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Abstract Community detection in graphs that are generated according to
stochastic block models (SBMs) has received much attention lately. In this
paper, we focus on the binary symmetric SBM—in which a graph of n vertices
is randomly generated by first partitioning the vertices into two equal-sized
communities and then connecting each pair of vertices with probability that
depends on their community memberships—and study the associated exact
community recovery problem. Although the maximum-likelihood formulation
of the problem is non-convex and discrete, we propose to tackle it using a
popular iterative method called projected power iterations. To ensure fast
convergence of the method, we initialize it using a point that is generated
by another iterative method called orthogonal iterations, which is a classic
method for computing invariant subspaces of a symmetric matrix. We show
that in the logarithmic sparsity regime of the problem, with high probability
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the proposed two-stage method can exactly recover the two communities down
to the information-theoretic limit in O(n log2 n/ log logn) time, which is com-
petitive with a host of existing state-of-the-art methods that have the same
recovery performance. We also conduct numerical experiments on both syn-
thetic and real data sets to demonstrate the efficacy of our proposed method
and complement our theoretical development.

Keywords community detection · exact recovery · orthogonal iteration ·
projected power iteration · finite termination · nearly-linear time

1 Introduction

Community detection is a fundamental task in network analysis and has found
many applications in diverse fields such as physics [16,30], biology [13], and
social science [19], to name a few. In research on community detection, the
stochastic block model (SBM), which provides a way to generate graphs with
community structure, is widely used as a platform for validating theoretical
ideas and comparing numerical algorithms. In particular, substantial advances
have been made in the past decade on understanding the fundamental limits
of community detection in graphs that are generated by SBMs, and on de-
veloping computationally tractable methods that can meet different recovery
requirements up to their corresponding fundamental limits; see, e.g., [1] and
the references therein.

One problem that has been extensively studied in the literature is the ex-
act recovery of communities in the binary symmetric SBM (also known as the
planted bisection model). Specifically, given an n-vertex graph with two equal-
sized hidden communities, and each pair of vertices in the graph is connected
by an edge with probability p if they both belong to the same community
and with probability q otherwise, the goal is to achieve exact recovery (i.e.,
recover the underlying communities exactly with high probability) using only
the adjacency matrix of the graph. It is well known that whether exact recov-
ery is achievable depends on the scalings of p, q, and p − q. When p = a/n
and q = b/n for some a > b > 0 (the constant sparsity regime), it is impos-
sible to recover the communities because the graph is disconnected with high
probability [15]. On the other hand, when p = α logn/n and q = β logn/n
for some α > β > 0 (the logarithmic sparsity regime), Abbe et al. [2] and
Mossel et al. [29] independently showed that exact recovery is impossible if√
α−

√
β <

√
2 but is possible if

√
α−

√
β >

√
2, thereby establishing a sharp

threshold for exact recovery. The proof of Abbe et al. [2] takes an information-
theoretic approach and obtains the said threshold by analyzing the following
maximum-likelihood (ML) formulation of the problem:

max
{
xTAx : 1T

nx = 0, xi ∈ {±1}, i = 1, . . . , n
}
. (MLE)

Here, A is the adjacency matrix of the graph, 1n is the all-one vector of
dimension n, and xi ∈ {±1} encodes the community membership of vertex
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i for i = 1, . . . , n. It is shown in [2] that when
√
α − √

β <
√
2, the ML

estimator (i.e., an optimal solution of (MLE)) fails to recover the communities
with probability bounded away from zero for sufficiently large n, but when√
α −√

β >
√
2, the ML estimator can exactly recover the communities with

high probability.

From a computational point of view, solving Problem (MLE) amounts
to finding a minimum bisection of a graph, which is NP-hard in the worst
case [18]. Over the past few decades, many algorithms have been proposed
to tackle the problem of exact community recovery in the binary symmetric
SBM; see, e.g., [1] for a summary of some of the earlier works. In view of the
information-theoretic limit established in [2,29], a natural task is to design ef-
ficient algorithms that can exactly recover the communities down to the limit.
This has also been undertaken in [2,29]. The former presents a two-stage al-
gorithm that combines the partial recovery algorithm of Massoulié [28] with
a local improvement procedure, while the latter gives a three-stage algorithm
that uses spectral clustering for initialization and then combines a partial re-
covery step with a local refinement procedure. The former also presents an
algorithm based on a semidefinite relaxation (SDR) of Problem (MLE) and
poses the conjecture that the algorithm can exactly recover the communities
down to the information-theoretic limit. The conjecture was later resolved in
the affirmative independently by Hajek et al. [21] and Bandeira [7].

Subsequent to the above development, a variety of efficient algorithms with
the same recovery performance in the binary symmetric SBM have appeared in
the literature. For instance, Abbe and Sandon [4] developed a two-stage algo-
rithm that is similar in spirit to the one in [2]. Yun and Proutiere [38] presented
a spectral partition algorithm, which proceeds by applying spectral decompo-
sition to a trimmed adjacency matrix, followed by some local improvements.
Later, Gao et al. [17] proposed a two-stage algorithm that employs spectral
clustering for initialization and penalized local maximum likelihood estimation
for local refinement. It is worth noting that the aforementioned algorithms ap-
ply not only to the binary symmetric SBM but also to more general SBMs.
More recently, Abbe et al. [3] showed that the vanilla spectral method, which
computes the eigenvector associated with the second largest eigenvalue of the
adjacency matrix and uses the signs of the entries to identify the communities,
already has the desired recovery performance.

Among the existing algorithms that can achieve exact recovery down to the
information-theoretic limit in the binary symmetric SBM, the best complexity
bound is nearly linear. This is attained by, e.g., the three-stage algorithm of
Mossel et al. [29] and the spectral partition algorithm of Yun and Proutiere
[38], both of which have anO(n log2 n) runtime, and the two-stage algorithm of
Abbe and Sandon [4], which has a runtime of o(n1+ǫ) for any ǫ > 0. It should be
pointed out that even though the vanilla spectral method is conceptually much
simpler than these algorithms, it needs to perform an eigenvector computation,
and standard complexity analyses of the commonly used methods for this
purpose (such as orthogonal iteration) only yield a quadratic bound at best
(see, e.g., [34, Part V]).
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1.1 Our Contributions

In this work, we propose a two-stage iterative algorithm that aims to achieve
exact recovery in the binary symmetric SBM by directly tackling the non-
convex ML estimation problem (MLE). In the first stage, the algorithm ap-
plies the classic method of orthogonal iteration to compute an approximation
of the eigenvector u2 associated with the second largest eigenvalue of A. Such
an approximation is then used as an initialization in the second stage of the
algorithm, which applies the method of projected power iteration (cf. [25,26])
to solve Problem (MLE). The first stage is akin to that of a host of exist-
ing algorithms, such as those in [3,29,38]. However, we are able to show that
a coarse approximation of u2 is sufficient for the second stage of our pro-
posed algorithm to find an optimal solution of Problem (MLE), which is key
to the efficiency of our algorithm. Specifically, we show that in the logarith-
mic sparsity regime of the binary symmetric SBM, our proposed algorithm
achieves exact recovery all the way down to the information-theoretic limit
within O(log n/ log logn) orthogonal iterations and O(log n/ log log n) pro-
jected power iterations, where each orthogonal iteration and projected power
iteration can be implemented in O(n logn) time. This yields an overall com-
plexity bound of O(n log2 n/ log logn) for our algorithm, which is competitive
with some of the most efficient algorithms in the literature that have the same
recovery performance. By combining our techniques with the results in [3],
we can further show that the vanilla spectral method can be implemented in
O(n log2 n/ log logn) time. To the best of our knowledge, this is currently the
best complexity bound for the method in the context of exact community re-
covery in the binary symmetric SBM. We also conduct numerical experiments
on synthetic and real data sets to evaluate the performance of our proposed
algorithm. The results demonstrate the efficacy of the algorithm and comple-
ment our theoretical development.

In recent years, there has been a growing body of literature exploring the
design and analysis of fast methods for tackling non-convex formulations that
arise in applications. These include deep neural networks [32,33], low-rank
matrix recovery [12,23], phase retrieval [27,35], source localization [24,31],
and synchronization [25,39]. As these works show, the non-convex formula-
tions in question often possess structures that can be exploited by simple and
scalable methods, thereby allowing optimal solutions of those formulations to
be found efficiently. Our work contributes to this emerging area by showing
that in the logarithmic sparsity regime of the binary symmetric SBM, the ML
estimation problem (MLE), albeit non-convex and discrete, can be solved to
optimality via a carefully designed, yet simple, iterative procedure. Prior to
our work, Bandeira et al. [8] considered another non-convex formulation of
the community recovery problem, which is obtained by applying the Burer-
Monteiro decomposition [11] to the semidefinite relaxation of Problem (MLE).
They showed that all second-order stationary points of the non-convex for-
mulation, which can be computed efficiently by the Riemannian trust-region
method [10], correspond to the underlying communities with high probability
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as long as (p − q)/
√
p+ q ≥ cn−1/6 for some constant c > 0. Despite its low

computational complexity, the approach requires a much stronger condition
on p and q to ensure exact recovery. In particular, it cannot guarantee exact
recovery in the logarithmic sparsity regime of the binary symmetric SBM.

Lastly, let us highlight the improvements made in this paper over its pre-
liminary version [37]. First, the method in [37] is designed for a regularized
version of Problem (MLE). When applying the method to real data sets, which
in general are not generated by the SBM, it is difficult to tune the regulariza-
tion parameter. In the current work, we circumvent this difficulty by handling
Problem (MLE) directly, which makes our proposed method simpler and more
practical. Second, compared to its regularized version in [37], Problem (MLE)
is more challenging as it contains an additional linear constraint. Neverthe-
less, we show that a suitably initialized projected power method can solve it
efficiently and enjoys the same recovery guarantee as that in [37]. Third, al-
though both the method in [37] and the one proposed in this paper have the
property that an iterate will converge in one step to an optimal solution of
Problem (MLE) once the former is in a suitable neighborhood of the latter,
we show in this paper that the size of the neighborhood can be as large as
O(

√
logn), which improves upon the O(1) bound established in [37].

1.2 Organization

The rest of this paper is organized as follows. In Section 2, we introduce the
proposed two-stage algorithm for exact community recovery and present the
main result of this paper. In Section 3, we prove the main result and discuss its
consequences. We then report some numerical results in Section 4 and conclude
in Section 5.

Notation. Let Rn be the n-dimensional Euclidean space. We write matrices
in bold capital letters like A, vectors in bold lower-case letters like a, and
scalars in plain letters. Given a matrix A ∈ R

m×n, we use σmax(A) or ‖A‖
to denote its largest singular value (i.e., spectral norm), σmin(A) its smallest
singular value, and aij its (i, j)-th element. If A is symmetric, then we use
λmin(A) to denote its smallest eigenvalue. Given a vector x ∈ R

n, we use ‖x‖2
to denote its Euclidean norm, xi its i-th element, and diag(x) the diagonal
matrix with x on its diagonal. We use 1n and En to denote the n-dimensional
all-one vector and n × n all-one matrix, respectively, and simply write 1 and
E when their dimensions can be inferred from the context. Given a positive
integer n, we denote by [n] the set {1, . . . , n}. Given a discrete set T , we denote
by |T | the number of elements in T . We use sgn to denote the element-wise
sign function; i.e., for any x ∈ R

n,

[sgn(x)]i =





1, if xi > 0,
0, if xi = 0,
−1, if xi < 0,

i ∈ [n].
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We use Bern(p) to denote the Bernoulli random variable with mean p. Given

two random variables X and Y , we write X
d
= Y if X and Y are equal in

distribution.

2 Preliminaries and Main Results

In this section, we formally state the considered problem, present the proposed
algorithm, and give a summary of our main theoretical results.

To begin, let us introduce a central object in our study—the binary sym-
metric SBM.

Definition 1 (Binary Symmetric SBM) Let n ≥ 2 be an even integer and
p, q ∈ [0, 1] be parameters with p > q. Furthermore, let x∗ ∈ {−1,+1}n be
a label vector representing a partition of [n] into two equal-sized subsets (in
particular, 1Tx∗ = 0). We say that a random graph G is generated according
to the binary symmetric SBM with parameters (n, p, q) and label x∗ if G has
vertex set V = [n] and the elements {aij}1≤i≤j≤n of its adjacency matrix A

are generated independently by

aij ∼
{
Bern(p), if x∗

i x
∗
j = 1,

Bern(q), if x∗
i x

∗
j = −1.

(1)

Intuitively, the label vector x∗ induces two equal-sized communities in the
graph G. Note that we allow self-loops in G, though our analysis also applies
to the case where no self-loop is allowed (i.e., aii = 0 for all i ∈ [n]); see
Section 3.4.1.

Now, given a realization of G that is generated according to the binary
symmetric SBM, the problem of interest is to recover the two communities.
Since −x∗ represents the same community structure as x∗, this is equivalent
to identifying x∗ or −x∗ from the adjacency matrix A. As in [2], we say that
an estimator achieves exact recovery1 if it yields x∗ or −x∗ with probability
tending to one as n → ∞, where the probability is taken with respect to the
distribution in (1).

In this paper, we focus on the logarithmic sparsity regime of the binary
symmetric SBM—i.e.,

p =
α logn

n
and q =

β logn

n
(2)

for some constants α > β > 0—and propose to solve the community recovery
problem by directly handling the non-convex ML estimation problem (MLE),
even though it is NP-hard in the worst case. The first ingredient in our ap-
proach is a simple iterative procedure called the method of projected power

1 This is also termed strong consistency in the literature; see [29].
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iteration, which is essentially the projected gradient method applied to Prob-
lem (MLE). Specifically, let

F :=
{
x ∈ R

n : 1Tx = 0, xi = ±1, i ∈ [n]
}

(3)

denote the feasible set of Problem (MLE). Furthermore, let P : Rn
⇒ R

n be
the projection operator onto F ; i.e., for any c ∈ R

n,

P(c) := Argmin
u∈Rn

{
‖u− c‖22 : u ∈ F

}
.2 (4)

Then, the projected power iterations take the form

x(k) ∈ P(Ax(k−1)), k = 1, 2, . . . . (5)

As the following proposition shows, for every k ≥ 1, the problem of computing
x(k) in (5) boils down to that of finding the indices that correspond to the n/2
largest entries of Ax(k−1), which can be done efficiently.

Proposition 1 For any c ∈ R
n, it holds that v ∈ P(c) if and only if

vℓ =

{
1, ℓ ∈ I,

−1, ℓ ∈ [n] \ I, (6)

where I ⊂ [n] satisfies |I| = n/2 and ci ≥ cj for all i ∈ I and j ∈ [n] \ I.

Proof By (4), we have

P(c) = Argmin
u∈Rn

{
‖u− c‖22 : u ∈ F

}
= Argmax

u∈Rn

{
cTu : u ∈ F

}
,

where the second equality is due to the fact that ‖u‖22 = n for all u ∈ F . The
desired formula (6) follows immediately. ⊔⊓

Despite its simplicity, the method of projected power iteration may not
be effective for solving Problem (MLE) unless a proper initial point x(0) is
available. Thus, we need an additional iterative procedure, which is usually
referred to as themethod of orthogonal iteration (see, e.g., [20]) and constitutes
the second ingredient in our approach, to obtain a good initial point for the
projected power iterations. The method of orthogonal iteration starts with a
matrixQ(0) ∈ R

n×2 with orthonormal columns. In iteration k ≥ 1, it computes
the QR decomposition of AQ(k−1); i.e.,

AQ(k−1) = Q(k)R(k),

where Q(k) ∈ R
n×2 has orthonormal columns and R(k) ∈ R

2×2 is upper tri-
angular. It is known that the distance between the subspace spanned by the
columns of Q(k) and the invariant subspace of A that corresponds to its first

2 By convention, we use the symbol “Argmin” to denote the solution set of the associated
minimization problem. When the solution set is known to be a singleton, we use the symbol
“argmin” to denote the unique solution in the set.



8 P. Wang, Z. Zhou, A. M.-C. So

two dominant eigenvalues converges linearly to 0 as k → ∞; see, e.g., [20, The-
orem 8.2.2]. For our purpose, we only perform N orthogonal iterations, where
N is an input parameter of the algorithm. Then, we apply Ritz acceleration
(see, e.g., [20, Chapter 8.3.7]) to the last iterate, which amounts to computing

the eigenvalue decomposition of Q(N)TAQ(N); i.e.,

Q(N)TAQ(N) = H(N)D(N)H(N)T ,

where H(N) ∈ R
2×2 is orthogonal and D(N) = diag(d

(N)
1 , d

(N)
2 ) is diagonal

with |d(N)
1 | ≥ |d(N)

2 |. Finally, we extract the column of Q̄(N) = Q(N)H(N)

that corresponds to the smaller eigenvalue of Q(N)TAQ(N) to construct a
suitable initial point for the projected power iterations.

We now summarize our proposed method for solving Problem (MLE) in
Algorithm 1. It starts with a matrix Y ∈ R

n×2, whose entries are generated
independently and identically from the standard normal distribution. In the
first stage (lines 2–9 of Algorithm 1), the algorithm performs N orthogonal
iterations with the initial iterate Q(0), which is obtained by orthonormaliz-
ing the columns of Y via Q(0) = Y (Y TY )−1/2, and then applies the Ritz
acceleration. In the second stage (lines 12–19 of Algorithm 1), the algorithm
employs projected power iterations to refine the initial iterate x(0), which is
constructed from a suitable column of Q̄(N). The algorithm terminates when
x(k) = x(k−1) for some k in the second stage, at which point it outputs x(k).

We next present the main result of this paper, which shows that Algo-
rithm 1 achieves exact recovery at the information-theoretic limit and also
provides explicit iteration complexity bounds for Algorithm 1.

Theorem 1 Let A be the adjacency matrix of a random graph generated ac-
cording to the binary symmetric SBM with parameters (n, p, q) and label x∗,
where p, q satisfy (2) for some constants α > β > 0. Set N = Θ(log n/ log logn).
If
√
α−√

β >
√
2, then for all sufficiently large n, the following statement holds

with probability at least 1 − n−Ω(1): Algorithm 1 takes O(log n/ log logn) or-
thogonal iterations and O(log n/ log logn) projected power iterations to output
x∗ or −x∗. Here, the probability is taken with respect to the random choices
in A and in Algorithm 1.

We remark that the value of N in Theorem 1 can be explicitly given;
see (69). Equipped with Theorem 1, it is not hard to derive the total com-
putational cost of Algorithm 1. Indeed, since Z(k) ∈ R

n×2 and S(N) ∈ R
2×2,

the QR decomposition in line 5 can be found in O(n) time, while the eigen-
decomposition in line 8 can be found in O(1) time [34]. Moreover, by Propo-
sition 1, the projection P(z(k)) in line 15 can be found by first identifying the
(n/2)-th largest element z̄(k) of z(k), which can be done in O(n) time [9], and
then comparing each element of z(k) with z̄(k), which can be trivially done in
O(n) time. Now, the remaining dominant computational cost is that of com-
puting matrix-vector products of the form Av, where A ∈ R

n×n is generated
according to the setting of Theorem 1 and v ∈ R

n is arbitrary. Using a simple
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Algorithm 1: A Two-Stage Algorithm for Solving Problem (MLE)

Input: adjacency matrix A, positive integer N
Output: label vector x̂

1 choose a matrix Y ∈ R
n×2, whose entries are generated independently and

identically from the standard normal distribution
/* stage 1: method of orthogonal iteration with Ritz acceleration */

2 set Q(0) ← Y (Y TY )−1/2

3 for k = 1, 2, . . . , N do

4 set Z(k) ← AQ(k−1)

5 compute the QR decomposition Z(k) = Q(k)R(k)

6 end

7 set S(N) ← Q(N)T AQ(N)

8 compute the eigen-decomposition S(N) = H(N)D(N)H(N)T , where

D(N) = diag(d
(N)
1 , d

(N)
2 ) such that |d(N)

1 | ≥ |d(N)
2 |

9 set Q̄(N) ← Q(N)H(N)

10 set ỹ to be the i∗-th column of Q̄(N), where i∗ = argmini∈{1,2} d
(N)
i

11 set y ← ỹ − (1T ỹ/n)1
/* stage 2: method of projected power iteration */

12 set x(0) ← √ny/‖y‖2
13 for k = 1, 2, . . . do

14 set z(k) ← Ax(k−1)

15 set x(k) ← P(z(k))

16 if x(k) = x(k−1) then

17 terminate and output x̂ = x(k)

18 end

19 end

concentration argument, one can show that the number of non-zero entries in
A is O(n logn) with high probability; see Section 3. Hence, with high probabil-
ity, the cost of computing Av is O(n log n) for any v. Putting the above time
bounds together and using the iteration bounds established in Theorem 1, we
obtain the following corollary.

Corollary 1 Consider the setting of Theorem 1. If
√
α−

√
β >

√
2, then for

all sufficiently large n, the probability that Algorithm 1 outputs x∗ or −x∗ in
O(n log2 n/ log logn) time is at least 1− n−Ω(1).

To put the above results in perspective, let us make the following remarks:

(a) While Problem (MLE) is known to be NP-hard in the worst case, the as-
sumption that the adjacency matrix A arises from the binary symmetric
SBM in Definition 1 allows us to conduct an average-case analysis of Al-
gorithm 1. In particular, if the constants α, β > 0 satisfy

√
α−

√
β >

√
2,

which is known to be the information-theoretic limit for exact recovery [2,
29], then with high probability, x∗ and −x∗ are the only optimal solutions
of Problem (MLE) [2]. Moreover, Corollary 1 shows that with high prob-
ability, Algorithm 1 computes an optimal solution of Problem (MLE) in
nearly-linear time. As such, Algorithm 1 is more efficient than SDP-based
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methods (see, e.g., [7,21]). The time bound for Algorithm 1 is also com-
petitive with those for some of the most efficient methods in the literature
(see, e.g., [4,17,29,38]) under the setting of Theorem 1.

(b) In the recent work [3], Abbe et al. showed that the vanilla spectral method,
which first computes an exact eigenvector u2 associated with the second-
largest eigenvalue of A and then returns x̂ = sgn(u2) as the label vector,
achieves exact recovery under the setting of Theorem 1. Conceptually, the
method can be implemented in the framework of Algorithm 1 as follows.
First, by performing N → ∞ orthogonal iterations, we obtain a limit point
Q̄(∞), which can be used to construct u2; see [20, Theorem 8.2.2] and
compare with lines 10–11 of Algorithm 1. Then, we return the label x̂ =
sgn(u2). Incidentally, observe that if the label x̂ coincides (up to sign) with
the ground-truth label x∗, then u2 has exactly n/2 positive entries and n/2
negative entries. This, together with Proposition 1, implies that x̂ can also
be computed by projecting u2 onto F .
In actual implementation, however, we need to know when to terminate
the orthogonal iterations, so that the vanilla spectral method can proceed
to the sign-taking step. Unfortunately, the results in [3] do not provide
the required termination criterion. By contrast, Theorem 1 shows that
the underlying communities can be exactly recovered by first performing
O(logn/ log logn) orthogonal iterations to obtain a coarse approximation
y of u2 and then applying O(logn/ log logn) projected power iterations to
a suitably scaled y. As it turns out, by combining our results in Sections 3.1
and 3.2 with the arguments in [3], we can show that the vanilla spectral
method only needs O(log n/ log logn) orthogonal iterations before the sign-
taking step in order to exactly recover the underlying communities with
high probability; see Section 3.4.2. It is worth noting that this gives the
best complexity bound known to date for the vanilla spectral method in
the context of exact community recovery in the binary symmetric SBM.
This further demonstrates the power of our approach.

3 Proof of the Main Result

In this section, we prove our main result (i.e., Theorem 1) concerning the
recovery performance and iteration complexity of Algorithm 1. This involves
establishing some key properties of the orthogonal iterations and projected
power iterations, which will be accomplished in Sections 3.1 and 3.2, respec-
tively.

3.1 Analysis of the Method of Orthogonal Iteration

Our main goal in this sub-section is to provide a probabilistic analysis of the
convergence behavior of the orthogonal iterations deployed in the first stage
of Algorithm 1. Such an analysis is not only useful for proving Theorem 1 but
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may also be of independent interest. To proceed, let us introduce some further
notation that will be used in the sequel. Let A be as in Theorem 1 and consider
its eigenvalue decomposition A = UΛUT , where Λ = diag(λ1, . . . , λn) with
λ1 ≥ · · · ≥ λn and U = [u1, . . . ,un]. We write

Λα := diag(λ1, λ2), Λβ := diag(λ3, . . . , λn),

Uα := [u1,u2], Uβ := [u3, . . . ,un].
(7)

Moreover, we define, for every k ≥ 0,

P (k) := UTQ(k), V (k) := UT
α Q(k), W (k) := UT

β Q(k), (8)

where the sequence {Q(k)}k≥1 is generated by Algorithm 1. Note that for all
k ≥ 0, P (k) ∈ R

n×2, V (k) ∈ R
2×2, W (k) ∈ R

(n−2)×2, and P (k) has orthonor-
mal columns. Besides, by the CS decomposition (see, e.g., [20, Theorem 2.5.2]),
we have

σ2
min(V

(k)) + σ2
max(W

(k)) = 1, k = 0, 1, . . . . (9)

It is known that the quantity
√
1− σ2

min(V
(0)) measures the distance be-

tween the subspaces spanned by the columns of Uα and Q(0); see, e.g., [20,
Theorem 2.5.1]. To bound this distance, we prove the following result.

Lemma 1 For all n ≥ 6, it holds with probability at least 1− 4
√
logn/n that

σmin(V
(0)) ≥ 1√

n2 + 1
. (10)

Proof Recall from Algorithm 1 that Q(0) = Y (Y TY )−1/2, where Y ∈ R
n×2 is

a random matrix whose entries are i.i.d. standard normal random variables. By
the definition of Uα, we have Uα = UE, where E := (e1, e2). This, together
with V (0) = UT

α Q(0), Q(0) = Y (Y TY )−1/2, UUT = I, and the orthogonal
invariance of the normal distribution, yields

V (0) = ET (UTY )
(
(UTY )T (UTY )

)−1/2 d
= ETY (Y TY )−1/2 = ETQ(0).

It then follows that

P

(
σmin

(
V (0)

)
≤ a

)
= P

(
σmin

(
ETQ(0)

)
≤ a

)

= P

(
λmin

(
Q(0)TEETQ(0)

)
≤ a2

)
=

∫ a2

0

p(x)dx, (11)

where p(·) is the probability density function of λmin

(
Q(0)TEETQ(0)

)
. By [5,

eq. (6)], p(·) takes the form

p(x) =
(n− 2)(n− 3)

4
· (1− x)n−3

x

∫ 1

0

y

(
1 +

1− x

x
y

)− 1
2

(1− y)
n−5
2 dy (12)
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for any x ∈ (0, 1]. This allows us to derive an upper bound on the integral in
(11). Indeed, using the Cauchy-Schwarz inequality, we get

∫ 1

0

y

(
1 +

1− x

x
y

)− 1
2

(1− y)
n−5
2 dy

≤
(∫ 1

0

(
1 +

1− x

x
y

)−1

dy

) 1
2

·
(∫ 1

0

y2(1− y)n−5dy

) 1
2

=

(
x

1− x
· log

(
1

x

)) 1
2

·
(

2

(n− 2)(n− 3)(n− 4)

) 1
2

.

Together with (12), this implies that for all n ≥ 6,

∫ a2

0

p(x)dx ≤
√
2

4
·
√
(n− 2)(n− 3)√

n− 4
·
∫ a2

0

√
1

x
log

(
1

x

)
(1− x)n−

7
2 dx

≤
√
2n

4
·
∫ a2

0

√
1

x
log

(
1

x

)
dx, (13)

where the second inequality follows from the fact that for all n ≥ 6, we have
(n − 2)(n− 3) ≤ n(n− 4) and 0 ≤ (1 − x)n−7/2 ≤ 1 for every 0 ≤ x ≤ 1. By

letting x = e−2z2

, we obtain

∫ a2

0

√
1

x
log

(
1

x

)
dx = 4

√
2

∫ ∞

√

log( 1
a )

z2e−z2

dz. (14)

Moreover, using integration by parts, we compute

∫ ∞

√

log( 1
a )

z2e−z2

dz =
a

2

√
log

(
1

a

)
+

1

2

∫ ∞

√

log( 1
a )

e−z2

dz. (15)

Notice that for any a ≤ 1/e, we have
√
log(1/a) ≥ 1, which leads to

∫ ∞

√

log( 1
a )

e−z2

dz ≤
∫ ∞

√

log( 1
a )

z2e−z2

dz. (16)

Combining (15) and (16), we have that for any a ≤ 1/e,

∫ ∞

√

log( 1
a )

z2e−z2

dz ≤ a

√
log

(
1

a

)
.

This, together with (11), (13), and (14), yields

P

(
σmin

(
V (0)

)
≤ a

)
≤ 2

√
na

√
log

(
1

a

)
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for all n ≥ 6 and a ≤ 1/e. By letting a = 1/
√
n2 + 1 (which satisfies a ≤ 1/e

for any n ≥ 6) in the above inequality, we obtain

P

(
σmin

(
V (0)

)
≤ 1√

n2 + 1

)
≤ 2

√
n√

n2 + 1

√
log
(√

n2 + 1
)
≤ 4

√
logn

n
,

which implies Lemma 1 as desired. ⊔⊓
Next, we present a spectral bound on the deviation of A from its mean. It

is a direct consequence of [22, Theorem 5.2] and thus we omit its proof.

Lemma 2 There exist constants c1 ≥ 1 and c2 > 0, whose values depend only
on α and β, such that

‖A− E[A]‖ ≤ c1
√
logn (17)

holds with probability at least 1− c2n
−3.

Based on Lemma 2, we can establish the following corollary, which provides
estimates on the eigenvalues and eigenvectors of A.

Corollary 2 With probability at least 1−c2n
−3, the following statements hold:

α+ β

2
logn− c1

√
logn ≤ λ1 ≤ α+ β

2
logn+ c1

√
logn, (18)

α− β

2
logn− c1

√
logn ≤ λ2 ≤ α− β

2
logn+ c1

√
logn, (19)

|λi| ≤ c1
√
logn, i = 3, . . . , n, (20)

min
θ∈{±1}

∥∥∥∥θu1 −
1√
n

∥∥∥∥
2

≤ c3√
logn

, (21)

min
θ∈{±1}

∥∥∥∥θu2 −
x∗

√
n

∥∥∥∥
2

≤ c3√
logn

, (22)

where c1, c2 are the constants in Lemma 2 and c3 := 2
√
2c1/min{β, (α−β)/2}.

Proof Suppose that the statement in Lemma 2 holds, which happens with
probability at least 1 − c2n

−3. Let ν1 ≥ ν2 ≥ · · · ≥ νn be the eigenvalues of
E[A]. It follows from Weyl’s inequality (see, e.g., [36, Theorem 4.5.3]) that

|λi − νi| ≤ ‖A− E[A]‖, i = 1, 2, . . . , n. (23)

According to the binary symmetric SBM in Definition 1, we have

E[A] =
p+ q

2
11T +

p− q

2
x∗x∗T . (24)

Since 1Tx∗ = 0 and ‖1‖22 = ‖x∗‖22 = n, we see that E[A] is a rank-2 matrix
with 1 and x∗ being the eigenvectors associated with the largest and second-
largest eigenvalues, respectively. Using (2), we can compute

ν1 =
α+ β

2
logn, ν2 =

α− β

2
logn, νi = 0, i = 3, . . . , n. (25)
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By (23), (25), and Lemma 2, the desired results (18)–(20) are immediate.
Moreover, it follows from (25) that

δ1 := min
i6=1

|ν1 − νi| = β logn, δ2 := min
i6=2

|ν2 − νi| = min

{
β,

α− β

2

}
logn.

This, together with the Davis-Kahan theorem (see, e.g., [36, Theorem 4.5.5])
and Lemma 2, yields

min
θ∈{±1}

∥∥∥∥θu1 −
1√
n

∥∥∥∥
2

≤ 2
√
2‖A− E[A]‖

δ1
≤ 2

√
2c1

β
√
log n

≤ c3√
logn

and

min
θ∈{±1}

∥∥∥∥θu2 −
x∗

√
n

∥∥∥∥
2

≤ 2
√
2‖A− E[A]‖

δ2
≤ 2

√
2c1

min
{
β, α−β

2

}√
logn

=
c3√
logn

.

The proof is then completed. ⊔⊓
Now, we are ready to analyze the convergence of the orthogonal iterations.

From Algorithm 1, one can verify by induction that for every k ≥ 1,

AkQ(0) = Q(k)R̃(k), (26)

where R̃(k) := R(k)R(k−1) · · ·R(1) with R̃(1) = R(1). This, together with
(7)–(8) and A = UΛUT , yields

Λk
αV

(0) = V (k)R̃(k), Λk
βW

(0) = W (k)R̃(k). (27)

Suppose that (10) and λ1 ≥ λ2 > 0 hold. Then, Λk
αV

(0) is non-singular, which
implies that the square matrix V (k) is invertible and R̃(k) = (V (k))−1Λk

αV
(0).

Together with (27), this leads to

K(k) = Λk
βK

(0)Λ−k
α , (28)

where we define K(k) := W (k)(V (k))−1 for all k ≥ 0. Let k
(k)
1 and k

(k)
2

be the first and second column of K(k), respectively. The following result

characterizes the convergence rates of k
(k)
1 and k

(k)
2 .

Proposition 2 Suppose that n ≥ exp(16c21/(α−β)2) and that (10), (18)–(20),
and λ2 > 0 hold. Then, for every k ≥ 0, it holds that

‖k(k)
1 ‖2 ≤ n

(
4c1

(α+ β)
√
logn

)k

and ‖k(k)
2 ‖2 ≤ n

(
4c1

(α− β)
√
logn

)k

.

(29)
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Proof It follows from (28) and λ1 ≥ λ2 > 0 that

‖k(k)
1 ‖2 ≤

(
λ̄

λ1

)k

‖K(0)‖, ‖k(k)
2 ‖2 ≤

(
λ̄

λ2

)k

‖K(0)‖, (30)

where λ̄ = max{|λ3|, . . . , |λn|}. By (20), we have λ̄ ≤ c1
√
logn. Moreover,

‖K(0)‖ = ‖W (0)(V (0))−1‖ ≤ σmax(W
(0))

σmin(V (0))
=

√
1

σ2
min(V

(0))
− 1 ≤ n,

where the second equality follows from (9) and the last inequality is due to
(10). These, together with (18) and (19), yield

‖k(k)
1 ‖2 ≤ n

(
2c1

√
logn

(α+ β) log n− 2c1
√
logn

)k

,

‖k(k)
2 ‖2 ≤ n

(
2c1

√
logn

(α− β) log n− 2c1
√
logn

)k

.

In particular, the desired result (29) holds for all n satisfying 4c1
√
log n ≤

(α− β) log n, or equivalently, n ≥ exp(16c21/(α− β)2). ⊔⊓
Next, we study the effect of Ritz acceleration. Let {Q̄(k)}N−1

k≥1 be an auxil-

iary sequence constructed via Q̄(k) = Q(k)H(k), where H(k) is obtained from

the eigen-decomposition ofQ(k)T AQ(k)—i.e., Q(k)T AQ(k) = H(k)D(k)H(k)T

with D(k) = diag(d
(k)
1 , d

(k)
2 ) and |d(k)1 | ≥ |d(k)2 |. We are interested in relating

the Ritz eigenvalues d
(k)
1 , d

(k)
2 to the eigenvalues λ1, λ2 ofA. Towards that end,

we define

d
(k)

:= max{d(k)1 , d
(k)
2 }, d(k) := min{d(k)1 , d

(k)
2 }.

Then, we have the following estimates.

Proposition 3 For every k ≥ 0, it holds that

λ1 ≥ d
(k) ≥ λ1 − 2‖A‖ · ‖k(k)

1 ‖22, λ2 ≥ d(k). (31)

Proof For ease of exposition, we shall omit the superscript (k) in d
(k)
1 , d

(k)
2 ,

d
(k)

, d(k), Q(k), P (k), V (k), W (k), k
(k)
1 , and K(k) throughout the proof. Since

d ≥ d are the eigenvalues ofQTAQ and λ1 ≥ λ2 are the largest two eigenvalues
of A, we have λ1 ≥ d and λ2 ≥ d from the Courant-Fischer minimax theorem
(see, e.g., [20, Theorem 8.1.2]). Moreover, using (7)–(8) and the definition of
K and letting ê1 = (1, 0), we have

(V −1ê1)
TQTAQ(V −1ê1) = êT1 (Λα +KTΛβK)ê1 = λ1 + kT

1 Λβk1

and

‖V −1ê1‖22 = (V −1ê1)
TP TPV −1ê1 = êT1 (I +KTK)ê1 = 1 + ‖k1‖22, (32)
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where the first equality in (32) is due to the fact that P has orthonormal
columns. Now, since d is the largest eigenvalue of QTAQ, we have

d ≥ (V −1ê1)
TQTAQ(V −1ê1)

‖V −1ê1‖22
=

λ1 + kT
1 Λβk1

1 + ‖k1‖22
,

which leads to

d− λ1 ≥ −λ1‖k1‖22 + kT
1 Λβk1

1 + ‖k1‖22
≥ −2‖A‖ · ‖k1‖22

1 + ‖k1‖22
≥ −2‖A‖ · ‖k1‖22.

The proof is then completed. ⊔⊓
Now, let h

(k)
,h(k) denote the eigenvectors associated with the eigenvalues

d
(k)

, d(k), respectively. Furthermore, we define q(k) := Q(k)h
(k)

and q(k) :=

Q(k)h
(k). Equipped with Propositions 2 and 3, we can establish the conver-

gence rate of the orthogonal iterations.

Theorem 2 Let c1 ≥ 1 and c2 > 0 be the constants in Lemma 2. Suppose
that

n ≥ max

{
exp

(
16c21
β2

)
, 6

}
. (33)

Then, it holds with probability at least 1− c2n
−3 − 4

√
logn/n that

min
θ∈{±1}

‖q(k) − θu1‖2 ≤ n

(
8α

β
+ 10

)(
4c1

(α+ β)
√
logn

)k

, ∀ k ≥ 0, (34)

min
θ∈{±1}

‖q(k) − θu2‖2 ≤ n

(
16α

β
+ 18

)(
4c1

(α− β)
√
logn

)k

, ∀ k ≥ K̄, (35)

where

K̄ =




2 logn+ log
(

8(α+β)
β

)

log logn+ 2 log
(

α+β
4c1

)



. (36)

Proof Again, we shall omit the superscript (k) throughout the proof for ease
of exposition. By definition, we have

QTAQh = dh, QTAQh = dh. (37)

Observe that for any v ∈ R
2 with ‖v‖2 = 1, we have

‖h− sgn(h
T
v)v‖22 = 2− 2sgn(h

T
v)h

T
v = 2− 2|hT

v|

≤ 2− 2(h
T
v)2 = 2(hTv)2,

where the first equality follows from ‖h‖2 = 1, the second equality uses |a| =
sgn(a) · a for any a ∈ R, the inequality follows from |hT

v| ≤ ‖h‖2‖v‖2 = 1,
and the last equality is due to ‖v‖2 = 1 and H being orthogonal. This gives

‖h− sgn(h
T
v)v‖2 ≤

√
2|hTv| (38)
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for any v ∈ R
2 with ‖v‖2 = 1. Moreover, we obtain from (37) that

|(λ1 − d)hT
V −1ê1| = |λ1h

T
V −1ê1 − h

T
QTAQV −1ê1|

≤ ‖λ1V
−1ê1 − P TΛPV −1ê1‖2 ≤ ‖λ1PV −1ê1 −ΛPV −1ê1‖2

=

∥∥∥∥λ1

[
I

K

]
ê1 −

[
Λα 0
0 Λβ

] [
I

K

]
ê1

∥∥∥∥
2

= ‖λ1k1 −Λβk1‖2

≤ 2‖A‖ · ‖k1‖2, (39)

where the first inequality is due to ‖h‖2 = 1 and QTAQ = P TΛP , the
second inequality follows from P TP = I and ‖P Tv‖2 ≤ ‖v‖2, and the second

equality uses (8) and K = WV −1. Then, by letting θ̄ = sgn(h
T
V −1ê1), we

have ∥∥∥∥h− θ̄
V −1ê1

‖V −1ê1‖2

∥∥∥∥
2

≤
√
2|hT

V −1ê1|
‖V −1ê1‖2

≤ 2
√
2‖A‖ · ‖k1‖2
|λ1 − d| , (40)

where the first inequality follows from (38) and the second one is due to (39)
and ‖V −1ê1‖2 ≥ 1 (implied by (32)). Also, by (8) and UTu1 = e1, we obtain

‖QV −1ê1 − u1‖2 = ‖PV −1ê1 − e1‖2 =

∥∥∥∥
[
I

K

]
ê1 − e1

∥∥∥∥
2

= ‖k1‖2. (41)

It then follows that

min
θ∈{±1}

‖q − θu1‖2 ≤ ‖q − θ̄u1‖2 = ‖Qh− θ̄u1‖2

≤
∥∥∥∥Qh− θ̄

QV −1ê1

‖V −1ê1‖2

∥∥∥∥
2

+

∥∥∥∥θ̄
QV −1ê1

‖V −1ê1‖2
− θ̄

u1

‖V −1ê1‖2

∥∥∥∥
2

+

∥∥∥∥θ̄
u1

‖V −1ê1‖2
− θ̄u1

∥∥∥∥
2

≤
∥∥∥∥h− θ̄

V −1ê1

‖V −1ê1‖2

∥∥∥∥
2

+
‖QV −1ê1 − u1‖2

‖V −1ê1‖2
+

∣∣∣∣
1

‖V −1ê1‖2
− 1

∣∣∣∣

≤ 2
√
2‖A‖ · ‖k1‖2
|λ1 − d| +

‖k1‖2√
1 + ‖k1‖22

+

√
1 + ‖k1‖22 − 1√
1 + ‖k1‖22

≤
(
2
√
2‖A‖

|λ1 − d| + 2

)
‖k1‖2, (42)

where the third inequality uses the fact that Q has orthonormal columns,
|θ̄| = 1, and ‖u1‖2 = 1; the fourth one follows from (32), (40), and (41); the
last one uses

√
1 + ‖k1‖22 ≥ 1 and

√
1 + ‖k1‖22 − 1 ≤ ‖k1‖2.

By a similar argument, one can show that

min
θ∈{±1}

‖q − θu2‖2 ≤
(
2
√
2‖A‖

|λ2 − d|
+ 2

)
‖k2‖2. (43)

Now, suppose that (10), (18)–(20), and λ2 > 0 hold, which happens with
probability at least 1 − c2n

−3 − 4
√
logn/n for all n satisfying (33) due to
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Lemma 1, Corollary 2, and the union bound. Then, by (18), (19), Proposition
3, and n ≥ exp(16c21/β

2), we obtain

|λ1 − d| ≥ λ1 − λ2 ≥ β logn− 2c1
√
logn ≥ β

2
logn. (44)

Moreover, it follows from (18)–(20) and n ≥ exp(4c21/(α+ β)2) that

‖A‖ = λ1 ≤ α+ β

2
logn+ c1

√
logn ≤ (α+ β) log n. (45)

These, together with the first inequality in (29), imply (34) as desired. Besides,
using n > exp(16c21/(α+ β)2) and (29), one can verify that for every k ≥ K̄,

‖k(k)
1 ‖2 ≤ n

(
4c1

(α + β)
√
logn

)K̄

≤
√

β

8(α+ β)
≤
√

λ1 − λ2

4‖A‖ ,

where the last inequality follows from (44) and (45). It then follows from

Proposition 3 that λ1 − d
(k) ≤ 2‖A‖ · ‖k1‖22 ≤ (λ1 − λ2)/2 for all k ≥ K̄.

Together with (44), this implies that for all k ≥ K̄,

d
(k) − λ2 = d

(k) − λ1 + λ1 − λ2 ≥ λ1 − λ2

2
≥ β

4
logn. (46)

The desired result (35) then follows from (29), (43), (45), and (46). ⊔⊓

3.2 Analysis of the Method of Projected Power Iteration

Now, let us turn to study the convergence behavior of the projected power
iterations employed in the second stage of Algorithm 1. Our goal is to show that
if x(0) is properly chosen, then the projected power iterations will terminate in
a finite number of iterations and output the ground-truth label vector x∗ with
high probability. To begin, let A be as in Theorem 1. In particular, Lemma 2
and Corollary 2 can be applied here.

Recall that the projected power iterations take the form

x(k) ∈ P(Ax(k−1)), k = 1, 2, . . . ,

where P is the projection operator onto F ; see (3)–(5). The following result
shows that P possesses a Lipschitz-like property, despite the fact that F is
a discrete set. Such a property plays an important role in the analysis of the
projected power iterations; cf. [25,26].

Lemma 3 Suppose that c ∈ R
n is arbitrary and ε > 0 is constant such that

ci

{
≥ ε, i ∈ I,
≤ −ε, i ∈ [n] \ I (47)

for some I ⊂ [n] with |I| = n/2. Then, for any v ∈ P(c), c′ ∈ R
n, and

v′ ∈ P(c′), it holds that

‖v − v′‖2 ≤ 2‖c− c′‖2
ε

. (48)
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Proof By (47) and Proposition 1, we see that P(c) is a singleton and v ∈ P(c)
satisfies

vi =

{
1, i ∈ I,

−1, i ∈ [n] \ I. (49)

Let c′ ∈ R
n be arbitrary and v′ ∈ P(c′). It then follows from Proposition 1

that

v′i =

{
1, i ∈ J ,

−1, i ∈ [n] \ J (50)

for some J ⊂ [n] with |J | = n/2 such that c′i ≥ c′j for all i ∈ J and j ∈ [n]\J .
For ease of exposition, we write Ic := [n] \ I and J c := [n] \ J . Since

|I ∩ J |+ |I ∩ J c| = |I| = n

2
, |I ∩ J |+ |Ic ∩ J | = |J | = n

2
,

we deduce that |I ∩ J c| = |Ic ∩J | = s for some 0 ≤ s ≤ n/2. In addition, by
(49) and (50), we have

vi − v′i =





0, i ∈ (I ∩ J ) ∪ (Ic ∩ J c),
2, i ∈ I ∩ J c,

−2, i ∈ Ic ∩ J .

Since |I ∩ J c| = |Ic ∩ J | = s, this yields

‖v − v′‖2 = 2
√
2s. (51)

On the other hand, we have

‖c− c′‖22 =

n∑

i=1

(ci − c′i)
2 ≥

∑

i∈I∩J c

(ci − c′i)
2 +

∑

j∈Ic∩J

(cj − c′j)
2. (52)

It follows from (47) that ci − cj ≥ 2ε for any i ∈ I and j ∈ Ic. Besides, recall
from (50) that c′j ≥ c′i for any i ∈ J c and j ∈ J . Thus, for every i ∈ I ∩ J c

and j ∈ Ic ∩ J , it holds that

(ci − c′i)
2 + (cj − c′j)

2 ≥ 1

2
(ci − cj︸ ︷︷ ︸

≥2ε

+ c′j − c′i︸ ︷︷ ︸
≥0

)2 ≥ 2ε2,

where the first inequality is due to a2+ b2 ≥ (a− b)2/2 for any a, b ∈ R. Using
(52) and |I ∩ J c| = |Ic ∩ J | = s, we obtain

‖c− c′‖22 ≥ 2sε2. (53)

The desired result (48) then follows from (51) and (53). ⊔⊓
Next, we recall the following result, which is established in [2] and pertains

to the difference of two binomial random variables; see also [3, Lemma 8].
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Lemma 4 Let α > β > 0 be given constants. Suppose that {Wi}n/2i=1 are

i.i.d. Bern(α logn/n) and {Zi}n/2i=1 are i.i.d. Bern(β logn/n), with {Zi}n/2i=1

being independent of {Wi}n/2i=1. Then, for any γ ∈ R, it holds that

P




n/2∑

i=1

Wi −
n/2∑

i=1

Zi ≤ γ logn


 ≤ n− (

√
α−

√
β)2

2 + γ(log α−log β)
2 . (54)

Equipped with Lemmas 3 and 4, we can show that the set-valued map
x Z⇒ P(Ax) possesses a contraction property in a certain neighborhood of x∗.
This would then imply the linear convergence of the projected power iterations.

Proposition 4 Suppose that the constants α > β > 0 satisfy
√
α−

√
β >

√
2.

Then, there exists a constant γ > 0, whose value depends only on α and β,
such that the following statement holds with probability at least 1−n−Ω(1): For
all x ∈ R

n such that 1Tx = 0, ‖x‖2 =
√
n, and

‖x− x∗‖2 ≤ 5c3

√
n

logn
, (55)

one has

‖v − x∗‖2 ≤ c4

γ
√
logn

‖x− x∗‖2 (56)

for any v ∈ P(Ax), where c4 := 3c3(α− β) + 2c1 and c1, c3 are the constants
in Lemma 2 and Corollary 2, respectively.

Proof Since
√
α −

√
β >

√
2, there exists a γ > 0, whose value depends only

on α and β, such that

c5 :=
(
√
α−

√
β)2

2
− γ(logα− log β)

2
− 1 > 0. (57)

According to the binary symmetric SBM in Definition 1, we have

x∗
i (Ax∗)i =

n∑

j=1

aijx
∗
i x

∗
j

d
=

n/2∑

i=1

Wi −
n/2∑

i=1

Zi

for every i ∈ [n], where {Wi}n/2i=1 are i.i.d. Bern(α logn/n), {Zi}n/2i=1 are i.i.d.

Bern(β logn/n), and {Zi}n/2i=1 are independent of {Wi}n/2i=1. It then follows
from Lemma 4, (57), and the union bound that

min
i∈[n]

x∗
i (Ax∗)i ≥ γ logn (58)

holds with probability at least 1− n−c5.
In the rest of the proof, we suppose that both (17) and (58) hold, which

happens with probability at least 1 − c2n
−3 − n−c5 due to Lemma 2 and the

union bound. Let I = {i ∈ [n] : x∗
i = 1} and Ic = [n] \ I. Since x∗ ∈ F , we
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have |I| = |Ic| = n/2 and x∗
i = −1 for all i ∈ Ic. This, together with (58),

implies that

(Ax∗)i

{
≥ γ logn, i ∈ I,
≤ −γ logn, i ∈ Ic.

(59)

It then follows from Proposition 1 that P(Ax∗) = {x∗}. Now, let x ∈ R
n be

such that 1Tx = 0, ‖x‖2 =
√
n, and (55) holds. By (59), P(Ax∗) = {x∗},

and Lemma 3, we obtain

‖v − x∗‖2 ≤ 2‖Ax−Ax∗‖2
γ logn

(60)

for any v ∈ P(Ax). In addition, using ‖x∗‖2 = ‖x‖2, we compute

‖x− x∗‖22 = ‖x‖22 + ‖x∗‖22 − 2xTx∗ = 2‖x∗‖22 − 2xTx∗ = 2(x∗Tx∗ − xTx∗).

This, together with (17), (24), 1Tx = 1Tx∗ = 0, and ‖x∗‖2 =
√
n, yields

‖Ax−Ax∗‖2 = ‖E[A](x− x∗) + (A− E[A])(x− x∗)‖2

≤
∥∥∥∥
(
p+ q

2
11T +

p− q

2
x∗x∗T

)
(x− x∗)

∥∥∥∥
2

+ ‖A− E[A]‖ · ‖x− x∗‖2

=

∥∥∥∥
p− q

2

(
xTx∗ − x∗Tx∗

)
x∗

∥∥∥∥
2

+ ‖A− E[A]‖ · ‖x− x∗‖2

≤ p− q

4

√
n‖x− x∗‖22 + c1

√
logn‖x− x∗‖2. (61)

Then, by (2), (55), (60), and (61), we obtain for any v ∈ P(Ax) that

‖v − x∗‖2 ≤ 2‖Ax−Ax∗‖2
γ logn

≤ 2

γ logn

(
(α− β) logn

4
√
n

‖x− x∗‖2 + c1
√
logn

)
‖x− x∗‖2

≤ 3c3(α− β) + 2c1

γ
√
logn

‖x− x∗‖2

=
c4

γ
√
logn

‖x− x∗‖2.

This completes the proof. ⊔⊓
Since the feasible set F of Problem (MLE) is discrete, the contraction prop-

erty (56) suggests that if an iterate is sufficiently close to x∗, then the projected
power iterations will exhibit one-step convergence to x∗; i.e., all subsequent
iterates will stay at x∗. This would then imply the finite termination of stage
2 of Algorithm 1. Let us now formalize the above observation.
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Proposition 5 Suppose that the constants α > β > 0 satisfy
√
α−√

β >
√
2

and let γ > 0 be such that (57) holds. Then, the following statement holds with
probability at least 1−n−Ω(1): For all x ∈ F such that ‖x−x∗‖2 ≤

√
2γ logn,

one has

P(Ax) = {x∗}. (62)

Proof Suppose that (58) holds, which happens with probability at least 1 −
n−c5 , where c5 > 0 is given in (57). Let I = {i ∈ [n] : x∗

i = 1} and Ic = [n]\I.
Since x∗ ∈ F , we have |I| = |Ic| = n/2 and x∗

i = −1 for all i ∈ Ic. Let x ∈ F
be such that ‖x − x∗‖2 ≤

√
2γ logn. Since x,x∗ ∈ F , there exist an S ⊂ I

and an S′ ⊂ Ic with |S| = |S′| ≤ n/2 such that

x = x∗ − 2eS + 2eS′ ,

where eS (resp. eS′) is an n-dimensional vector with (eS)i = 1 if i ∈ S
(resp. S′) and 0 otherwise. Observe that

√
2γ logn ≥ ‖x− x∗‖2 = 2‖eS′ − eS‖2 = 2

√
|S|+ |S′|.

This, together with |S| = |S′|, implies that |S| = |S′| ≤ γ log n/4. Now, for all
i ∈ I, we get

(Ax)i = (Ax∗)i − 2(AeS)i + 2(AeS′)i

≥ γ logn− 2
∑

j∈S

aij + 2
∑

j∈S′

aij

≥ γ logn− 2|S|

≥ 1

2
γ logn,

where the first inequality follows from (58), the second inequality uses 0 ≤
aij ≤ 1, and the last one is due to |S| ≤ γ logn/4. By the same argument, we
can show that for all i ∈ Ic,

(Ax)i ≤ −1

2
γ logn.

These, together with Proposition 1, imply (62) as desired. ⊔⊓
The next result establishes the iteration complexity of the projected power

iterations for finding the ground-truth label x∗. Recall that c1, c3, and c4 are
the constants defined in Lemma 2, Corollary 2, and Proposition 4, respectively,
whose values depend only on α and β.

Theorem 3 Suppose that the constants α > β > 0 satisfy
√
α −

√
β >

√
2

and let γ > 0 be such that (57) holds. Suppose in addition that

n > max

{
exp

(
c24
γ2

)
, exp

(
5c3√
2γ

)}
. (63)
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Let {x(k)}k≥0 be the sequence generated by Algorithm 1. If x(0) satisfies

1Tx(0) = 0, ‖x(0)‖2 =
√
n, ‖x(0) − x∗‖2 ≤ 5c3

√
n

logn
, (64)

then the following statements hold with probability at least 1− n−Ω(1):

(i) For all k ≥ 1, it holds that

‖x(k) − x∗‖2 ≤ c4

γ
√
logn

‖x(k−1) − x∗‖2 (65)

and

‖x(k) − x∗‖2 ≤ 5c3

√
n

logn
. (66)

(ii) There exists some k ≤ K̃ such that x(k) = x(k−1) = x∗, where

K̃ =




log n

log log n+ 2 log
(

γ
c4

)



+ 2. (67)

Proof Suppose that the statements in Propositions 4 and 5 hold simultane-
ously, which happens with probability at least 1−n−Ω(1) by the union bound.
We first prove (i). It follows from (64) that (66) holds for k = 0. Moreover, by
(64), Proposition 4, and x(1) ∈ P(Ax(0)), one can observe that (65) holds for
k = 1. These, together with (63), yield

‖x(1) − x∗‖2 ≤
c4

γ
√
logn

‖x(0) − x∗‖2 ≤ 5c3

√
n

log n

and thus (66) holds for k = 1. Then, (i) can be established by a simple induc-
tive argument. Next, we prove (ii). By (63), we have c4/(γ

√
logn) < 1 and

5c3/
√
logn <

√
2γ logn. This, together with (64), (65), and (67), yields

‖x(K̃−2) − x∗‖2 ≤ ‖x(0) − x∗‖2
(

c4

γ
√
logn

)K̃−2

≤ 5c3

√
n

logn

(
c4

γ
√
logn

) log n
log log n+2 log(γ/c4)

=
5c3√
logn

≤
√
2γ logn.

By Proposition 5 and the projected power iterations (5), we have x(K̃−1) = x∗.

By applying Proposition 5 to x(K̃−1), we further have x(K̃) = x(K̃−1) = x∗.
This, together with the stopping criterion in Algorithm 1, completes the proof
of (ii). ⊔⊓

Let us make two remarks before we leave this sub-section. First, due to the
symmetry of Problem (MLE), Theorem 3 also holds if we replace all the x∗ in
its statement by −x∗. Second, Theorem 3(ii) implies that the second stage of
Algorithm 1 terminates in a finite number of iterations at an optimal solution
of Problem (MLE), provided that x(0) is properly chosen. In particular, for
any x(0) satisfying (64), it terminates in roughly O(log n/ log logn) iterations
for all sufficiently large n.
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3.3 Proofs of Theorem 1 and Corollary 1

With the preparations in Sections 3.1 and 3.2, we are ready to establish the
main results stated in Section 2. We first provide a formal version of Theorem
1 and its proof. Recall that the constants c1, c3, c4 are given in Lemma 2,
Corollary 2, and Proposition 4, respectively, and their values depend only on
α and β.

Theorem 4 Consider the setting of Theorem 1. Suppose that
√
α−

√
β >

√
2

and let γ > 0 be such that (57) holds. In addition, suppose that

n > max

{
exp

(
16c21

min{(α− β)2, β2}

)
, exp

(
5c3√
2γ

)
, exp

(
c24
γ2

)
, 6

}
. (68)

Then, with probability at least 1 − n−Ω(1), Algorithm 1 takes at most N1 or-
thogonal iterations and N2 projected power iterations to find x∗ or −x∗, where

N1 =




2 logn+ log logn+ 2 log
(

16α+18β
β·min{1,c3}

)

log logn+ 2 log
(

α−β
4c1

)



, (69)

N2 =




logn

log logn+ 2 log
(

γ
c4

)



+ 2. (70)

Proof Suppose that the statements in Lemma 2, Theorem 2, and Theorem 3
hold, which happens with probability at least 1 − n−Ω(1) due to the union

bound. Recall from line 9 of Algorithm 1 that Q̄(N1)=Q(N1)H(N1)

. Moreover,

the columns of Q̄(N1) are denoted by q(N1)=Q(N1)h
(N1)

and q(N1)=Q(N1)h(N1)

,

where h
(N1)

,h(N1) are the eigenvectors of Q(N1)
TAQ(N1)

associated with the

eigenvalues d
(N1)

, d(N1), respectively, and d
(N1) ≥ d(N1).

By α > β > 0, (36), and (69), one can verify that N1 ≥ K̄. It then follows
from Theorem 2 and (69) that there exist θ1, θ2 ∈ {±1} satisfying

‖q(N1) − θ1u1‖2 ≤ n

(
8α

β
+ 10

)(
4c1

(α+ β)
√
logn

)N1

≤ c3√
logn

, (71)

‖q(N1) − θ2u2‖2 ≤ n

(
16α

β
+ 18

)(
4c1

(α − β)
√
log n

)N1

≤ c3√
logn

. (72)

After obtaining Q̄(N1), Algorithm 1 generates an initial point x(0) for the
projected power iterations by setting x(0) =

√
ny(0)/‖y(0)‖2, where y(0) =

q(N1) − (1Tq(N1)/n)1. Since ‖1‖2 =
√
n and ‖q(N1)‖2 = 1, we see that

‖y(0)‖2 ≤ 1 and

y(0)Tq(N1) = 1−
(1Tq(N1))2

n
≥ 0.
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These, together with ‖x(0)‖2 =
√
n, yield

‖x(0) −
√
nq(N1)‖22 = 2n− 2n

(y(0))T q(N1)

‖y(0)‖2
≤ 2n− 2n(y(0))T q(N1)

= 2n− 2n

(
1−

(1T q(N1))2

n

)
= 2(1Tq(N1))2,

which implies that

‖x(0) −
√
nq(N1)‖2 ≤

√
2|1T q(N1)|. (73)

Besides, by (21), there exist θ̃1, θ̃2 ∈ {±1} such that

∥∥∥∥θ̃1u1 −
1√
n

∥∥∥∥
2

≤ c3√
logn

,

∥∥∥∥θ̃2u2 −
x∗

√
n

∥∥∥∥
2

≤ c3√
logn

. (74)

This, together with (71), (73), (q(N1))Tq(N1) = 0, and ‖q(N1)‖2 = 1, yields

‖x(0) −
√
nq(N1)‖2 ≤

√
2n

∣∣∣∣∣∣

(
1√
n
− θ̃1u1 + θ̃1u1 −

θ̃1
θ1

q(N1)

)T

q(N1)

∣∣∣∣∣∣

≤
√
2n

(∥∥∥∥θ̃1u1 −
1√
n

∥∥∥∥
2

+
∥∥∥θ1u1 − q(N1)

∥∥∥
2

)

≤ 2
√
2c3

√
n

logn
. (75)

Then, by (72), (74), (75), and θ2, θ̃2 ∈ {±1}, we obtain

min
θ∈{±1}

‖x(0) − θx∗‖2 ≤
∥∥∥∥x

(0) − θ2

θ̃2
x∗

∥∥∥∥
2

≤ ‖x(0) −
√
nq(N1)‖2 +

√
n‖q(N1) − θ2u2‖2 +

√
n

∥∥∥∥θ2u2 −
θ2

θ̃2

x∗

√
n

∥∥∥∥
2

= ‖x(0) −
√
nq(N1)‖2 +

√
n‖q(N1) − θ2u2‖2 +

√
n

∥∥∥∥θ̃2u2 −
x∗

√
n

∥∥∥∥
2

≤ (2 + 2
√
2)c3

√
n

logn
≤ 5c3

√
n

logn
.

This, together with ‖x(0)‖2 =
√
n, 1Tx(0) = 0, and Theorem 3, implies that

if N2 = K̃, where K̃ is defined in (67), then Algorithm 1 can find x∗ or −x∗

with probability at least 1− n−Ω(1). ⊔⊓
Armed with the results in Theorem 4, we can now provide a proof of

Corollary 1.



26 P. Wang, Z. Zhou, A. M.-C. So

Proof (of Corollary 1) From the discussion following Theorem 1, it remains
to bound the number of non-zero entries in A. Towards that end, let us first
estimate the number of non-zero entries in an arbitrary column a ∈ R

n of
A, which we denote by ‖a‖0. According to the binary symmetric SBM in
Definition 1, we have

‖a‖0 d
=

n/2∑

i=1

Wi +

n/2∑

i=1

Zi,

where {Wi}n/2i=1 are i.i.d. Bern(p), {Zi}n/2i=1 are i.i.d. Bern(q), and {Zi}n/2i=1 are

independent of {Wi}n/2i=1. It follows that

E[‖a‖0] =
n

2
(p+ q), Var(‖a‖0) ≤

n

2
(p+ q).

Upon applying Bernstein’s inequality for bounded distributions (see, e.g., [36,
Theorem 2.8.4]), we get

P

(∣∣∣‖a‖0 −
n

2
(p+ q)

∣∣∣ ≥ 3

2
n(p+ q)

)
≤ 2 exp

(
−

9
8n

2(p+ q)2

1
2n(p+ q) + 1

2n(p+ q)

)

= 2 exp

(
−9

8
n(p+ q)

)
= 2 exp

(
−9

8
(α + β) logn

)
= 2n− 9

8 (α+β).

This gives

P (‖a‖0 < 2n(p+ q)) ≥ 1− 2n− 9
8 (α+β) ≥ 1− 2n− 9

4 ,

where the second inequality is due to α+β > 2, which follows from α > β > 0
and

√
α−

√
β >

√
2.

Now, upon applying the union bound, we conclude that with probability at
least 1− 2n−5/4, the number of non-zero entries in A is less than 2n2(p+ q) =
2(α + β)n logn. Thus, the per-iteration cost of Algorithm 1 is O(n logn).
Together with Theorem 1, the desired bound on the total computational cost
of Algorithm 1 follows. ⊔⊓

3.4 Discussion

Before we leave this section, let us discuss two further consequences of our
technical development.

3.4.1 Binary Symmetric SBM without Self-Loops

Consider a variant of the binary symmetric SBM in which no self-loop is
allowed in the graph. Specifically, the entries of the adjacency matrix A are
still generated independently according to (1), except that aii = 0 for all
i ∈ [n]. Our results are still valid under this setting. Indeed, it is easy to verify
that

E[A] =
p+ q

2
11T +

p− q

2
x∗x∗T − pI.
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In particular, the eigenvalues of E[A] change by p = O(log n/n), which is
dominated by other quantities that appear Lemma 2 and Corollary 2. Thus,
the results in Section 3.1 still hold. Moreover, observe that

x∗
i (Ax∗)i =

∑

j 6=i

aijx
∗
i x

∗
j

d
=

n/2−1∑

i=1

Wi −
n/2∑

i=1

Zi

for every i ∈ [n], where, as before, {Wi}n/2−1
i=1 are i.i.d. Bern(α logn/n),

{Zi}n/2i=1 are i.i.d. Bern(β logn/n), and {Zi}n/2i=1 are independent of {Wi}n/2−1
i=1 .

Since

P




n/2−1∑

i=1

Wi −
n/2∑

i=1

Zi ≤ γ logn


 ≤ P




n/2−1∑

i=1

Wi −
n/2−1∑

i=1

Zi ≤ γ log n+ 1




for any γ ∈ R, we can apply Lemma 4 and obtain the results in Section 3.2.
Hence, we can conclude that Theorem 4 holds. Lastly, the number of non-
zero entries in A can only decrease if there is no self-loop, which implies that
Corollary 1 also holds.

3.4.2 Implementation of the Vanilla Spectral Method and Its Complexity
Analysis

Recently, Abbe et al. [3] have shown that the vanilla spectral method, which
is presented in Algorithm 2, can also achieve exact recovery down to the
information-theoretic limit in the binary symmetric SBM. A popular and prac-
tically efficient way of implementing this method is to employ orthogonal it-
erations to find the eigenvector u2 of the adjacency matrix A. However, the
results in [3] do not establish the number of orthogonal iterations needed to
obtain a sufficiently accurate approximation of u2 that can provably recover
the communities in the graph.

Algorithm 2: Vanilla Spectral Method
Input: adjacency matrix A

Output: label vector x̂

1 compute u2, the eigenvector of A associated with the second largest eigenvalue of
A

2 output x̂ = sgn(u2)

By combining the results in [3] with those in Sections 3.1 and 3.2, we now
show that if the vanilla spectral method is implemented as O(log n/ log logn)
orthogonal iterations followed by a single projection onto F , then it can exactly
recover the underlying communities with high probability. In particular, such
an implementation runs in O(n log2 n/ log logn) time, which, to the best of
our knowledge, is currently the best complexity bound for the vanilla spectral
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method in the context of exact community recovery in the binary symmetric
SBM. To begin, we recall [3, Corollary 3.1], which states that with probability
1−O(n−3), one has

min
θ∈{±1}

∥∥∥∥u2 − θ
Ax∗

ν2
√
n

∥∥∥∥
∞

≤ C√
n log logn

, (76)

where C > 0 is a constant whose value depends only on α and β, and ν2 is
the second-largest eigenvalue of E[A] (see (25)). By Theorem 2, after

N =




3 logn+ 2 log log logn+ 2 log
(

16α+18β
Cβ

)

log log n+ 2 log
(

α−β
4c1

)



≥ K̄

orthogonal iterations, where K̄ is given in (36), we obtain a vector q(N) satis-
fying

min
θ∈{±1}

‖q(N) − θu2‖2 ≤ C√
n log logn

. (77)

From (76) and (77), we deduce the existence of θ̃ ∈ {±1} such that
∥∥∥∥q

(N) − θ̃
Ax∗

ν2
√
n

∥∥∥∥
∞

≤ 2C√
n log logn

. (78)

Now, by (58), it holds with probability at least 1− n−c5 that

min
i∈[n]

∣∣∣∣
(Ax∗)i
ν2
√
n

∣∣∣∣ ≥
2γ√

n(α− β)
. (79)

It follows that

x∗ = sgn(x∗) = sgn(Ax∗) = sgn

(
Ax∗

ν2
√
n

)
= θ̃ · sgn(q(N)),

where the second equality is due to (58) and the fourth equality uses (78)
and (79). The above implies that q(N) has n/2 positive entries and n/2 negative

entries. Thus, by Proposition 1, we have P(q(N)) ∈ {±x∗} as desired.

4 Numerical Results

In this section, we report the recovery performance and numerical efficiency of
our proposed two-stage method (which we denote by PPM in this section for
ease of reference) for community recovery on both synthetic and real data sets.
We also compare our approach with four existing approaches, which are the
SDP-based approach in [6], the manifold optimization (MFO)-based approach
in [8], the spectral clustering (SC) approach in [3], and the two-stage approach
based on the generalized power method (GPM) in [37]. In the implementation,
we use alternating direction method of multipliers (ADMM) to solve the SDP
as suggested in [6], manifold gradient descent (MGD) method to solve the
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MFO, and the MATLAB function eigs for computing the eigenvector that is
needed in the SC approach. Our codes are implemented in MATLAB R2020a
and can be downloaded at https://github.com/peng8wang/MP-Exact-Recovery-in-SBM.
All the experiments are conducted on a PC with 16GB memory and Intel(R)
Core(TM) i5-8600 3.10GHz CPU.

4.1 Phase Transition and Computation Time

We first examine the phase transition property and runtime of the aforemen-
tioned methods for recovering communities in graphs that are randomly gener-
ated according to the binary symmetric SBM, both with and without self-loops
(see Definition 1 and Section 3.4.1). We choose n = 300 in the experiments
and let the parameters α and β in (2) vary from 0 to 30 and 0 to 10 with
increments of 0.5 and 0.4, respectively. For every pair of α and β, we generate
40 instances and calculate, for all the methods, the ratio of exact recovery.
The simulation results are presented in Figure 1, Figure 2, and Table 1. It
can be seen that all methods exhibit a phase transition phenomenon and the
recovery performance of PPM is slightly better than the other three methods.
Moreover, Figures 1(a) and 2(a) suggest that PPM can achieve the optimal
recovery threshold on graphs with and without self-loops, respectively. This
supports the results in Theorem 1 and Section 3.4.1. In Table 1, we record the
total CPU time consumed by each approach for completing the phase transi-
tion experiment. It can be observed from the table that PPM is comparable to
GPM, slightly better than SC, and substantially faster than SDP and MGD.

Table 1 Phase transition: Total CPU time (in seconds) of the different approaches.

Methods PPM GPM SDP MGD SC
Self-loops 18 14 8195 922 104

No self-loop 19 14 8356 932 103

4.2 Convergence Performance

Next, we study the convergence performance of PPM and MGD, both of which
have similar per-iteration cost, and report the number of iterations needed to
exactly identify the two communities in graphs generated according to the
binary symmetric SBM. We do not report the performance of GPM, SDP, and
SC, as GPM and PPM have very similar performance, SDP cannot be solved to
high accuracy using ADMM, and SC can be directly solved using the MATLAB
function eigs. We conduct 3 sets of numerical tests each on graphs with and
without self-loops, which correspond to β ∈ {4, 8, 16}. In each set, we generate
5 graphs of dimension n = 2000, which correspond to α = (

√
β +

√
2)2 + i

for i ∈ {1, 2, 3, 4, 5}. Such a setting ensures that the information-theoretic

https://github.com/peng8wang/MP-Exact-Recovery-in-SBM
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Fig. 1 Phase transition in graphs generated by the SBM with self-loops: The x-axis is β,
which ranges from 0 to 10 with an increment of 2; the y-axis is α, which ranges from 0 to 30
with an increment of 5. Darker pixels represent lower empirical probability of success. The
red curve is the information-theoretic threshold
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Fig. 2 Phase transition in graphs generated by the SBM without self-loops: The x-axis is
β, which ranges from 0 to 10 with an increment of 2; the y-axis is α, which ranges from 0
to 30 with an increment of 5. Darker pixels represent lower empirical probability of success.
The red curve is the information-theoretic threshold
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threshold for exact recovery is met. Let xk and Qk denote k-th iterate of PPM
and MGD, respectively. In Figures 3 and 4, we plot the distances of the iterates

to the ground truth ‖xkxkT − x∗x∗T ‖F and ‖QkQkT − x∗x∗T ‖F against the
iteration number for PPM and MGD, respectively. It can be observed that
PPM exhibits a finite termination phenomenon and converges to the ground
truth much faster than MGD in graphs both with and without self-loops.
This also corroborates the iteration complexity established in Theorem 1 and
Section 3.4.1.
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Fig. 3 Convergence performance on graphs generated by the SBM with self-loops: The
x-axis is number of iterations, the y-axis is distance to ground truth, which is given by

‖xkxkT − x∗x∗T ‖F for PPM and ‖QkQkT −x∗x∗T ‖F for MGD. Here, xk and Qk are the
k-th iterates generated by the PPM and the MGD, respectively.

4.3 Computational Efficiency

In this sub-section, we compare the computational efficiency of our proposed
method with GPM, MGD, SDP, and SC on both synthetic and real data sets.
For the synthetic data sets, we fix β = 16, α = (

√
β +

√
2)2 + 1, and gener-

ate three graphs of dimension n = 2000, 10000, and 20000, respectively. For
the real ones, we use the data sets polbooks and polblogs downloaded from
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Fig. 4 Convergence performance on graphs generated by the SBM without self-loops: The
x-axis is number of iterations, the y-axis is distance to ground truth, which is given by

‖xkxkT − x∗x∗T ‖F for PPM and ‖QkQkT −x∗x∗T ‖F for MGD. Here, xk and Qk are the
k-th iterates generated by the PPM and the MGD, respectively.

UF Sparse Matrix Collection [14].3 Since these real-world networks have un-
balanced or multiple communities, we extract 2 balanced communities from
them. The sizes of each community extracted from polbooks and polblogs are
43 and 732, respectively. The stopping criteria for the tested algorithms are
set as follows. For PPM, we terminate it when ‖xk − yk‖2 < 10−3 for some
yk ∈ P(xk+Axk); for GPM, we terminate it when ‖xk−yk‖2 < 10−3 for some
yk ∈ sgn

(
xk +Axk − 1T

nA1n/n
2 · 1T

nx
k1n

)
; for MGD, we terminate it when

the norm of the manifold gradient is less then 10−3; for ADMM, we terminate
it when the norm of the difference of two consecutive iterates is less than 10−3.
No stopping criterion is needed for SC as it simply employs the MATLAB eigs

function with some post-processing. We run each algorithm 10 times from ran-
domly generated initial points and select the best solution (in terms of function
value) as its recovery solution. Moreover, we set the maximum iteration num-
ber as 2000 for every algorithm. To compare the computational efficiency of
the tested algorithms, we record their CPU time, averaged over 10 runs, and
present the results in Table 2. It can be observed that our proposed method is

3 https://sparse.tamu.edu/

https://sparse.tamu.edu/
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Fig. 5 Recovery performance on the polbooks network: The x-axis and y-axis give the labels
of the vertices (from vertex 1 to vertex 86) in the network polbooks.

nearly as fast as GPM, slightly better than MGD and SC, and substantially
faster than SDP.

All the tested methods can achieve exact recovery on synthetic data sets.
Their recovery performance on the two real data sets polbooks and polblogs
are presented in Figures 5 and 6, respectively. According to the ground truth
of polbooks, the number of misclassified vertices by PPM, GPM, SDP, MGD,
and SC are 0, 4, 1, 4, and 3, respectively. As for polblogs, the number of
misclassified vertices by PPM, GPM, SDP, MGD, and SC are 64, 698, 289, 294,
and 194, respectively. These results demonstrate that our proposed method is
comparable to SDP, MGD, SC and is better than GPM in terms of recovery
performance on the two real data sets.

Table 2 CPU times (in seconds) of the algorithms on synthetic and real data sets.

PPM GPM SDP MGD SC
n = 2000 0.005 0.004 79.47 0.313 0.014

n = 10000 0.031 0.028 –* 2.562 0.113
n = 20000 0.074 0.074 – 4.687 0.268
polbooks 0.003 0.002 0.172 0.059 0.098
polblogs 0.019 0.102 492.1 6.118 0.021

* “–” denotes out of memory.
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Fig. 6 Recovery performance on the polblogs network: The x-axis and y-axis give the labels
of the vertices (from vertex 1 to vertex 1464) in the network polblogs.

5 Conclusions

In this work, we proposed a two-stage iterative algorithm that provably achieves
exact recovery down to the information-theoretic limit in the binary symmet-
ric SBM and has a runtime of O(n log2 n/ log logn). The complexity bound
is among the best for algorithms that have the same recovery performance.
In the process of establishing our main results, we developed new analyses of
the orthogonal iterations and projected power iterations used in our algorithm,
which could be of independent interest. Our numerical results on synthetic and
real data sets demonstrate the strong recovery performance and high compu-
tational efficiency of the proposed algorithm. A natural future direction is to
extend the proposed approach to tackle recovery tasks in more general SBMs.
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