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Abstract

We provide a control-theoretic perspective on optimal tensor algorithms for minimiz-
ing a convex function in a finite-dimensional Euclidean space. Given a function @ :
R? — R that is convex and twice continuously differentiable, we study a closed-loop
control system that is governed by the operators V@ and V2@ together with a feed-
back control law A(-) satisfying the algebraic equation (A())?||V® (x(1)[|?~! = 6
for some 6 € (0, 1). Our first contribution is to prove the existence and uniqueness
of a local solution to this system via the Banach fixed-point theorem. We present a
simple yet nontrivial Lyapunov function that allows us to establish the existence and
uniqueness of a global solution under certain regularity conditions and analyze the
convergence properties of trajectories. The rate of convergence is O (1/tGPT1D/2) in
terms of objective function gap and O(1/¢37) in terms of squared gradient norm.
Our second contribution is to provide two algorithmic frameworks obtained from dis-
cretization of our continuous-time system, one of which generalizes the large-step
A-HPE framework of Monteiro and Svaiter (STAM J Optim 23(2):1092-1125, 2013)
and the other of which leads to a new optimal p-th order tensor algorithm. While our
discrete-time analysis can be seen as a simplification and generalization of Monteiro
and Svaiter (2013), it is largely motivated by the aforementioned continuous-time
analysis, demonstrating the fundamental role that the feedback control plays in opti-
mal acceleration and the clear advantage that the continuous-time perspective brings
to algorithmic design. A highlight of our analysis is that we show that all of the p-th
order optimal tensor algorithms that we discuss minimize the squared gradient norm
at a rate of O (k—3P), which complements the recent analysis in Gasnikov et al. (in:
COLT, PMLR, pp 1374-1391, 2019), Jiang et al. (in: COLT, PMLR, pp 1799-1801,
2019) and Bubeck et al. (in: COLT, PMLR, pp 492-507, 2019).
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1 Introduction

The interplay between continuous-time and discrete-time perspectives on dynamical
systems has made a major impact on optimization theory. Classical examples include
(1) the interpretation of steepest descent, heavy ball and proximal algorithms as the
explicit and implicit discretization of gradient-like dissipative systems [4,5,10,24,
25,98]; and (2) the explicit discretization of Newton-like and Levenberg—Marquardt
regularized systems [1,6,7,12,26-28,32—-34,79], which give standard and regularized
Newton algorithms. One particularly salient way that these connections have spurred
research is via the use of Lyapunov functions to transfer asymptotic behavior and rates
of convergence between continuous time and discrete time.

Recent years have witnessed a flurry of new research focusing on continuous-time
perspectives on Nesterov’s accelerated gradient algorithm (NAG) [95] and related
methods [38,67,90,108]. These perspectives arise from derivations that obtain dif-
ferential equations as limits of discrete dynamics [29,30,56,74,86,101,102,106,109],
including quasi-gradient formulations and Kurdyka-Lojasiewicz theory [14,39] (see
[36,37,52,53,69] for geometrical perspective on the topic), inertial gradient systems
with constant or asymptotic vanishing damping [15,20,21,106] and their extension to
maximally monotone operators [16,17,45], Hessian-driven damping [6,13,18,28,31,
46,102], time scaling [13,19,21,22], dry friction damping [2,3], closed-loop damping
[13,14], control-theoretic design [58,68,77] and Lagrangian and Hamiltonian frame-
works [40,55,59,60,78,87,96,110]. Examples of hitherto unknown results that have
arisen from this line of research include the fact that NAG achieves a fast rate of
0(k~2) in terms of objective function gap [20,29,83] and O (k~3) in terms of squared
gradient norm [102].

The introduction of the Hessian-driven damping into continuous-time dynamics
has been a particular milestone in optimization and mechanics. The precursor of
this perspective can be found in the variational characterization of the Levenberg—
Marquardt method and Newton’s method [7], a development that inspired work on
continuous-time Newton-like approaches for convex minimization [7,32] and mono-
tone inclusions [1,12,26,27,33,34,79]. Building on these works, [6] distinguished
Hessian-driven damping from classical continuous Newton formulations and showed
its importance in optimization and mechanics. Subsequently, [31] demonstrated the
connection between Hessian-driven damping and the forward-backward algorithms
in Nesterov acceleration (e.g., FISTA), and combined Hessian-driven damping with
asymptotically vanishing damping [106]. The resulting dynamics takes the following
form:

X@) + %fc(t) + BV2D (x(1)x (1) + VP (x(1)) = 0, (1)
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where it is worth mentioning that the presence of the Hessian does not entail numerical
difficulties since it arises in the form V2® (x () (¢), which is the time derivative of the
function t — V@ (x(¢)). Further work in this vein appeared in [102], where Nesterov
acceleration was interpreted via multiscale limits that yield high-resolution differential
equations:

X(1) + ;X(r) + /sVED (x ()i (1) + (1 + %E) Vo (x(t)) = 0. )

These limits were used in particular to distinguish between Polyak’s heavy-ball method
and NAG, which are not distinguished by naive limiting arguments that yield the same
differential equation for both.

Althought the coefficients are different in Egs. (1) and (2), both contain Hessian-
driven damping, which corresponds to a correction term obtained via discretization,
and which provides fast convergence to zero of the gradients and reduces the oscillatory
aspects. Using this viewpoint, several subtle analyses have been recently provided in
work independent of ours [13,14]. In particular, they develop a convergence theory
for a general inertial system with asymptotic vanishing damping and Hessian-driven
damping. Under certain conditions, the fast convergence is guaranteed in terms of both
objective function gap and squared gradient norm. Beyond the aforementioned line of
work, however, most of the focus in using continuous-time perspectives to shed light
on acceleration has been restricted to the setting of first-order optimization algorithms.
As noted in a line of recent work [11,47,61,71,85,91,105], there is a significant gap in
our understanding of optimal p-th order tensor algorithms with p > 2, with existing
algorithms and analysis being much more involved than NAG.

In this paper, we show that a continuous-time perspective helps to bridge this gap and
yields a unified perspective on first-order and higher-order acceleration. We refer to our
work as a control-theoretic perspective, as it involves the study of a closed-loop control
system that can be viewed as a differential equation that is governed by a feedback
control law, A(-), satisfying the algebraic equation ()L(t))f"||V<1>()c(z‘))||1’_1 = 6 for
some 6 € (0, 1). Our approach is similar to that of [12,33], for the case without inertia,
and it provides a first step into a theory of the autonomous inertial systems that link
closed-loop control and optimal high-order tensor algorithms. Mathematically, our
system can be written as follows:

(1) + a()x(t) + BO)VP (x ()% (1) + b(H) VP (x(1)) = 0, 3)

where (o, B, b) explicitly depends on the variables (x, A, a), the parameters ¢ > 0,
0 € (0, 1) and the order p € {1,2,...}:

24y ) Gy A @) + )
a(t) = a) a0 B(t) = a() b(r) = —
t 2
a(t) = 4—11 </0 VA(s)ds +C> . )PV )P =0, “)
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932 T.Lin, M. 1. Jordan

The initial condition is x(0) = xg € {x € R? | [[V® (x)|| # 0} and x(0) € R%. Note
that this condition is not restrictive since || V@ (xg)|| = 0 implies that the optimization
problem has been already solved. A key ingredient in our system is the algebraic
equation (A(t)?|IVD (x() || —1 = ¢, which links the feedback control law A(-) and
the gradient norm || V@ (x(-))||, and which generalizes an equation appearing in [12]
for modeling the proximal Newton algorithm. We recall that Eq. (3) has also been
studied in [13,14], who provide a general convergence result when («, 8, b) satisfies
certain conditions. However, when p > 2, the specific choice of (¢, 8, b) in Eq. (4)
does not have an analytic form and it thus seems difficult to verify whether (o, 8, b)
in our control system satisfies that condition (see [13, Theorem 2.1])). This topic is
beyond the scope of this paper and we leave its investigation to future work.

Our contribution Throughout the paper, unless otherwise indicated, we assume that

@ : R? — R is convex and twice continuously differentiable and the set of
global minimizers of @ is nonempty.

As we shall see, our main results on the existence and uniqueness of solutions and
convergence properties of trajectories are valid under this general assumption. We also
believe that this general setting paves the way for extensions to nonsmooth convex
functions or maximal monotone operators (replacing the gradient by the subdifferential
or the operator) [6,28,31]. This is evidenced by the equivalent first-order reformula-
tions of our closed-loop control system in time and space (without the occurrence of
the Hessian). However, we do not pursue these extensions in the current paper.
The main contributions of our work are the following:

1. We study the closed-loop control system of Egs. (3) and (4) and prove the existence
and uniqueness of a local solution. We show that when p = 1 and ¢ = 0, our
feedback law reduces to A(f) = 6 and our overall system reduces to the high-
resolution differential equation studied in [102], showing explicitly that our system
extends the high-resolution framework from first-order optimization to high-order
optimization.

2. We construct a simple yet nontrivial Lyapunov function that allows us to establish
the existence and uniqueness of a global solution under regularity conditions (see
Theorem 2). We also use the Lyapunov function to analyze the convergence rates
of the solution trajectories; in particular, we show that the convergence rate is
O (t~BP+1/2) in terms of objective function gap and O (¢ ~>P) in terms of squared
gradient norm.

3. We provide two algorithmic frameworks based on the implicit discretization of our
closed-looped control system, one of which generalizes the large-step A-HPE in
[85]. Our iteration complexity analysis is largely motivated by the aforementioned
continuous-time analysis, simplifying the analysis in [85] for the case of p = 2
and generalizing it to p > 2 in a systematic manner (see Theorems 4 and 5 for the
details).

4. We combine the algorithmic frameworks with an approximate tensor subroutine,
yielding a suite of optimal p-th order tensor algorithms for minimizing a convex
smooth function @ which has Lipschitz p-th order derivatives. The resulting algo-
rithms include not only existing algorithms studied in [47,61,71] but also yield a
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new optimal p-th order tensor algorithm. A highlight of our analysis is to show
that all these p-th order optimal algorithms minimize the squared gradient norm at
arate of O(k=3P), complementing the recent analysis in [47,61,71].

Further related work In addition to the aforementioned works, we provide a few
additional remarks regarding related work on accelerated first-order and high-order
algorithms for convex optimization.

A significant body of recent work in convex optimization focuses on understanding
the underlying principle behind Nesterov’s accelerated first-order algorithm (NAG)
[91,95], with a particular focus on the interpretation of Nesterov acceleration as a
temporal discretization of a continuous-time dynamical system [3,13,14,17,18,20,
20,21,23,29,30,56,74,83,86,101,102,106,109]. A line of new first-order algorithms
have been obtained from the continuous-time dynamics by various advanced numeri-
cal integration strategies [40,78,100,103,111,113]. In particular, [100] showed that a
basic gradient flow system and multi-step integration scheme yields a class of accel-
erated first-order optimization algorithms. [113] applied Runge—Kutta integration to
an inertial gradient system without Hessian-driven damping [110] and showed that
the resulting algorithm is faster than NAG when the objective function is sufficiently
smooth and when the order of the integrator is sufficiently large. [78] and [60] both
considered conformal Hamiltonian systems and showed that the resulting discrete-
time algorithm achieves fast convergence under certain smoothness conditions. Very
recently, [103] have rigorously justified the use of symplectic Euler integrators com-
pared to explicit and implicit Euler integration, which was further studied by [59,87].
Unfortunately, none of these approaches are suitable for interpreting optimal acceler-
ation in high-order tensor algorithms.

Research on acceleration in the second-order setting dates back to Nesterov’s accel-
erated cubic regularized Newton algorithm (ACRN) [88] and Monteiro and Svaiter’s
accelerated Newton proximal extragradient (A-NPE) [85]. The ACRN algorithm was
extended to a p-th order tensor algorithm with the improved convergence rate of
O k=Pt [35] and an adaptive p-th order tensor algorithm with essentially the same
rate [70]. This extension was also revisited by [92] with a discussion on the efficient
implementation of a third-order tensor algorithm. Meanwhile, within the alternative
A-NPE framework, a p-th order tensor algorithm was studied in [47,61,71] and was
shown to achieve a convergence rate of O (k~GP+1/2) matching the lower bound
[11]. Subsequently, a high-order coordinate descent algorithm was studied in [9], and
very recently, the high-order A-NPE framework has been specialized to the strongly
convex setting [8], generalizing the discrete-time algorithms in this paper with an
improved convergence rate. Beyond the setting of Lipschitz continuous derivatives,
high-order algorithms and their accelerated variants have been adapted for more gen-
eral setting with Holder continuous derivatives [57,63—-66] and an optimal algorithm is
known [105]. Other settings include structured convex non-smooth minimization [48],
convex-concave minimax optimization and monotone variational inequalities [49,97],
and structured smooth convex minimization [72,73,93,94]. In the nonconvex setting,
high-order algorithms have been also proposed and analyzed [42,43,50,51,82].

Unfortunately, the derivations of these algorithms do not flow from a single under-
lying principle but tend to involve case-specific algebra. As in the case of first-order
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934 T.Lin, M. 1. Jordan

algorithms, one would hope that a continuous-time perspective would offer unifica-
tion, but the only work that we are aware of in this regard is [105], and the connection
to dynamical systems in that work is unclear. In particular, some aspects of the UAF
algorithm (see [105, Algorithm 5.1]), including the conditions in Eq. (5.31) and Eq.
(5.32), do not have a continuous-time interpretation but rely on case-specific alge-
bra. Moreover, their continuous-time framework reduces to an inertial system without
Hessian-driven damping in the first-order setting, which has been proven to be an
inaccurate surrogate as mentioned earlier.

We have been also aware of other type of discrete-time algorithms [78,111,113]
which were derived from continuous-time perspective with theoretical guarantee under
certain condition. In particular, [111] derived a family of first-order algorithms by
appeal to the explicit time discretization of the accelerated rescaled gradient dynamics.
Their new algorithms are guaranteed to (surprisingly) achieve the same convergence
rate as the existing optimal tensor algorithms [47,61,71]. However, the strong smooth-
ness assumption is necessary and might rule out many interesting application problems.
In contrast, all the optimization algorithms developed in this paper are applicable for
general convex and smooth problems with the optimal rate of convergence.

Organization The remainder of the paper is organized as follows. In Sect. 2, we study
the closed-loop control system in Eqs. (3) and (4) and prove the existence and unique-
ness of a local solution using the Banach fixed-point theorem. In Sect. 3, we show
that our system permits a simple yet nontrivial Lyapunov function which allows us
to establish the existence and uniqueness of a global solution and derive convergence
rates of solution trajectories. In Sect. 4, we provide two conceptual algorithmic frame-
works based on the implicit discretization of our closed-loop control system as well
as specific optimal p-th order tensor algorithms. Our iteration complexity analysis is
largely motivated by the continuous-time analysis of our system, demonstrating that
these algorithms achieve fast gradient minimization. In Sect. 5, we conclude our work
with a brief discussion on future research directions.

Notation We use bold lower-case letters such as x to denote vectors, and upper-case
letters such as X to denote tensors. For a vector x € R?, we let ||x|| denote its £»
Euclidean norm and let Bs(x) = {x’ € R? | |[x’ — x| < 8} denote its 8-neighborhood.

For a tensor X € R41**dp e define
1 P71 — . . L..,.P
X' 2P1= Y0 [Xielad 2l
1<ij<d;,1<j<p
and denote by [ X [lop = maxij= 1<j<, X[z, ..., zP] its operator norm.

Fix p > 1, we define .7-'; (R?) as the class of convex functions on R? with ¢-
Lipschitz p-th order derivatives; that is, f € ]—'{ (R9) if and only if f is convex and
VP f(x")=VP) f(x)lop < €llx’—x] forallx, x” € RY in which VP f(x) is the p-
th order derivative tensor of f atx € RY. More specifically, for {z1 Lz, 7P} C RY,
we have
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p
vP rolt, ... 2P = Z [ﬁu)} Zill 7P

.. 0x ip
1<iy,....ip<d

Given a tolerance € € (0, 1), the notation a = O (b(¢)) stands for an upper bound,
a < Cb(e), in which C > 0 is independent of .

2 The closed-loop control system

In this section, we study the closed-loop control system in Egs. (3) and (4). We start
by rewriting our system as a first-order system in time and space (without the occur-
rence of the Hessian) which is important to our subsequent analysis and implicit time
discretization. Then, we analyze the algebraic equation (A(7))?||V® (x (1)) 1”~1 =6
for 6 € (0, 1) and prove the existence and uniqueness of a local solution by appeal
to the Banach fixed-point theorem. We conclude by discussing other systems in the
literature that exemplify our general framework.

2.1 First-order system in time and space

We rewrite the closed-loop control system in Eqgs. (3) and (4) as follows:
() + a()x (@) + BV (x(1))x(t) + b(1) VP (x(1)) = 0,

where («, 8, b) explicitly depend on the variables (x, A, a), the parameters ¢ > 0,
0 € (0, 1) and the order p € {1,2,...}:

2w @02 0@ +i0)
a(t) a(t) a(t) a(t)

1
a(t) = % (/ VA(s)ds + C) . G IVe )P =6.
0

a(t)

)

By multiplying both sides of the first equation by % and using the definition of «(?),
B(t) and b(t), we have

@m) + (2 - %) (1) + a() V2D (x (1))x (1)

a(r)
+ (a@t) +a@)Ve(x(t)) = 0.

Defining z;(f) = %x(z) and z2(t) = a(t)V® (x(1)), we have

a(r) (@(n)?
2(t) = a(OVPO(x ()i (1) + E(O VP (x(1)).

20 = 2D + (1 - “(”é(”) £0),
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936 T.Lin, M. 1. Jordan

Putting these pieces together yields
21() +X(1) + 22(0) = —a(OV P (x(1)).
Integrating this equation over the interval [0, ¢], we have
t
z1(t) +x(1) + z22() = z1(0) + x(0) + z2(0) — / a(s)Ve (x(s))ds. (&)
0
Since x(0) = xp € {x € RY | [V®(x)|| # 0}, it is easy to verify that A(O) is well

defined and determined by the algebralc equation A(0) = 6 1’ IV®(xp)||” 7 . Using

_p-t
ct b2 HV<15(X0)H 2p

the definition of a(¢), we have a(0) = T and a(0) = . Putting these
pieces together with the definition of z;(¢) and z,(¢), we have
21(0) + x(0) + z22(0) = ag ;X(O) + x(0) +a(0)Ve (x(0))
p—1
Cffﬁx(o) VP (x(0))l £ + 07 ||V<P(x(0))||_l27 V& (x(0))

= x(0) +

2

This implies that z1 (0) +x(0) 4+2z2(0) is completely determined by the initial condition
and parameters ¢ > 0 and 6 € (0, 1). For simplicity, we define vg := z1(0) + x(0) +
z2(0) and rewrite Eq. (5) in the following form:

t
%x(!) +x() 4+ a(O)VP (x (1)) = vo — / a(s)Ve (x(s))ds. (©)
0

By introducing a new variable v(¢) = vy — fol a(s)Ve (x(s))ds, we rewrite Eq. (6) in
the following equivalent form:

. : B a) (@) B
0(t) + @)V (x (1)) =0, <t)+ﬂ<x(r> V) + Ve () =0,

Summarizing, the closed-loop control system in Egs. (3) and (4) can be written as a
first-order system in time and space as follows:

() +a@)VO(x(t)) =0

() + S8 (e(t) —v() + “;&’))) Vo (x(1)) =0

t
a(t) = j—‘ (/ VA (s)ds +c> (7
0
GNP IV x()IP~ =6
(x(0), v(0)) = (x0, vo)-
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We also provide another first-order system in time and space with different variable
(x, v, A, y). We study this system because its implicit time discretization leads to a
new algorithmic framework which does not appear in the literature. This first-order
system is summarized as follows:

b(t) — %V(P(x(t)) =0

i) = EB.(e(1) — v0) + LYV (x(1) = 0

t -2 3
V(t)=4</ \/Edwrc) ®)
0
AP IVOx@) P =6
(x(0), v(0)) = (x0, vo).

Remark 1 The first-order systems in Egs. (7) and (8) are equivalent. It suffices to show
that

vy a@ oy @)? )’

i@’ a@) oy’ a@) (v

a(t) =—

By the definition of a(¢) and y (¢), we have a(t) = —L_ which implies that a(¢) =

. y(t)
40)
2"

Remark 2 The first-order systems in Egs. (7) and (8) pave the way for extensions to
nonsmooth convex functions or maximal monotone operators (replacing the gradient
by the subdifferential or the operator), as done in [6,28,31]. In this setting, either
the open-loop case or the closed-loop case without inertia has been studied in the
literature [1,12,16,17,27,33,34,45,79], but there is significantly less work on the case
of a closed-loop control system with inertia. For recent progress in this direction, see
[14].

2.2 Algebraic equation
We study the algebraic equation,
AP VO )P~ =6 € (0. 1), ©)

which links the feedback control A(-) and the solution trajectory x (-) in the closed-loop
control system. To streamline the presentation, we define a function ¢ : [0, +00) x
RY [0, 400) such that

p=1
oA, x) =AIVOX)| 7, ¢0,x)=0.
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938 T.Lin, M. 1. Jordan

By definition, Eq. (9) is equivalent to ¢(A(?), x(t)) = 01/P . Our first proposition
presents a property of the mapping ¢(-, x), for a fixed x € R¥ satisfying V& (x) # 0.
We have:

Proposition 1 Fixing x € RY with V& (x) # 0, the mapping ¢(-, x) satisfies

1. @(-, x) is linear, strictly increasing and ¢(0, x) = 0.

2. ¢(A,x) > +00as A — +oo.

Proof By the definition of ¢, the mapping ¢(-, x) is linear and ¢(0, x) = 0. Since
Vo (x) # 0, we have [V (x)|| > 0 and ¢(-, x) is thus strictly increasing. Since
¢(+, x) is linear and strictly increasing, ¢(A, x) — 400 as A — +o0. O

In view of Proposition 1, for any fixed point x with V@ (x) # 0, there exists a
unique A > 0 such that (A, x) = 0177 for some 6 € (0, 1). We accordingly define
2 € R? and the mapping Ay : 22 — (0, 00) as follows:

Q2 ={x eR! [ [VOW #0), Ag(x) =07 VO] 7 . (10)

We now provide several basic results concerning §2 and Ay (-) which are crucial to the
proof of existence and uniqueness presented in the next subsection.

Proposition 2 The set $2 is open.

Proof Given x € £2, it suffices to show that Bs(x) C £2 for some § > 0. Since~ D is
twice continuously differentiable, V@ is locally Lipschitz; that is, there exists § > 0
and L > O such that

V@ (z) = VOx)| < Lllz — x|l, Vz € By (x).
Combining this inequality with the triangle inequality, we have
V@I = IVEX)| = [VP(2) = VO (x)|| = Ve ()|l — Lllz — x].

Letd = min{g, W}. Then, for any z € Bs(x), we have

Vo) > m

>0 = zef2.

This completes the proof. O

Proposition 3 Fixing 6 € (0, 1), the mappings Ag(-) and v/ Ag (-) are continuous and
locally Lipschitz over S2.

Proof By the definition of Ag(-), it suffices to show that Ag(-) is continuous and
locally Lipschitz over §2 since the same argument works for +/ Ag(+).
First, we prove the continuity of Ag(-) over £2. Since | V@ (x)| > Oforany x € £2,
—1

_p-l
the function ||[V@ ()| 7 iscontinuous over §2. By the definition of Ay (-), we achieve
the desired result.
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Second, we prove that Ay(-) is locally Lipschitz over §2. Since @ is twice con-

tinuously differentiable, V@ is locally Lipschitz. For p = 1, Ag(-) is a constant
_p-l
everywhere and thus locally Lipschitz over £2. For p > 2, the function x 7 is

locally Lipschitz at any point x > 0. Also, by Proposition 2, £2 is an open set. Putting

n—1
these pieces together yields that ||V (-) ||_17 is locally Lipschitz over £2; that is,
there exist § > 0 and L > 0O such that

p—1

- -1
VeI~ 7 = IVo)I™ 7 | < LIy —x"ll, Vx',x" € Bs(x),

which implies that

1
|[Ag(x") = Ag(x")| < 07 L|Ix" —x"|l, Vx',x" € Bs(x).
This completes the proof. O

2.3 Existence and uniqueness of a local solution

We prove the existence and uniqueness of a local solution of the closed-loop control
system in Egs. (3) and (4) by appeal to the Banach fixed-point theorem. Using the
results in Sect. 2.1 (see Eq. (6)), our system can be equivalently written as follows:

(a(1))*
a(t)

. a(t) L
x(t) + —(x(@) + f a(s)Ve (x(s))ds — vo) +
a(t) 0

2
a(t) = 411 </(;t VA(Gs)ds + c)

GO IVex@)P~' =6
x(0) = xop.

V& (x(1)) = 0

Using the mapping Ay : 2 — (0, 0o0) (see Eq. (10)), this system can be further
formulated as an autonomous system. Indeed, we have

A1) = Ag(x()) = LD |V (x(t)|IP~ =6,

which implies that

1 t 2 1 P
a(z)=2</0 \/Ae(x(s))ds-f-c) , aa):Eme(xa» (/0 \/Ae(x(s))dS-FC).

Putting these pieces together, we arrive at an autonomous system in the following
compact form:

X(@)=F(,x(@), x(0)=xpe€ 52, an
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940 T.Lin, M. 1. Jordan

where the vector field F : [0, +00) x £2 — R? is given by

t s
VA G()(2x (1) + fo VA (x())( fo VAg(x(w)dw + )V (x(s))ds — vg)
Jo N Ag&(s) ds + ¢
—Ap(x())VD(x(1)). (12)

F(t,x(1) = —

A common method for proving the existence and uniqueness of a local solution is via
appeal to the Cauchy-Lipschitz theorem [54, Theorem 1.3.1]. This theorem, however,
requires that F (¢, x) be continuous in ¢ and Lipschitz in x, and this is not immediate in
our case due to the appearance of [; +/A (x(s))ds. We instead recall that the proof of
the Cauchy-Lipschitz theorem is generally based on the Banach fixed-point theorem
[62], and we avail ourselves directly of the latter theorem. In particular, we construct
Picard iterates 1, whose limitis a fixed point of a contraction 7. We have the following
theorem.

Theorem 1 There exists ty > O such that the autonomous system in Egs. (11) and (12)
has a unique solution x : [0, ty] — R4,

Proof By Proposition 2 and the initial condition xg € 2, there exists § > 0 such that
Bs(xg) < £2. Note that @ is twice continuously differentiable. By the definition of
Ap, we obtain that Ag(z) and V@ (z) are both bounded for any z € Bs(xg). Putting
these pieces together shows that there exists M > 0 such that, for any continuous
function x : [0, 1] — Bs(xp), we have

|F(t,x(@)|| <M, VtelO0,1]. (13)

The set of such functions is not empty since a constant function x = xq is one element.
Letting #; = min{l, %}, we define X as the space of all continuous functions x
on [0, fp] for some fy < #; whose graph is contained entirely inside the rectangle
[0, 0] x Bs(xp). For any x € X', we define

t
z(t) =Tx = x¢ —|—/ F(s,x(s))ds.
0

Note that z(-) is well defined and continuous on [0, #p]. Indeed, x € X implies that
x(t) € Bs(xo) C §2 forVr € [0, tg]. Thus, the integral of F (s, x(s)) is well defined and
continuous. Second, the graph of z(¢) lies entirely inside the rectangle [0, #p] x Bs(x0).
Indeed, since t < 79 < t; = min{l, %}, we have

4 Eq. (13)
lz(t) — xoll = / F(s,x(s))ds| < Mt < Mty < Mn <39.
0

Putting these pieces together yields that 7 maps X to itself. By the fundamental
theorem of calculus, we have z(t) = F (¢, x(¢)). By a standard argument from ordinary
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differential equation theory, x(t) = F (¢, x(¢)) and x (0) = xq if and only if x is a fixed
point of 7. Thus, it suffices to show the existence and uniqueness of a fixed point of
T.

We consider the Picard iterates {y}x>0 with ¥o(¢) = xo for V¢ e [0, 7] and
Yxy1 = Ty for all k& > 0. By the Banach fixed-point theorem [62], the Picard
iterates converge to a unique fixed point of 7 if X is an nonempty and complete
metric space and T is a contraction from X to X.

First, we show that X is an nonempty and complete metric space. Indeed, we define
d(x,x") = maxsefo,4] X (t) — x'(2)||. It is easy to verify that d is a metric and (X, d)
is a complete metric space (see [107] for the details). In addition, /X" is nonempty since
the constant function x = xg is one element.

It remains to prove that T is a contraction for some ty < ti. Indeed, Ag(z)
and V@ (z) are bounded for Vz € Bs(xg); that is, there exists M; > 0 such that
max{Ag(2), |[V® ()|} < M for Vz € Bs(xo). By Proposition 3, Ag and /Ay are
continuous and locally Lipschitz over £2. Since Bs(xg) € £2 is bounded, there exists
L1 > 0 such that, for any x’, x” € Bs(xo), we have

max{| Ag (x") — Ap ("), |V A (x') =V Ag ()} < L1l —x")|.  (14)

Note that @ is twice continuously differentiable. Thus, there exists Ly > 0 such that
IV (x') — VO ()| < La|lx" — x”|| for Vx’, x” € Bs(xo). In addition, for any
t € [0, 1], we have |lx ()| < llxoll + 6 = M>.

We now proceed to the main proof. By the triangle inequality, we have

I

1Tx'(t) = Tx" (D)l < /0 146 (x" () VD (x'(5)) — Ag(x" () VD (x" (5)) | ds
Ag (X (5)) s ; v ; ,
m (/0 (\/Aa(x (w)) </0 VAg(x'(v)) dv + C)) Vo (x (W))dw)

t
“
0
Ag (x"(5)) ) 7 Y ” "
_f(; TEAC)I I </0 <\/A9 (x"(w)) </0 VAg(x" (v)) dv + C>> Vo (x (w))dw)

ds

i

N /’ WA o NG
o | fo VA w)dw + ¢ Jo VA (w))dw + ¢ ’
uis
The key inequality for the subsequent analysis is as follows:
llaibr — axbs ||l < llaillllbr — b2l + l1b2|llar — a2l (15)

First, by combining Eq. (15) with max{Ag(x (1)), [V® (x()|]} < My, [VO (') —
V& (x")| < La||x’ — x”|| and Eq. (14), we obtain:

I < Mi(Ly + Lytd(x’, x").
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Second, we combine Eq. (15) with v/ Ag(x(#)) < VM1,Eq. (14)and 0 < s < 19 <
t1 < 1 to obtain:

Ag(x'(s)) _ Ag(x"(s))
f(‘; VAg(x'(w))dw + ¢ fg VA (X" (w))dw + ¢
< <l + 2@) Lid(x', x").
c c

We also obtain by combining Eq. (15) with max{Ag(x(¢)), V@ (x ()|} < My,
VO () — Vo) < La|lx’ —x"|,Eq. (14)and 0 < w <5 <19 < 11 < 1 that

/ (\/Ag(x/(w)) (/ v Ag(x'(v)) dv + c)) Vo (x' (w))dw
0 0
—/ <\/A9 (x"(w)) (/ v Ag(x" (v)) dv + c)) V@(x”(w))dw”
0 0

< (MyLy+cy/MiLy +2(M)>?Ly 4+ cM{L)d(x', x").

In addition, by using max{Ag(x(¢)), [V@(x(@)|} < M and 0 < w < s < 1y <
t; < 1, we have

Ap(x'(s)) - VM
Jo VA (W) dw + ¢ c ’

”/ <\/A9 (x"(w)) (/ VAg(x”(v)) dv + c)) V@(x”(w))dw”
0 0

< (My)? + c(M)*.

Putting these pieces together yields that

2(M)>2Ly  (M)*?Ly + 5(M1)*L;
= ( c? + c

+M1L2+2(M1)3/2L1> tod(x', x").

Finally, by a similar argument, we have

2/ My +2(M. Ly 4/M{(M L
IIIs( 1+ 2(Mz + lvoll) L 1( 22+||vo||) 1>t0d(x/,x”).
c c

Combining the upper bounds for I, IT and III, we have
d(Tx', Tx"y = max |Tx'(t) = Tx" ()| < Mtod (x', x),
1€[0,10]
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where M is a constant that does not depend on 7y (in fact it depends on c, xg, 8§, @ (-)
and Ag(+)) and is defined as follows:

2((M1)? + 2M5 + 2|l /M L " 2/ My + 2Ma + 2||vo |l + 5(M1)?)Ly + (M1)*/%L,
c? ¢
+2M Ly + (M +2(M)>*)L,.

M =

Therefore, the mapping 7T is a contraction if 7o € (0, 1] satisfies #p < ﬁ This
completes the proof. O

2.4 Discussion

We compare the closed-loop control system in Egs. (3) and (4) with four main classes
of systems in the literature.

Hessian-driven damping The formal introduction of Hessian-driven damping in opti-
mization dates to [6], with many subsequent developments; see, e.g., [31]. The system
studied in this literature takes the following form:

X(t) + %X(t) + BV (x(1)x (1) + VO (x(1)) = 0.

In a Hilbert space setting and when o > 3, the literature has established the weak
convergence of any solution trajectory to a global minimizer of @ and the convergence
rate of o(1/¢%) in terms of objective function gap.

Recall also that [102] interpreted Nesterov acceleration as the discretization of a
high-resolution differential equation:

() + %x(z) + sV2D (x(1))i(t) + (1 + %) Vo (x(t)) =0,

and showed that this equation distinguishes between Polyak’s heavy-ball method and
Nesterov’s accelerated gradient method. In the special case in whichc = 0and p = 1,
our system in Egs. (3) and (4) becomes

X(1) + %)é(t) + V2D (x(1))5 (1) + <9 + ?) Vo (x(t)) = 0. (16)

which also belongs to the class of high-resolution differential equations. Moreover, for
¢ =0and p = 1, our system can be studied within the recently-proposed framework
of [13,14]; indeed, in this case (¢, 8, b) in [13, Theorem 2.1] has an analytic form.
However, the choice of («, 8, b) in our general setting in Eq. (4), for p > 2, does not
have an analytic form and it is difficult to verify whether («, 8, b) in this case satisfies
their condition.

Newton and Levenberg—Marquardt regularized systems The precursor of this perspec-
tive was developed by [7] in a variational characterization of general regularization
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algorithms. By constructing the regularization of the potential function @ (-, €) satis-
fying @ (-, €) — @ as € — 0, they studied the following system:

2

V2D (x(1), €(1)x (1) + (1) ;6;1 (x(),€®) +VD(x(t),e(t)) =0.

Subsequently, [32] and [34] studied Newton dissipative and Levenberg—Marquardt
regularized systems:

(Newton)  X(1) + V2@ (x(1))x(t) + V@ (x(1)) = 0.
(Levenberg—Marquardt) A(7)x(¢) + Vzcb(x(t)))'c(t) + Vo (x(t)) =0.

These systems have been shown to be well defined and stable with robust asymptotic
behavior [1,33,34], further motivating the study of the following inertial gradient
system with constant damping and Hessian-driven damping [6]:

F() + ax(t) + BVD (x(1)i(t) + VO (x(1)) = 0.

This system attains strong asymptotic stabilization and fast convergence properties
[6,28] and can be extended to solve monotone inclusions with theoretical guarantee
[1,12,26,27,33,34,79]. However, all of these systems are aimed at interpreting standard
and regularized Newton algorithms and fail to model optimal acceleration even for
the second-order algorithms in [85].

Recently, [12] proposed a proximal Newton algorithm for solving monotone inclu-
sions, which is motivated by a closed-loop control system without inertia. This
algorithm attains a suboptimal convergence rate of O (t~2) in terms of objective func-
tion gap.

Closed-loop control systems The closed-loop damping approach in [12,33] closely
resembles ours. In particular, they interpret various Newton-type methods as the dis-
cretization of the closed-loop control system without inertia and prove the existence
and uniqueness of a solution as well as the convergence rate of the solution trajec-
tory. There are, however, some significant differences between our work and theirs.
In particular, the appearance of inertia is well known to make analysis much more
challenging. Standard existence and uniqueness proofs based on the Cauchy-Schwarz
theorem suffice to analyze the system of [12,33] thanks to the lack of inertia, while
Picard iterates and the Banach fixed-point theorem are necessary for our analysis. The
construction of the Lyapunov function is also more difficult for the system with inertia.

This is an active research area and we refer the interested reader to a recent article
[14] for a comprehensive treatment of this topic.

Continuous-time interpretation of high-order tensor algorithms There is compara-
tively little work on continuous-time perspectives on high-order tensor algorithms;
indeed, we are aware of only [105,110].
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By appealing to a variational formulation, [110] derived the following inertial gra-
dient system with asymptotic vanishing damping:

p+2

i+ Cp+ 2PV (x(1) = 0. (17)

X(@) +

Compared to our closed-loop control system, in Egs. (3) and (4), the system in
Eq. (17) is an open-loop system without the algebra equation and does not contain
Hessian-driven damping. These differences yield solution trajectories that only attain
a suboptimal convergence rate of O (r~?*+1) in terms of objective function gap.

Very recently, [105] has proposed and analyzed the following dynamics (we con-
sider the Euclidean setting for simplicity):

a()x (1) = a(r)(z(1) — x(1))

t
z(t) = argmin/ a(s)(@(x(s)) + (VO (x(s)), x —x(s)))ds + %Hx — x0||2.
0

xeRd

Solving the minimization problem yields z(f) = xo — fé a(s)Vo (x(s))ds. Substitut-
ing and rearranging yields:

. 2a(r) a@)y . (a(1)? _

Compared to our closed-loop control system, the system in (18) is open-loop and lacks
Hessian-driven damping. Moreover, a(¢) needs to be determined by hand and [105]
do not establish existence or uniqueness of solutions.

3 Lyapunov function

In this section, we construct a Lyapunov function that allows us to prove existence
and uniqueness of a global solution of our closed-loop control system and to analyze
convergence rates. As we will see, an analysis of the rate of decrease of the Lyapunov
function together with the algebraic equation permit the derivation of new convergence
rates for both the objective function gap and the squared gradient norm.

3.1 Existence and uniqueness of a global solution

Our main theorem on the existence and uniqueness of a global solution is summarized
as follows.

Theorem 2 Suppose that A is absolutely continuous on any finite bounded interval.
Then the closed-loop control system in Egs. (3) and (4) has a unique global solution,
(x, A, a) : [0, +00) > R? x (0, +00) x (0, +00).
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Remark 3 Intuitively, the feedback law A(-), which we will show satisfies A(r) — 400
ast — 400, links to the gradient norm ||[V@ (x(-))|| via the algebraic equation. Since
we are interested in the worst-case convergence rate of solution trajectories, which
corresponds to the worst-case iteration complexity of discrete-time algorithms, it is
necessary that A does not dramatically change. In open-loop Levenberg—Marquardt
systems, [34] impose the same condition on the regularization parameters. In closed-
loop control systems, however, X is not a given datum but an emergent component of
the dynamics. Thus, it is preferable to prove that A satisfies this condition rather than
assuming it, as done in [33, Theorem 5.2] and [12, Theorem 2.4] for a closed-loop
control system without inertia. The key step in their proof is to show that A(z) < A(0)e’
locally by exploiting the specific structure of their system. This technical approach is,
however, not applicable to our system due to the incorporation of the inertia term; see
Sect. 3.3 for further discussion.

Recall that the system in Eqgs. (3) and (4) can be equivalently written as the first-order
system in time and space, as in Eq. (7). Accordingly, we define the following simple
Lyapunov function:

1
EM) = a®)(@(x(1) — P(x™M) + Sllv@® = X2, 19)

where x* is a global optimal solution of @.

Remark 4 Note that the Lyapunov function (19) is composed of a sum of the mixed
energy %Hv(t) — x*|| and the potential energy a(¢)(® (x(t)) — @ (x*)). This function
is similar to Lyapunov functions developed for analyzing the convergence of Newton-
like dynamics [1,12,33,34] and the inertial gradient system with asymptotic vanishing
damping [31,102,106,112]. In particular, [112] construct a unified time-dependent
Lyapunov function using the Bregman divergence and showed that their approach is
equivalent to Nesterov’s estimate sequence technique in a number of cases, including
quasi-monotone subgradient, accelerated gradient descent and conditional gradient.
Our Lyapunov function differs from existing choices in that v is not a standard momen-
tum term depending on x, but depends on x, A and V@; see Eq. (7).

We provide two technical lemmas that characterize the descent property of £ and the
boundedness of the local solution (x, v) : [0, 79] — R? x R4,

Lemma 1 Suppose that (x, v, A, a) : [0, tp] — RY x RY x (0, 4+00) x (0, +00) isa
local solution of the first-order system in Eq. (7). Then, we have
dE(r)

1
=Ll < —an87 [VOx)T . Vi € [0, 1],

Proof By the definition, we have

dE(r)

yTe a(®(x(1) —aOP ™) + (a@®)x (1), VO (x (1)) + (0(1), v(1) — x7).
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In addition, we have (v(z), v(t) — x*) = (0(¢), v(t) — x(¢)) + (V(¢), x(t) — x*) and
(t) = —a(t)V®(x(1)). Putting these pieces together yields:

dé@t) . N N
yT a(t)(@(x(1) — P(x") = (VO (x(1), x(1) — x7))
I
+ (a()x (1), VO (x (1)) + a(0)(x(t) — v(1), VO (x(1))) .
1

By the convexity of @, we have @ (x (1)) — @ (x*) — (VD (x(¢)), x(t) —x*) < 0. Since
a(t) > 0, we have I < 0. Furthermore, Eq. (7) implies that

. a(r)
x(1) + — (@) —v(@)) = —AOVP(x(1)),
a(t)

which implies that
I = (a(1) (1) + a()x(t) — a)v(@), VO(x(1))) = —ANa®) [V (x (1)) |-

1 +1
This together with the algebraic equation implies II < —a(?)07 ||Vcb(x(t))||p7.
Putting all these pieces together yields the desired inequality. O

Lemma 2 Suppose that (x, v, A, a) : [0, 15] = R? x R? x (0, 4+00) x (0, +00) is a
local solution of the first-order system in Eq. (7). Then, (x(-), v(-)) is bounded over
the interval [0, ty] and the upper bound only depends on the initial condition.

Proof By Lemma 1, the function £ is nonnegative and nonincreasing on the interval
[0, tp]. This implies that, for any ¢ € [0, 7], we have

1 1
Sl - NP < a()(@(x(1) — @ (%) + Sl - x| < £0).

Therefore, v(-) is bounded on the interval [0, 7] and the upper bound only depends
on the initial condition. Furthermore, we have

t
a(®)(x(t) —x*) —a(0)(xo — x*) = /0 (@(s)(x(s) — x*) +a(s)x(s))ds.
Using the triangle inequality and a(0) = ¢?, we have
t
la(@)(x(2) = x| < Fllxo — x*|| + /0 lla(s)x(s) +a(t)x(s) — als)x*|lds

Eq. (1) ,

t t
< cllxo— X7 +/O lla(s)v(s) —d(s)x*||ds+/0 [A(s)a(s)VP(x(s))lds.
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Note that ||v(z) —x*|| < +/2£(0) is proved for all ¢ € [0, tp] and a(¢) is monotonically
increasing with a(0) = ¢?. Thus, the following inequality holds:

Allxo — x*[ + (@) — H)V2ED) + [y M()a() VP (x(s))|lds
a(t)

1 t
< llxo — x*[ +v/2E(0) + a0 o A($)a() VP (x(s))llds.

Jlx (@) —x*|| <

By the Holder inequality and using the fact that a(¢) is monotonically increasing, we
have

t t
fo)»(S)a(S)IIVd’(X(S))IIdSZ/O VA©)as) (Y A(s)a(s) [V (x(5)))ds

t 1/2 t 1/2
5( / A(s)a(s)ds) ( f A(s)a<s>||vab<x<s>>||2ds)
0 0

172
<+a() </l \/)»(S)ds> </t/\(S)a(S)IIV<P(X(S))||2dS)
0 0

1/2

t
=a() </0 X(S)a(S)IIVQ’(X(S))IIZdS)

1 +1
The algebra equation implies that A(7) || V@ (x(2)) ||2 =07 ||[VP(x(1))] pT. Thus, by
Lemma 1 again, we have

t t P
fo A($)a(s) | VP (x(s))|*ds =/O a(s)G%IIVq)(x(s))ll%lds < &(0).

Putting these pieces together yields that || x (1) —x*|| < ||xo—x*||+3+/£(0). Therefore,
x(t) is bounded on the interval [0, 7] and the upper bound only depends on the initial
condition. This completes the proof. O

Proof of Theorem 2: We are ready to prove our main result on the existence and unique-
ness of a global solution. In particular, let us consider a maximal solution of the
closed-loop control system in Egs. (3) and (4):

(x,A,a) : [0, Thmax) — 2 x (0, +00) x (0, +00).

The existence of a maximal solution follows from a classical argument relying on the
existence and uniqueness of a local solution (see Theorem 1).

It remains to show that the maximal solution is a global solution; that is, Tiyax =
+00, if A is absolutely continuous on any finite bounded interval. Indeed, the property
of A guarantees that A(-) is bounded on the interval [0, Tyax). By Lemma 2 and the
equivalence between the closed-loop control system in Egs. (3) and (4) and the first-
order system in Eq. (7), the solution trajectory x (-) is bounded on the interval [0, Tiax)
and the upper bound only depends on the initial condition. This implies that x(-) is
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also bounded on the interval [0, Tiyax) by considering the system in the autonomous
form of Eqgs. (11) and (12). Putting these pieces together yields that x (-) is Lipschitz
continuous on [0, Timax) and there exists x = lim;—, 7, x(¢).

If Thmax < +00, the absolute continuity of A on any finite bounded interval implies
that A(-) is bounded on [0, Tihax]. This together with the algebraic equation implies
that x € £2. However, by Theorem 1 with initial data x, we can extend the solution
to a strictly larger interval which contradicts the maximality of the aforementioned
solution. This completes the proof. O

3.2 Rate of convergence

We establish a convergence rate for a global solution of the closed-loop control system
in Egs. (3) and (4).

Theorem 3 Suppose that (x, 1, a) : [0, +0) — RY x (0, 400) x (0, +00) is a global
solution of the closed-loop control system in Egs. (3) and (4). Then, the objective
function gap satisfies

3p+1

D(x(1) —P(x) =00 "2).
and the squared gradient norm satisfies

inf IVOx(sHI* = 01~3P).
<s<t

Remark 5 This theorem shows that the convergence rate is O (+~BP+tD/2y in terms of
objective function gap and O (t 3P in terms of squared gradient norm. Note that the
former result does not imply the latter result but only gives a rate of O (t~3rP+1/2)
for the squared gradient norm minimization even when @ € F, el (R9) is assumed with
VD (x(1)) ||2 < 28(D(x(t)) — @(x*)). In fact, the squared gradient norm minimiza-
tion is generally of independent interest [65,89,102] and its analysis involves different
techniques.

The following lemma is a global version of Lemma 1 and the proof is exactly the
same. Thus, we only state the result.

Lemma 3 Suppose that (x, v, A, a) : [0, +00) > RY x R? x (0, +00) x (0, +00) is
a global solution of the first-order system in Eq. (7). Then, we have

dE(t)

1 ptl
< —a(@)fr[[Vox@)l » .

In view of Lemma 3, the key ingredient for analyzing the convergence rate in terms
of both the objective function gap and the squared gradient norm is a lower bound on
a(t). We summarize this result in the following lemma.

@ Springer



950 T.Lin, M. 1. Jordan

Lemma4 Suppose that (x, v, A, a) : [0, +00) RY x RY x (0, +00) x (0, +00) is
a global solution of the first-order system in Eq. (7). Then, we have

3p+1 2

C ejé%T ¢ 3p+1
a(t)y > | = + — 13
(p + D(E)) 3T

Proof For p = 1, the feedback control law is given by A(t) = 6, for V¢ € [0, +00),
and

2 e ?
a(t)_( J;) — §+< o pl) ;4
(p + D(E(0))3rHT

1/p

For p > 2, the algebraic equation implies that | V® (x(?))] = (9(1) ) = since A(t) >
0 for V¢ € [0, +00). This together with Lemma 3 implies that

% < —a®O7 VO] T = —a(®)fFT

ptl
1

[A(@®)] 7
Since £(t) > 0, we have
! 2 _pHl
/ a(s)fr-1(A(s)) r~Tds < £(0).
0

By the Holder inequality, we have

t p—1 ! ptl p-1 pl
/ (a(s) T ds = / (@) ()~ FFF (s T ds
0 0

t pt1 3]7+l 3p+%
< ( f a(s)(x(s))wds> ( f N ds) .
0

Combining these results with the definition of a yields:

2p+2

/ (a(s))31)+1ds <0 317+1 (5(0))317+1 (f VA(S) ds) w
2p+2

< 67T EON I 2/al) - 0FT <2075 o) B (Vat - £) 7T

Since a(t) is nonnegative and nondecreasing with /a(0) = 5, we have
2p+2

t 2p 2p+2
/ ( T(S) . %) 217+1 ds <20~ 3p+1 (5(0))3p+1 ( fa(t) — S) 3p+l . (20)
0

2
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The remaining steps in the proof are inspired by the Bihari—LaSalle inequality [41,76].

2p—2
In particular, we denote y(-) by y(¢) = fot(«/a(s) — %)ﬁds. Then, y(0) = 0 and
Eq. (20) implies that

Pt

¥(£) < 2075 (£(0) T (5() P T

This implies that

p—1 -1
y(t) > ( y®) )pH — y(®) > < ! ) .
~ \og= 5 g0 @)t \207 % €0y F

Integrating this inequality over [0, 7] yields:

=

s

p+1
()P = — ( ! ) '
p+1 207 31 (£(0)) 37T

Equivalently, by the definition of y(¢), we have

‘ 2p-2 il 2
37T 2 2 1
/ ( ats) = 5) " ds = (S =

2 p=1
207 3+ (£(0)) 3

F

This together with Eq. (20) yields that

c 1 ! o\ 2 i
Va = 5+ - — / («/a(s) _ 5)~P ds
207 3FT(£(0)) 37T YO
c 03+t 3p+l
> z + = ro4 .
(p + D(E(0)) 3!
This completes the proof. O

Proof of Theorem 3 Since the first-order system in Eq. (7) is equivalent to the closed-
loop control system in Egs. (3) and (4), (x, A,a) : [0, 400) — R x (0, +00) x
(0, 400) is a global solution of the latter system with x(0) = xo € §2. By Lemma 3,
we have £(t) < £(0) for Vt > 0; that is,

1> < £(0).

1
a()(@(x(1) — (x*) + Ellv(t) —x*
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Since (x(0), v(0)) = (xg, vo) and |[v(¢) —x*|| > 0, we have a(t)(® (x(¢)) — D (x*)) <
£(0). By Lemma 4, we have

3p+1 -2

+< o ) 4 A o
n—1 - .
(p + D(EO) T

D (x(1) — P(x") = £(0)

N o

By Lemma 3 and using the fact that £(¢) > 0 for Vz € [0, +00), we have

P

¢ +1
/ a()07 VO ()7 ds < £(0),
0

which implies that

n+1 t
<Oinf ||V¢(x(s))||[;> (/ a(s)ds) <077 E(0).
<s<t 0

By Lemma 4, we obtain
3p+l 2

! ! 0 3p+T Yo
/ a(s)ds > / + =i s 4 ds.
0 0 (p + 1(E(0)) 3T

+1 +1
In addition, info<s<; [VO ()7 = (infozs<; VP (x(s))[2) 2 . Putting these
pieces together yields

N o

2p
p+l
1
0 rEQO
it Vo) < 0 — 0~n),
<s<t X IpFT 3p+1 3p+l
oG+ (%)%S%)zds
(P+DEO) *PF!
This completes the proof. O

3.3 Discussion

Itis useful to compare our approach to approaches based on time scaling [13,19,21,22]
and quasi-gradient methods [14,39].

Regularity condition Why is proving the existence and uniqueness of a global solution
of the closed-loop control system in Egs. (3) and (4) hard without the regularity
condition? Our system differs from the existing systems in three respects: (i) the
appearance of both X and x; (ii) the algebraic equation that links A and V@ (x); and (iii)
the evolution dynamics depends on A via @ and a. From a technical point of view, the
combination of these features makes it challenging to control a lower bound on gradient
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norm [|[V@ (x(-))|| or an upper bound on the feedback control A(-) on the local interval.
In sharp contrast, |[V® (x(¢))|| > [V@(x(0))|le~" or A(t) < A(0)e’ can readily be
derived for the Levenberg—Marquardt regularized system in [34, Corollary 3.3] and
even the closed-loop control systems without inertia in [33, Theorem 5.2] and [12,
Theorem 2.4]. Thus, we can not exclude the case of A(f) — +o0 on the bounded
interval without the regularity condition and we accordingly fail to establish global
existence and uniqueness. We consider it an interesting open problem to derive the
regularity condition rather than imposing it as an assumption.

Infinite-dimensional setting It is promising to study our system using the techniques
developed by [31] for an infinite-dimensional setting. Our convergence analysis can
in fact be extended directly, yielding the same rate of O(1/:@PTD/2) in terms of
objective function gap and O (1/137) in terms of squared gradient norm in the Hilbert-
space setting. However, the weak convergence of the solution trajectories is another
matter. Note that [31] studied the following open-loop system with the parameters

(a, B):
i) + %x(t) 4 BVEO(x(1)i(1) + VO (x(1)) = 0.

The condition o > 3 is crucial for proving weak convergence of solution trajectories
and establishing strong convergence in various practical situations. Indeed, the con-
vergence of the solution trajectory has not been established so far when o = 3 (except
in the one-dimensional case with 8 = 0; see [23] for the reference). Unfortunately,
when ¢ = 0 and p = 1, the closed-loop control system in Eqs. (3) and (4) becomes

¥(1) + %)’c(t) + V2D (x(1))5 (1) + <9 + ?) Vo (x(t)) = 0.

The asymptotic damping coefficient % does not satisfy the aforementioned condition
in [31], leaving doubt as to whether weak convergence holds true for the closed-loop
control system in Egs. (3) and (4).

Time scaling In the context of non-autonomous dissipative systems, time scaling is a
simple yet universally powerful tool to accelerate the convergence of solution trajec-
tories [13,19,21,22]. Considering the general inertial gradient system in Eq. (3):

(1) + a()x(t) + )V P (x ()% (1) + b))V (x(1)) = 0,

the effect of time scaling is characterized by the coefficient parameter b(t) which
comes in as a factor of V@ (x(¢)). In [21,22], the authors conducted an in-depth study
of the convergence of this above system without Hessian-driven damping (8 = 0).
For the case a(t) = %, the convergence rate turns out to be O(%) under certain
conditions on the scalar « and b(-). Thus, a clear improvement can be achieved by
taking b(t) — 4-o00. This demonstrates the power and potential of time scaling, as

further evidenced by recent work on systems with Hessian damping [13] and other
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systems which are associated with the augmented Lagrangian formulation of the affine
constrained convex minimization problem [19].

Comparing to our closed-loop damping approach, the time scaling technique is
based on an open-loop control regime, and indeed b(¢) is chosen by hand. In con-
trast, A(¢) in our system is determined by the gradient of V@ (x(¢)) via the algebraic
equation, and the evolution dynamics depend on A via a and a. The time scaling
methodology accordingly does not capture the continuous-time interpretation of opti-
mal acceleration in high-order optimization [47,61,71,85]. In contrast, our algebraic
equation provides a rigorous justification for the large-step condition in the algorithm
of [47,61,71,85] when p > 2 and demonstrates the fundamental role that the feed-
back control plays in optimal acceleration, a role clarified by the continuous-time
perspective.

Quasi-gradient approach and Kurdyka—Lojasiewicz (KL) theory The quasi-gradient
approach to inertial gradient systems were developed in [39] and recently applied by
[14] to analyze inertial dynamics with closed-loop control of the velocity. Recall that
a vector field F is called a quasi-gradient for a function E if it has the same singular
point as E and if the angle between the field F and the gradient V E remains acute and
bounded away from % (see [36,37,52,53,69] for further geometrical interpretation).

Based on seminal work by [39, Theorem 3.2] and [14, Theorem 7.2], convergence
properties for the bounded trajectories of quasi-gradient systems have been established
if the function E is KL [44,75]. In [14], the authors considered two closed-loop velocity
control systems with a damping potential ¢:

X(1) + Vo) + Vo (x(1) =0. 21
£(1) + V(1) + BV D (x ()i (1) + VO (x (1)) = 0. (22)

They proposed to use the Hamiltonian formulation of these systems and accordingly
defined a function E;, for (x, v) = (x, x(¢)) by

1
Ey(x,v) = Envn2 + @ (x) + (VP (x), v).

If ¢ satisfies some certain growth conditions (see [14, Theorem 7.3 and 9.2]), the
systems in Egs. (21) and (22) both have a quasi-gradient structure for £, for sufficiently
small n > 0. This provides an elegant framework for analyzing the convergence
properties of the systems in the form of Egs. (21) and (22) with specific damping
potentials.

Why is analyzing our system hard using the quasi-gradient approach? Our system
differs from the systems in Egs. (21) and (22) in two aspects: (i) the closed-loop control
law is designed for the gradient of @ rather than the velocity x; (ii) the damping
coefficients are time dependent, depending on A via a and &, and do not have an
analytic form when p > 2. Considering the first-order systems in Egs. (7) and (8), we
find that F' is a time-dependent vector field which can not be tackled by the current
quasi-gradient approach. We consider it an interesting open problem to develop a
quasi-gradient approach for analyzing our system.
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4 Implicit time discretization and optimal acceleration

In this section, we propose two conceptual algorithmic frameworks that arise via
implicit time discretization of the closed-loop system in Egs. (7) and (8). Our approach
demonstrates the importance of the large-step condition [85] for optimal acceleration,
interpreting it as the discretization of the algebraic equation. This allows us to further
clarify why this condition is unnecessary for first-order optimization algorithms in
the case of p = 1 (the algebraic equation disappears). With an approximate tensor
subroutine [92], we derive two specific class of p-th order tensor algorithms, one of
which recovers existing optimal p-th order tensor algorithms [47,61,71] and the other
of which leads to a new optimal p-th order tensor algorithm.

4.1 Conceptual algorithmic frameworks
We study two conceptual algorithmic frameworks which are derived by implicit time
discretization of Eq. (7) with ¢ = 0 and Eq. (8) with ¢ = 2.

First algorithmic framework By the definition of a (), we have @())? = r®)a() and
a(0) = 0. This implies an equivalent formulation of the first-order system in Eq. (7)
with ¢ = 0 as follows,

0(t) + a() Ve (x(1)) = 0

£(0) + 4B (1) = v(0) + UV (x(1)) = 0

o= ([ V)

A)PIVO(x@)P~! =6

(x(0), v(0)) = (xo, v0)

() +a(@)VO(x(t)) =0

a(O)x(t) + a(t)(x(t) — v(t)) + ADa(®) VP (x(1)) =0
= { @n)?=xr@a)

AP IVOE@)IP ' =6

(x(0), v(0), a(0)) = (x0, vo, 0).

We define discrete-time sequences, {(xk, Uk, Ak, ak, Ar)}k>0, that correspondx to the
continuous-time sequences {(x(¢), v(t), A(z), a(t), a(t))};>0. By implicit time dis-
cretization, we have
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Algorithm 1 Conceptual Algorithmic Framework I

STEP 0: Let xq, vg € Rd, o € (0, 1) and 6 > 0 be given, and set Ag = 0 and k = 0.

STEP 1: If 0 = V@ (xy), then stop.

STEP 2: Otherwise, compute Ar41 > 0 and a triple (xXgy1, Wi+t1, €k+1) € R4 x R? x (0, +00) such
that

Wi+1 € gy P (Xk41),

~ 2 2 =2
Mkt wir + X1 — Oll” + 2hk1€kp1 < 07 IXkg1 — U ll”s

et Ixegr — 0P > 6.
5o Ak Ak+1 2 _
where v = AiFar + Aptaes U and i = M1 (A + agq1)-
STEP 3: Compute Ay = Ak + a1 and V| = Vg — Qg Wi -
STEP 4: Set k < k + 1, and go to STEP 1.

Vg1 — Vg + a1 V@ (xp41) = 0
Apg1 (g1 — x1) + agg1 g — v) + A1 Ag 1 VO (g 1) =0

) (23)
(ar+1)” = M1 (Ag + agg1), k1 = A1 — Ak, ag =0
s DPIVD (e ) 1771 = 6.

By introducing a new variable vy = T f§k+l Xk + A:J’;Z;H vk, the second and fourth

lines of Eq. (23) can be equivalently reformulated as follows:
Mt VO (eg1) + Xet — B =0, Ayt g — oell?~ = 6.

We propose to solve these two equations inexactly and replace V@ (xx1) by a suf-
ficiently accurate approximation in the first line of Eq. (23). In particular, the first
equation can be equivalently written in the form of Agyjwis+1 + xk+1 — 0k = 0,
where w41 € {V® (xx+1)}. This motivates us to introduce a relative error tolerance
[84,104]. In particular, we define the e-subdifferential of a function f by

de f(x):={weR| f(3) > f(x)+ (y —x,w) — ¢, Vy € RY), (24)

and find At41 > 0 and a triple (Xg+1, Wi+t1, Ek+1) such that ||Agpiwrs1 + Xkg1 —
Oll> + 2kt 1€k+1 < 02 ||xk41 — Ok [|%, where wiy1 € 3., @ (xk41). To this end, wyt
is a sufficiently accurate approximation of V@ (x;41). Moreover, the second equation
can be relaxed to A1 || xk41 — TellP~L > 0.

Remark 6 We present our first conceptual algorithmic framework formally in Algo-
rithm 1. This scheme includes the large-step A-HPE framework [85] as a special
instance. Indeed, it reduces to the large-step A-HPE framework if we set y = y and
p = 2 and change the notation of (x, v, v, w) to (y, x, X, v) in [85].

r(@®

Second algorithmic framework By the definition of y (¢), we have (m)2 = 1)y (@)

and y(0) = 1. This implies an equivalent formulation of the first-order system in
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Eq. (8) with ¢ = 2:

b(t) — y?z((’j)vqs(x(t)) -0

i) = KB () = v) + LV (x(1) = 0

y(t) =4 (/‘5 JAGs)ds +c>_2
QENPIVOx@)|P~! =6

(x(0), v(0)) = (xo, vo)

b(t) + %Vq)(x(t)) =0

X(1) + a(t)(x(1) — v(1) + A1)V (x (1)) = 0
= @) =10y 0, YO +a@)y @) =0
OENPIVE NP~ =0

(x(0), v(0), y(0)) = (x0, vo, 1).

We define discrete-time sequences, {(xg, Uk, Ak, 0, Vk)}k>0, that correspondx to the
continuous-time sequences {(x(¢), v(z), A(t), a(t), y (t))};>0. From implicit time dis-
cretization, we have

k41 —
Ukl — U+ 5 V@ (k1) =0
Xkl — Xk + 1k — Vi) + Ak 1 VO (X)) =0
(k+1)% = M1 Vit 15 Ver1 = (I — gDk, 0 =1

Qi DPIVP D1 = 6.

(25)

By introducing a new variable vy = (1 — otk+1)Xk + @41k, the second and fourth
lines of Eq. (23) can be equivalently reformulated as

Mt VOOrrn) + X — 0k =0, Mggtllvers — oillP ™' =0.

By the same approximation strategy as before, we solve these two equations inexactly
and replace V@ (xx41) by a sufficiently accurate approximation in the first line of
Eq. (25).

Remark 7 We present our second conceptual algorithmic framework formally in Algo-
rithm 2. To the best of our knowledge, this scheme does not appear in the literature
and is based on an estimate sequence which differs from the one used in Algorithm 1.
However, from a continuous-time perspective, these two algorithms are equivalent up
to a constant ¢ > 0, demonstrating that they achieve the same convergence rate in
terms of both objective function gap and squared gradient norm.

Comparison with Giiler’s accelerated proximal point algorithm Algorithm 2 is related
to Giiler’s accelerated proximal point algorithm (APPA) [67], which combines Nes-
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Algorithm 2 Conceptual Algorithmic Framework II

STEP 0: Let xq, vg € R4, 6 € (0,1)and 6 > O be given, and set yg = 1 and k = 0.

STEP 1: If 0 = V@ (xy), then stop.

STEP 2: Otherwise, compute Ar41 > 0 and a triple (xXgy1, Wi+t1, €k+1) € R4 x R? x (0, +00) such
that

Wi+1 € gy P (Xk41),
~ 2 2 =2
Mkt wir + X1 — Oll” + 2hk1€kp1 < 07 IXkg1 — U ll”s
< ip—1
Mot lxgger — 0P~ = 6.
where ¥ = (1 — o 1)xk + ot 10k and (ox11)% = Agp1 (1 — gy 1) V-

STEP 3: Compute yx41 = (I —ag41) vk and vgy) = v — (;’I:—I}wk+l.
STEP 4: Set k <— k + 1, and go to STEP 1.

terov acceleration [95] and Martinet’s PPA [80,81]. Indeed, the analogs of update
formulas 9 = (I — ey 1)xk + oxr1vk and (ax11)* = Ak 1(1 — oy 1) yx appear in
Giiler’s algorithm, suggesting similar evolution dynamics. However, Giiler’s APPA
does not specify how to choose {Ax}x>0 but regard them as the parameters, while our
algorithm links its choice with the gradient norm of @ via the large-step condition.

Such difference is emphasized by recent studies on the continuous-time perspective
of Giiler’s APPA [21,22]. More specifically, [21] proved that Giiler’s APPA can be
interpreted as the implicit time discretization of an open-loop inertial gradient system
(see [21, Eq. (53))):

) g0\ .
£+ (80— 5 )50+ pOTVE) =0,

where g; and Sy in their notation correspond to o and A in Algorithm 2. By using

Vk+1—Vk = —+1Vk and standard continuous-time arguments, we have g(t) = — %

and B(t) = A(t) = E}}:E—;;;i By further defining a(t) = # the above system is in the

. 2a(1) am\ . (@) B
X(t) + < a() — m) x(t) + ( a() ) V& (x(t)) =0, (26)

form of

where a explicitly depends on the variable A as follows,

t 2
a(t) = % (/ VA(s)ds + 2) .
0

Compared to our closed-loop control system, the one in Eq. (26) is open-loop without
the algebra equation and does not contain Hessian-driven damping. The coefficient for
the gradient term is also different, standing for different time rescaling in the evolution
dynamics [13].
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4.2 Complexity analysis

We study the iteration complexity of Algorithms 1 and 2. Our analysis is largely
motivated by the aforementioned continuous-time analysis, simplifying the analysis
in [85] for the case of p = 2 and generalizing it to the case of p > 2 in a systematic
manner (see Theorems 4 and 5). Throughout this subsection, x* denotes the projection
of vy onto the solution set of @&.

Algorithm 1 We start with the presentation of our main results for Algorithm 1, which
generalizes [85, Theorem 4.1] to the case of p > 2.

Theorem 4 For every integer k > 1, the objective function gap satisfies
3p+1
P(xp) —P(x") =0k 2),
and

3p+3
inf Jwi> = 0%(P), inf ¢=0%( 7).
l=i<k 1<i<k

Note that the only difference between Algorithm 1 and large-step A-HPE framework in
[85] is the order in the algebraic equation. Thus, many of the technical results derived
in [85] also hold for Algorithm 1; more specifically, [85, Theorem 3.6, Lemma 3.7
and Proposition 3.9].

We also present a technical lemma that provides a lower bound for Ay.

Lemma5 For p > 1 and every integer k > 1, we have

-1
01— o)) St
Ak2< ) 1 k72 .
(p+ D77 Jlug — x*[[P~

Proof For p = 1, the large-step condition implies that A > 6 for all k > 0. By [85,

Lemma 3.7], we have A; > %.

For p > 2, the large-step condition implies that

p+1 2 ptl
—1

k k

_ 2 _ptl - 2
> AO) TP <Y AT (gl — B PP
i=1 i=1

kA _ 5 [85.Theorem 3.6] [lug — x*||?

= E —lxi = vi1ll = —
1 )»,' 1—0

=
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By the Holder inequality, we have

- 21 L _ptl p=L pL
D (AN =Y (A (k) ) ()
i=1 i=1
p-1 2p42

k il 3p+1 k 3p+1
< (Z A,-(m—ﬂ—l) (Z \/AT) :
i=l i=1

For the ease of presentation, we define C = 6 T (MPHl Putting these
pieces together yields:

2p+2

-1 ¥ 1851 37] 41
Z(A it <c <Z Vii ) . e

The remaining proof is based on the Bihari—LaSalle inequality in discrete time. In

p—1
particular, we define {yi}x>0 by yx = Zle(A,-);Pﬁ. Then, yo = 0 and Eq. (27)
implies that

ptl
-1

Yk <2C(yk — Yk—1)*

This implies that

p—1

P _ 1 PEs)
wowerz (o0) T = A = () 28)
¢ ot N2

Inspired by the continuous-time inequality in Lemma 5, we claim that the following
discrete-time inequality holds for every integer k > 1:

2 2 2 — Vi—
OO — (o) 7 = W), (29)
PN [

2
Indeed, we define g(¢) = 1 — ¢ »+! and find that this function is convex for V¢ € (0, 1)

since p > 1. Thus, we have

2
P =g —g() = (1= HVg(y = 200 1= 2
-8 § S T 1—1¢ p+1

1—1¢
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Since yy is increasing, we have yg—;' € (0, 1). Then, the desired Eq. (28) follows from
setting t = yky—zl Combining Egs. (28) and (29) yields that
p=1

GO — e > —— ()
= pr1\ac

Therefore, we conclude that

k p—1
()’k)% = (yo)# + Z(Yi)% - (yi_l)l"z“ - 2 (L) k.
= ~p+1\2C

By the definition of yj, we have
k p+1 p—1
p—1 2 2 1 2 ptl
Y= () " ()
= p+1 2C

This together with Eq. (27) yields that

1 k p—1 B 1 ’SI)T-H 3p+1
A > | — A;)3rFT > ———= k2.
k-(zc 249 ) ‘((p+1)c>

i=1
This completes the proof. O

Remark 8 The proof of Lemma 5 is much simpler than the existing analysis; e.g., [85,
Lemma 4.2] for the case of p = 2 and [71, Theorem 3.4] and [47, Lemma 3.3] for
the case of p > 2. Notably, it is not a generalization of the highly technical proof in
[85, Lemma 4.2] but can be interpreted as the discrete-time counterpart of the proof
of Lemma 4.

Proof of Theorem 4: For every integer k > 1, by [85, Theorem 3.6] and Lemma 5, we
have

lvo —x*I1> s

D (xp) — P(x*) < A =0k "2).

Combining [85, Proposition 3.9] and Lemma 5, we have

140 |lvg — x*|? 3p+3
inf Al < —F I IO 2T _ -y
1<i<k l1—0o Zi:l A;

2 _ex2 43
inf & < —2 M= _ -2

sk T 2(1—0?) Yk A
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In addition, we have ||A; u), —i—x, — v, 1 < a||x, — Tl and Ajllx; — Diq||P~! > 6.
This implies that A ||w, 7 K > 91’ 1 - o) 7 . Putting these pieces together yields
that inf 1 <;<x ||w; || P =0k 2 ) which implies that

2p

. P . prlL\ pHl 3
inf fJw;|[* = | inf [w;] » = 0k™P).
1<i<k 1<i<k

This completes the proof. O

Algorithm 2 We now present our main results for Algorithm 2. The proof is analogous
to that of Theorem 4 and based on another estimate sequence.

Theorem 5 For every integer k > 1, the objective function gap satisfies

p+l

D(xp) — @) =0k "2)

and

3p+3
inf Jwil>=0G™"), inf =0k 7).
I<i<k 1<i<k

Inspired by the continuous-time Lyapunov function in Eq. (19), we construct a discrete-
time Lypanunov function for Algorithm 2 as follows:

1 1 N
& = —(D(x) — (M) + = [log — x*|I. (30)
Yk 2
We use this function to prove technical results that pertain to Algorithm 2 and which

are the analogs of [85, Theorem 3.6, Lemma 3.7 and Proposition 3.9].

Lemma 6 For every integer k > 1,

1 —02 k 1 ! - ”2 <& _E
E — lx: — Di_ _ ,
) & )Li)/i i i—1 = <0 k

which implies that

D(xp) — (™) < wo. v — x| < /2.

250

2
lxi — vi—1|l _] 1—o2"

Assuming that o < 1, we have Zl P y

Proof 1t suffices to prove the first inequality which implies the other results. Based
on the discrete-time Lyapunov function, we define two functions ¢ : RY — R and
Iy : R? > R by (I} is related to & and defined recursively):

dr(v) = P (xx) + (v — Xk, wi) — €k — P(x™), Vk >0,

1 N 1 Oft1
Io(v) = %(qﬁ(xo) — 20+ Zllv— voll®, Tt = I+ Vk_+¢k+1, Vk > 0.
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First, by definition, ¢y is affine. Since wi11 € 0¢y, P (xk+1), Eq. (24) implies that
dr(v) < @ (v) — @ (x*). Furthermore, I} is quadratic and V2T = VI since ¢ is
affine. Then, we prove that I'; (v) < Ih(v) + l;kyk (@ (v) — @(x*)) using induction.
Indeed, it holds when k = 0 since yp = 1. Assuming that this inequality holds for

Vi < k, we derive from ¢y (v) < @ (v) — @ (x*) and yx+1 = (1 — ak41)yx that

-y agqr
Fk+1(v)§Fo(v)+< +—+
Yk Vie+1

1—
Y @) — d(x")).
Yk

) (@) — P (x"))

= o(v) +

Finally, we prove that vy = argmin, g« I (v) using the induction. Indeed, it holds
when k = 0. Suppose that this inequality holds for Vi < k, we have

Q+1 k41
—— Vi1 (V) =V — vp + —— W41
1 YVi+1

VIip1(v) = VIi(v) +
Vi+

Using the definition of vy and the fact that 41 = (1 —otg+1) Yk, wehave VI 1 (v) =
0 if and only if v = vg41.

The remaining proof is based on the gap sequence {fi}ir>0 which is defined by
Br = inf ,cga T (v)— % (@ (xx)—P(x™)). Using the previous facts that 'y, is quadratic
with V27, = 1 and the upper bound for I (v), we have

1 1
Bx = T(x*) — %@(xk) — o) - Sl - wll? < To(x*) — & = & — &k

By definition, we have Sy = 0. Thus, it suffices to prove that the following recursive
inequality holds true for every integer k > 0,

1—o2 -2
Bir1 = B + m————llxkr1 — vill”. 3D
2k 41 Vi1

In particular, we define & = (1 — ot y1)xx + o 1v for any given v € RY. Using the
definition of vy and the affinity of ¢, we have

Gk1(0) = (I — g 1) Prr1 (Xx) + k1 9r41(v), (32)
U — U = o1 (v — ). (33)

Since I is quadratic with V2T = 1, wehave I, (v) = T (vp)+ % lv—vg ||2. Plugging
this into the recursive equation for I} yields that

1 2 Ok+1
TIer1(v) = Te(ue) + v — w7 + ——Pr+1(v).
2 Y41
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By the definition of S, we have Ik (vr) = Br + %((P(xk) — @ (x*)). Putting these
pieces together with the definition of & yields that

Ayl 1 N 1 2
Fer1(v) = B + ——Pr41 (V) + — (P (x) — P(x7)) + < llv — vell”.
Vk+1 Yk 2
Since ¢p4+1(v) < @ (v) — @ (x*), we have

Af+1 1 1 2
Ter1(v) > B + —— k41 (V) + —Prr1(xp) + zllv — el
Vik+1 Vi 2

Eq. 32) 1 5 1
Y2 B —— i1 (B) 4 <l — well?
Vi+1 2

1 ~, Vktl
= B+ — (den @ + Z v - wel?)
Vi1 2

Eq. (33) 1 - Vil -~
Y= g — (¢k+1<v> + i — vk||2>
Y+ 2 )

(@k+1

1 5 1 - .
=P+ — (¢k+1<v) + 15 — vk||2) :
Vi+1 2Mk+1

Using [85, Lemma 3.3] with A = Agy1, U = U, X = Xg+1, W = Wi and € = €x41,
we have

1—o2
inf {1 (v — Xgq1, Wet1) — €x41 + IIU—ﬁkIIZ}Z k1 — Bell”.
veRd { * - * 2)»k+1 2A.k+1 +
which implies that
. . 1 . 1—02 o
Gr+1(0) + 10— vell” — —— (@ (xp+1) — @(x7)) = lxk1 — O ll”.
2X k41 Vit 1 2hk41

Putting these pieces together yields that

2

”x + v ”2
k 1 k .
2)\.](_;,_1 Vik+1

. 1 N
inf Iyi(v) — ——(@(xpy1) —P(x7) = B +
veRd Vk+1

which together with the definition of B¢ yields the desired inequality in Eq. (31). This
completes the proof. O

Lemma 7 For every integer k > 0, it holds that

1 1 1
Vo 2 o sV Ak
Vi+1 Vi o2 *

As a consequence, the following statements hold: (i) For every integer k > 0, it holds
thc;(t e < (1 + %ZI;:I g,/kj)_z,' (ii) If o < 1 is further assumed, then we have
Skl — 02 < 2y,
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Proof 1t suffices to prove the first inequality which implies the other results. By the
definition of {yi}k=0 and {ox}r=0, we have yir1 = (1 — axp1)yk and (axs1)? =
Ak+1Yk+1. This implies that

11 o L [
Yk Vitl Vitl o Vil Vi+l

Since y; > 0 and A > 0, we have /ykL+l > % Mk+1 and

2
1 1 A A 1 1

< _ k+1 + k+1 — _ )"k+1 .
Ve Vitl Y+l 4 Virl 2

which implies the desired inequality. O

Lemma 8 For every integer k > 1 and o < 1, there exists 1| <i < k such that

2
inf Valwil < E0 [ 200 g e 20
1<i<k “V1l-o0o Z{'C:IV 1<i<k _2(1—02)25‘:1%

2, Mcllwell?
o2’ (1—1—(7)2

Proof With the convention 0/0 = 0, we define 7, = max{
integer k > 1. Then, we have

} for every
2 ~ 2

2hkex < 07 |lxe — Up—1l°,

IArwgll < lAkwr + xx — U1l + llxx — Dk—1ll < (L +0) [lxg — Vg1l

which implies that Axt; < ||xx — Vk—1 ||2 for every integer k > 1. This together with
Lemma 6 yields that

k k
28 1 R ) 1
> - P > f . — .
1—02 ~ ;_1 PRy lxi —vi—1ll” > (1;1115]( Tz) (;_1 Vi)
Combining this inequality with the definition of 7x yields the desired results. O

As the analog of Lemma 5, we provide a technical lemma on the upper bound for
vk- The analysis is based on the same idea for proving Lemma 5 and is motivated by
continuous-time analysis for the first-order system in Eq. (8).

Lemma9 For p > 1 and every integer k > 1, we have

3 —1
(p + 1)% 250 pT _ 3p+l
Vi = 2 5 k=2,

l1—0o
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Proof For p = 1, the large-step condition implies that Ay > 0 for all k > 0. By
Lemma 7, we have y; < ﬁ.
For p > 2, the large-step condition implies that

Z(m)‘l(x) = <Z(m ()T (gl = B 177170

i=1

k
1 5 Lemma 6 2&
Z—A b =Bl TS T

By the Holder inequality, we have

p—1
1 3p+1 P+l
— ()\‘i)3p+l

k
>0 =3
(i)
2p+2

k 1 3’%11 k 3pFI
i=1 (A) P~y i=1

2 il . .
For ease of presentation, we define C = 6 3r+T (%)31’“. Putting these pieces
together yields that

IA

2p+2
3p+1

k k
_p=L L 7 _ L

Yo i <C (Z JAT) HESR Tol AN (34)

i=1 i=1
Using the same argument for proving Lemma 5, we have

pl p=t
Z(y) o > i (L) kaH.
p+1 2C

This together with Eq. (34) yields that

3p+1
3p+l 3ptl

l 1 k p—1 P 1 2 3p+1
Lo (L ) = (k) T e
v~ \2C & (p+1C
This completes the proof. O

Proof of Theorem 5: For every integer k > 1, by Lemmas 6 and 9, we have

p+l

D (xp) —P(x") <y =0k "77).
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By Lemmas 8 and 9, we have

. 1+0 2& _3p43
inf Aiflwil® < —— 5 =0k 7)),
1<i<k 1—-0 Yoo o
2 280 P+

As in the proof of Theorem 4, we conclude that inf|<;<x [|w; ||2 = O(k—3P). This
completes the proof. O

Remark 9 The discrete-time analysis in this subsection is based on a discrete-time
Lyapunov function in Eq. (30), which is closely related to the continuous one in
Eq. (19), and two simple yet nontrivial technical lemmas (see Lemmas 5 and 9 ),
which are both discrete-time versions of Lemma 4. Notably, the proofs of Lemmas 5
and 9 follows the same path for proving Lemma 4 and have demanded the use of the
Bihari-LaSalle inequality in discrete time.

4.3 Optimal tensor algorithms and gradient norm minimization

By instantiating Algorithms 1 and 2 with approximate tensor subroutines, we develop
two families of optimal p-th order tensor algorithms for minimizing the function @ €
F [ (R?). The former one include all of existing optimal p-th order tensor algorithms in
[47,61,71] while the latter one is new to our knowledge. We also provide one hitherto
unknown result that the optimal p-th order tensor algorithms in this section minimize
the squared gradient norm at a rate of O (k~37). The results extend those for the optimal
first-order and second-order algorithms that have been obtained in [85,102].

Approximate tensor subroutine Proximal point algorithms [67,99] (corresponding to
implicit time discretization of certain systems) require solving an exact proximal
iteration with proximal coefficient A > 0 at each iteration:

1
X = argmin {(D(u)—i—ﬁnu—vﬂz}. 35)

ueRd

In general, Eq. (35) can be as hard as minimizing the function @ when the prox-
imal coefficient A — +o00. Fortunately, when @ € .7-"; (Rd), it suffices to solve
the subproblem that minimizes the sum of the p-th order Taylor approximation
of @ and a regularization term, motivating a line of p-th order tensor algorithms
[35,42,43,47,61,70,71,82,92]. More specifically, we define

Clu — v PH!

p
Dy(u) = ®(v) + (VO (v), u — v) + Z %V(j)qb(v)[u —v) + T

j=2""
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Algorithm 3 Optimal p-th order Tensor Algorithm I [47,61,71]

STEP 0: Let xq, vy € R, 6 € (0,1)and 0 < 07 < oy < | such that o7(1 +6)P 1 <o, (1 —6)P1
and 0 =6 + o0y < 1 be given, and set Ag = 0 and k = 0.

STEP 1: It 0 = V& (xy), then stop.

STEP 2: Otherwise, compute a positive scalar Az with a 6-inexact solution x| € RY of Eq. (36a)
satisfying that

o p! ~ p—=1 _ oup!
— <A — < s
2g = Mt “xk+1 Vk || ="
or an exact solution x| € RY of Eq. (36b) satisfying that
(p = D! e P!
<A — v < s
S < b =0l = B

Ag et 1 2 _
Ararr T Trargs Yk and a; | = Ag41(Ag +ag41)-

STEP 3: Compute Agy| = Ak + a1 and vy = v — a1 VP (Xf4-1)-
STEP 4: Set k < k + 1, and go to STEP 1.

where U =

The algorithms of this subsection are based on either an inexact solution of Eq. (36a),
used in [71], or an exact solution of Eq. (36b), used in [47,61]:

1
min &y(u) + 5 llu - vl?, (36a)
min D, (u). (36b)
ucRd

In particular, the solution x, of Eq. (36a) is unique and satisfies \V®, (x,)+x, —v = 0.
Thus, we denote a &-inexact solution of Eq. (36a) by a vector x € R? satisfying that
IAWV@,(x) +x —v| < &||x — v| use either it or an exact solution of Eq. (36b) in our
tensor algorithms.

First algorithm We present the first optimal p-th order tensor algorithm in Algorithm 3
and prove that it is Algorithm 1 with specific choice of 6.

- . : . . ! (p=D!
Proposition 4 Algorithm 3 is Algorithm 1 with 6 = % orf = pzl .

Proof Given that a pair (xx, vk)r>1 is generated by Algorithm 3, we define wy =
V& (xx) and g = 0. Then vkt = v — ag+1 VP (Xk41) = Vk — Ag+1Wi+1. Using
[71, Proposition 3.2] with a 6-inexact solution x4 € R4 of Eq. (36a) at (Ag41, Ug),
atriple (Xk4+1, Wk+1, Ek+1) € R? x R? x (0, 400) satisfies that

- 2 -
Wk+1 €0 P (Xk+1)s Ak 1 W1 +Xk+1 — Vil "+ 22k 1 €641 < 07 [ Xkp1 — Uk |7

Since@:(’é—f! €(0,1)and o0 =6 + 0, < 1, we have

260441
p!

~ =1 ! ~ . ~
Mt kg = 0?7 < BF =6 + %1 — 0llP~! <6 404 =0,

- ipel ! el
Mot I — DellP ™0 = B = Mgt g — 0ellP7 = 6.
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Algorithm 4 Optimal p-th order Tensor Algorithm II

STEP 0: Let xq, vy € R, 6 € (0,1)and 0 < 07 < oy < | such that o7(1 +6)P 1 <o, (1 —6)P1
and o =6 + oy < 1 be given, and set yyp = 1 and k = 0.

STEP 1: It 0 = V& (xy), then stop.

STEP 2: Otherwise, compute a positive scalar Az with a 6-inexact solution x| € RY of Eq. (36a)
satisfying that

orp! ~ p—1 oy p!
— <A — P < ,
20 = Mkt X1 — kel =
or an exact solution xg4| € RY of Eq. (36b) satisfying that
(p— D! < ip—1 P!
<A — P < ,
20 = Mt — Ol T < WG+

where B = (1 — a4 1)k + 10 and (@g1)% = A1 (1 — gy DV
STEP 3: Compute g1 = (1 — 1)y and vgp = vg — %jflxl‘“).

STEP 4: Setk < k + 1, and go to STEP 1.

Using the same argument with [47, Lemma 3.1] instead of [71, Proposition 3.2] and
an exact solution xx41 € R? of Eq. (36b), we obtain the same result with 6 = %.

Putting these pieces together yields the desired conclusion. O

In view of Proposition 4, the iteration complexity derived for Algorithm 1 hold for
Algorithm 3. We summarize the results in the following theorem.

Theorem 6 For every integer k > 1, the objective function gap satisfies
3p+1
D(xp) — (M) =0k 27),
and the squared gradient norm satisfies

inf IV (x> = O(k3P).
<i=<

Remark 10 Theorem 6 has been derived in [85, Theorem 6.4] for the special case of
p = 2, and a similar result for Nesterov’s accelerated gradient descent (the special
case of p = 1) has also been derived in [102]. For p > 3 in general, the first inequality
on the objective function gap has been derived independently in [61, Theorem 1],
[71, Theorem 3.5] and [47, Theorem 1.1], while the second inequality on the squared
gradient norm is new to our knowledge.

Second algorithm We present the second optimal p-th order tensor algorithm in Algo-
rithm 4 which is Algorithm 2 with specific choice of 8. The proof is omitted since it
is the same as the aforementioned analysis for Algorithm 3.

Proposition 5 Algorithm 4 is Algorithm 2 with 0 = %2 or = 22D,
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Theorem 7 For every integer k > 1, the objective gap satisfies

3p+1
D(xp) — P =0k "27),
and the squared gradient norm satisfies

inf VO (x)|> = 0(k™3P).
1<i<k

Remark 11 The approximate tensor subroutine in Algorithms 3 and 4 can be efficiently
implemented usinga novel bisection search scheme. We refer the interested readers to
[47,71] for the details.

5 Conclusions

We have presented a closed-loop control system for modeling optimal tensor algo-
rithms for smooth convex optimization and provided continuous-time and discrete-
time Lyapunov functions for analyzing the convergence properties of this system and
its discretization. Our framework provides a systematic way to derive discrete-time
p-th order optimal tensor algorithms, for p > 2, and simplify existing analyses via
the use of a Lyapunov function. A key ingredient in our framework is the algebraic
equation, which is not present in the setting of p = 1, but is essential for deriving
optimal acceleration methods for p > 2. Our framework allows us to infer that a cer-
tain class of p-th order tensor algorithms minimize the squared norm of the gradient
at a fast rate of O (k—3P) for smooth convex functions.

It is worth noting that one could also consider closed-loop feedback control of the
velocity. This is called nonlinear damping in the PDE literature; see [14] for recent
progress in this direction. There are also several other avenues for future research. In
particular, it is of interest to bring our perspective into register with the Lagrangian and
Hamiltonian frameworks that have proved productive in recent work [55,59,87,110],
as well as the control-theoretic viewpoint of [68,77]. We would hope for this study to
provide additional insight into the geometric or dynamical role played by the algebraic
equation for modeling the continuous-time dynamics. Moreover, we wish to study
possible extensions of our framework to nonsmooth optimization by using differential
inclusions [109] and monotone inclusions. The idea is to consider the setting in which
0 € T(x) where T is a maximally monotone operator in a Hilbert space [1,5,12,16,17,
26,27,33,34,45,79]. Finally, given that we know that direct discretization of our closed-
loop control system cannot recover Nesterov’s optimal high-order tensor algorithms
[91, Section 4.3], it is of interest to investigate the continuous-time limit of Nesterov’s
algorithms and see whether the algebraic equation plays a role in their analysis.

Acknowledgements The authors would like to thank co-editor Prof. Adrian S. Lewis, the associate editor
and two anonymous reviewers for constructive comments that improve the presentation of this paper. This
work was supported in part by the Mathematical Data Science program of the Office of Naval Research
under grant number NO0014-18-1-2764.

@ Springer



A control-theoretic perspective on optimal... 971

OpenAccess Thisarticleis licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Abbas, B., Attouch, H., Svaiter, B.F.: Newton-like dynamics and forward—backward methods for
structured monotone inclusions in Hilbert spaces. J. Optim. Theory Appl. 161(2), 331-360 (2014)

2. Adly, S., Attouch, H.: Finite convergence of proximal-gradient inertial algorithms combining dry
friction with hessian-driven damping. SIAM J. Optim. 30(3), 2134-2162 (2020)

3. Adly, S., Attouch, H.: First-order inertial algorithms involving dry friction damping. Math. Program.
1-41 (2021)

4. Alvarez, F.: On the minimizing property of a second order dissipative system in Hilbert spaces. SIAM
J. Control Optim. 38(4), 1102-1119 (2000)

5. Alvarez, F., Attouch, H.: An inertial proximal method for maximal monotone operators via discretiza-
tion of a nonlinear oscillator with damping. Set Valued Anal. 9(1), 3—11 (2001)

6. Alvarez, F.,, Attouch, H., Bolte, J., Redont, P.: A second-order gradient-like dissipative dynamical
system with Hessian-driven damping: application to optimization and mechanics. Journal de mathé-
matiques pures et appliquées 81(8), 747-779 (2002)

7. Alvarez, F., Pérez C, J.M.: A dynamical system associated with Newton’s method for parametric
approximations of convex minimization problems. Appl. Math. Optim. 38, 193-217 (1998)

8. Alves, M.M.: Variants of the A-HPE and large-step a-hpe algorithms for strongly convex problems
with applications to accelerated high-order tensor methods. ArXiv Preprint: arXiv:2102.02045 (2021)

9. Amaral, V.S., Andreani, R., Birgin, E.G., Marcondes, D.S., Martinez, J.M.: On complexity and con-
vergence of high-order coordinate descent algorithms. ArXiv Preprint: arXiv:2009.01811 (2020)

10. Antipin, A.S.: Minimization of convex functions on convex sets by means of differential equations.
Differ. Equ. 30(9), 1365-1375 (1994)

11. Arjevani, Y., Shamir, O., Shiff, R.: Oracle complexity of second-order methods for smooth convex
optimization. Math. Program. 178(1), 327-360 (2019)

12. Attouch, H., Alves, M.M., Svaiter, B.F.: A dynamic approach to a proximal-Newton method for
monotone inclusions in Hilbert spaces, with complexity o (1/n"2). J. Convex Anal. 23(1), 139-180
(2016)

13. Attouch, H., Balhag, A., Chbani, Z., Riahi, H.: Fast convex optimization via inertial dynamics combin-
ing viscous and Hessian-driven damping with time rescaling. Evol. Equ. Control Theory (to appear)
(2021)

14. Attouch, H., Bot, R.I., Csetnek, E.R.: Fast optimization via inertial dynamics with closed-loop damp-
ing. ArXiv Preprint: arXiv:2008.02261 (2020)

15. Attouch, H., Cabot, A.: Asymptotic stabilization of inertial gradient dynamics with time-dependent
viscosity. J. Differ. Equ. 263(9), 5412-5458 (2017)

16. Attouch, H., Cabot, A.: Convergence of damped inertial dynamics governed by regularized maximally
monotone operators. J. Differ. Equ. 264(12), 7138-7182 (2018)

17. Attouch, H., Cabot, A.: Convergence of a relaxed inertial proximal algorithm for maximally monotone
operators. Math. Program. 184(1), 243-287 (2020)

18. Attouch, H., Chbani, Z., Fadili, J., Riahi, H.: First-order optimization algorithms via inertial systems
with Hessian driven damping. Math. Program. 1-43 (2020)

19. Attouch, H., Chbani, Z., Fadili, J., Riahi, H.: Fast convergence of dynamical ADMM via time scaling
of damped inertial dynamics. ArXiv Preprint: arXiv:2103.12675 (2021)

20. Attouch, H., Chbani, Z., Peypouquet, J., Redont, P.: Fast convergence of inertial dynamics and algo-
rithms with asymptotic vanishing viscosity. Math. Program. 168(1-2), 123-175 (2018)

@ Springer


http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2102.02045
http://arxiv.org/abs/2009.01811
http://arxiv.org/abs/2008.02261
http://arxiv.org/abs/2103.12675

972

T.Lin, M. 1. Jordan

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

Attouch, H., Chbani, Z., Riahi, H.: Fast convex optimization via time scaling of damped inertial
gradient dynamics. Pure Appl. Funct. Anal. (to appear) (2019)

Attouch, H., Chbani, Z., Riahi, H.: Fast proximal methods via time scaling of damped inertial dynam-
ics. SIAM J. Optim. 29(3), 2227-2256 (2019)

Attouch, H., Chbani, Z., Riahi, H.: Rate of convergence of the Nesterov accelerated gradient method
in the subcritical case alphale3. ESAIM Control Optim. Calc. Var. 25, 2 (2019)

Attouch, H., Cominetti, R.: A dynamical approach to convex minimization coupling approximation
with the steepest descent method. J. Differ. Equ. 128(2), 519-540 (1996)

Attouch, H., Goudou, X., Redont, P.: The heavy ball with friction method, I. The continuous dynamical
system: global exploration of the local minima of a real-valued function by asymptotic analysis of a
dissipative dynamical system. Commun. Contemp. Math. 2(01), 1-34 (2000)

Attouch, H., Laszl6, S.C.: Continuous Newton-like inertial dynamics for monotone inclusions. Set
Valued Var. Anal. 1-27 (2020)

Attouch, H., Laszld, S.C.: Newton-like inertial dynamics and proximal algorithms governed by max-
imally monotone operators. SIAM J. Optim. 30(4), 3252-3283 (2020)

Attouch, H., Maingé, P.E., Redont, P.: A second-order differential system with Hessian-driven damp-
ing: application to non-elastic shock laws. Differ. Equ. Appl. 4(1), 27-65 (2012)

Attouch, H., Peypouquet, J.: The rate of convergence of Nesterov’s accelerated forward-backward
method is actually faster than 1/k"2. SIAM J. Optim. 26(3), 1824-1834 (2016)

Attouch, H., Peypouquet, J.: Convergence rate of proximal inertial algorithms associated with Moreau
envelopes of convex functions. In: Splitting Algorithms, Modern Operator Theory, and Applications,
pp. 1-44. Springer (2019)

Attouch, H., Peypouquet, J., Redont, P.: Fast convex optimization via inertial dynamics with Hessian
driven damping. J. Differ. Equ. 261(10), 5734-5783 (2016)

Attouch, H., Redont, P.: The second-order in time continuous Newton method. In: Approximation,
Optimization and Mathematical Economics, pp. 25-36. Springer (2001)

Attouch, H., Redont, P., Svaiter, B.F.: Global convergence of a closed-loop regularized Newton method
for solving monotone inclusions in Hilbert spaces. J. Optim. Theory Appl. 157(3), 624-650 (2013)
Attouch, H., Svaiter, B.F.: A continuous dynamical Newton-like approach to solving monotone inclu-
sions. STAM J. Control Optim. 49(2), 574-598 (2011)

Baes, M.: Estimate Sequence Methods: Extensions and Approximations. Institute for Operations
Research, ETH, Ziirich (2009)

Barta, T., Chill, R., FaSangova, E.: Every ordinary differential equation with a strict Lyapunov function
is a gradient system. Monatshefte fiir Mathematik 166(1), 57-72 (2012)

Barta, T., FaSangov4, E.: Convergence to equilibrium for solutions of an abstract wave equation with
general damping function. J. Differ. Equ. 260(3), 2259-2274 (2016)

Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems.
SIAM J. Imaging Sci. 2(1), 183-202 (2009)

Bégout, P., Bolte, J., Jendoubi, M.A.: On damped second-order gradient systems. J. Differ. Equ.
259(7), 3115-3143 (2015)

Betancourt, M., Jordan, M.I, Wilson, A.C.: On symplectic optimization. ArXiv Preprint:
arXiv:1802.03653 (2018)

Bihari, I.: A generalization of a lemma of Bellman and its application to uniqueness problems of
differential equations. Acta Mathematica Hungarica 7(1), 81-94 (1956)

Birgin, E.G., Gardenghi, J.L., Martinez, J.M., Santos, S.A., Toint, P.L.: Evaluation complexity for
nonlinear constrained optimization using unscaled KKT conditions and high-order models. SIAM J.
Optim. 26(2), 951-967 (2016)

Birgin, E.G., Gardenghi, J.L., Martinez, J.M., Santos, S.A., Toint, P.L.: Worst-case evaluation com-
plexity for unconstrained nonlinear optimization using high-order regularized models. Math. Program.
163(1-2), 359-368 (2017)

Bolte, J., Daniilidis, A., Ley, O., Mazet, L.: Characterizations of tojasiewicz inequalities: subgradient
flows, talweg, convexity. Trans. Am. Math. Soc. 362(6), 3319-3363 (2010)

Bot, R.L,, Csetnek, E.R.: Second order forward-backward dynamical systems for monotone inclusion
problems. SIAM J. Control Optim. 54(3), 1423-1443 (2016)

Bot, R.I., Csetnek, E.R., Laszl, S.C.: Tikhonov regularization of a second order dynamical system
with Hessian driven damping. Math. Program. 1-36 (2020)

@ Springer


http://arxiv.org/abs/1802.03653

A control-theoretic perspective on optimal... 973

47.

48.

49.

50.

51,

52.

53.

54.

55.

56.

57.
58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

Bubeck, S., Jiang, Q., Lee, Y.T., Li, Y., Sidford, A.: Near-optimal method for highly smooth convex
optimization. In: COLT, pp. 492-507. PMLR (2019)

Bullins, B.: Highly smooth minimization of nonsmooth problems. In: COLT, pp. 988-1030. PMLR
(2020)

Bullins, B., Lai, K.A.: Higher-order methods for convex—concave min—max optimization and mono-
tone variational inequalities. ArXiv Preprint: arXiv:2007.04528 (2020)

Cartis, C., Gould, N.I., Toint, P.L.: Universal regularization methods: varying the power, the smooth-
ness and the accuracy. SIAM J. Optim. 29(1), 595-615 (2019)

Cartis, C., Gould, N.LM., Toint, PL.: Second-order optimality and beyond: characterization and
evaluation complexity in convexly constrained nonlinear optimization. Found. Comput. Math. 18(5),
1073-1107 (2018)

Chergui, L.: Convergence of global and bounded solutions of a second order gradient like system
with nonlinear dissipation and analytic nonlinearity. J. Dyn. Differ. Equ. 3(20), 643-652 (2008)
Chill, R., Fasangova, E.: Gradient systems. In: Lecture Notes of the 13th International Internet Sem-
inar. Matfyzpress, Prague (2010)

Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. Tata McGraw-Hill Edu-
cation, New York (1955)

Diakonikolas, J., Jordan, M.L.: Generalized momentum-based methods: a Hamiltonian perspective.
SIAM J. Optim. (to appear) (2020)

Diakonikolas, J., Orecchia, L.: The approximate duality gap technique: a unified theory of first-order
methods. SIAM J. Optim. 29(1), 660-689 (2019)

Doikov, N., Nesterov, Y.: Local convergence of tensor methods. Math. Program. 1-22 (2019)
Fazlyab, M., Ribeiro, A., Morari, M., Preciado, V.M.: Analysis of optimization algorithms via integral
quadratic constraints: nonstrongly convex problems. SIAM J. Optim. 28(3), 2654-2689 (2018)
Franca, G.,Jordan, ML, Vidal, R.: On dissipative symplectic integration with applications to gradient-
based optimization. J. Stat. Mech. Theory Exp. (to appear) (2021)

Franca, G., Sulam, J., Robinson, D.P.,, Vidal, R.: Conformal symplectic and relativistic optimization.
J. Stat. Mech. Theory Exp. 2020(12), 124008 (2020)

Gasnikov, A., Dvurechensky, P., Gorbunov, E., Vorontsova, E., Selikhanovych, D., Uribe, C.A.: Opti-
mal tensor methods in smooth convex and uniformly convex optimization. In: COLT, pp. 1374-1391.
PMLR (2019)

Granas, A., Dugundji, J.: Fixed Point Theory. Springer, Berlin (2013)

Grapiglia, G.N., Nesterov, Y.: Regularized Newton methods for minimizing functions with Holder
continuous Hessians. SIAM J. Optim. 27(1), 478-506 (2017)

Grapiglia, G.N., Nesterov, Y.: Accelerated regularized Newton methods for minimizing composite
convex functions. SIAM J. Optim. 29(1), 77-99 (2019)

Grapiglia, G.N., Nesterov, Y.: Tensor methods for finding approximate stationary points of convex
functions. Optim. Methods Softw. 1-34 (2020)

Grapiglia, G.N., Nesterov, Y.: Tensor methods for minimizing convex functions with Holder contin-
uous higher-order derivatives. STAM J. Optim. 30(4), 2750-2779 (2020)

Giiler, O.: New proximal point algorithms for convex minimization. SIAM J. Optim. 2(4), 649-664
(1992)

Hu, B., Lessard, L.: Dissipativity theory for Nesterov’s accelerated method. In: ICML, pp. 1549-1557.
JMLR. org (2017)

Huang, S.Z.: Gradient Inequalities: With Applications to Asymptotic Behavior and Stability of
Gradient-Like Systems, vol. 126. American Mathematical Soc, Providence (2006)

Jiang, B., Lin, T., Zhang, S.: A unified adaptive tensor approximation scheme to accelerate composite
convex optimization. SIAM J. Optim. 30(4), 2897-2926 (2020)

Jiang, B., Wang, H., Zhang, S.: An optimal high-order tensor method for convex optimization. In:
COLT, pp. 1799-1801. PMLR (2019)

Kamzolov, D.: Near-optimal hyperfast second-order method for convex optimization. In: International
Conference on Mathematical Optimization Theory and Operations Research, pp. 167—178. Springer
(2020)

Kamzolov, D., Gasnikov, A.: Near-optimal hyperfast second-order method for convex optimization
and its sliding. ArXiv Preprint: arXiv:2002.09050 (2020)

Krichene, W., Bayen, A., Bartlett, P.L.: Accelerated mirror descent in continuous and discrete time.
In: NeurIPS, pp. 2845-2853 (2015)

@ Springer


http://arxiv.org/abs/2007.04528
http://arxiv.org/abs/2002.09050

974

T.Lin, M. 1. Jordan

75.

76.
71.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.
90.

91.
92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

Kurdyka, K.: On gradients of functions definable in o-minimal structures. In: Annales de I’institut
Fourier 48, 769-783 (1998)

LaSalle, J.: Uniqueness theorems and successive approximations. Ann. Math. 50, 722-730 (1949)
Lessard, L., Recht, B., Packard, A.: Analysis and design of optimization algorithms via integral
quadratic constraints. SIAM J. Optim. 26(1), 57-95 (2016)

Maddison, C.J., Paulin, D., Teh, Y.W., O’Donoghue, B., Doucet, A.: Hamiltonian descent methods.
ArXiv Preprint: arXiv:1809.05042 (2018)

Maingé, P.E.: First-order continuous Newton-like systems for monotone inclusions. SIAM J. Control
Optim. 51(2), 1615-1638 (2013)

Martinet, B.: Régularisation d’inéquations variationnelles par approximations successives. rev.
francaise informat. Recherche Opérationnelle 4, 154—158 (1970)

Martinet, B.: Détermination approchée d’un point fixe d’une application pseudo-contractante. CR
Acad. Sci. Paris 274(2), 163-165 (1972)

Martinez, J.: On high-order model regularization for constrained optimization. SIAM J. Optim. 27(4),
2447-2458 (2017)

May, R.: Asymptotic for a second-order evolution equation with convex potential and vanishing
damping term. Turk. J. Math. 41(3), 681-685 (2017)

Monteiro, R.D.C., Svaiter, B.F.: On the complexity of the hybrid proximal extragradient method for
the iterates and the ergodic mean. SIAM J. Optim. 20(6), 2755-2787 (2010)

Monteiro, R.D.C., Svaiter, B.F.: An accelerated hybrid proximal extragradient method for convex
optimization and its implications to second-order methods. SIAM J. Optim. 23(2), 1092-1125 (2013)
Muehlebach, M., Jordan, M.I.: A dynamical systems perspective on Nesterov acceleration. In: ICML,
pp. 4656-4662 (2019)

Muehlebach, M., Jordan, M.I.: Optimization with momentum: dynamical, control-theoretic, and sym-
plectic perspectives. J. Mach. Learn. Res. (to appear) (2021)

Nesterov, Y.: Accelerating the cubic regularization of Newton’s method on convex problems. Math.
Program. 112(1), 159-181 (2008)

Nesterov, Y.: How to make the gradients small. Optima 88, 10-11 (2012)

Nesterov, Y.: Gradient methods for minimizing composite functions. Math. Program. 140(1), 125-161
(2013)

Nesterov, Y.: Lectures on Convex Optimization, vol. 137. Springer, Berlin (2018)

Nesterov, Y.: Implementable tensor methods in unconstrained convex optimization. Math. Program.
1-27 (2019)

Nesterov, Y.: Inexact accelerated high-order proximal-point methods. Université catholique de Lou-
vain, Center for Operations Research and Econometrics (CORE), Technical report (2020)

Nesterov, Y.: Superfast second-order methods for unconstrained convex optimization. Université
catholique de Louvain, Center for Operations Research and Econometrics (CORE), Technical report
(2020)

Nesterov, Y.E.: A method for solving the convex programming problem with convergence rate o
(1/extk, hat, 2). Dokl. akad. nauk Sssr 269, 543-547 (1983)

O’Donoghue, B., Maddison, C.J.: Hamiltonian descent for composite objectives. In: NeurIPS, pp.
14470-14480 (2019)

Ostroukhov, P, Kamalov, R., Dvurechensky, P., Gasnikov, A.: Tensor methods for strongly con-
vex strongly concave saddle point problems and strongly monotone variational inequalities. ArXiv
Preprint: arXiv:2012.15595 (2020)

Polyak, B.T.: Introduction to Optimization. Optimization Software Inc, New York (1987)
Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim.
14(5), 877-898 (1976)

Scieur, D., Roulet, V., Bach, F., d’Aspremont, A.: Integration methods and optimization algorithms.
In: NeurIPS, pp. 1109-1118 (2017)

Sebbouh, O., Dossal, C., Rondepierre, A.: Convergence rates of damped inertial dynamics under
geometric conditions and perturbations. SIAM J. Optim. 30(3), 1850-1877 (2020)

Shi, B., Du, S.S., Jordan, M.I., Su, W.J.: Understanding the acceleration phenomenon via high-
resolution differential equations. ArXiv Preprint: arXiv:1810.08907 (2018)

Shi, B., Du, S.S., Su, W.J., Jordan, M.L.: Acceleration via symplectic discretization of high-resolution
differential equations. In: NeurIPS, pp. 5744-5752 (2019)

@ Springer


http://arxiv.org/abs/1809.05042
http://arxiv.org/abs/2012.15595
http://arxiv.org/abs/1810.08907

A control-theoretic perspective on optimal... 975

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

Solodov, M.V., Svaiter, B.F.: A hybrid approximate extragradient-proximal point algorithm using the
enlargement of a maximal monotone operator. Set Valued Anal. 7(4), 323-345 (1999)

Song, C., Jiang, Y., Ma, Y.: Unified acceleration of high-order algorithms under Holder continuity
and uniform convexity. SIAM J. Optim. (to appear) (2021)

Su, W., Boyd, S., Candes, E.J.: A differential equation for modeling Nesterov’s accelerated gradient
method: theory and insights. J. Mach. Learn. Res. 17(1), 5312-5354 (2016)

Sutherland, W.A.: Introduction to Metric and Topological Spaces. Oxford University Press, Oxford
(2009)

Tseng, P.: Approximation accuracy, gradient methods, and error bound for structured convex opti-
mization. Math. Program. 125(2), 263-295 (2010)

Vassilis, A., Jean-Francois, A., Charles, D.: The differential inclusion modeling FISTA algorithm and
optimality of convergence rate in the case b < 3. SIAM J. Optim. 28(1), 551-574 (2018)

Wibisono, A., Wilson, A.C., Jordan, M.I.: A variational perspective on accelerated methods in opti-
mization. Proc. Natl. Acad. Sci. 113(47), E7351-E7358 (2016)

Wilson, A.C., Mackey, L., Wibisono, A.: Accelerating rescaled gradient descent: fast optimization of
smooth functions. In: NeurIPS, pp. 13555-13565 (2019)

Wilson, A.C., Recht, B., Jordan, M.I.: A Lyapunov analysis of momentum methods in optimization.
J. Mach. Learn. Res. (to appear) (2021)

Zhang, J., Mokhtari, A., Sra, S., Jadbabaie, A.: Direct Runge—Kutta discretization achieves acceler-
ation. In: NeurIPS, pp. 3900-3909 (2018)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer



	A control-theoretic perspective on optimal high-order optimization
	Abstract
	1 Introduction
	2 The closed-loop control system
	2.1 First-order system in time and space
	2.2 Algebraic equation
	2.3 Existence and uniqueness of a local solution
	2.4 Discussion

	3 Lyapunov function
	3.1 Existence and uniqueness of a global solution
	3.2 Rate of convergence
	3.3 Discussion

	4 Implicit time discretization and optimal acceleration
	4.1 Conceptual algorithmic frameworks
	4.2 Complexity analysis
	4.3 Optimal tensor algorithms and gradient norm minimization

	5 Conclusions
	Acknowledgements
	References




