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Abstract. Let G be an n-node graph without two disjoint odd cycles. The algo-
rithm of Artmann, Weismantel and Zenklusen (STOC’17) for bimodular integer
programs can be used to find a maximum weight stable set in G in strongly poly-
nomial time. Building on structural results characterizing sufficiently connected
graphs without two disjoint odd cycles, we construct a size-O(n2) extended for-
mulation for the stable set polytope of G.

1 Introduction

It is a classic result that integer programs with a totally unimodular constraint matrix
A are solvable in strongly polynomial time. Very recently, Artmann, Weismantel and
Zenklusen [1] generalized this to bimodular matrices A. These include all matrices with
all subdeterminants in {−2,−1,0,1,2}. As noted in [1], this has consequences for the
maximum weight stable set problem in graphs as follows.

Let STAB(G) be the stable set polytope of a graph G and note that

STAB(G) = conv{x ∈ {0,1}V (G) ∣Mx ⩽ 1},

where M ∈ {0,1}E(G)×V (G) is the edge-node incidence matrix of G. It is well-known
that the maximum absolute value of a subdeterminant of M is equal to 2ocp(G), where
ocp(G) is the maximum number of (node-)disjoint odd cycles of G (see [11]). Therefore,
the bimodular algorithm of [1] can be used to efficiently compute a maximum weight
stable set in a graph without two disjoint odd cycles.

Although the bimodular algorithm is extremely powerful, it provides limited insight
on which properties of graphs with ocp(G) ⩽ 1 are relevant to derive efficient algorithms
for graphs with higher odd cycle packing number. Indeed, in light of recent work link-
ing the complexity and structural properties of integer programs to the magnitude of
its subdeterminants [18,9,19,4,10,1,15], it is tempting to believe that integer programs
with bounded subdeterminants can be solved in polynomial time. This would imply in
particular that the stable set problem on graphs with ocp(G) ⩽ k is polynomial for every
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fixed k. Conforti, Fiorini, Huynh, Joret, and Weltge [7] recently proved this is true under
the additional assumption that G has bounded (Euler) genus.5

Furthermore, by itself the bimodular algorithm does not imply any linear description
of the stable set polytope of graphs G with ocp(G) = 1. It turns out that for such graphs,
STAB(G) may have many facets with high coefficients that do not seem to allow a
“nice” combinatorial description in the original space. While stable set polytopes have
been studied for several classes of graphs, very little is known about STAB(G) when
ocp(G) = 1.

Our main result is to show that every such stable set polytope admits a compact
description in an “extended” space. An extended formulation of a polyhedron P is a
description of the form P = {x ∣ ∃y ∶ Ax+By ⩽ b} whose size is the number of inequalities
in Ax +By ⩽ b. The extension complexity of P , denoted xc(P ), is the minimum size of
an extended formulation of P . Our main result is the following.

Theorem 1. For every n-node graph G with ocp(G) ⩽ 1, STAB(G) admits a size-
O(n2) extended formulation. Moreover, this extended formulation can be constructed in
polynomial time.

Note that this does not follow from the main result of [1]. As noted in [5, Thm. 5.4],
integer hulls of bimodular integer programs can have exponential extension complexity.
Moreover, Theorem 1 also does not follow from [7] since here we are dealing with arbitrary
graphs G with ocp(G) ⩽ 1.

Our proof is based on a characterization of graphs with ocp(G) ⩽ 1 due to Lovász (see
Seymour [16]). Kawarabayashi and Ozeki [12] later gave a short, purely graph-theoretical
proof of the same result. Before stating Lovász’ theorem, we need a few more definitions.

The odd cycle transversal number of a graph G, denoted oct(G), is the minimum size
of a set of nodes X such that G −X is bipartite. The projective plane is the surface ob-
tained from a closed disk by identifying antipodal points on its boundary. An embedding
of a graph G in a surface is an even-face embedding if every face of G is an open disk
bounded by an even cycle of G. We point out that graphs that are even-face embedded in
a surface are in particular 2-connected, since the embedding yields an ear-decomposition.

Theorem 2 (Lovász, cited in [16]). Let G be a 4-connected graph with ocp(G) ⩽ 1.
Then

(i) oct(G) ⩽ 3, or
(ii) G has an even-face embedding in the projective plane.

Note that if a graph G satisfies (i) of Theorem 2, then STAB(G) has a linear-size
extended formulation since it is the convex hull of the union of at most eight polytopes
described by nonnegativity and edge constraints. If G is 4-connected and satisfies (ii),
we will show that STAB(G) admits a quadratic-size extended formulation. To this end,
we will consider an affine mapping of STAB(G) into the edge space R

E(G). This novel
view allows us to identify points in R

V (G) with circulations in a certain orientation of the
dual graph of G, which can be compactly described using extended formulations. This

5 The Euler genus of graph G is the minimum of ∣E(G)∣ − ∣V (G)∣ − ∣F (G)∣ − 2, taken over all
embeddings of G in a (orientable or non-orientable) surface, where F (G) denotes the set of
faces of G with respect to the embedding.
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approach has been also taken in [7], where related embeddings of graphs on surfaces
with higher genus were considered. As even-face embeddings refer to a slightly different
notion and since the projective plane allows for much more direct arguments, we provide
a self-contained proof here. This yields the proof of Theorem 1 for the case of 4-connected
graphs.

For non-4-connected graphs with ocp(G) ⩽ 1 we have to address their decomposition
in a non-trivial manner. We will deal with polyhedral aspects of performing 2- and
3-sums, by exploiting special properties of such graphs. We remark that for arbitrary
graphs, performing multiple k-sums does not preserve small extended formulations for
the respective stable set polytopes, even for k = 2. Note that our definition of k-sums
allows some edges of the clique to be deleted (which is necessary for the proofs). If no
edges of the clique are deleted during a k-sum, then it is well-known that small extended
formulations are preserved by Chvátal’s clique cutset lemma [6, Theorem 4.1].

Our polyhedral analysis also crucially relies on new insights about STAB(G) that
hold for all graphs G. For example, the structure of facets of stable set polytopes (see
Lemma 20), and the transformation of STAB(G) into the edge space. We believe that
this perspective can be equally beneficial for future investigations of (general) stable set
polytopes.

Each step of our proof can be executed in polynomial time, and therefore the extended
formulation can be constructed in polynomial time. Moreover, our proof can also be
turned into a direct, purely graph-theoretic strongly polynomial time algorithm for the
stable set problem in graphs G with ocp(G) ⩽ 1.

Outline In Section 2, we build on Theorem 2 and its signed version due to Slilaty [17] to
describe the structure of graphs without two disjoint odd cycles. Roughly, we prove that
each such graph G either has oct(G) ≤ 3 or can be obtained from a graph H0 having an
even-face embedding in the projective plane by gluing internally disjoint bipartite graphs
T1, . . . , Tℓ “around” H0 in a certain way. Section 3 contains a proof of Theorem 1 for
the case of graphs with an even-face embedding in the projective plane. The general case
is treated in Sections 4 and 5 by a delicate argument using certain gadgets H1, . . . , Hℓ

“simulating” the bipartite graphs T1, . . . , Tℓ.

2 The structure of graphs without two disjoint odd cycles

In this section we show that every graph without two disjoint odd cycles either has
a small odd cycle transversal or has a structure that we will exploit later. For this
purpose we use the notion of separations. A k-separation of a graph G is an ordered pair
(G0,G1) of edge-disjoint subgraphs of G with G = G0 ∪G1, ∣V (G0) ∩ V (G1)∣ = k, and
E(G0),E(G1), V (G1)∖V (G0), V (G0)∖V (G1) all non-empty. We say that a k-separation
is linked if for all distinct nodes u, v of V (G0) ∩ V (G1) there exists a u–v path in G1

whose internal nodes are disjoint from G0.

Definition 3. A star structure of a graph G is a set of subgraphs H0, T1, . . . , Tℓ of G

such that for all i ∈ [ℓ]: Ti is bipartite, (H0 ∪j≠i Tj, Ti) is a linked k-separation of G with
k ⩽ 3, and V (Ti) ∩ V (Tj) ⊆ V (H0) for all j ≠ i.

For our structural result we will also use the notion of signed graphs. A signed graph
is a pair (G,Σ) where G is a graph and Σ ⊆ E(G). A subgraph of G is said to be Σ-odd if
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Fig. 1. A star structure.

it contains an odd number of edges in Σ, and is Σ-even otherwise. The odd cycle packing
number of a signed graph (G,Σ) is the maximum number of disjoint Σ-odd cycles in(G,Σ), and is denoted by ocp(G,Σ). A signed graph (G,Σ) is balanced if ocp(G,Σ) = 0.
The odd cycle transversal number of (G,Σ) is the minimum number of nodes in (G,Σ)
intersecting every Σ-odd cycle in (G,Σ), and is denoted by oct(G,Σ). An embedding
of a signed graph (G,Σ) in a surface is an even-face embedding if every face of (G,Σ)
is an open disk bounded by a Σ-even cycle of (G,Σ). Graphs in this section may have
parallel edges.

In the definition below, ⊎ is used to denote the edge-disjoint union of graphs.

Definition 4. Let G be a graph with star structure H0, T1, . . . , Tℓ. For each i ∈ [ℓ], let
Si = V (H0) ∩ V (Ti) and note that there is a signed clique (Ki,Σi) with V (Ki) = Si

such that (Ki⊎Ti,Σi⊎E(Ti)) is balanced. The signed graph (H+,Σ) is then defined via
H+ ∶= H0⊎K1⊎ ⋅ ⋅ ⋅⊎Kℓ and Σ ∶= E(H0)⊎Σ1⊎ ⋅ ⋅ ⋅⊎Σℓ.

The structural result is the following.

Theorem 5. Let G be a graph with ocp(G) = 1 and oct(G) ⩾ 4. Then G admits a star
structure H0, T1, . . . , Tℓ, such that S1, . . . , Sℓ and (H+,Σ) from Definition 4 have the
following properties:

– Si is not a subset of Sj for all distinct i, j ∈ [ℓ],
– (H+,Σ) has an even-face embedding in the projective plane, and
– the nodes of each Si are on the boundary of some face of the embedding.

In order to obtain the above statement, we will use a finer version of Theorem 2 that
is suited for signed graphs, due to Slilaty [17]. The latter result was previously known
by Gerards, Lovász, and others, but [17] is the first time it appears in print.

Theorem 6 (Slilaty [17]). Let (G,Σ) be a 4-connected signed graph with ocp(G,Σ) ⩽
1. Then

(1) oct(G,Σ) ⩽ 3 or
(2) (G,Σ) has an even-face embedding in the projective plane.

Lemma 7. Let G be a graph with star structure H0, T1, . . . , Tℓ and let (H+,Σ) be as in
Definition 4. Then ocp(H+,Σ) = ocp(G) and oct(H+,Σ) ⩾ oct(G).
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Proof. Let (K1,Σ1), . . . , (Kℓ,Σℓ) be as in Definition 4. We first show ocp(H+,Σ) ⩽
ocp(G). Let C1, . . . ,Ck be disjoint Σ-odd cycles in (H+,Σ). For each j ∈ [k] we will
construct an odd cycle C′j in G by performing the following modifications to Cj for each
i ∈ [ℓ]. First observe that Cj contains at most two edges from Ki. Otherwise, Cj = Ki

since ∣V (Ki)∣ ⩽ 3, which contradicts that (Ki,Σi) is balanced. If Cj uses only one edge
uv of Ki, we replace uv by a u–v path Pi in Ti whose internal nodes are disjoint from
V (Ki). Note that Pi exists since the separation (H0 ∪h≠i Th, Ti) is linked. If Cj uses two
edges from Ki, say uv and vw, we replace {uv, vw} by a u–w path Pi in Ti. Again, Pi

exists by linkedness. If Cj is edge-disjoint from Ki, we make no modification to Cj for i

and set Pi = ∅. Since (Ki ⊎Ti,Σi ⊎E(Ti)) is balanced, ∣E(Pi)∣ and ∣E(Cj)∩E(Ki)∩Σ∣
have the same parity. Therefore, ∣E(C′j)∣ and ∣E(Cj) ∩ Σ∣ have the same parity, and
so C′j is odd. Finally, the cycles C′1, . . . ,C

′
k are still disjoint since for each i ∈ [ℓ] there

is at most one cycle Cj that contains an edge from Ki (due to ∣V (Ki)∣ ⩽ 3). Thus,
ocp(H+,Σ) ⩽ ocp(G).

For the other inequalities, consider an arbitrary odd cycle C′ in G. By reversing the
construction from the previous paragraph, there exists a Σ-odd cycle C in (H+,Σ) with
V (C) ⊆ V (C′). It follows that ocp(H+,Σ) ⩾ ocp(G) and oct(H+,Σ) ⩾ oct(G). ⊓⊔

Proof of Theorem 5. Let G be a graph with ocp(G) = 1 and oct(G) ⩾ 4. Let H0, T1, . . . , Tℓ

be a star structure with (∣V (H0)∣, ℓ) lexicographically minimal. Note that such a star
structure exists since G is a star structure of itself.

Suppose there exist distinct i, j ∈ [ℓ] such that Sj ⊆ Si. Since ∣Si∣ ⩽ 3 and oct(G) ⩾ 4,
G − Si contains an odd cycle C. Note that C is not a subgraph of Ti ∪ Tj because Ti

and Tj are both bipartite and hence every odd cycle of Ti ∪ Tj must intersect Si. Since
ocp(G) ⩽ 1 this implies that Ti ∪ Tj is bipartite, a contradiction to the minimality of ℓ.

Suppose (H+,Σ) is not 4-connected. Let ((H1, Υ1), (H2, Υ2)) be a separation of(H+,Σ) with X ∶= V (H1) ∩ V (H2) and ∣X ∣ ⩽ 3. By Lemma 7, ocp(H+,Σ) = 1 and
oct(H+,Σ) ⩾ 4. Therefore, exactly one of (H1, Υ1) −X or (H2, Υ2) −X is balanced. By
symmetry, we may assume that (H2, Υ2) −X is balanced, and by taking ∣V (H2)∣ to be
minimal we may assume that ((H1, Υ1), (H2, Υ2)) is linked. Recall that (H+,Σ) arises
from H0 by adding (balanced) signed cliques (K1,Σ1), . . . , (Kℓ,Σℓ) corresponding to
the bipartite graphs T1, . . . , Tℓ. Replacing each (Ki,Σi) by the bipartite graph Ti, we see
that G admits a star structure H ′0, T

′
1, . . . , T

′
q where V (H ′0) = V (H1) , a contradiction to

the minimality of ∣V (H0)∣. Since ocp(H+,Σ) = 1 and oct(H+,Σ) ⩾ 4, Theorem 6 implies
that (H+,Σ) has an even-face embedding in the projective plane.

Suppose Si is not contained on the boundary of a face of the embedding for some
i ∈ [ℓ]. Since all nodes in Si are adjacent in (H+,Σ), this implies ∣Si∣ = 3. But now, Si is
a cutset of (H+,Σ), contradicting that (H+,Σ) is 4-connected. ⊓⊔

3 The projective planar case

In this section, we give a compact extended formulation for STAB(G) when G has an
even-face embedding in the projective plane. The results in this section follow from [7],
where graphs embedded in bounded genus surfaces are considered. However, to keep our
exposition self-contained, we include all proofs. Moreover, since the projective planar
case is devoid of many of the technical difficulties for the bounded genus case, we hope
that this section can serve as a gentler introduction to these techniques than [7].
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Our starting point is the unbounded polyhedron

P (G) ∶= conv{x ∈ ZV (G) ∣Mx ⩽ 1},
where M is the edge-node incidence matrix of G. Its relationship to STAB(G) is as
follows.

Lemma 8. For every graph G, STAB(G) = P (G) ∩ [0,1]V (G).
Thus, given an extended formulation for P (G) we only need to add at most 2∣V (G)∣

linear inequalities (describing [0,1]V (G)) to obtain one for STAB(G). To prove Lemma 8,
we exploit the following result.

Lemma 9. Let G be any graph, and let v0 be any fixed node of G. The projection of
P (G) onto the coordinates indexed by V (G − v0) equals P (G − v0).
Proof. To see that the projection of P (G) is contained in P (G− v0), it suffices to prove
that every integer point x ∈ P (G) projects to a point in P (G− v0). Let x′ ∈ ZV (G−v0) be
the projection of x. Then, for every edge vw in G− v0 we have x′v +x

′
w = xv +xw ⩽ 1 and

hence x′ ∈ P (G − v0), as claimed.
Conversely, let x′ ∈ ZV (G−v0) be any integer point in P (G − v0). Consider a point

x ∈ ZV (G) that projects to x′. By decreasing xv0 by a sufficiently large integer amount,
we may assume that xv +xw ⩽ 1 for all edges vw ∈ E(G). Hence, x is an integer point in
P (G). We conclude that the projection of P (G) contains P (G − v0). ⊓⊔

Proof of Lemma 8. It suffices to show that the polytope P (G)∩ [0,1]V (G) is integer. We
establish this claim by induction on the number of nodes of G. The statement is clearly
true if G consists of a single node. Now assume that G has at least two nodes, and the
statement holds for all proper induced subgraphs of G. We have to show that it holds
for G itself.

We may assume that G is connected. If not, then let G1 and G2 be disjoint and
proper induced subgraphs of G whose union is equal to G, and in particular P (G) =
P (G1) × P (G2). By the induction hypothesis we know that P (G1) ∩ [0,1]V (G1) and
P (G2) ∩ [0,1]V (G2) are integer and hence P (G) ∩ [0,1]V (G) = (P (G1) ∩ [0,1]V (G1)) ×(P (G2) ∩ [0,1]V (G2)) is integer as well.

Now consider any vertex x∗ of P (G) ∩ [0,1]V (G). Let V0 ⊆ V (G) denote the set of
nodes v such that x∗v = 0 and V1 ⊆ V (G) denote the set of nodes v such that x∗v = 1.

Let us first consider the case that V0 = ∅. We claim that also V1 = ∅. Suppose not, so
x∗v = 1 for some v ∈ V (G). Let w ∈ V (G) be a neighbor of v. Such a node exists since G

is connected and has at least two nodes. Since x∗w ⩾ 0 and x∗v +x
∗
w ⩽ 1, we obtain x∗w = 0,

a contradiction to V0 = ∅. So, in this case we would have 0 < x∗v < 1 for all v ∈ V (G),
implying that x∗ is a vertex of P (G). However, vertices of P (G) are integer and hence
we arrive at another contradiction.

Thus, there must exist a node v0 ∈ V0. By Lemma 9, the projection of x∗ onto the
coordinates indexed by V (G − v0) belongs to P (G − v0) ∩ [0,1]V (G−v0). By induction,
this projection can be expressed as a convex combination of 0/1-points in P (G − v0).
Thus, there exist stable sets S1, . . . , Sk of G − v0 and coefficients λ1, . . . , λk ∈ R⩾0 such
that ∑i λi = 1 and

x∗v = ∑
i∶v∈Si

λi
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for all v ∈ V (G − v0). Since x∗v0 = 0, the equation above also holds for v = v0. Now, every
stable set of G − v0 is also a stable set of G. It follows that x∗ is a convex combination
of 0/1-points in P (G). ⊓⊔

Thus, it suffices to study P (G) instead of STAB(G). To this end, it is convenient to
switch from the node space of G to the edge space of G by considering the affine map
σ ∶ RV (G)

→ R
E(G) defined via

σ(x) ∶= 1 −Mx.

Under σ, a vector x ∈ RV (G) is mapped to y = σ(x) ∈ RE(G) where yvw = 1 − xv − xw for
every edge vw ∈ E(G). Since σ is invertible if and only if G has no bipartite component,
we can focus on Q(G) ∶= σ(P (G)).

We provide an extended formulation for Q(G), assuming that G is even-face embed-
ded in the projective plane. Let G∗ be the dual graph of G. An orientation D of the
edges of G∗ is called alternating if in the local cyclic ordering of the edges incident to
each dual node f , the edges alternatively leave and enter f . If G admits an alternating
orientation of its dual graph, we will relate the points in Q(G) to certain circulations in
D, which, as we will see, gives rise to a compact extended formulation.

Lemma 10. Let G be a non-bipartite graph that is even-face embedded in the projective
plane. Then the dual graph G∗ of G has an alternating orientation.

The proof of Lemma 10 relies on the fact that the parity of every cycle in G is
determined by a certain topological property of the cycle. Before going into more details,
we need the notion of a signature of an embedded graph.

Let G be a graph embedded in the projective plane. Each u ∈ V (G) has a neighbor-
hood that is a disk ∆u. By arbitrarily choosing one of the two orientations of each ∆u, we
obtain a local orientation at each u ∈ V (G). Now, take any edge e = vw, and let ∆e be a
disk containing e. The local orientations at v and w are either consistent or inconsistent
within ∆e. We define the signature Σ ⊆ E(G) as the set of edges e = vw such that the
local orientations at nodes v and w are inconsistent. Note that the signature depends on
the choice of local orientations. However, it turns out that all signatures are ‘equivalent’
in a sense which we now describe.

A cycle of G is said to be 1-sided if it is Σ-odd and 2-sided otherwise. Notice that
changing the local orientations at some nodes corresponds to resigning on a cut. There-
fore, the property of being 1-sided or 2-sided does not depend on the local orientations,
and only on the embedding of G. We point out that a cycle is 2-sided if and only if it
bounds a disk. This follows from the fact that in the projective plane, 2-sided cycles are
always surface separating. A proof of this fact and other basic properties of curves in the
projective plane can be found in [13].

Lemma 11. Let G be a non-bipartite graph that is even-face embedded in the projective
plane. Then a cycle of G is 2-sided if and only if it is even.

Proof. A cycle of G is a facial cycle if it is the boundary of a face of G. Let C be a
2-sided cycle of G. Then C bounds a closed disk ∆ in the projective plane. Observe that
E(C) is the symmetric difference of all E(F ), where F ranges over all facial cycles of G
contained in ∆. Since G is even-face embedded, ∣E(F )∣ is even for all such F , and hence∣E(C)∣ is also even.
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For the other direction, let C be a 1-sided cycle of G. It is well-known that every
1-sided cycle of G is the symmetric difference of C together with some facial cycles of
G. Therefore, if C is even, then every 1-sided cycle of G is even. Since we have already
established that every 2-sided cycle of G is even, G is bipartite, which is a contradiction.
Therefore, C is odd. ⊓⊔

Proof of Lemma 10. Let T be a spanning tree of G, and let ∆ be a disk containing T .
Pick local orientations at each node in order to put all the edges of T in the corresponding
signature Σ. Seen in ∆, this corresponds to picking a proper 2-coloring of T , assigning
to the nodes in one color class the clockwise orientation and to the nodes in the other
color class the counterclockwise orientation.

Now take any edge e of G that is not an edge of T . Let C denote the unique cycle in
T + e. By Lemma 11, C is Σ-even if and only if C is even. Since f ∈ Σ for all f ∈ C ∖{e},
if follows that e ∈ Σ. Therefore, for this choice of local orientations, we have Σ = E(G).
We will use these local orientations to define an orientation of G∗ as follows.

Let F be a face of G and vF be the corresponding dual node in G∗. Let uv be an
edge of G on the boundary of F and uv∗ be the corresponding dual edge in G∗. Let ∆u

and ∆v be neighbourhoods of u and v such that uv intersects the boundaries of ∆u and
∆v exactly once, say at u′ and v′, respectively. Let O⃗u and O⃗v be the orientations of
the boundaries of ∆u and ∆v given by the local orientations chosen for u and v. Since
uv ∈ Σ, it follows that at u′ and v′, O⃗u and O⃗v are either both entering F or both leaving
F . If they are both entering F we orient uv∗ towards vF , and if they are both leaving F

we orient uv∗ away from vF . Since every face of G is even, note that vF is an even-degree
vertex of G∗, and by construction, the orientation is alternating at vF .

Moreover, since every edge of G is in the signature Σ, repeating the same construction
for each face of G gives a well-defined alternating orientation of G∗. ⊓⊔

Let G be even-face embedded in the projective plane and D be an alternating ori-
entation of G∗. Note that there is a bijection between the edges of G and the arcs of
D. Therefore, we may regard a vector y ∈ RE(G) as a vector in R

A(D), and vice versa.
With this identification, Q(G) turns out to be the convex hull of all non-negative integer
circulations of D that satisfy one additional constraint.

Lemma 12. Let G be a non-bipartite graph that is even-face embedded in the projective
plane, D be an alternating orientation of G∗, and C be an arbitrary odd cycle in G. Then

Q(G) = conv{y ∈ ZE(G)
⩾0 ∣ y is a circulation in D and y(E(C)) is odd}.

Proof. Setting L ∶= {y ∈ RE(G) ∣ y is a circulation in D}, we have to show that

Q(G) = conv{y ∈ L ∩ ZE(G)
⩾0 ∣ y(E(C)) is odd} =∶ Q′(G)

holds. To this end, we first show that σ(RV (G)) = L holds. To see that σ(RV (G)) ⊆ L let
x ∈ RV (G) and consider y = σ(x) ∈ RE(G). Let f ∈ V (D) be any node of the dual graph.
As G is even-face embedded, f is bounded by an even cycle Cf in G. Let e1 = v0v1, e2 =
v1v2, . . . , e2k = v2k−1v2k denote the edges of Cf , where v0 = v2k. Note that the edges of
Cf correspond to the arcs of D that are incident to f . As D is alternating, we have

± (y(δin(f))− y(δout(f))) = 2k∑
i=1

(−1)iyei =
2k∑
i=1

(−1)i(1 − xvi−1 − xvi) = 0.
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Thus, y is a circulation in D and we obtain σ(RV (G)) ⊆ L. To see that we indeed have
σ(RV (G)) = L, notice that σ(RV (G)) and L are linear subspaces, and hence it suffices to
show that their dimensions coincide. To this end, we make use of Euler’s formula for the
projective plane, which yields

∣V (G)∣ = ∣E(G)∣ − ∣V (D)∣ + 1.
Moreover, we need the basic fact that dim(L) = ∣E(D)∣ − ∣V (D)∣ + 1. This implies

dim(L) = ∣E(G)∣ − ∣V (D)∣ + 1 = ∣V (G)∣ = dim(RV (G)),
as claimed.

We next show that Q(G) ⊆ Q′(G) holds. To this end, it suffices to show that for every
x ∈ ZV (G) with Mx ⩽ 1 the vector y = σ(x) = 1 −Mx is contained in Q′(G). Clearly, we

have y ∈ σ(RV (G)) = L as well as y ∈ Z
E(G)
⩾0 . It remains to show that y(E(C)) is odd. Let

e1 = v0v1, e2 = v1v2, . . . , e2k+1 = v2kv2k+1 denote the edges of C, where v0 = v2k+1. We see
that

2k∑
i=1

(−1)iyei =
2k∑
i=1

(−1)i(1 − xvi−1 − xvi) = 2xv0 − 1

is odd, and so is ∑2k
i=1 yei = y(E(C)).

It remains to show that Q′(G) ⊆ Q(G) holds. To this end, it suffices to show that

every y ∈ L ∩Z
E(G)
⩾0 with y(E(C)) odd is contained in Q(G). As y ∈ L = σ(RV (G)) there

is some x ∈ RV (G) with 1 −Mx = σ(x) = y. The nonnegativity of y implies Mx ⩽ 1. It
remains to show that x is integer. As y is integer and yvw = 1 − xv − xw for every edge
vw ∈ E(G), we see that xv is integer if xw is integer for any neighbor w of v. Since G

is connected it thus suffices to show that xv is integer for a single v ∈ V (G). This holds
true since 2xv0 − 1 = ∑2k

i=1(−1)iyei is an odd integer, and hence xv0 is integer. ⊓⊔

In view of Lemma 12 it remains to consider the following final lemma.

Lemma 13. Let D be a directed graph with node set V and arc set A, and let X ⊆ A.
Then the convex hull of nonnegative integer circulations y in D with y(X) odd admits
an extended formulation of size O(∣V ∣∣A∣).
Proof. Let P denote the convex hull of nonnegative integer circulations y in D with y(X)
odd. Consider the auxiliary graph D′ with node set V ′ ∶= V ×{0,1} and arcs from (v, p) to(w,p) for every (v,w) ∈ A∖X , p ∈ {0,1} as well as arcs from (v, p) to (w,1−p) for every(v,w) ∈ A∩X , p ∈ {0,1}. For each v ∈ V let Qv denote the polyhedron of (uncapacitated)
unit flows from (v,0) to (v,1) in D′. Moreover, let Q denote the convex hull of the
union of all Qv for v ∈ V . Recall that each Qv can be described using ∣A′∣ = 2∣A∣ linear
inequalities (plus some linear equations) and hence, by applying Balas’ theorem [2], we
obtain an extended formulation for Q of size O(∣V ∣∣A∣).

It remains to show that P is a linear image of Q. To this end, consider the map
π ∶ RA′

→ R
A defined via

π(z)(v,w) ∶= z((v,0),(w,0)) + z((v,1),(w,1)) for every (v,w) ∈ A ∖X, and

π(z)(v,w) ∶= z((v,0),(w,1)) + z((v,1),(w,0)) for every (v,w) ∈ A ∩X.



10 M. Conforti et al.

For each v ∈ V consider Pv ∶= π(Qv). The recession cones of P and each Pv are equal
to the set of all nonnegative circulations in D, and hence the recession cones of P and
π(Q) coincide. Thus, it suffices to show that every vertex of π(Q) is contained in P and
every vertex of P is contained in π(Q).

Let y be a vertex of π(Q). Then it is the image of a vertex z of Pv for some v. In
particular, z is an integer unit flow from (v,0) to (v,1) in D′. It is now easy to check
that y is a nonnegative integer circulations in D with y(X) odd.

Conversely, let y be a vertex of P . Thus, it is a nonnegative integer circulation in D

with y(X) odd. Moreover, it is the characteristic vector of a directed cycle in D. Indeed,
decompose y = y1 + ⋅ ⋅ ⋅ + yk into characteristic vectors of directed cycles in D. As y(X) is
odd, we may assume that y1(X) is odd. In particular y1 ∈ P . Note that y2 + ⋅ ⋅ ⋅ + yk is in
the recession cone of P and hence, since y is a vertex of P we must have y2 + ⋅ ⋅ ⋅ + yk = 0.

Suppose that node v is contained in the cycle corresponding to y. Then it is easy to
see that y is the image (under π) of the characteristic vector of a path from (v,0) to(v,1) in D′, and hence y ∈ π(Qv) ⊆ π(Q). ⊓⊔

We are ready to prove the final result of this section.

Theorem 14. Let G be an n-node graph that is even-face embedded in the projective
plane. Then STAB(G) has a size-O(n2) extended formulation.

Proof. We may assume that G is non-bipartite since the statement is trivial otherwise.
By Lemma 10, G∗ has an alternating orientation. As before, we denote this orientation
by D.

Next, we use Lemmas 12 and 13 to obtain an extended formulation for Q(G). The
size of this formulation is O(∣V (D)∣∣A(D)∣) = O(n2), since ∣A(D)∣ = ∣E(G)∣ = O(n).
This extended formulation automatically yields one for P (G), since Q(G) and P (G) are
affinely equivalent. Finally, we get a size-O(n2) extended formulation for STAB(G) by
adding the 2n inequalities 0 ⩽ xv ⩽ 1 for v ∈ V (G), and invoking Lemma 8. ⊓⊔

4 The general case

In this section, we describe how Theorem 1 can be proven using Theorems 5 and 14. Let
G be a graph with ocp(G) = 1. If oct(G) ⩽ 3, then STAB(G) has a linear-size extended
formulation by Balas’ theorem [2]. Otherwise, oct(G) ⩾ 4 and G can be decomposed as in
Theorem 5. In particular, G is the union of graphs H0, T1, . . . , Tℓ where H0 has an even-
face embedding in the projective plane and T1, . . . , Tℓ are bipartite. Although the stable
set polytopes of H0, T1, . . . , Tℓ admit small extended formulations and each Ti intersects
H0 ∪j≠i Tj in at most three nodes, it is not obvious how to obtain a small extended
formulation for STAB(G). However, in some cases it is possible to use linear descriptions
of the stable set polytopes of graphs G1,G2 to obtain a description of STAB(G1 ∪G2),
provided that G1 ∩G2 has a specific structure, see [6,8,3].

With this idea in mind, recall that not only H0 but also the signed graph (H+,Σ) has
an even-face embedding in the projective plane. We will replace each signed clique used
to define (H+,Σ) by a constant size gadget Hi corresponding to each Ti in a way that
the resulting graph G(ℓ) ∶=H0∪H1∪⋅ ⋅ ⋅ ∪Hℓ (the “core”) still has an even-face embedding
in the projective plane. Moreover, each T ′i ∶= Ti∪Hi will still be bipartite. In this way G is



Extended Formulations for Stable Set Polytopes of OCP-1 Graphs 11

obtained from G(ℓ) by iteratively performing k-sums with T ′1, . . . , T
′
ℓ along H1, . . . ,Hℓ. In

each such operation, the specific choice of the gadget will allow us to relate the extension
complexities of the stable set polytopes of the participating graphs in a controlled way.
Let us start with describing the gadgets that will be used.

Definition 15. A gadget is a graph isomorphic to P3, P4, S2,2,2 or S2,3,3, see Figure 2.
Let G be a graph with a linked k-separation (G0,G1) such that k ∈ {2,3} and G1 is bipar-
tite. We say that a gadget H is attachable to G1 (with respect to separation (G0,G1))
if its set of leaf nodes equals V (G0) ∩ V (G1), its set of non-leaf nodes is disjoint from
V (G), and G1 ∪H is bipartite.

Note that if G is a graph with a linked k-separation (G0,G1) such that k ∈ {2,3} and
G1 is bipartite, then there is a unique gadget H ∈ {P3, P4, S2,2,2, S2,3,3} that is attachable
to G1.

P3 P4
S2,2,2 S2,3,3

Fig. 2. Gadgets and their names.

Next, let us formally describe how the signed cliques used to define (H+,Σ) are
replaced by gadgets in order to obtain the core.

Definition 16. Let G be a 2-connected graph with star structure H0, T1, . . . , Tℓ. For
each i ∈ [ℓ], pick a gadget Hi that is attachable to Ti with respect to the separation(H0 ∪⋃j≠i Tj , Ti). (We always assume that the set of non-leaf nodes of the gadgets Hi,
i ∈ [ℓ] are mutually disjoint.) We call the graph H0 ∪H1 ∪ ⋅ ⋅ ⋅ ∪Hℓ the core.

Lemma 17. Every 2-connected graph G with ocp(G) = 1 and oct(G) ⩾ 4 admits a star
structure whose core has an even-face embedding in the projective plane.

Proof. The proof is immediate by choosing a star structure that satisfies Theorem 5. ⊓⊔

The remaining ingredient for our proof of Theorem 1 will be the following result. To
this end, let (G0,G1) be a separation of graph G. Below, for i ∈ {0,1}, we call a vertex
internal if it belongs to V (Gi)∖V (G1−i) and an edge of Gi internal if at least one of its
ends is not in G1−i.

Theorem 18. Let G be a 2-connected, non-bipartite graph. Assume that G has a k-
separation (G0,G1) such that G1 is bipartite, and k ∈ {2,3}. Let µ1 denote the number
of internal vertices and edges of G1. Let H be a gadget that is attachable to G1, and let
G′0 ∶= G0 ∪H. Then

xc(STAB(G)) ⩽ xc(STAB(G′0)) +O(µ1) .
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Before we continue with the proof of Theorem 18 in the next section, let us see how
this yields a proof of our main result.

Proof of Theorem 1. By induction on the number of nodes n, we may assume that G

is 2-connected. Indeed, suppose that G has a k-separation (G0,G1) with k ∈ {0,1}.
For i ∈ {0,1}, let ni ∶= ∣V (Gi)∣. Thus n = n0 + n1 − k. If c is any constant such that
xc(STAB(Gi)) ⩽ c ⋅ n2

i for i ∈ {0,1}, we get

xc(STAB(G)) ⩽ xc(STAB(G0)) + xc(STAB(G1)) ⩽ c ⋅ n2
0 + c ⋅ n

2
1 ⩽ c ⋅ n

2 .

As observed above, if oct(G) ⩽ 3 then STAB(G) trivially has a size-O(n2) extended
formulation. Now assume that ocp(G) = 1 and oct(G) ⩾ 4. Let H0, T1, . . . , Tℓ be a star
structure of G as in Lemma 17. Since G is 2-connected, each separation (H0 ∪j≠i Tj , Ti)
is either a 2- or a 3-separation. For each i ∈ [ℓ], we consider the graph

G(i) ∶=H0 ∪H1 ∪⋯ ∪Hi ∪ Ti+1 ∪ ⋅ ⋅ ⋅ ∪ Tℓ .

where Hi denotes a gadget attachable to Ti. For i ∈ [ℓ], let µi denote the number of
internal vertices and edges of Ti. Notice that G(ℓ) is the core, and thus by Lemma 17
has an even-face embedding in the projective plane. By Theorem 18,

xc(STAB(G(i−1))) ⩽ xc(STAB(G(i))) +O(µi) .
Since ∣V (G(ℓ))∣ = O(n), Theorem 14 implies xc(STAB(G(ℓ))) = O(n2). Since moreover

∑ℓ
i=1 µi ⩽ ∣V (G)∣ + ∣E(G)∣ = O(n2), we have

xc(STAB(G)) = xc(STAB(G(0))) ⩽ xc(STAB(G(ℓ))) +O ( ℓ∑
i=1

µi) = O(n2) . ⊓⊔

5 Extended formulation for small separations

In this section we describe an extended formulation that yields the bound claimed in
Theorem 18. Given a stable set S in a graph G, we say that an edge is slack if neither
of its ends is in S. We denote by σ(S) the set of slack edges, or σG(S) should the graph
not be clear from the context. An edge is said to be tight if it is not slack.

Lemma 19. Let G, G0, G1 and H be as in Theorem 18. Letting STAB(G′1) denote the
convex hull of characteristic vectors of stable sets S in G′1 having at most one slack edge
in H, we have

STAB(G) = {(x0, x1, x01) ∈ RV (G) ∣ ∃xH
∶ (x0, x01, xH) ∈ STAB(G′0),
(x1, x01, xH) ∈ STAB(G′1)}.

(1)

where x0 ∈ RV (G0)∖V (G1), x1 ∈ RV (G1)∖V (G0), x01 ∈ RV (G0)∩V (G1) and xH ∈ RV (H)∖V (G).

Let us first verify that Lemma 19 indeed implies Theorem 18.
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Proof of Theorem 18. By Lemma 19, we have

xc(STAB(G)) ⩽ xc(STAB(G′0)) + xc(STAB(G′1)) .
Since gadget H has constant size, STAB(G′1) is the convex hull of the union of a constant
number of faces of STAB(G′1) in which the coordinates of the nodes in H are fixed.
Hence by Balas’ union of polytopes [2], we obtain xc(STAB(G′1)) = O(xc(STAB(G1))) =
O(∣V (G1)∣ + ∣E(G1)∣). Since ∣V (G1)∣ + ∣E(G1)∣ − µ1 ⩽ 6 and µ1 ⩾ 1, we conclude

xc(STAB(G′1)) = O(µ1) .
This proves the claim. ⊓⊔

In the proof of Lemma 19 we will exploit that the facets of stable set polytopes have
a special structure, which we describe next.

5.1 Reducing to edge-induced weights

We call a weight function w ∶ V (G) → R on the nodes of G edge-induced if there is a
nonnegative cost function c ∶ E(G) → R⩾0 such that w(v) = c(δ(v)) for all v ∈ V (G).
For a given node-weighted graph (G,w) we let α(G,w) denote the maximum weight of
a stable set.

Lemma 20. Let G = (V,E) be a graph without isolated nodes and let w ∶ V → R be
a weight function. There exists an edge-induced weight function w′ ∶ V → R such that
w(v) ⩽ w′(v) for all nodes v and α(G,w) = α(G,w′). In particular, the node weights of
every non-trivial facet-defining inequality of STAB(G) are edge-induced.

Proof. Let x∗ denote an optimal solution of the LP max{∑v∈V w(v)xv ∣ xv+xw ⩽ 1 ∀vw ∈
E, x ⩾ 0} and y∗ be an optimal solution of its dual min{∑e∈E ye ∣ y(δ(v)) ⩾ w(v) ∀v ∈
V, y ⩾ 0}.

Consider the weight function w′ such that w′(v) ∶= y∗(δ(v)). Clearly, w′(v) ⩾ w(v) for
all nodes v and w′ is edge-induced. Consider the above LPs where w′ replaces w. Then x∗

and y∗ remain optimal solutions as they are feasible and satisfy complementary slackness.
Moreover the values of the new LPs remain unchanged, as the objective function of the
dual is not changed.

Let V0 ∶= {v ∈ V ∣ x∗v = 0}. Since w(v) = y∗(δ(v)) for all v ∈ V ∖ V0 by complementary
slackness, w(v) = w′(v) for all v ∈ V ∖ V0. We have

α(G,w) ⩽ α(G,w′) = α(G − V0,w
′) = α(G − V0,w) ⩽ α(G,w) .

Above, the first inequality follows from w ⩽ w′. The first equality follows from a result
of Nemhauser and Trotter [14]. Their result implies that (G,w′) has a maximum weight
stable set disjoint from V0. The second equality follows from the fact that w(v) = w′(v)
for all v ∈ V ∖ V0. Hence, equality holds throughout and α(G,w) = α(G,w′).

Finally, if ∑v∈V w(v)xv ⩽ α(G,w) induces a non-trivial facet of STAB(G), there
cannot exist w′ ≠ w such that w′ ⩾ w and α(G,w′) = α(G,w). Hence the above argument
shows that the node weights of every non-trivial facet-defining inequality of STAB(G)
are edge-induced. ⊓⊔
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In fact, in [7, Propositions 11 and 14] it is shown that one can optimize over Q(G) =
σ(P (G)) instead of σ(STAB(G)) without changing the optimum. However, we will not
need this here.

For c ∶ E(G)→ R⩾0, we let

β(G, c) ∶=min

⎧⎪⎪⎨⎪⎪⎩ ∑e∈E(G)

c(e)ye ∣ y ∈ σ(STAB(G))
⎫⎪⎪⎬⎪⎪⎭ . (2)

Finally, we need the following easy lemma.

Lemma 21. Let G = (V,E) be a graph. If w ∶ V (G) → R is induced by c ∶ E(G) → R⩾0,
then α(G,w) = c(E(G)) − β(G, c).
Proof. A star of G is a set of edges of the form δ(v), for some v ∈ V (G). Note that since
w ∶ V (G)→ R is induced by c ∶ E(G)→ R⩾0,

α(G,w) =max{c(F ) ∣ F is the edge-disjoint union of stars} = c(E(G)) − β(G, c).⊓⊔
5.2 Correctness of the extended formulation

In this section we prove Lemma 19. To this end, let R(G) denote the right-hand side of
(1). Notice that for each stable set S of G, there exists a stable set S′ of G′ ∶= G ∪H

such that S′ ∩V (G) = S and moreover at most one edge of H is slack with respect to S′.
The inclusion STAB(G) ⊆ R(G) follows directly from this.

In order to prove the reverse inclusion R(G) ⊆ STAB(G), first observe that R(G) ⊆
R

V (G)
⩾0 . Thus, by Lemma 20 it suffices to show that, for all edge-induced node weights

w ∶ V (G)→ R, the inequality

∑
v∈V (G)

w(v)xv ⩽ α(G,w) (3)

is valid for all x ∈ R(G). As in Section 3 it will be convenient to work in the edge space
instead of the node space. To this end, let c ∶ E(G) → R+ be non-negative edge costs,
and let w(v) ∶= c(δ(v)) for every node v. By Lemma 21 we see that (3) is valid for R(G)
if and only if ∑

e∈E(G)

c(e)ye ⩾ β(G, c) (4)

is satisfied by all points y ∈ σ(R(G)). Our proof strategy to obtain (4) is to seek additional
costs cH ∶ E(H)→ R⩾0 such that

∑
e∈E(G0)

c(e)y0e + ∑
e∈E(H)

cH(e)yHe ⩾ β(G, c) (5)

is valid for all (y0, yH) ∈ σ(STAB(G′0)) and

∑
e∈E(G1)

c(e)y1e − ∑
e∈E(H)

cH(e)yHe ⩾ 0 (6)

is valid for all (y1, yH) ∈ σ(STAB(G′1)).
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We claim that this will yield (4). Indeed, for every vector y = (y0, y1) ∈ σ(R(G)) there
exists a vector yH (the image of (x01, xH) under σH) with (y0, yH) ∈ σ(STAB(G′0)) and(y1, yH) ∈ σ(STAB(G′0)). This implies that the inequalities in (5) and (6) are satisfied.
Now (4) follows since it is the sum of these two inequalities.

Let us first focus on Inequality (6). Independently of how the edge costs cH are
defined, in order to prove that it holds for all (y0, yH) ∈ σ(STAB(G′1)), we may assume
that yH is a 0/1-vector with at most one nonzero entry. The general case follows by
convexity. For F ⊆ E(H), we let χF be the vector in {0,1}E(H) such that χF

e = 1 if and
only if e ∈ F . Since the case yH = 0 is trivial, assume that yH = χ{f} for some f ∈ E(H).
Hence (6) can be rewritten as

∑
e∈E(G1)

c(e)y1e ⩾ cH(f) . (7)

This suggests the following definition of cH . For F ⊆ E(H), we let

γ(F ) ∶=min {c(σ(S) ∩E(G1)) ∣ S stable set of G′1, σ(S) ∩E(H) = F} ∈ R⩾0 ∪ {∞} .
We say that F is feasible if γ(F ) is finite, that is, there exists a stable set S of G′1 such
that σ(S) ∩ E(H) = F . Notice that F ∶= {f} is feasible for all f ∈ E(H). By setting
cH(f) ∶= γ({f}) ∈ R⩾0 for each f ∈ E(H) we clearly satisfy (7), and hence (6) is valid for
all (y1, yH) ∈ σ(STAB(G′1)) for this choice of cH .

It remains to prove that with this choice of cH the inequality in (5) is valid for all(y0, yH) ∈ σ(STAB(G′0)). To this end, we need the following two observations.

Lemma 22. Let G1 and H be as in Theorem 18, and let G′1 ∶= G1 ∪ H. Hence, G′1
is bipartite. Let c ∶ E(G1) → R⩾0 be nonnegative edge costs. Assume that F ⊆ E(H)
is feasible. Letting x and y = (y1, yH) denote arbitrary points in R

V (G′
1
) and R

E(G′
1
)

respectively, and letting M denote the incidence matrix of G′1, consider the following
LPs:

LP1(F ) ∶=min

⎧⎪⎪⎨⎪⎪⎩ ∑
e∈E(G1)

c(e)y1e ∣Mx + y = 1, y ⩾ 0, yH = χF , x ⩾ 0

⎫⎪⎪⎬⎪⎪⎭ and

LP2(F ) ∶=min

⎧⎪⎪⎨⎪⎪⎩ ∑
e∈E(G1)

c(e)y1e ∣Mx + y = 1, y ⩾ 0, yH = χF

⎫⎪⎪⎬⎪⎪⎭ .

Then γ(F ) = LP1(F ) = LP2(F ).
Proof. That γ(F ) = LP1(F ) follows directly from the fact that G′1 is bipartite. Further-
more, it is clear that LP1(F ) ⩾ LP2(F ). If F is empty, then LP1(F ) = LP2(F ) = 0 since(x, y) ∶= ( 1

2
1,0) is optimal for both LPs. From now on, assume that F is nonempty, and

let v0 ∈ V (H) be any node that is incident to some edge of F .

Now consider the LP obtained from LP3(F ) by adding the constraint xv0 = 0:

LP3(F ) ∶=min

⎧⎪⎪⎨⎪⎪⎩ ∑
e∈E(G1)

c(e)y1e ∣Mx + y = 1, y ⩾ 0, yH = χF , xv0 = 0

⎫⎪⎪⎬⎪⎪⎭ .
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Since G′1 is bipartite, LP2(F ) = LP3(F ) since adding the extra constraint does not
change the set of feasible y vectors. Thanks to the extra constraint, the feasible region
of LP3(F ) is pointed.

Consider an extreme optimal solution (x̄, ȳ) of LP3(F ). Since M is totally unimodu-
lar, we may assume that both x̄ and ȳ are integral. Since F is feasible, x̄v ∈ {0,1} for all
v ∈ V (H). We claim that (x̄, ȳ) is feasible for LP1(F ). Observe that the claim implies
LP1(F ) ⩽ LP3(F ) = LP2(F ) and thus LP1(F ) = LP2(F ).

If x̄ is nonnegative, we are done. Otherwise, we can find disjoint sets Vα and V1−α for
some α ∈ Z<0 such that x̄v = α for all v ∈ Vα, x̄v = 1−α for all v ∈ V1−α and no edge e with
ye = 0 has exactly one end in Vα∪V1−α. Since α < 0 and 1−α > 1, we see that both Vα and
V1−α are disjoint from V (H). Let x̄′ ∶= x̄+χVα −χV1−α , ȳ′ ∶= 1−Mx̄′, x̄′′ ∶= x̄−χVα +χV1−α

and ȳ′′ ∶= 1 −Mx̄′′. Both (x̄′, ȳ′) and (x̄′′, ȳ′′) are feasible for LP3(F ), contradicting the
extremality of (x̄, ȳ). ⊓⊔

Lemma 23. If F ⊆ E(H) is feasible and the disjoint union of A and B, then γ(F ) ⩽
γ(A) + γ(B).
Proof. We may assume that A and B are both feasible, otherwise there is nothing to
prove. Let (x, y) and (z, t) be optimal solutions of LP2(A) and LP2(B) respectively
(see Lemma 22). If we let u ∶= x+ z − 1

2
1 and v ∶= y + t, then (u, v) is feasible for LP2(F )

since

Mu + v =Mx +Mz −
1

2
M1 + v = (1 − y) + (1 − t) − 1 + v = 1 ,

v ⩾ 0 and χA
+ χB = χF . By Lemma 22, this shows that γ(F ) ⩽ γ(A) + γ(B). ⊓⊔

To prove that the inequality in (5) is valid for all (y0, yH) ∈ σ(STAB(G′0)), it suffices
to consider any vertex (y0, yH) of σ(STAB(G′0)) minimizing the left-hand size of (5).
We may even assume that (y0, yH) minimizes ∣∣yH ∣∣1 among all such vertices.

Let S0 denote the stable set of G′0 corresponding to (y0, yH) and let F ∶= σ(S0) ∩
E(H). Note that yH = χF . Observe that S0 is not properly contained in another stable
set, since this would contradict the minimality of y. Moreover, we claim that F has at
most one edge. In order to prove the claim, we consider only the case where H = S2,2,2,
see Figure 2. The other cases are easier or similar, and we leave the details to the reader.

Let us assume that F contains at least two edges, that is, ∥yH∥1 ⩾ 2. We will replace
yH by a new vector ȳH ∈ {0,1}E(H) such that (y0, ȳH) ∈ σ(STAB(G′0)) with smaller ℓ1-
norm in such a way that the cost of (y0, ȳH) is not higher than that of (y0, yH), arriving
at a contradiction. In order to prove that (y0, ȳH) ∈ σ(STAB(G′0)) we will explain how to
obtain the corresponding stable set S̄0 from stable set S0 in each case. To guarantee that
the cost of (y0, ȳH) does not exceed that of (y0, yH), we will mainly rely on Lemma 23.

To distinguish the different cases, let v1, v2 and v3 denote the leaves of H and v0
denote its degree-3 node. For i, j ∈ {0,1,2,3} we let Pij denote the vi–vj path in H . For
i ∈ [3], let v0i denote the middle vertex of Pij and let ei and fi denote the edges of the
path P0i incident to vi and v0 respectively. The relevant cases and the replacements are
listed in Figure 3. We treat each of them below. Notice that the case ∣S0

∩{v1, v2, v3}∣ = 3
cannot arise since this would contradict the maximality of S0.

Case 1: ∣S0
∩ {v1, v2, v3}∣ = 0. In this case we set ȳH ∶= 0, which corresponds to letting

S̄0
∶= (S0

∪ {v01, v02, v03}) ∖ {v0}. In this case it is clear that the cost of (y0, ȳH) is at
most the cost of (y0, yH).
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Case 2: ∣S0
∩ {v1, v2, v3}∣ = 1. We may assume that S0

∩ {v1, v2, v3} = {v3}. Since ∣F ∣ ⩾ 2
and S0 is maximal, we must have S0

∩ V (H) = {v0, v3} and hence yH = χ{e1,e2}.

We let ȳH ∶= χ{f3}, which corresponds to letting S̄0
∶= S0

∖ {v0}∪ {v01, v02}. The cost
of (y0, ȳH) equals the cost of (y0, yH) minus γ({e1}) + γ({e2}) − γ({f3}) = γ({e1}) +
γ({e2})−γ({e1, e2}) ⩾ 0. The equality follows from the fact that stable sets S of G′1 such
that σ(S)∩E(H) = {f3} and stable sets S of G′1 such that σ(S)∩E(H) = {e1, e2} have
the same intersection with the leaves of H . The inequality follows from Lemma 23.

Case 3: ∣S0
∩{v1, v2, v3}∣ = 2. We may assume that S0

∩{v1, v2, v3} = {v1, v2}. Again, since∣F ∣ ⩾ 2 and S0 is maximal, we must have S0
∩V (H) = {v1, v2, v03} and hence yH = χ{f1,f2}.

We let ȳH ∶= χ{e3}, which corresponds to letting S̄0
∶= S0

∖ {v03} ∪ {v01, v02}. Similar to
the previous case, we obtain that the cost of (y0, ȳH) equals the cost of (y0, yH) minus
γ({f1}) + γ({f2}) − γ({e3}) = γ({f1}) + γ({f2}) − γ({f1, f2}) ⩾ 0.

Thus, F has indeed at most one edge. There exists a stable set S1 of G′1 that is
a minimizer for γ(F ) such that S1

∩ V (G) ∩ V (H) = S0
∩ V (G) ∩ V (H). Hence, S ∶=

S1
∪S0 is a stable set of G. Let (y0, y1) denote the characteristic vector of σ(S), so that(y0, y1) ∈ σ(STAB(G)). We get

∑
e∈E(G0)

c(e)y0e + ∑
e∈E(H)

cH(e)yHe = ∑
e∈E(G0)

c(e)y0e + γ(F )
= ∑

e∈E(G0)

c(e)y0e + ∑
e∈E(G1)

c(e)y1e ⩾ β(G, c) .

Above, the first equality comes from the fact that F has at most one edge, the definition
of cH(f) for f ∈ E(H) and γ(∅) = 0. The second equality follows from the hypothesis
that S1 is a minimizer for γ(F ). Finally, the inequality is due to the validity of (4) for
σ(STAB(G)). This shows that (5) is indeed valid for (y0, yH) ∈ σ(STAB(G′0)), which
concludes the proof of Lemma 19.

Case 1 Case 2 Case 3

yH and S0 ∩ V (H)

ȳH and S̄0 ∩ V (H)

Fig. 3. Replacements in the proof of Lemma 19 (top row: before, bottom row: after). Red thick
edges are slack. Blue thick, dotted edges are tight. Red nodes are in the stable set, blue nodes
are not.
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