

These two terms correspond to including lm in Sm and not including it in the constraint for Vm;
in other words, summed together these two terms equal Vm.

We now analyze the remaining non-recursive terms.

Recall that Λ2 =
L2
res

Γ2 + 1. Term J is bounded as follows, as we explain below:

E

[∑

l0∈[u−q,t+q]
\{u}

(∑

l1,l2,··· ,lm−1∈[u−q,t+q]
all ls distinct, all ls 6=u,l0;
all ls≤ts−1+q, where

ts−1=min{t,l0,l1,··· ,ls−1};
all Sm−1⊆{ls|kls=kls−1

}.

(∏

ls∈Rm−1\Sm−1

where Rm−1

={l1,l2,··· ,lm−1}.

L2
klskls−1

Γ2

)
L2
kl0ku

· 8 · 1 klm−1
=ku

and u≤lm−1

[(
∆

tm−1,Rm−1

span xπ,uku

)2
+
(
∆tm−1,Rm−1

max xπ,uku

)2
])]

≤ E

[∑

l0,l1,··· ,lm−1

∈[u−q,t+q]\{u}
u≤tm−1+q

8L2
max

(Λ2)m−1

nm

[(
∆

tm−1,Rm−1

span xπ,uku

)2
+
(
∆tm−1,Rm−1

max xπ,uku

)2
]]

. (30)

Recall that by (21), lm−1 ≤ tm−1 + q, justifying the bound on the sum. We first bound L2
kl0ku

by

L2
max. Then we can average, in turn, over the random coordinate choices of kl0 , kl1 , . . ., klm−1

. As

we will explain below, depending on whether each ls−1 is in Sm−1 or not, the averaging of
L2
kls

kls−1

Γ2

over kls−1
will provide either an 1

n or an 1
n ·

L2
res

Γ2 factor. To elaborate, the factor (Λ2)m−1

nm on the
RHS is due to a combination of the following observations:

i. As in Section 4.2.2, the m−1 factors of

(

L2
res

Γ2
+1

)

n = Λ2

n are due to the expectation over the bundle

of n paths obtained by varying kls−1
, which does not affect the terms ∆

t,Rm−1

span xπ,uku
, ∆

t,Rm−1
max xπ,uku

, as

43

ls−1 ∈ Rm−1 and ls−1 6= u. In more detail, there is always a term due to the case kls−1
/∈ Sm−1,

which, on averaging, yields a term 1
n ·

L2
res

Γ2 ; when kls = kls−1
, there is also a term for the case that

kls−1
∈ Sm−1, which, on averaging, yields a term of the form 1

n ; in combination, they yield a term
Λ2

n . (if ls ∈ Sm−1, then kls = kls−1
, and in this case taking the expectation yields an 1/n factor).

ii. The extra factor of n in the denominator is due to the expectation of 1klm−1
=ku.

For the remaining terms, first note that, on the RHS of (24), for any s ∈ [tm−1−4q, tm−1+q]\{u},
∆̃tm−1xπ,sks

is independent of any updates in Rm−1 or update Uu by Observation 1(ii). In addition,

for s < u− q, ∆
tm−1,Rm−1

span xπ,sks
also doesn’t depend on any updates in Rm−1 or update Uu.

For term F , note that on the RHS, lm is being renamed s. Here we can start by averaging over

ku, as lm ≤ u− q, which yields a factor of
L2
res

n ≤ Γ2Λ2

n . The remaining m− 1 factors of Λ2

n are as
before. The final factor of 1

n is due to the condition klm = klm−1
.

E

[∑

l0∈[u−q,t+q]
\{u}

(∑

l1,l2,··· ,lm−1∈[u−q,t+q]
all ls distinct, all ls 6=u,l0;
all ls≤ts−1+q, where

ts−1=min{t,l0,l1,··· ,ls−1};
all Sm−1⊆{ls|kls=kls−1

}.

(∏

ls∈Rm−1\Sm−1

where Rm−1

={l1,l2,··· ,lm−1};

L2
klskls−1

Γ2

)
L2
kl0ku

· 40q ·
∑

lm∈[tm−1−4q,u−q−1]
\({u}∪Rm−1)
klm=klm−1

(
∆

tm−1,Rm−1

span xπ,lmklm

)2

≤ E

[∑

l0,l1,··· ,lm−1

∈[u−q,t+q]\{u}

40qΓ2 (Λ
2)m

nm+1

∑

s∈[tm−1

−4q,u−q)

(
∆

tm−1,Rm−1

span xπ,sks

)2]
. (31)

For the next expression, we sum terms G and I. Again, we can start by averaging over ku,
as ∆̃tm−1xπ,lmklm

is independent of Uu by Observation 1(ii), as lm ∈ [tm−1 − 4q, lm−1 − 1] ⊂ [tm−1 −
4q, tm−1 + q] (as can be seen by applying (21)).

E

[∑

l0∈[u−q,t+q]
\{u}

(∑

l1,l2,··· ,lm−1∈[u−q,t+q]
all ls distinct, all ls 6=u,l0;
all ls≤ts−1+q, where

ts−1=min{t,l0,l1,··· ,ls−1};
all Sm−1⊆{ls|kls=kls−1

}.

(∏

ls∈Rm−1\Sm−1

where Rm−1

={l1,l2,··· ,lm−1};

L2
klskls−1

Γ2

)
L2
kl0ku

· 40q ·
∑

lm∈[tm−1−4q,lm−1−1]
\({u}∪Rm−1)
klm=klm−1

(
∆̃tm−1xπ,lmklm

)2

≤ E

[∑

l0,l1,··· ,lm−1

∈[u−q,t+q]\{u}

40qΓ2 (Λ
2)m

nm+1

∑

s∈[tm−1−4q,lm−1−1]\{u}

(
∆̃tm−1xπ,sks

)2]
. (32)

For term K, there is an additional term L2
klm

klm−1
to average over; we bound it by

L2
res

n .

44

E

[∑

l0∈[u−q,t+q]
\{u}

(∑

l1,l2,··· ,lm−1∈[u−q,t+q]
all ls distinct, all ls 6=u,l0;
all ls≤ts−1+q, where

ts−1=min{t,l0,l1,··· ,ls−1};
all Sm−1⊆{ls|kls=kls−1

}.

(∏

ls∈Rm−1\Sm−1

where Rm−1

={l1,l2,··· ,lm−1};

L2
klskls−1

Γ2

)
L2
kl0ku

· 40q
∑

lm∈[tm−1−4q,u−q−1]
\({u}∪Rm−1)

L2
klmklm−1

Γ2

(
∆

tm−1,Rm−1

span xπ,lmklm

)2

≤ E

[∑

l0,l1,··· ,lm−1

∈[u−q,t+q]\{u}

40qΓ2L
2
res(Λ

2)m

Γ2nm+1

∑

s∈[tm−1−4q,u−q−1]

(
∆

tm−1,Rm−1

span xπ,sks

)2]
. (33)

For the next expression, the sum of terms L and N , we obtain

E

[∑

l0∈[u−q,t+q]
\{u}

(∑

l1,l2,··· ,lm−1∈[u−q,t+q]
all ls distinct, all ls 6=u,l0;
all ls≤ts−1+q, where

ts−1=min{t,l0,l1,··· ,ls−1};
all Sm−1⊆{ls|kls=kls−1

}.

(∏

ls∈Rm−1\Sm−1

where Rm−1

={l1,l2,··· ,lm−1};

L2
klskls−1

Γ2

)
L2
kl0ku

· 40q ·
∑

lm∈[tm−1−4q,tm−1+q]
\({u}∪Rm−1)

L2
klmklm−1

Γ2

(
∆̃tm−1xπ,lmklm

)2

≤ E

[∑

l0,l1,··· ,lm−1

∈[u−q,t+q]\{u}

40qΓ2L
2
res(Λ

2)m

Γ2nm+1

∑

s∈[tm−1−4q,tm−1+q]\{u}

(
∆̃tm−1xπ,sks

)2]
. (34)

Finally, for term O, the bound is

E

[∑

l0∈[u−q,t+q]
\{u}

(∑

l1,l2,··· ,lm−1∈[u−q,t+q]
all ls distinct, all ls 6=u,l0;
all ls≤ts−1+q, where

ts−1=min{t,l0,l1,··· ,ls−1};
all Sm−1⊆{ls|kls=kls−1

}.

(∏

ls∈Rm−1\Sm−1

where Rm−1

={l1,l2,··· ,lm−1};

L2
klskls−1

Γ2

)
L2
kl0ku

· 8 ·
L2
kuklm−1

Γ2
1u≤tm−1+q

[(
∆

tm−1,Rm−1

span xπ,uku

)2
+
(
∆tm−1,Rm−1

max xπ,uku

)2
])]

≤ E

[∑

l0,l1,··· ,lm−1

∈[u−q,t+q]
\{u}

u≤tm−1+q

8L2
max

L2
res(Λ

2)m−1

Γ2nm

[(
∆

tm−1,Rm−1

span xπ,uku

)2
+
(
∆tm−1,Rm−1

max xπ,uku

)2
]]

. (35)

Therefore, the sum of the bounds on the non-recursive terms, reordered as 32, 34, 31, 33, 30,
35, equals

45

E

[∑

l0,l1,··· ,lm−1

∈[u−q,t+q]\{u}

∑

s∈[tm−1−4q,lm−1−1]
\{u}

40qΓ2 (Λ
2)m

nm+1

(
∆̃tm−1xπ,sks

)2]
(36)

+ E

[∑

l0,l1,··· ,lm−1

∈[u−q,t+q]\{u}

∑

s∈[tm−1−4q,tm−1+q]
\{u}

40qΓ2L
2
res(Λ

2)m

Γ2nm+1

(
∆̃tm−1xπ,sks

)2]
(37)

+ E

[∑

l0,l1,··· ,lm−1

∈[u−q,t+q]\{u}

∑

s∈[tm−1−4q,u−q)
\{u}

40qΓ2 (Λ
2)m

nm+1

(
∆

tm−1,Rm−1

span xπ,sks

)2]
(38)

+ E

[∑

l0,l1,··· ,lm−1

∈[u−q,t+q]\{u}

∑

s∈[tm−1−4q,u−q)
\{u}

40qΓ2L
2
res(Λ

2)m

Γ2nm+1

(
∆

tm−1,Rm−1

span xπ,sks

)2]
(39)

+ E

[
8

∑

l0,l1,··· ,lm−1

∈[u−q,t+q]\{u}
u≤tm−1+q

L2
max

(Λ2)m−1

nm

((
∆

tm−1,Rm−1

span xπ,uku

)2
+
(
∆tm−1,Rm−1

max xπ,uku

)2
)]

(40)

+ E

[∑

l0,l1,··· ,lm−1

∈[u−q,t+q]\{u}
u≤tm−1+q

8L2
max

L2
res(Λ

2)m−1

Γ2nm

·
((

∆
tm−1,Rm−1

span xπ,uku

)2
+
(
∆tm−1,Rm−1

max xπ,uku

)2
)]

. (41)

To obtain the final result, we combine these bounds. We start by bounding the sum of (36)
and (37) as follows. Noting that ∆̃tm−1xπ,sks

,∆xπ,uku
∈
[
∆minx

π,u
ku

,∆maxx
π,u
ku

]
for s ≤ tm−1 + q, by

recentering,
(
∆̃tm−1xπ,sks

)2
≤ 2

(
∆spanx

π,s
ks

)2
+ 2

(
∆xπ,sks

)2
, we obtain

E

[∑

l0,l1,··· ,lm−1

∈[u−q,t+q]\{u}

∑

s∈[tm−1−4q,lm−1−1]
\{u}

40qΓ2 (Λ
2)m

nm+1

(
∆̃tm−1xπ,sks

)2]

+ E

[∑

l0,l1,··· ,lm−1

∈[u−q,t+q]\{u}

∑

s∈[tm−1−4q,tm−1+q]
\{u}

40qΓ2L
2
res(Λ

2)m

Γ2nm+1

(
∆̃tm−1xπ,sks

)2]

≤ E

[∑

s∈[t−7q,t+q]
\{u}

80qΓ2 (Λ
2)m+1(4q)m

nm+1

((
∆spanx

π,s
ks

)2
+
(
∆xπ,sks

)2)
]
. (42)

The additional Λ2 is from 1+
L2
res

Γ2 on the LHS of (42), and the (4q)m is due to the t+ q− (u− q) ≤
(t+ q)− (t− 3q) = 4q choices of l0, l1, · · · , lm−1. We also relax the range [tm−1− 4q, tm−1+ q] \ {u}
and the range [tm−1 − 4q, lm−1 − 1] \ {u} to [t− 7q, t+ q] \ {u} as lm−1 ≤ t+ q, tm−1 + q ≤ t+ q,
and tm−1 − 4q ≥ u− 5q ≥ t− 7q.

46

Next, we sum (38) and (39). As tm−1 = min{t, l0, · · · , lm−1} ≥ s− q, we obtain

E

[∑

l0,l1,··· ,lm−1

∈[u−q,t+q]\{u}

∑

s∈[tm−1−4q,u−q)
\{u}

40qΓ2 (Λ
2)m

nm+1

(
∆

tm−1,Rm−1

span xπ,sks

)2]

+ E

[∑

l0,l1,··· ,lm−1

∈[u−q,t+q]\{u}

∑

s∈[tm−1−4q,u−q)
\{u}

40qΓ2L
2
res(Λ

2)m

Γ2nm+1

(
∆

tm−1,Rm−1

span xπ,sks

)2]

≤ E

[∑

s∈[t−7q,t+q]\{u}
40qΓ2 (Λ

2)m+1(4q)m

nm+1

(
∆spanx

π,s
ks

)2
]
. (43)

Adding (42) and (43) yields the term (22) on the RHS of Lemma 21.

Finally, we sum (40) and (41). For u ≤ tm−1+q, as ∆
tm−1,Rm−1
max xπ,uku

, ∆xπ,uku
∈
[
∆minx

π,u
ku

,∆maxx
π,u
ku

]
,

by recentering
(
∆

tm−1,Rm−1
max xπ,uku

)2
≤ 2

(
∆spanx

π,u
ku

)2
+2
(
∆xπ,uku

)2
, and

(
∆

tm−1,Rm−1

span xπ,uku

)2
≤
(
∆spanx

π,u
ku

)2
.

E

[
8

∑

l0,l1,··· ,lm−1

∈[u−q,t+q]\{u}
u≤tm−1+q

L2
max

(Λ2)m−1

nm

((
∆

tm−1,Rm−1

span xπ,uku

)2
+
(
∆tm−1,Rm−1

max xπ,uku

)2
)]

+ E

[∑

l0,l1,··· ,lm−1

∈[u−q,t+q]\{u}
u≤tm−1+q

8L2
max

L2
res(Λ

2)m−1

Γ2nm

·
((

∆
tm−1,Rm−1

span xπ,uku

)2
+
(
∆tm−1,Rm−1

max xπ,uku

)2
)]

≤ E

[
24L2

max

(Λ2)m(4q)m

nm

((
∆spanx

π,u
ku

)2
+
(
∆xπ,uku

)2)
]
.

This yields the term (23) on the RHS of Lemma 21, which concludes the proof.

A.5 The Claims from Section 4.2.4

Recall that π(k) ≡ π(k, t). The following observation will be useful.

Observation 2. For u < t, ∆t,∅
maxx

π(kt),u
ku

≥ ∆t,∅
maxx

π(ku),u
ku

, ∆t,∅
minx

π(kt),u
ku

≤ ∆t,∅
minx

π(ku),u
ku

, and thus

∆t,∅
spanx

π(ku),u
ku

≤ ∆t,∅
spanx

π(kt),u
ku

.

Proof. This is immediate from the fact that replacing ku by kt on path π allows more choices of
input in calculating the update to xku .

Proof of Claim 5. [Bounding Term B] We begin by noting that

x
π(ks),t
ks

= xπ,t−2q
ks

+
∑

t−2q≤u<t
&ku=ks

∆x
π(ks),u
ku

= xπ,t−2q
ks

+
∑

t−2q≤u<t
&ku=ks

∆x
π(ku),u
ku

, and

x
π(kt),t
ks

= xπ,t−2q
ks

+
∑

t−2q≤u<t
&ku=ks

∆x
π(kt),u
ku

.

47

Note that as t− 2q ≤ u, and as the updates Ur are fixed for r < t− 4q on the RHS of the following

expression, we have ∆x
π(ku),u
ku

∈
[
∆t,∅

minx
π(ku),u
ku

,∆t,∅
maxx

π(ku),u
ku

]
. Also, as u < t, and by Observation 2,

the range
[
∆t,∅

minx
π(ku),u
ku

,∆t,∅
maxx

π(ku),u
ku

]
⊆
[
∆t,∅

minx
π(kt),u
ku

,∆t,∅
maxx

π(kt),u
ku

]
. Further note that ∆x

π(kt),u
ku

lies in the same range,
[
∆t,∅

minx
π(kt),u
ku

,∆t,∅
maxx

π(kt),u
ku

]
.

Therefore,

E

[
2

3n2

∑

t−2q≤s<t
&s=prev(t,ks)

n∑

kt=1

Γ ·
(
x
π(ks),t
ks

− x
π(kt),t
ks

)2]

≤ 2Γ

3n2
· E
[∑

t−2q≤s<t
&s=prev(t,ks)

n∑

kt=1

[∑

t−2q≤u<t
&ku=ks

(
∆t,∅

spanx
π(kt),u
ku

)]2]

≤ 2Γ · 2q
3n2

· E
[n∑

kt=1

∑

t−2q≤u<t

(
∆t,∅

spanx
π(kt),u
ku

)2]
(by the Cauchy-Schwarz inequality)

≤ 4q

3n

∑

u∈[t−2q,t−1]

Γ · (Du)
2 =

ν1
15q

∑

s∈[t−2q,t−1]

Γ · (Ds)
2 (recall that ν1 =

20q2

n)

Proof of Claim 3. [Bounding Term A] We begin by observing:

E

[∑

t−2q≤s<t
& s=prev(t,ks)

n∑

kt=1

1

2n2Γ
·
(
g̃
π(kt),s
ks

− g
π(kt),t
ks

)2]

≤ E

[∑

t−2q≤s<t

n∑

kt=1

1

2n2Γ
·
(
g̃
π(kt),s
ks

− g
π(kt),t
ks

)2]
. (44)

Note that g̃
π(kt),s
ks

and g
π(kt),t
ks

are on the same path π(kt). The difference of these two values is

bounded by a sum of terms of the form Lkl0ks
·
∣∣∆x

π(kt),l0
kl0

∣∣, where l0 needs to satisfy two conditions:

1. l0 ∈ [s − 2q,max{s + q, t − 1}]; 2. If l0 ≥ t, Ul0 commits before Us reads coordinate xkl0 . As

t− 2q ≤ s < t, if l0 satisfies these conditions,
∣∣∆x

π(kt),l0
kl0

∣∣ ≤ max
{∣∣∆t,∅

minx
π(kt),l0
kl0

∣∣,
∣∣∆t,∅

maxx
π(kt),l0
kl0

∣∣
}
≤

48

∆t,∅
varx

π(kt),l0
kl0

. Thus

E

[∑

t−2q≤s<t

n∑

kt=1

1

2n2Γ
·
(
g̃
π(kt),s
ks

− g
π(kt),t
ks

)2]

≤ E

[∑

t−2q≤s<t

n∑

kt=1

1

n2Γ

((∑

l0∈[s−2q,max{s+q,t−1}]\{s}
Lkl0ks

∆t,∅
varx

π(kt),l0
kl0

)2

+
(
Lksks∆x

π(kt),s
ks

)2)]

≤ E

[∑

t−2q≤s<t

1

nΓ

((∑

l0∈[t−4q,t+q]\{s}
Lkl0ks

∆t,∅
varx

π,l0
kl0

)2
+
(
Lksks∆xπ,sks

)2
)]

(recall that π = π(kt).)

Then, using Lemma 11 for the first inequality, Γ ≥ Lmax for the second inequality, and Lemma 10
to bound Γ

(
Dt

)2
for the third inequality, yields

E

[∑

t−2q≤s<t
& s=prev(t,ks)

n∑

kt=1

1

2n2Γ
·
(
g̃
π(kt),prev(t,ks)
ks

− g
π(kt),t
ks

)2]

≤ ν3Γ

qn

∑

t−2q≤s<t

∑

r∈[t−7q,t+q]\{s}

[(
Dr

)2
+
(
∆X

r

)2]
+

∑

t−2q≤s<t

ν4Γ

n

[(
Ds

)2
+
(
∆X

s

)2]

+
∑

t−2q<s<t

L2
max

nΓ2
· Γ
(
∆X

s

)2
(as Lksks ≤ Lmax)

≤ 2(ν3 + ν4)

n
· Γ

∑

s∈[t−7q,t+q]\{t}

[(
Ds

)2
+
(
∆X

s

)2]
+

2ν3
n
· Γ
[(
Dt

)2
+
(
∆X

t

)2]

+
Γ

n

∑

s∈[t−2q,t−1]

(
∆X

s

)2

≤ 2(ν3 + ν4)

n
· Γ

∑

s∈[t−7q,t+q]\{t}

[(
Ds

)2
+
(
∆X

s

)2]
+

Γ

n

∑

s∈[t−2q,t−1]

(
∆X

s

)2

+
2ν3
n
· Γ
(ν1
q

+
ν2
q

) ∑

s∈[t−5q,t+q]\{t}

[(
Ds

)2
+
(
∆X

s

)2]
+

2ν3
n
· Γ
(
∆X

t

)2
.

Proof of Claim 6. [Bounding Term C]

E

[
Γ

2n2

∑

t−2q≤s<t
&s=prev(t,ks)

n∑

kt=1

(
∆x

π(kt),s
ks

)2]
≤ E

[
Γ

2n

∑

t−2q≤s<t

(
∆xπ,sks

)2
]

≤ Γ

2n

∑

t−2q≤s≤t−1

(
∆X

s

)2
.

49

Proof of Claim 4. [Bounding Term D] We bound the term

E

[
2

3Γn2

∑n
k=1

∑n
kt=1 ·

(
g
π(k),t
k − g

π(kt),t
k

)2]
. We will use the term g

π(k),t−2q
k as an intermediary to

allow us to compare values on two different paths, as follows.

2

3

(
g
π(k),t
k − g

π(kt),t
k

)2
≤ 4

3

(
g
π(k),t
k − g

π(k),t−2q
k

)2
+

4

3

(
g
π(k),t−2q
k − g

π(kt),t
k

)2

≤ 4

3

(
g
π(k),t
k − g

π(k),t−2q
k

)2
+

4

3

(
g
π(kt),t−2q
k − g

π(kt),t
k

)2
, (45)

as g
π(k),t−2q
k = g

π(kt),t−2q
k since the gradients at xπ,t−2q do not depend on update Ut.

For the first term on the RHS of (45), we apply Lemma 11 for the third inequality, and then
apply Lemma 10 to bound the (Dt)

2 term which was generated by Lemma 11, as follows.

E

[
1

n

n∑

k=1

4

3

(
g
π(k),t
k − g

π(k),t−2q
k

)2]
≤ E

[
1

n

n∑

k=1

4

3

(∑

t−2q≤l0≤t−1

Lkl0k
∆x

π(k),l0
kl0

)2]

≤ E

[
1

n

n∑

k=1

4

3

(∑

t−2q≤l0≤t−1

Lkl0k
∆varx

π(k),l0
kl0

)2]

≤ 4ν3Γ
2

3q

∑

s∈[t−7q,t+q]\{t}

[
(Ds)

2 +
(
∆X

s

)2]
+

4ν4Γ
2

3

[(
Dt

)2
+
(
∆X

t

)2]

≤ 4ν3Γ
2

3q

∑

s∈[t−7q,t+q]\{t}

[(
Ds

)2
+
(
∆X

s

)2]

+
4ν4Γ

2

3
·
(
ν1
q

+
ν2
q

) ∑

s∈[t−5q,t+q]\{t}

[(
Ds

)2
+
(
∆X

s

)2]
+

4ν4Γ
2

3
·
(
∆X

t

)2
. (46)

For the second term on the RHS of (45), for t− 2q ≤ s ≤ t − 1, as ∆x
π(kt),s
ks

and ∆
t,{t}
maxx

π(kt),s
ks

are in the range
[
∆t,∅

minx
π(kt),s
ks

,∆t,∅
maxx

π(kt),s
ks

]
, by recentering and by the Cauchy-Schwarz inequality,

4

3

(
g
π(kt),t−2q
k − g

π(kt),t
k

)2
=

4

3

(∑

s∈[t−2q,t−1]

Lks,k∆x
π(kt),s
ks

)2

=
16

3
q

∑

s∈[t−2q,t−1]

L2
ks,k

((
∆t,∅

spanx
π(kt),s
ks

)2
+
(
∆t,{t}

maxx
π(kt),s
ks

)2)
.

This yields

E

[
1

n2

n∑

k=1

n∑

kt=1

4

3

(
g
π(kt),t−2q
k − g

π(kt),t
k

)2]

≤ E

[
1

n2

n∑

kt=1

n∑

k=1

16

3
q

∑

s∈[t−2q,t−1]

L2
ks,k

((
∆t,∅

spanx
π(kt),s
ks

)2
+
(
∆t,{t}

maxx
π(kt),s
ks

)2)]

≤ E

[
1

n2

n∑

kt=1

16

3
q

∑

s∈[t−2q,t−1]

L2
res

((
∆t,∅

spanx
π(kt),s
ks

)2
+
(
∆t,{t}

maxx
π(kt),s
ks

)2)]
.

50

By Lemma 9,
(
∆t,∅

spanx
π(kt),s
ks

)2
≤
(
∆spanx

π(kt),s
ks

)2
and

(
∆

t,{t}
maxx

π(kt)
ks

)2
≤ 2

(
∆spanx

π(kt),s
ks

)2
+

2
(
∆x

π(kt),s
ks

)2
. Thus,

E

[
1

n2

n∑

k=1

n∑

kt=1

4

3

(
g
π(kt),t−2q
k − g

π(kt),t
k

)2]
≤ 16qL2

res

n

∑

s∈[t−2q,t−1]

((
Ds

)2
+
(
∆X

s

)2)

≤ 2ν2Γ
2

3q

∑

s∈[t−2q,t−1]

((
Ds

)2
+
(
∆X

s

)2)
. (47)

Combining (45), (46) and (47) yields the result.

Claim 7. The term G in (13) is bounded by 1
q

[
2r
3 + 3r2

1280 + 9r3

25600 + 3r2

1−r +
r3

426(1−r) +
r4

2844(1−r)

]
.

Proof. Recall that r = 160q2

n ·
(
L2
res

Γ2 + 1
)

(see the second paragraph of Section 4.2.3). As stated

before Lemma 10, ν1 = 20q2

n , ν2 =
24q2L2

res

nΓ2 , and as stated before Lemma 11, ν3 = 3
16

(
r2

1−r + r
)
,

ν4 =
6r
1−r . Also, note that 1

n ≤
q
n as q ≥ 1, ν1 + ν2 ≤ 3r

20 , and ν2 +
24q2

n = 3r
20 .

max

{
ν1
15q

,
3

2n

}
+

8ν2
11q

+
2(ν3 + ν4)

n
+

7ν3
3q

+

(
2ν3
nq

+
7ν4
3q

)
(ν1 + ν2)

≤ 1

q

[
max

{
ν1
15

,
3q2

2n

}
+

8ν2
11

+

(
3

4

(
r2

1− r
+ r

)
+

24r

1− r

)
r

320
+

7

16

(
r2

1− r
+ r

)

+

(
3

4

(
r2

1− r
+ r

)
r

320
+

14r

1− r

)
3r

20

]

≤ 1

q

[
r

(
1

9
+

7

16

)
+ r2

3

1280
+ r3

9

25600
+

r2

1− r

(
3

40
+

7

16
+

21

10

)

+
r3

1− r

(
3

1280

)
+

r4

1− r

(
9

25600

)]

≤ 1

q

[
2r

3
+

3r2

1280
+

9r3

25600
+

3r2

1− r
+

r3

426(1 − r)
+

r4

2844(1 − r)

]
.

A.6 Proofs for the Amortized Analysis, Section 4.3: Theorem 3 and Lemma 13

The following lemma is key to the demonstration of progress in both the strongly convex and convex
cases.

For any t ≥ 1, we define: PRG(t) ,

n∑

k=1

Ŵk(∇kf(x
t), xtk).

We will use the following lemma from [25, Lemmas 4,6]. The version we present here is slightly
different from the one in [25], but the proofs are essentially the same.

Lemma 24 ([25, Lemmas 4,6]).
(a) Suppose that f, F are strongly convex with parameters µf , µF > 0 respectively, and suppose that
Γ ≥ µf . Then

PRG(t) ≥ µF

µF + Γ− µf
· F (xt).

51

(b) Suppose that f, F are convex functions. Suppose that R := minx∗∈X∗ ‖xt − x∗‖ <∞. Then

PRG(t) ≥ min
{1
2
,
F (xt)

2ΓR2

}
· F (xt).

Proof of Theorem 3. We begin by showing (i). By assumption (c) and Lemma 24(a),

H(t)−H(t+ 1) ≥
[α
n
· E
[
PRG(t)

]
+

β

n
·A+(t)

]

≥
[α
n
· µF

µF + Γ− µf
· E
[
F (xt)

]
+

β

n
· A+(t)

]
≥ δ ·H(t),

where δ , min
{
α
n ·

µF

µF+Γ−µf
, βn
}
.

Thus H(t + 1) ≤ (1− δ)H(t) for all t ≥ 1. Iterating the above inequality T times yields
H(T + 1) ≤ (1− δ)T H(1).

To finish the proof note that since A+(1) = 0 and A−(1) ≥ 0, H(1) ≤ F (x1).

Now we show (ii). By the second assumption, Lemma 24 and the fact that E[X2] ≥ E[X]2,

H(t)−H(t+ 1)

≥
[α
n
· E
[
PRG(t)

]
+

β

n
· A+(t)

]
≥
[α
n
·min

{
1

2
,
E[F (xt)]

2ΓR2

}
· E[F (xt)] +

β

n
· A+(t)

]
.

We consider two cases:

• If E[F (xt)] ≤ A+(t), then A+(t) ≥ H(t)
2 , thus

α

n
·min

{
1

2
,
E[F (xt)]

2ΓR2

}
· E[F (xt)] +

β

n
·A+(t) ≥ β

2n
·H(t).

• If E[F (xt)] > A+(t), then E[F (xt)] > H(t)
2 , thus

α

n
·min

{
1

2
,
E[F (xt)]

2ΓR2

}
· E[F (xt)] +

β

n
·A+(t) >

α

2n
·min

{
1

2
,
H(t)

4Γ R2

}
·H(t).

Since H is a decreasing function, H(t) ≤ H(1) ≤ F (x1). Thus, unconditionally,

α

n
·min

{
1

2
,
E[F (xt)]

2ΓR2

}
· E[F (xt)] +

β

n
·A+(t) ≥ min

{
β

2n
,
α

4n
,
α ·H(t)

8nΓR2

}
·H(t)

≥ min

{
β

2n · F (x1)
,

α

4n · F (x1)
,

α

8nΓR2

}
·H(t)2.

Note that the term min
{

β
2n F (x1)

, α
4nF (x1)

, α
8nΓR2

}
is independent of t. We denote it by ε. Thus,

H(t)−H(t+ 1) ≥ ε H(t)2. Dividing both sides by H(t) ·H(t+ 1) yields

1

H(t+ 1)
− 1

H(t)
≥ ε

H(t)

H(t+ 1)
≥ ε.

Iterating the above inequality T times yields
1

H(T + 1)
− 1

H(1)
≥ εT,

and hence
1

H(T + 1)
≥ εT +

1

H(1)
≥ εT +

1

F (x1)
. (since H(1) ≤ F (x1))

(ii) follows by taking the reciprocal on both sides of the above inequality.

52

Proof of Lemma 13. By calculation,

A+(t)−A+(t+ 1) =

t−1∑

s=t−7q

1(
1− 1

3n

)
[
c
(
Ds

)2
+ c
(
∆X

s

)2]

+

t−1∑

s=t−7q+1

s+7q∑

v=t+1

1

3n

1
(
1− 1

3n

)v−t+1

[
c
(
Ds

)2
+ c
(
∆X

s

)2]

−
t+7q∑

v=t+1

1
(
1− 1

3n

)v−t

[
c
(
Dt

)2
+ c
(
∆X

t

)2]

=
1

3n
A+(t) +

t−1∑

s=t−7q

[
c
(
Ds

)2
+ c
(
∆X

s

)2]

−
t+7q∑

v=t+1

1
(
1− 1

3n

)v−t

[
c
(
Dt

)2
+ c
(
∆X

t

)2]

A−(t+ 1)−A−(t) =
t+q∑

v=t+1

[
c (Dv)

2 + c
(
∆X

v

)2]−
t−1∑

s=t−q

[
c (Dt)

2 + c
(
∆X

t

)2]
.

Therefore
[(

1− 1

3n

)
A+(t)−A−(t)

]
−
[
A+(t+ 1)−A−(t+ 1)

]

=

t−1∑

s=t−7q

[
c
(
Ds

)2
+ c
(
∆X

s

)2]−
t+7q∑

v=t+1

1
(
1− 1

3n

)v−t

[
c
(
Dt

)2
+ c
(
∆X

t

)2]

+

t+q∑

v=t+1

[
c
(
Dv

)2
+ c
(
∆X

v

)2]−
t−1∑

s=t−q

[
c
(
Dt

)2
+ c
(
∆X

t

)2]

=
∑

s∈[t−7q,t+q]\{t}

[
c
(
Ds

)2
+ c
(
∆X

s

)2]

−
(t+7q∑

v=t+1

1
(
1− 1

3n

)v−t + q

)[
c
(
Dt

)2
+ c
(
∆X

t

)2]
. (48)

In order to achieve (17), we compare the coefficients of each of the terms c (Dt)
2, c

(
∆X

t

)2
, c (Ds)

2,

c
(
∆X

s

)2
in (17) and (48). Since c = ̟+ (γ +̟)

(
ν1
q + ν2

q

)
Γ the coefficient of (Ds)

2 and
(
∆X

s

)2
in

(48) is at least as big as in (17). Therefore, it suffices to have the coefficients of (Dt)
2 and

(
∆X

t

)2
satisfy the following inequalities.

γ ≥ c

Γ
·
[7q∑

i=1

1
(
1− 1

3n

)i + q

]

=
1

q
[q̟ + (γ +̟) (ν1 + ν2)] ·

[
3n

(
1

(
1− 1

3n

)7q+1 −
1

1− 1
3n

)
+ q

]

53

and ̺−̟ ≥ 1

q
[q̟ + (γ +̟)(ν1 + ν2)] ·

[
3n

(
1

(
1− 1

3n

)7q+1 −
1

1− 1
3n

)
+ q

]
.

If 7q < 3n − 2, then by the fact that (1 + x)s ≤ 1 + sx
1−(s−1)x for any x < 1

s−1 and s ≥ 1,

3n

(
1

(
1− 1

3n

)7q+1 −
1

1− 1
3n

)
+ q ≤ 3n

[(
1 +

1

3n− 1

)7q+1
− 3n

3n− 1

]
+ q

≤ 3n

[
1 +

(7q + 1)
(

1
3n−1

)

1− 7q
3n−1

− 1

]
+ q

≤ 3n

(
7q + 1

3n− 1− 7q

)
+ q ≤ 14q + 2 + q,

if 3n
3n−1−7q ≤ 2, i.e., if 7q ≤ n− 1.

Then it suffices that γ ≥ 1

q
[q̟ + (γ +̟)(ν1 + ν2)] (15q + 2)

and ̺−̟ ≥ 1

q
[q̟ + (γ +̟)(ν1 + ν2)] (15q + 2).

Recall that ν1 = 20q2

n ≤ r
8 and ν2 =

24q2L2
res

nΓ2 ≤ r
6 , ̺ = 1

8 − 15r
1−r (see the first line of Section 4.3),

and ̟ = 1
q

[
2r
3 + 3r2

1280 + 9r3

25600 + 3r2

1−r +
r3

426(1−r) +
r4

2844(1−r)

]
. One choice of values that suffices is

γ = ̺−̟ and r ≤ 1
225 .

54

A Table of Definitions and Parameters

Notation / Definition / Description First

Parameter Appearance

F : Rn → R F (x) = f(x) +
∑n

k=1Ψk(xk)

f : Rn → R F is the convex function we Abstract

Ψk : R→ R want to minimize.

ej the unit vector along coordinate j

Definition 1

Ljk |∇kf(x+ r · ej)−∇kf(x)| ≤ Ljk · |r|
Lres ||∇f(x+ r · ej)−∇f(x)|| ≤ Lres · |r|

Lres Lres , maxk

(∑n
j=1(Lkj)

2
)1/2

Lmax
Lmax , maxj,k Ljk

if f is twice differentiable, then Lmax = maxj Ljj

µf , µF

strong convexity parameters of f, F

f(y)− f(x) ≥ 〈∇f(x), y − x〉+ 1
2µf ||y − x||2 Definition 2

F (y)− F (x) ≥ 〈∇F (x), y − x〉+ 1
2µF ||y − x||2

Ut the t-th update (in the SCC order)

Γ parameter used in the update rule

Wj(d, g, x) Wj(d, g, x) , gd+ Γd2/2 + Ψj(x+ d)−Ψj(x)

Ŵj(g, x) Ŵj(g, x) , maxd W (d, g, x) Near

d̂j(g, x) d̂j(g, x) , argmaxdW (d, g, x) Eqn. (1)

asynchronous xt+1
j ← xtj + d̂j(g̃j , x

t
j),

update rule where g̃j is the (inaccurate) measured gradient.

q

the updates that can interfere with the update

at time t in the ST order are those that Assumption 4

commit at times t+ 1, t+ 2, · · · , t+ q

∆xπ,tkt
the increment computed by the t-th update on path π Near Lemma 1

kt the coordinate that is updated at time t Beginning

gtk
gtk , ∇kf(x

t) of

accurate gradient along coordinate k at time t Section 3

π a root-to-leaf path in the branching tree

π(k, t)
the root-to-leaf path with time t Beginning of

coordinate on path π replaced by coordinate k Section 3.2

π(kt, t) π(kt, t) = π

•π,t for any variable •, •π,t denotes its value
at time t along the path π

55

Notation / Definition / Description First

Parameter Appearance

Aπ,u
Aπ,u = {r|u− 4q ≤ r < u− 2q and Ur has committed

Section 4.2.1

before some Up for p ≤ u− 4q − 1}

∆u,R,S
max xπ,sks

see the table in the next page

∆u,R
maxx

π,s
ks

∆u,R
maxx

π,s
ks

, maxS ∆u,R,S
max xπ,sks

∆u,R
spanx

π,s
ks

∆u,R
spanx

π,s
ks

, ∆u,R
maxx

π,s
ks
−∆u,R

minx
π,s
ks

∆u
maxx

π,s
ks

∆u
maxx

π,s
ks

, ∆u,∅
maxx

π,s
ks

∆u,R
var x

π,s
ks

∆u,R
var x

π,s
ks

, max
{
∆u,R

spanx
π,s
ks

,
∣∣∆u,R

maxx
π,s
ks

∣∣,
∣∣∆u,R

minx
π,s
ks

∣∣}

Section 4.2.1

∆
R
maxx

π,s
ks

∆
R
maxx

π,s
ks

, maxs−q≤t≤s∆
t,R
maxx

π,s
ks

∆
R
spanx

π,s
ks

∆
R
spanx

π,s
ks

, ∆
R
maxx

π,s
ks
−∆

R
minx

π,s
ks

∆
R
varx

π,s
ks

∆
R
varx

π,s
ks

, max
{
∆

R
spanx

π,s
ks

,
∣∣∆R

maxx
π,s
ks

∣∣,
∣∣∆R

minx
π,s
ks

∣∣}

∆maxx
π,s
ks

∆maxx
π,s
ks

, ∆
∅
maxx

π,s
ks

∆spanx
π,s
ks

∆spanx
π,s
ks

, ∆
∅
spanx

π,s
ks

∆varx
π,s
ks

∆varx
π,s
ks

, ∆
∅
varx

π,s
ks

g̃u,R,S,π,s
max,ks

see the next table

g̃u,R,π,s
max,ks

g̃u,R,π,s
max,ks

= maxS⊆[u−4q,u+q]\(Aπ,u∪{s}) g̃
u,R,S,π,s
max,ks

gR,π,s
max,ks

gR,π,s
max,ks

= maxs−q≤u≤s g̃
u,R,π,s
max,ks

gπ,smax,ks
gπ,smax,ks

= g∅,π,smax,ks

gπ,sspan,ks
gπ,sspan,ks

, gπ,smax,ks
− gπ,smin,ks

(Dt)
2 (Dt)

2
, E

[(
∆maxx

π,t
kt
−∆minx

π,t
kt

)2]
Section 4.2.1

(
∆X

t

)2 (
∆X

t

)2
, E

[(
∆xπ,tkt

)2]

The time of the most recent update to

prev(t, k) coordinate k, if any, in the time range Lemma 7

[t− 2q, t− 1]; otherwise, we set it to t.

ν1, ν2 ν1 ,
20q2

n and ν2 ,
24q2L2

res

nΓ2 Lemma 10

56

Notation / Definition / Description First

Parameter Appearance

Λ, r Λ ,
L2
res

Γ2 + 1 and r ,
160q2

n · Λ2

Lemma 11
ν3, ν4 ν3 ,

3
16

(
r2r
1−r + r

)
and ν4 ,

6r
1−r

Vm Eqn. (20)

∆̃tm−1xπ,sks
Before Observation 1

̟ ̟ , 1
q

[
2r
3 + 3r2

1280 + 9r3

25600 + 3r2

1−r +
r3

426(1−r) +
r4

2844(1−r)

]
Lemma 12

̺ ̺ , 1
8 − 15r

1−r Section 4.3

γ a parameter introduced for amortization Eqn. (16)

c c , ̟ + (γ +̟)
(
ν1
q + ν2

q

)
Lemma 13

For any set R,S ⊂ [u− 4q, u+ q] \Aπ,u ∪ {s}, when the first (u− 4q − 1) updates on

path π have been fixed, and update Uv is excluded from the computation of Us for

v ∈ R ∪ S and for v > u+ q; for all r ∈ Aπ,u, the value of the update Ur is already fixed,

then:

∆u,R,S
max xπ,sks

, the maximum value that ∆xπ,sks
can assume

g̃u,R,S,π,s
max,ks

, the maximum value of g̃π,sks
can assume

57

	1 Introduction
	2 Model and Main Results
	2.1 Results

	3 The Basic Framework
	3.1 Classical Analysis of Stochastic Sequential Coordinate Descent
	3.2 Warm-up: A Simple Analysis for the Strongly Convex Case with the Strong Common Value Assumption

	4 The Framework for the General Analysis
	4.1 Part 1: Demonstrating Substantial Progress
	4.2 Part 2: Bounding Errt, the Error Term
	4.2.1 Additional Notation
	4.2.2 Bounding (Dt)2 = E[to1.5.(span x,tkt)2]to1.5.
	4.2.3 Gradient Bounds
	4.2.4 Finalizing the bound on Errt

	4.3 Part 3: The Amortization

	A Omitted Proofs and Subsidiary Lemmas
	A.1 The Basic Progress Lemmas, Lemmas 2 and 3
	A.2 The Expected Progress, Lemma 5
	A.3 Bounding How Much W"0362W and d"0362d Vary as a Function of Their Arguments
	A.4 The Recursive Analysis yielding a proof of Lemma 11
	A.5 The Claims from Section 4.2.4
	A.6 Proofs for the Amortized Analysis, Section 4.3: Theorem 3 and Lemma 13

