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Abstract

We consider quadratic optimization in variables (x, y) where 0 ≤ x ≤ y, and y ∈

{0, 1}n. Such binary y are commonly refered to as indicator or switching variables and

occur commonly in applications. One approach to such problems is based on represent-

ing or approximating the convex hull of the set {(x, xxT , yyT ) : 0 ≤ x ≤ y ∈ {0, 1}n}.

A representation for the case n = 1 is known and has been widely used. We give an

exact representation for the case n = 2 by starting with a disjunctive representation

for the convex hull and then eliminating auxilliary variables and constraints that do

not change the projection onto the original variables. An alternative derivation for this

representation leads to an appealing conjecture for a simplified representation of the

convex hull for n = 2 when the product term y1y2 is ignored.

Keywords: Quadratic optimization, switching variables, convex hull, perspective

cone, semidefinite programming.

1 Introduction

This paper concerns quadratic optimization in variables x ∈ R
n and y ∈ {0, 1}n, where

0 ≤ x ≤ y. The y variables are refered to as indicator or switching variables and occur

frequently in applications, including electrical power production [8], constrained portfolio

optimization [8, 9], nonlinear machine scheduling problems [1] and chemical pooling problems
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[6]. A typical feature of such problems is that the objective function is separable in x and

y. In addition, many applications do not involve the cross-terms yiyj for i 6= j.

One approach for such problems is to consider symmetric matrix variables X and Y that

replace the rank-1 matrices xxT and yyT , respectively. Using such variables, an objective of

the form cTx+ xTQx+ yTDy can be replaced by the linear function cTx+Q •X +D • Y ,

where (x,X, Y ) should then be in the set

H := conv{(x, xxT , yyT ) : 0 ≤ x ≤ y ∈ {0, 1}n}.

The problem is then to represent H in a computable manner. Note that, because y is binary,

diag(Y ) captures y, and in particular, when the cross-terms yiyj are not of interest, we may

consider the simpler convex hull

H′ := conv{(x, xxT , y) : 0 ≤ x ≤ y ∈ {0, 1}n}.

For general n, determining computable representations of H and H′ is difficult. For

example, even when y is fixed to e, the resulting convex hull, called QPB in [5] for “quadratic

programming over the box,” is intractable. When n = 2, an exact representation for QPB

was given in [2], but such a representation is not known for n ≥ 3. For general n, the

paper [7] studies valid inequalities for H′. For the case n = 1, H = H′ since there are

no cross-terms, and a computable representation was given in [9] based on prior work in

[8]. This representation has subsequently been used in a variety of applications; see for

example [10, 12]. Several authors have also studied the case when n = 2 but have focused

on convexifying in the space of (x, y, t), where t is a scalar associated with the epigraph of a

specially structured quadratic function, e.g., a convex quadratic one; see [3] and references

therein.

In Section 2, we consider the case of n = 1 and reprove the representation of H = H′ in

a new way which incorporates standard ideas from the literature on constructing strong

semidefinite programming (SDP) relaxations of quadratic programs. In particular, our

proof can be viewed as establishing that H for n = 1 is captured exactly by the relax-

ation which uses the standard positive semidefinite (PSD) condition along with the standard

Reformulation–Linearization Technique (RLT) constraints [13].

Our main result in this paper is a representation of H for n = 2, which we derive in

several steps. Note that in this case there is only a single cross-term y1y2, and we can write

H in the form

H = conv{(x, xxT , y, y1y2) : 0 ≤ x ≤ y ∈ {0, 1}2}.
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First, in Section 3, we give a disjunctive representation ofH that involves additional variables

α ∈ R
2, β ∈ R

2. Then in Section 4 we project out β by replacing a single PSD constraint

with four PSD constraints. The primary effort in the paper occurs in Section 5, where we

show that it is in fact only necessary to impose one of these four PSD constraints in order

to represent H. This analysis is relatively complex due to the fact that we are attempting

to characterize the projection of (x,X, y, Y12, α) onto (x,X, y, Y12) where the constraints on

(x,X, y, Y12, α) include PSD conditions. If all constraints on (x,X, y, Y12, α) were linear, we

could use standard polyhedral techniques to perform this projection. However, since our

case includes PSD conditions, we are unaware of any general methodolgy for characterizing

such a projection, and therefore our proof technique is tailored to the structure of H for

n = 2.

Finally, in Section 6, we describe an alternative derivation for the representation of H

obtained in Section 5. This derivation provides another interpretation for the single remain-

ing PSD condition and also leads to a conjecture that a weaker PSD condition is sufficient to

characterize H′ for n = 2. If true, this conjecture would establish that H′ can be represented

using PSD, RLT, and simple linear conditions derived from the binary nature of y, thus

generalizing the results of Section 2 for n = 1 as well as the representation of QPB for n = 2

from [2]. This conjecture is supported by extensive numerical computations but remains

unproved.

Notation. We use e to denote a vector of arbitrary dimension with each component equal

to one, and ei to denote an elementary vector with all components equal to zero exept for

a one in component i. For symmetric matrices X and Y , X � Y denotes that X − Y is

positive semidefinite (PSD) and X ≻ Y denotes that X − Y is positive definite. The vector

whose components are those of the diagonal entries of a matrix X is denoted diag(X). The

convex hull of a set is denoted conv{·}.

2 The convex hull for n = 1

In this section we consider the representation of H for n = 1; note that H = H′ in this case.

The representation given in Theorem 1 below is known, but to our knowledge the proof given

here is new. We define

PER :=

{

(α, β, γ) ∈ R× R× R :
α2 ≤ βγ

0 ≤ β ≤ α ≤ γ

}
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to be the so-called perspective cone in R
3. In particular, the constraint α2 ≤ βγ is called a

perspective constraint in the literature [9].

Theorem 1. For n = 1, H = H′ = {(x1, X11, y1) ∈ PER : y1 ≤ 1}.

Proof. Let t1 = 1 − y1. Then the constraints 0 ≤ x1 ≤ y1, y1 ∈ {0, 1} can be written in

the form x1 + s1 + t1 = 1, x1 ≥ 0, s1 ≥ 0, t1 ∈ {0, 1}. By relaxing the rank-one matrix

(1, x1, s1, t1)
T (1, x1, s1, t1) we obtain a matrix

W =













1 x1 s1 t1

x1 X11 Z11 0

s1 Z11 S11 0

t1 0 0 t1













, (1)

where we are using the fact that, for binary t1, it holds that t21 = t1 and x1t1 = s1t1 = 0.

Multiplying x1 + s1 + t1 = 1 in turn by the variables x1 and s1, we next obtain the RLT

constraints X11 + Z11 = x1 and S11 + Z11 = s1. Let

C = conv{(1, x1, s1, t1)
T (1, x1, s1, t1) : x1 + s1 + t1 = 1, x1 ≥ 0, s1 ≥ 0, t1 ∈ {0, 1}},

D = {W ∈ DNN : x1 + s1 + t1 = 1, X11 + Z11 = x1, S11 + Z11 = s1},

where the matrix W in the definition of D has the form (1), and DNN denotes the cone

of doubly nonnegative matrices, that is, matrices that are both componentwise nonnegative

and PSD. We claim that C = D. The inclusion C ⊂ D is obvious by standard SDP-relaxation

techniques. However, from [4, Corollary 2.5] we know that

C = {W ∈ CP : x1 + s1 + t1 = 1, X11 + S11 + t1 + 2Z11 = 1},

where CP denotes the cone of completely positive matrices, that is, matrices that can be

represented as a sum of nonnegative rank-one matrices. Note that X11+S11+t1+2Z11 = 1 is

the “squared” constraint obtained by substituting appropriate variables into the expression

(x1 + s1 + t1)
2 = 1. Then C = D follows from the facts that since W is 4× 4, W ∈ CP ⇐⇒

W ∈ DNN, and the constraints x1 + s1 + t1 = 1, X11 +Z11 = x1 and S11 +Z11 = s1 together

imply X11 + S11 + t1 + 2Z11 = 1.

From C = D we conclude that conv{(x1, x
2
1, y1) : 0 ≤ x1 ≤ y1, y1 ∈ {0, 1}} = {(x1, X11, 1−

t1) : x1 + s1+ t1 = 1, X11 +Z11 = x1, S11+Z11 = s1,W ∈ DNN}. To complete the proof we
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will simplify the condition that W � 0. Note that

W =













1 0 0

0 1 0

1 −1 −1

0 0 1



















1 x1 t1

x1 X11 0

t1 0 t1













1 0 1 0

0 1 −1 0

0 0 −1 1






.

Then W � 0 if and only if







1 x1 t1

x1 X11 0

t1 0 t1






� 0 ⇔

(

1− t1 x1

x1 X11

)

� 0,

which using y1 = 1− t1 is equivalent to y1 ≥ 0, X11 ≥ 0, y1X11 ≥ x2
i . The conditions of the

theorem thus insure that W ∈ DNN, where t1 = 1− y1 ≥ 0, s1 = 1− t1 − x1 = y1 − x1 ≥ 0,

Z11 = x1 −X11 ≥ 0 and S11 = 1 +X11 − 2x1 − t1 = y1 +X11 − 2x1 ≥ 0.

Note that the characterization in Theorem 1 is sometimes written in terms of the lower

convex envelope rather than the convex hull, in which case the condition X11 ≤ x1 is omitted.

3 The disjunctive convex hull for n = 2

In this section, we develop an explicit disjunctive formulation for the convex hull H when

n = 2. As described in the Introduction, we will use that fact that diag(Y ) = y and that

there is only one cross-term y1y2 to write (x,X, y, Y12) for points in H.

The representation for H obtained in this section is based on the four values of y ∈

{0, 1}2 = {0, e1, e2, e}. Specifically, note that H = conv(H0∪He1 ∪He2 ∪He), where for each

fixed y,

Hy := conv
{

(x, xxT , y, y1y2) : 0 ≤ x ≤ y
}

.

Each such Hy has a known representation. H0 is just a singleton, and for y = e1 and y = e2

representations based on PER are provided by Theorem 1. For y = e, a representation is

given in [2] as follows. Define

RLTx :=

{(

λ xT

x X

)

:
λ ≥ 0, 0 ≤ diag(X) ≤ x

max{0, x1 + x2 − λ} ≤ X12 ≤ min{x1, x2}

}

,

which is the homogenization of those points (x,X) satisfying the standard RLT constraints
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associated with 0 ≤ x ≤ e. Then [2]

He =

{

(x,X, y, Y12) :

(

1 xT

x X

)

∈ PSD ∩ RLTx, y = e, Y12 = 1

}

,

where PSD denotes the cone of positive semidefinite matrices. In the sequel we will also

need

RLTy :=
{

(y, Y12) ∈ R
2 × R : max{0, y1 + y2 − 1} ≤ Y12 ≤ min{y1, y2}

}

,

which gives the convex hull of (y, y1y2) over all four y ∈ {0, 1}2. Note that RLTy is a

polytope, unlike PER, RLTx and PSD, which are convex cones.

In many applications, the product y1y2 is not of interest, so it is also natural to consider

the convex hull H′ that ignores this product. Based on the known representations for He1 ,

He2 and He, H
′ is certainly contained in the set of (x,X, y) satisfying the constraints

(

1 xT

x X

)

∈ PSD ∩ RLTx

(xj , Xjj, yj) ∈ PER, yj ≤ 1 ∀ j = 1, 2.

However it is easy to generate examples that satisfy these constraints but are not in H′. In

the next theorem we will focus on H, but we will return to a discussion of H′ in Section 6.

Theorem 2. H equals the projection onto (x,X, y, Y12) of (x,X, y, Y12, α, β) satisfying the

convex constraints

x ≤ y (2a)
(

Y12 (x− α)T

x− α X −Diag(β)

)

∈ PSD ∩ RLTx (2b)

(αj , βj, yj − Y12) ∈ PER ∀ j = 1, 2 (2c)

(y, Y12) ∈ RLTy (2d)

where α ∈ R
2, β ∈ R

2 are auxiliary variables.

Proof. We first argue that (2) is a relaxation of H in the lifted space that includes α and

β. It suffices to show that each “rank-1” solution (x, xxT , y, y1y2) for y ∈ {0, 1}2 can be

extended in (α, β) to a feasible solution of (2), and we handle the four cases for y ∈ {0, 1}2

separately. We clearly always have x ≤ y and (y, Y12) ∈ RLTy, so it remains to check that

(2b) and (2c) hold in each case.
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We introduce the notation

Z :=

(

Y12 (x− α)T

x− α X − Diag(β)

)

.

First, let y = 0 ⇒ x = 0. Then (x, xxT , y, y1y2) = (0, 0, 0, 0), and we choose (α, β) = (0, 0).

Since all variables are zero, it is straightforward to check that (2b) and (2c) are satisfied.

Second, let y = e ⇒ 0 ≤ x ≤ e. Then (x, xxT , y, y1y2) = (x, xxT , e, 1), and we choose

(α, β) = (0, 0) for this case also, which yields (αj, βj, yj − Y12) = (0, 0, 0) ∈ PER for j = 1, 2.

Moreover,

Z =

(

1 xT

x X

)

=

(

1 xT

x xxT

)

∈ PSD ∩ RLTx,

as desired.

Next we consider the case y = e1, which implies x1 ≤ 1 and x2 = 0. Then (x, xxT , y, y1y2) =

(x1e1, x
2
1e1e

T
1 , e1, 0), and we choose (α, β) = (x1e1, x

2
1e1). Hence,

Z =

(

0 (x− x1e1)
T

x− x1e1 X − x2
1e1e

T
1

)

= 0 ∈ PSD ∩ RLTx,

satisfying (2b). Moreover, (α1, β1, y1 − y1y2) = (x1, x
2
1, 1) ∈ PER and (α2, β2, y2 − y1y2) =

(0, 0, 0) ∈ PER, so that (2c) is satisfied. The final case y = e2 is similar. We have thus

shown that (2) is a relaxation of H.

To complete the proof, we show the reverse containment, i.e., that any (x,X, y, Y12, α, β)

satisfying (2) is also a member of H. Define the four scalars

λ0 := 1− y1 − y2 + Y12, λe1 := y1 − Y12, λe2 := y1 − Y12, λe := Y12, (3)

and note that (y, Y12) ∈ RLTy implies λ0 + λe1 + λe2 + λe = 1 with each term nonnegative,

i.e., (λ0, λe1, λe2, λe) is a convex combination. Next, letting 0/0 := 0, define

Z0 := λ−1

0

(

λ0 0T

0 0

)

Ze2 := λ−1

e2

(

λe2 α2e
T
2

α2e2 β2e2e
T
2

)

Ze1 := λ−1

e1

(

λe1 α1e
T
1

α1e1 β1e1e
T
1

)

Ze := λ−1

e

(

λe (x− α)T

x− α X −Diag(β)

)

.

Note that Zy ∈ Hy for each y ∈ {0, 1}2; for y = e1 and y = e2 we use the representation

from Theorem 1, and for y = e we use the result from [2] stated above this theorem. Hence,
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the easily verified equations (y, Y12) = λ0(0, 0) + λe1(e1, 0) + λe2(e2, 0) + λe(e, 1) and

(

1 xT

x X

)

= λ0Z0 + λe1Ze1 + λe2Ze2 + λeZe,

establish that (x,X, y, Y12) ∈ H.

4 Eliminating β

System (2) captures H by projection from a lifted space, which includes the additional

variables α ∈ R
2, β ∈ R

2. In this section, we eliminate the β variables from (2), but the

price we pay is to replace the semidefinite constraint in (2b) with PSD conditions on four

matrices. In Section 5 we will will show that, in order to obtain a characterization of H, it

is in fact only necessary to impose one of these four PSD conditions.

We begin by introducing some notation. First, define the matrix function M : R2 × S
2 ×

R× R
2 × R

2 → S
3 by

M(β) := M(x,X, Y12, α, β) :=

(

Y12 (x− α)T

x− α X − Diag(β)

)

. (4)

The simplified notation M(β) will be convenient because instances of M will only differ

in the values of β; note also that M does not depend on y. We also define four different

functions βpq : R2 × R × R
2 → R

2 depending on (y, Y12, α) for the indices (p, q) ∈ {1, 2}2,

where 0/0 := 0:

β11 := β11(y, Y12, α) := (X11 − x1 + α1, X22 − x2 + α2)

β21 := β21(y, Y12, α) :=
(

(y1 − Y12)
−1α2

1, X22 − x2 + α2

)

β12 := β12(y, Y12, α) :=
(

X11 − x1 + α1, (y2 − Y12)
−1α2

2

)

β22 := β22(y, Y12, α) :=
(

(y1 − Y12)
−1α2

1, (y2 − Y12)
−1α2

2

)

.

As with M(β), the shorter notation βpq will prove more convenient. Note also that p and

q are only index labels to designate the four functions. The result below replaces the PSD

condition in (2b) with the four conditions M(βpq) � 0, p, q ∈ {1, 2}.

Theorem 3. H equals the projection onto (x,X, y, Y12) of (x,X, y, Y12, α) satisfying the

8



convex constraints

diag(X) ≤ x ≤ y (5a)

max{0, x1 − α1 + x2 − α2 − Y12} ≤ X12 ≤ min{x1 − α1, x2 − α2} (5b)

0 ≤ αj ≤ yj − Y12 ∀ j = 1, 2 (5c)

(y, Y12) ∈ RLTy (5d)

M(β11) � 0 (5e)

M(β12) � 0 (5f)

M(β21) � 0 (5g)

M(β22) � 0. (5h)

Proof. The proof is based on reformulating (2), which using M(β) can be restated as

x ≤ y

M(β) ∈ PSD ∩ RLTx

(αj, βj , yj − Y12) ∈ PER ∀ j = 1, 2

(y, Y12) ∈ RLTy.

In particular, considering (x,X, y, Y12, α) fixed, the above system includes four linear condi-

tions on β:

βj ≥ max
{

(yj − Y12)
−1α2

j , Xjj − xj + αj

}

∀ j = 1, 2.

Moreover, since decreasing β1 and β2 while holding all other variables constant does not

violate M(β) � 0, we may define β1 and β2 by

βj(x,X, y, Y12, α) := max
{

(yj − Y12)
−1α2

j , Xjj − xj + αj

}

∀ j = 1, 2

without affecting the projection onto (x,X, y, Y12). It follows that values (x,X, y, Y12, α),

which are feasible for (5a)–(5d), are feasible for the constraints (2) if and only if M(βpq) � 0,

(p, q) ∈ {1, 2}2.

In Section 5, we will show that in order to obtain an exact representation of H only the

condition M(β22) � 0 is required. For clarity in the exposition it is helpful to write out the
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conditions M(βpq) � 0 explicitly. In particular, (5e) can be written







Y12 x1 − α1 x2 − α2

x1 − α1 x1 − α1 X12

x2 − α2 X12 x2 − α2






� 0. (5e′)

In the remaining cases we can utilize the well-known Schur complement condition to conclude

that (5f) is equivalent to













y1 − Y12 0 α1 0

0 Y12 x1 − α1 x2 − α2

α1 x1 − α1 X11 X12

0 x2 − α2 X12 x2 − α2













� 0, (5f′)

(5g) is equivalent to













y2 − Y12 0 0 α2

0 Y12 x1 − α1 x2 − α2

0 x1 − α1 x1 − α1 X12

α2 x2 − α2 X12 X22













� 0, (5g′)

and (5h) is equivalent to

















y1 − Y12 0 0 α1 0

0 y2 − Y12 0 0 α2

0 0 Y12 x1 − α1 x2 − α2

α1 0 x1 − α1 X11 X12

0 α2 x2 − α2 X12 X22

















� 0. (5h′)

In the statement of results in the sequel we will always refer to the conditions (5e)–(5h), but

these statements may be easier to understand if the reader refers to (5e′)–(5h′).

5 Reducing to a single semidefinite condition

Theorem 3 establishes that H is described in part by the four PSD conditions (5e)–(5h)—one

of size 3×3, two of size 4×4, and one of size 5×5. In this section, we show that Theorem 3

holds even if (5e)–(5g) are not enforced. We show this in several steps. First, we prove that

(5e) is redundant.
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5.1 Condition (5e) is redundant

Lemma 1. If (x,X, y, Y12, α) satisfies (5a)–(5d), then it satisfies (5e).

Proof. Consider the linear conditions (5a)–(5d) of (5). In terms of the remaining variables,

the constraints on X12 are simple bounds:

l := max{0, x1 − α1 + x2 − α2 − Y12} ≤ X12 ≤ min{x1 − α1, x2 − α2} =: u.

We claim that (5e) is satisfed at both endpoints X12 = l and X12 = u, which will prove the

theorem since the determinant of every principal submatrix of M(β11) that includes X12 is

a concave quadratic function of X12.

So we need M(β11) � 0 at both X12 = l and X12 = u, i.e.,







Y12 x1 − α1 x2 − α2

x1 − α1 x1 − α1 l

x2 − α2 l x2 − α2






� 0 and







Y12 x1 − α1 x2 − α2

x1 − α1 x1 − α1 u

x2 − α2 u x2 − α2






� 0.

The two matrices above share several properties necessary for positive semidefiniteness. Both

have nonnegative diagonals, and all 2× 2 principal minors are nonnegative:

• For each, the {1, 2} principal minor is nonnegative if and only if Y12(x1 − α1)− (x1 −

α1)
2 ≥ 0. This follows from (5b):

Y12 ≥ (x1 − α1) + (x2 − α2 −X12) ≥ (x1 − α1) + 0 = x1 − α1, (6)

which implies Y12(x1 − α1) ≥ (x1 − α1)
2.

• For each, the {1, 3} principal minor is similarly nonnegative.

• The respective {2, 3} minors are nonnegative if (x1 − α)(x2 − α2) − l2 ≥ 0 and (x1 −

α1)(x2−α2)−u2 ≥ 0, which hold because 0 ≤ l ≤ u ≤ x1−α1 and 0 ≤ l ≤ u ≤ x2−α2.

It remains to show that the both determinants of both matrices are nonnegative. Let us first

examine the case forX12 = l, which itself breaks into two subcases: (i) x1−α1+x2−α2−Y12 ≤

0 = l; (ii) 0 ≤ x1 − α1 + x2 − α2 − Y12 = l. For subcase (i), the determinant equals

(x1−α1)(x2−α2)(Y12−x1+α1−x2+α2), which is the product of three nonnegative terms.

For subcase (ii), the determinant equals

(Y12 − x2 + α2)(Y12 − x1 + α1)(x1 − α1 + x2 − α2 − Y12)

11



which is also the product of three nonnegative terms; in particular, see (6). The case for

X12 = u similarly breaks down into two subcases, which mirror (i) and (ii) above.

5.2 Reduction to α1 = 0

In order to prove that Theorem 3 holds even without (5f) and (5g), we will first reduce to

the case α1 = 0. In fact if (5a)–(5d) and (5h) hold, then at most one of (5f) and (5g) can be

violated. This is because, if both were violated, then we would have X11 − α2
1/(y1 − Y12) >

x1 − α1 and X22 − α2
2/(y2 − Y12) > x2 −α2; otherwise, by comparing diagonal elements (5h)

would not hold. However, these two strict inequalities then imply that (5e) ⇒ (5f)–(5h),

which is a contradiction. So we assume without loss of generality that (5f) is violated while

(5g) holds, and use the following terminology regarding system (5): we say that a point

(x,X, y, Y12, α) lacks only (5f) when the point satisfies all conditions in (5) except that it

violates (5f).

Lemma 2. Suppose that (x,X, y, Y12, α) lacks only (5f), and suppose α1 > 0. Then y1−Y12 >

0 and (x̄, X̄, y, Y12, ᾱ) lacks only (5f), where

x̄ :=

(

x1 − α1

x2

)

, X̄ :=

(

X11 − α2
1/(y1 − Y12) X12

X12 X22

)

, ᾱ :=

(

0

α2

)

.

Proof. If α1 > 0 then (5h) implies that y1−Y12 > 0. For notational convenience, define v :=

(x,X, y, Y12, α) and v̄ := (x̄, X̄, y, Y12, ᾱ). We need to check that v̄ satisfies all conditions in

(5) except (5f). Since only x̄1, X̄11, and ᾱ1 differ between v and v̄, and since x̄1−ᾱ1 = x1−α1,

we need to verify X̄11 ≤ x̄1 ≤ y1, 0 ≤ ᾱ1 ≤ y1−Y12, and (5h) at v̄, and we need to show (5f)

does not hold at v̄. Clearly 0 ≤ ᾱ1 ≤ y1 − Y12 because ᾱ1 = 0, and x̄1 ≤ x1 ≤ y1.

With ᾱ1 = 0 and x̄1 = x1 − α1, conditions (5e) and (5f) at v̄ are respectively equivalent

to






Y12 x̄1 x2 − α2

x̄1 x̄1 X12

x2 − α2 X12 x2 − α2






=







Y12 x1 − α1 x2 − α2

x1 − α1 x1 − α1 X12

x2 − α2 X12 x2 − α2






� 0,

and







Y12 x̄1 x2 − α2

x̄1 X̄11 X12

x2 − α2 X12 x2 − α2






=







Y12 x1 − α1 x2 − α2

x1 − α1 X11 − α2
1/(y1 − Y12) X12

x2 − α2 X12 x2 − α2






� 0.

These conditions both match the conditions of (5e) and (5f) at v, showing that (5e) holds

12



at v if and only if (5e) holds at v̄, and similarly for (5f). In particular, this implies v̄ does

not satisfy (5f), as desired. In addition, we conclude X̄11 ≤ x̄1 because, if X̄11 were greater

than x̄1, then (5e) holding at v would imply (5f) holds at v by just comparing the diagonal

elements above, but this would violate our assumptions.

Finally, using again the relationship between v̄ and v, (5h) holds at v̄ if and only if













y2 − Y12 0 0 α2

0 Y12 x1 − α1 x2 − α2

0 x1 − α1 X11 − α2
1/(y1 − Y12) X12

α2 x2 − α2 X12 X22













� 0,

which is true by applying the Schur complement, using the fact that (5h) holds at v.

5.3 Characterizing (5f) and (5h) in terms of α2

Given (x,X, y, Y12, α) with α1 = 0 that lacks only (5f), in Section 5.4 our goal will be to

modify α2 to a new value α̂2 so as to satisfy all the constraints of (5). To facilitate this

analysis, we now carefully examine how conditions (5f) and (5h) depend on α2.

Because y1 − Y12 ≥ 0 and α1 = 0, (5f) is equivalent to

V :=







Y12 x1 x2 − α2

x1 X11 X12

x2 − α2 X12 x2 − α2






� 0. (7)

Now letting x̄2 := x2 − α2, we have det(V ) = −X11x̄
2
2 + (2X12x1 + Y12X11 − x2

1)x̄2 − Y12X
2
12.

As a function of x̄2, this is a strictly concave quadratic assuming that X11 > 0. Moreover,

the discriminant for this quadratic is

(Y12X11 − x2

1 + 2x1X12)
2 − 4Y12X11X

2

12

= (Y12X11 − x2

1)
2 + 4x1X12(Y12X11 − x2

1) + 4x2

1X
2

12 − 4Y12X11X
2

12

= (Y12X11 − x2

1)
2 + 4x2

1X12(X12 − x1) + 4Y12X11X12(x1 −X12)

= (Y12X11 − x2

1)
2 + 4X12(x1 −X12)(Y12X11 − x2

1)

= θ(θ + 4X12(x1 −X12)),

where θ := Y12X11 − x2
1 ≥ 0. It follows that det(V ) ≥ 0 if and only if x̄2 is contained in the

13



interval bounded by the roots

X12x1

X11

+
θ ±

√

θ(θ + 4X12(x1 −X12))

2X11

,

or equivalently, if and only if α2 ∈ [α−

2 , α
+

2 ], where

α−

2 := x2 −
X12x1

X11

−
θ +

√

θ(θ + 4X12(x1 −X12))

2X11

≤ x2 −
X12x1

X11

−
θ

X11

(8a)

α+

2 := x2 −
X12x1

X11

−
θ −

√

θ(θ + 4X12(x1 −X12))

2X11

≥ x2 −
X12x1

X11

. (8b)

From the above, if (x,X, y, Y12, α) lacks only (5f), where α1 = 0 and X11 > 0 then to

have (x,X, y, Y12, α̂) satisfy (5f) with α̂1 = 0 we certainly require that α̂2 ∈ [α−

2 , α
+

2 ]. In the

next lemma we show that in fact this condition is necessary and sufficient.

Lemma 3. Suppose (x,X, y, Y12, α) lacks only (5f), where α1 = 0, and let α̂ := (0, α̂2). Then

X11 > 0, y2 − Y12 > 0, and (x,X, y, Y12, α̂) satisfies (5f) if and only if α̂2 ∈ [α−

2 , α
+

2 ].

Proof. Note that if (x,X, y, Y12, α) with α1 = 0 satisfies (5h), then X11 = 0 implies that

x1 = X12 = 0. In this case (5f) follows immediately from (5b). In addition, if y2 − Y12 = 0

then (5h) implies that α2 = 0, in which case (5f) would follow immediately from X22 ≤ x2.

Thus if (x,X, y, Y12, α) with α1 = 0 lacks only (5f) we must have X11 > 0 and y2 − Y12 > 0.

We consider V defined in (7) with α̂2 substituted for α2; we wish to show V � 0 if and

only if α̂2 ∈ [α−

2 , α
+

2 ]. As discussed before the lemma, det(V ) ≥ 0 for such α̂2, but it could

happen that V 6� 0 even when det(V ) ≥ 0. Note that, since (x,X, y, Y12, α) satisfies (5h) by

assumption, then by the eigenvalue interlacing theorem (see, for example, Theorem 4.3.8 of

Horn and Johnson [11]), V has at most one negative eigenvalue.

We consider two cases based on whether θ ≥ 0 is positive or zero. If θ > 0, then

by the determinant and discriminant formulas above we have det(V ) > 0 ⇒ V ≻ 0 for

α̂2 ∈ (α−

2 , α
+

2 ), and V � 0 with det(V ) = 0 when α̂2 = α−

2 or α̂2 = α+

2 . The latter follows,

for example, by continuity of the determinants of all principal submatrices. On the other

hand, if θ = 0, then: α−

2 = α+

2 = x2 −X12x1/X11; det(V ) = 0 when α̂2 = x2 −X12x1/X11;

and det(V ) < 0 for any other value of α̂2. Focusing then on α̂2 = x2 −X12x1/X11, we have

V =







Y12 x1 X12x1/X11

x1 X11 X12

X12x1/X11 X12 X12x1/X11






.

In this case diag(V ) ≥ 0 and det(V ) = 0, so to demonstrate V � 0, we need to show that

14



the 2 × 2 principal submatrices are positive semidefinite or equivalently have nonnegative

determinants. The {1, 2} submatrix is positive semidefinite since (5h) is satisfied; the de-

terminant of the {1, 3} submatrix is nonnegative because Y12X11 ≥ x2
1 ≥ X12x1; and the

determinant of the {2, 3} submatrix is nonnegative because x1 ≥ X12.

It will also be important that we understand how (5h) depends on α2. When α1 = 0 and

(x,X, y, Y12, α) satisfies (5h), we certainly have

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

y2 − Y12 0 0 α2

0 Y12 x1 x2 − α2

0 x1 X11 X12

α2 x2 − α2 X12 X22

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≥ 0. (9)

Assuming that X11 > 0 and y2 − Y12 > 0, the left side of (9) is a strictly concave quadratic

function of α2, and it is straightforward to compute that the maximizer of this determinant

is

α∗

2 :=
(y2 − Y12)(x2X11 − x1X12)

y2X11 − x2
1

=

(

x2 −
X12x1

X11

)

y2 − Y12

y2 − x2
1/X11

≤ x2 −
X12x1

X11

. (10)

In (10) the denominator y2X11 − x2
1 is strictly positive since Y12X11 ≥ x2

1 and y2 > Y12, and

then the inequality follows from the fact that Y12X11 ≥ x2
1.

Finally, for α1 = 0 the lemma below considers conditions under which (5f) ⇒ (5h), and

(5h) ⇒ (5f).

Lemma 4. Let (x,X, y, Y12, α) be given with α1 = 0, y2 − Y12 > 0 and 0 ≤ x2 − X22 ≤
1

4
(y2 − Y12). Define ρ :=

√

1− 4(x2 −X22)/(y2 − Y12) ≤ 1. Also define

λ− := 1

2
(1− ρ)(y2 − Y12) ≤

1

2
(1 + ρ)(y2 − Y12) =: λ+.

Then λ− ≤ α2 ≤ λ+ ensures (5f) ⇒ (5h), and α2 ≤ λ− or λ+ ≤ α2 ensures (5h) ⇒ (5f).

Proof. By exploiting α1 = 0, using the Schur complement theorem, and comparing diagonal

elements, we see that: (i) (5f) ⇒ (5h) is ensured when x2−α2 ≤ X22−α2
2/(y2−Y12); and (ii)

(5h) ⇒ (5f) is ensured when the reverse inequality x2−α2 ≥ X22−α2
2/(y2−Y12) holds. Note

that λ− and λ+ are the roots of the quadratic equation x2 −α2 = X22 −α2
2/(y2− Y12) in α2.

In particular, the assumption 0 ≤ x2−X22 ≤
1

4
(y2−Y12) guarantees that the discriminant is

nonnegative and that x2−α2 ≤ X22−α2
2/(y2−Y12) is satisfied at the midpoint 1

2
(y2−Y12) of

λ− and λ+. Then the final statement of the lemma is just the restatement of (i) and (ii).
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5.4 Adjusting α2 when α1 = 0

Assume that (x,X, y, Y12, α) lacks only (5f) with α1 = 0. Then by Lemma 3 either α2 < α−

2

or α2 > α+

2 ; see (8) for the definitions of α−

2 and α+

2 . The next two lemmas show that

(x,X, y, Y12, α̂) then satisfies (5), where in the first case α̂ = (0, α−

2 ) and in the second case

α̂ = (0, α+

2 ).

Lemma 5. Assume that (x,X, y, Y12, α) lacks only (5f) with α1 = 0, and α2 < α−

2 . Then

(x,X, y, Y12, α̂) satisfies (5) with α̂ = (0, α−

2 ).

Proof. From Lemma 3 we know that X11 > 0, y2−Y12 > 0 and (x,X, y, Y12, α̂) satisfies (5f).

Since (5a)–(5d) ⇒ (5e) by Proposition 1 and (5h) ⇒ (5g) when α1 = 0 by inspection, we

need to establish just (5a)–(5d) and (5h). Since (x,X, y, Y12, α) satisfies (5a)–(5d) and we

have increased α2 to α−

2 to form α̂, we need only show α−

2 ≤ x2 − X12 and α−

2 ≤ y2 − Y12

to establish that (5a)–(5d) hold for (x,X, y, Y12, α̂). In fact, we will show α−

2 ≤ x2 − X12

as well as the stronger inequality α−

2 ≤ λ+, where λ+ = 1

2
(1 + ρ)(y2 − Y12) and 0 ≤ ρ ≤ 1

are defined in Lemma 4. Indeed, the conditions of Lemma 4 hold here because, as (5h) is

satisfied but (5f) is violated at α2, we have x2 − α2 ≤ X22 − α2
2/(y2 − Y12), which ensures

0 ≤ x2 −X22 ≤
1

4
(y2 − Y12) and α2 ≤ λ+. Hence, proving α−

2 ≤ λ+ will ensure (5f) ⇒ (5h).

To prove α−

2 ≤ x2 −X12, we note that (8a) and x1 ≥ X11 imply

α−

2 ≤ x2 −
X12x1

X11

≤ x2 −X12.

Next, to prove α−

2 ≤ λ+, assume for contradiction that α2 ≤ λ+ < α−

2 . Consider α∗

2 as

defined in (10). We claim λ+ < α∗

2, which from (10) is equivalent to

x2 −
X12x1

X11

> 1

2
(1 + ρ)

(

y2 −
x2
1

X11

)

.

From (8a), the definition of θ, and the assumption that λ+ < α−

2 , we then have

x2 −
X12x1

X11

≥ α−

2 +
θ

X11

> 1

2
(1 + ρ)(y2 − Y12) +

(

Y12 −
x2
1

X11

)

≥ 1

2
(1 + ρ)(y2 − Y12) +

1

2
(1 + ρ)

(

Y12 −
x2
1

X11

)

= 1

2
(1 + ρ)

(

y2 −
x2
1

X11

)

,
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as required. Since (9) holds at α2 ≤ λ+ and α∗

2 > λ+, the determinant in (9) must be strictly

positive at λ+; recall that this determinant is a strictly concave function of α2. Then (5h)

holds with α2 replaced by λ+, since eigenvalue interlacing implies that the matrix in (5h) can

have at most one negative eigenvalue as α2 is varied. However Lemma 4 then implies that

(5f) also then holds with α2 replaced by λ+, and therefore α−

2 ≤ λ+ from Lemma 3. This is

the desired contradiction of λ+ < α−

2 . We must therefore have α−

2 ≤ λ+, which completes

the proof.

Lemma 6. Assume (x,X, y, Y12, α) lacks only (5f) with α1 = 0, and α2 > α+

2 . Then

(x,X, y, Y12, α̂) satisfies (5) with α̂ = (0, α+

2 ).

Proof. We follow a similar proof as for the preceding lemma. In this case, however, since we

are decreasing α2 to α+

2 , we need to show α+

2 ≥ x1 + x2 − X12 − Y12 and α+

2 ≥ λ−, where

λ− = 1

2
(1− ρ)(y2 − Y12) as defined in Lemma 4. Note that α2 ≥ λ− because (x,X, y, Y12, α)

lacks only (5f), just as in the preceding lemma.

For the first inequality, from (8b) it suffices to show

x2 −
X12x1

X11

≥ x1 + x2 −X12 − Y12

which is equivalent to

X12x1 +X11x1 −X11X12 ≤ X11Y12.

Since θ = Y12X11 − x2
1 ≥ 0, it thus suffices to show

X12x1 +X11x1 −X11X12 ≤ x2

1

X12(x1 −X11) ≤ x1(x1 −X11),

which certainly holds because X12 ≤ x1 and X11 ≤ x1.

For the second inequality, assume by contradiction that α+

2 < λ−. We claim α∗

2 < λ−,

which by (10) is equivalent to

x2 −
X12x1

X11

< 1

2
(1− ρ)

(

y2 −
x2
1

X11

)

.

From (8b), the assumption α+

2 < λ−, and the inequality Y12X11 ≥ x2
1, we have

x2 −
X12x1

X11

≤ α+

2 < λ− = 1

2
(1− ρ)(y2 − Y12) ≤

1

2
(1− ρ)

(

y2 −
x2
1

X11

)

,

as desired. Since (9) holds at α2 ≥ λ− and α∗

2 < λ−, the determinant in (9) is strictly positive
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at λ−, which implies that (5h) holds with α2 replaced by λ−; the logic is identical to that

for λ+ in the proof of Lemma 5. Then Lemma 4 implies that (5f) holds with α2 replaced by

λ−, contradicting the assumption that α+

2 < λ−, so in fact α+

2 ≥ λ−.

5.5 Removing (5f) and (5g) does not affect the projection

We can now prove the following streamlined version of Theorem 3, which requires only one

of the four PSD conditions (5e)–(5h).

Theorem 4. H equals the projection onto (x,X, y, Y12) of (x,X, y, Y12, α) satisfying the

convex constraints (5a)–(5d) and (5h).

Proof. We must show that if (x,X, y, Y12, α) satisfies (5a)–(5d) and (5h), then (x,X, y, Y12) ∈

H. By Theorem 3 this is equivalent to showing that there is an α′ so that (x,X, y, Y12, α
′)

satisfies all of the constraints in (5).

If (5a)–(5d) are satisfied, then (5e) is redundant by Proposition 1. Moreover, as described

above Lemma 2, if (5h) also holds then at most one of (5f)–(5g) can fail to hold. If both

(5f)–(5g) hold then there is nothing to show, so we assume without loss of generality that

(5f) fails to hold; that is, (x,X, y, Y12, α) lacks only (5f).

Assume first that α1 = 0. If α2 < α−

2 , then by Lemma 5 we know that (x,X, y, Y12, α̂)

satisfies (5), where α̂ = (0, α−

2 ). Similarly, if α2 > α+

2 , then by Lemma 6 we have the same

conclusion using α̂ = (0, α+

2 ). Therefore (x,X, y, Y12) ∈ H.

If α1 > 0 we apply the transformation in Lemma 2 to obtain (x̄, X̄, y, Y12, ᾱ), with

ᾱ = (0, α2), that lacks only (5f). We then apply either Lemma 5 or Lemma 6 to obtain α̂ =

(0, α̂2) so that (x̄, X̄, y, Y12, α̂) satisfies (5). Let α
′ = (α1, α̂2). We claim that (x,X, y, Y12, α

′)

satisfies (5) as well. For the linear conditions (5a)–(5d) this is immediate from the facts that

both (x,X, y, Y12, α) and (x̄, X̄, y, Y12, α̂) satisfy (5a)–(5d), and x̄1− ᾱ1 = x1−α1. Therefore

(5e) is also satisfied at (x,X, y, Y12, α
′). The fact that the remaining PSD conditions (5f)–

(5h) are satisfied at (x,X, y, Y12, α
′) follows from the facts that these conditions are satisfied

at (x̄, X̄, y, Y12, α̂), x̄1 − ᾱ1 = x1 − α1, the definition of X̄11 and the Schur complement

condition.

6 Another interpretation

The representation for H in Theorem 4 was obtained by starting with the representation

in Theorem 3 and then arguing that only the single semidefiniteness constraint (5h) was

necessary. In this section we describe an alternative derivation for the representation in
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Theorem 4. This derivation provides another interpretation for the conditions of Theorem 4

and also leads to a simple conjecture for a representation of H′ as defined in the Introduction.

The alternative derivation is based on replacing the variables y with t = e−y, as was done

for the case n = 1 in the proof of Theorem 1. Note that each yi is binary if and only if ti is

binary, and (y, Y12) ∈ RLTy if and only if (t, T12) ∈ RLTy where T12 = 1+Y12−y1−y2. In fact

the linear constraints (5a)–(5d) can be obtained by considering the equations xi+si+ ti = 1,

i = 1, 2, generating RLT constraints by multiplying each equation in turn by the variables

(xj , sj, tj), i = 1, 2, and then projecting onto the variables (x,X, t, T12, α), where α1 ≈ x1t2 =

x1(1 − y2), α2 ≈ x2t1 = x2(1 − y1), T12 = 1 + Y12 − y1 − y2 ≈ t1t2. Substituting variables

and applying a symmetric transformation that preserves semidefiniteness, the PSD condition

(5h′) can be written in the form

















1− T12 x1 x2 t1 − T12 t2 − T12

x1 X11 X12 0 α1

x2 X12 X22 α2 0

t1 − T12 0 α2 t1 − T12 0

t2 − T12 α1 0 0 t2 − T12

















� 0. (11)

The PSD constraint (11) has a simple interpretation as a strengthening of the natural PSD

condition
















1 x1 x2 t1 t2

x1 X11 X12 0 α1

x2 X12 X22 α2 0

t1 0 α2 t1 T12

t2 α1 0 T12 t2

















� 0. (12)

The matrix in (11) is obtained from the matrix in (12) by subtracting T12uu
T , where u =

(1, 0, 0, 1, 1)T . This can be interpreted as removing the portion of the matrix corresponding

to t = e, or equivalently y = 0, if the matrix in (12) is decomposed into a convex combination

of four matrices corresponding to t ∈ {0, e1, e2, e}, similar to the decomposition of H into a

convex combination of Hy, y ∈ {0, e1, e2, e} in Section 3. Note in particular that T12 = λ0,

as defined in (3).

We know that to obtain a representation of H the condition (11) cannot be replaced by

(12); there are solutions (x,X, y, Y12, α) that are feasible with the weaker PSD condition but

where (x,X, y, Y12) /∈ H. However it appears that the condition (12) is sufficient to obtain

a representation of H′. The following conjecture regarding H′ is supported by extensive

numerical computations, but remains unproved.

19



Conjecture 1. H′ equals the projection onto (x,X, y) of (x,X, y, Y12, α) satisfying the con-

straints (5a)–(5d) and (12), where t1 = 1− y1, t2 = 1− y2 and T12 = 1 + Y12 − y1 − y2.

Note that (5a)–(5d) and (12) amount to the relaxation of (x, xxT , y), which enforces PSD

and RLT in the (x,X, y, Y12) space and also exploits the binary nature of y. In other words,

the standard approach for creating a strong SDP relaxation would be sufficient to capture

the convex hull of (x,X, y) in this case, similar to the case of n = 1 as shown in the proof of

Theorem 1, as well as the characterization of QPB for n = 2 from [2].
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