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Abstract

The present work is the first member of a pair of papers concerning decreasingly-minimal

(dec-min) elements of a set of integral vectors, where a vector is dec-min if its largest component

is as small as possible, within this, the next largest component is as small as possible, and so on.

This discrete notion, along with its fractional counterpart, showed up earlier in the literature under

various names.

The domain we consider is an M-convex set, that is, the set of integral elements of an integral

base-polyhedron. A fundamental difference between the fractional and the discrete case is that a

base-polyhedron has always a unique dec-min element, while the set of dec-min elements of an

M-convex set admits a rich structure, described here with the help of a ‘canonical chain’. As a

consequence, we prove that this set arises from a matroid by translating the characteristic vectors

of its bases with an integral vector.

By relying on these characterizations, we prove that an element is dec-min if and only if

the square-sum of its components is minimum, a property resulting in a new type of min-max

theorems. The characterizations also give rise, as shown in the companion paper, to a strongly

polynomial algorithm, and to several applications in the areas of resource allocation, network

flow, matroid, and graph orientation problems, which actually provided a major motivation to the

present investigations. In particular, we prove a conjecture on graph orientation.
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1 Introduction

We investigate a problem which we call “discrete decreasing minimization.” An element of a set of

vectors is called decreasingly minimal (dec-min) if its largest component is as small as possible, within

this, its second largest component is as small as possible, and so on. The term discrete decreasing

minimization refers to the problem of finding a dec-min element (or even a cheapest dec-min element

with respect to a given weighting) of a set of integral vectors. In the present work, this set is an M-

convex set, which is nothing but the set of integral elements of an integral base-polyhedron. Note that

one may consider the analogous term “increasing maximization” (inc-max), as well. This dichotomy

is the reason why we avoid the usage of term “lexicographic optimal” used in the literature.

The goal of this paper is to develop structural characterizations of the set of dec-min elements

of an M-convex set. These form the bases, in [13], for developing a strongly polynomial algorithm,

as well as for exploring and exhibiting various applications. Actually, earlier special cases played a

major motivating role for our investigations, which are described in Section 1.1. The main results will

be described in Section 1.2. The research was strongly motivated by the theory of Discrete Convex

Analysis (DCA), but the paper is self-contained and does not rely on any prerequisite from DCA.

1.1 Background problems

There are several different sources underlying the study of discrete decreasing minimization.

1.1.1 Orientations of graphs

Let G = (V, E) be an undirected graph. Orienting an edge e = uv means the operation that replaces

e by one of the two oppositely directed edges (sometimes called arcs) uv or vu. A directed graph

arising from G by orienting all of its edges is called an orientation of G (see Figure 1). A graph

orientation problem consists of finding an orientation of G meeting some specified properties such as

in-degree constraints (lower and upper bounds) and/or various connectivity prescriptions. One goal is

to characterize undirected graphs for which the requested orientation exists, and another related goal

is to design an algorithm for finding the orientation.

The literature is quite rich in orientation results, for a relatively wide overview, see the book [10].

While upper and lower bounds are often imposed on the in-degree of each node in an orientation of

G, there are other type of requirements for an orientation concerning the global distribution of the

in-degrees of nodes. That is, the goal is to find orientations (with possible connectivity expectations)

whose in-degree vector (on the node-set) is felt intuitively evenly distributed: ‘fair’, ‘equitable’, ‘egali-

tarian’, ‘uniform’. For example, how can one determine the minimum value β1 of the largest in-degree

of a (k-edge-connected) orientation? Even further, after determining β1, it might be interesting to min-

imize the number of nodes with in-degree β1 among orientations of G with largest in-degree β1. Or, a

more global equitability feeling is captured if we minimize the sum of squares of the in-degrees. For

example, the in-degree vector m3 = (1, 3, 0) in Figure 1 (with square-sum 10) is felt less ‘fair’ than

m2 = (2, 2, 0) (with square-sum 8) and m1 = (2, 1, 1) (with square-sum 6).

a

b c

Given graph

a

2

b c

1 1

✕ ❑

✲
✛

m1 = (2, 1, 1)

a

2

b c

2 0

✕ ❑

✛
✛

m2 = (2, 2, 0)

a

1

b c

3 0

✕ ❯

✛
✛

m3 = (1, 3, 0)

1: Graph orientationsFigure 1: Orientations of a graph
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A formally different definition was recently suggested and investigated by Borradaile et al. [4]

who called an orientation of G = (V, E) egalitarian if the highest in-degree of the nodes is as small

as possible, and within this, the second highest (but not necessarily distinct) in-degree is as small as

possible, and within this, the third highest in-degree is as small as possible, and so on. In other words,

if we rearrange the in-degrees of nodes in a decreasing order, then the sequence is lexicographically

minimal. In order to emphasize that the in-degrees are considered in a decreasing order, we prefer the

use of the more expressive term decreasingly minimal (dec-min, for short) for such an orientation,

rather than egalitarian.

This change of terminology is reasonable since one may also consider the mirror problem of

finding an increasingly maximal (or inc-max, for short) orientation that is an orientation of G in

which the smallest in-degree is as large as possible, within this, the second smallest in-degree is as

large as possible, and so on. Intuitively, such an orientation may equally be felt ‘egalitarian’ in the

informal meaning of the word.

Borradaile et al. [4], however, proved that an orientation of a graph is decreasingly minimal (egali-

tarian in their original term) if and only if there is no ‘small’ improvement, where a small improvement

means the reorientation of a dipath from some node s to another node t with in-degrees ̺(t) ≥ ̺(s)+2.

This theorem immediately implies that an orientation is decreasingly minimal if and only if it is in-

creasingly maximal, and therefore we could retain the original terminology “egalitarian orientation”

used in [4].

However, when orientations are considered with specific requirements such as strong (or, more

generally, k-edge-) connectivity and/or in-degree bounds on the nodes, the possible equivalence of

decreasingly minimal and increasingly maximal orientations had not yet been investigated. Actually,

Borradaile et al. [4] conjectured that a strong orientation of a graph is decreasingly minimal (among

strong orientations) if and only if there is no small improvement preserving strong connectivity. This,

if true, would imply immediately that decreasing minimality and increasing maximality do coincide

for strong orientations, as well. In [13] we shall prove this conjecture even in its extended form

concerning k-edge-connected and in-degree constrained orientations.

1.1.2 A resource allocation problem

Another source of our investigations is due to Harvey et al. [23] who solved the problem of minimizing∑
[dF(s)(dF (s)+1) : s ∈ S ] over the semi-matchings F of a simple bipartite graph G = (S , T ; E). Here

a semi-matching is a subset F of edges for which dF(t) = 1 holds for every node t ∈ T . Harada

et al. [22] solved the minimum edge-cost version of this problem. The framework of Harvey et al.

was extended by Bokal et al. [3] to quasi-matchings, and, even further, to degree-bounded quasi-

matchings by Katrenič and Semanišin [30]. It turns out that these problems are strongly related to

minimization of a separable convex function over (integral elements of) a base-polyhedron which has

been investigated in the literature under the name of “resource allocation problems under submodular

constraints” ([7], [26], [25], [29], [27], [28]). Ghodsi et al. [20] considered the problem of finding

a semi-matching F of G = (S , T ; E) whose degree-vector restricted to S is increasingly maximal.

This problem “constrained max-min fairness” originated from modelling a fair sharing problem for

datacenter jobs. Here T corresponds to the set of available computers while S to the set of users. An

edge st exists if user s can run her program on computer t. Ghodsi et al. also consider the fractional

version, which finds a real vector x : E → R+ so that dx(t) = 1 for every t ∈ T and the vector

(dx(s) : s ∈ S ) is increasingly maximal. (Here dx(v) :=
∑

[x(uv) : uv ∈ E]). When x is requested

to be {0, 1}-valued, we are back at the subgraph version. It should be emphasized that, unlike the

well-known situation with ordinary bipartite matchings, the optima for the subgraph version and for

the fractional version may be different.
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1.1.3 Network flows

There is a much earlier, strongly related problem concerning network flows, due to Megiddo [35],

[36]. We are given a digraph D = (V, A) with a source-set S ⊂ V and a single sink-node t ∈ V − S . Let

g : A → R+ be a capacity function. A flow means a function x : A → R+ for which the net out-flow

δx(v) − ̺x(v) = 0 if v ∈ V − (S ∪ {t}) and δx(v) − ̺x(v) ≥ 0 if v ∈ S . (Here ̺x(v) :=
∑

[x(uv) : uv ∈ A]

and δx(v) :=
∑

[x(vu) : vu ∈ A].) A flow x is feasible if x ≤ g. The flow amount of x is defined by

̺x(t) − δx(t). Megiddo solved the problem of finding a feasible flow of maximum flow amount which

is, in his term, “source-optimal” at S . Source-optimality is the same as requiring that the net out-flow

vector on S is increasingly maximal. It must be emphasized that the flow in Megiddo’s problem is not

requested to be integer-valued.

The integrality property is a fundamental feature of ordinary network flows. It states that in case

of an integer-valued capacity function g there always exists a maximum flow which is integer-valued.

In this light, it is quite surprising that the integer-valued (or discrete) version of Megiddo’s inc-max

problem (source-optimal in his term), where the capacity function g is integer-valued and the max flow

is required to be integer-valued, has not been investigated in the literature. We consider the present

work the first such attempt.

1.1.4 Matroid bases

The fourth source of discrete decreasing minimization problems is due to Levin and Onn [31] who

used the term “shifted optimization.” They considered the following matroid optimization problem.

For a specified integer k, find k bases Z1, Z2, . . . , Zk of a matroid M on S in such a way that the vector∑
i χZi

be, in our term, decreasingly minimal, where χZ is the incidence (or characteristic) vector of a

subset Z. They apply the following natural approach to reduce the problem to classic results of matroid

theory. First replace each element s of S by k copies to be parallel in the resulting matroid M′ on the

new ground-set S ′ = S 1 ∪ S 2 ∪ · · · ∪ S k where S 1, . . . , S k are the k copies of S . Assign then a ‘rapidly

increasing’ cost function to the copies. (The paper [31] explicitly describes what rapidly increasing

means). Then a minimum cost basis of the matroid M0 obtained by multiplying M′ k-times will be a

solution to the problem. (By definition, a basis of M0 is the union of k disjoint bases of M′).

1.2 Main goals

Each of the problems in Section 1.1 may be viewed as a special case of a single discrete optimization

problem: Characterize decreasingly minimal elements of an M-convex set [37, 38] (or, in other words,

dec-min integral elements of an integral base-polyhedron). By one of its equivalent definitions, an

M-convex set is nothing but the set of integral elements of an integral base-polyhedron.

We characterize dec-min elements of an M-convex set as those admitting no local improvement,

and prove that the set of dec-min elements is itself an M-convex set arising by translating a matroid

base-polyhedron with an integral vector. This result implies that decreasing minimality and increasing

maximality coincide for M-convex sets. We shall also show that an element of an M-convex set is

dec-min precisely if it is a square-sum minimizer. Using the characterization of dec-min elements, we

shall derive a novel min-max theorem for the minimum square-sum of elements of an integral member

of a base-polyhedron.

The structural description of the set of dec-min elements of an M-convex set in terms of a matroid

makes it possible to solve the algorithmic problem of finding a minimum cost dec-min element. (In

the continuous counterpart of decreasing minimization, this problem simply does not exist due to the

uniqueness of the fractional dec-min element of a base-polyhedron.) In the companion paper [13],

we shall describe a polynomial algorithm for finding a minimum cost (in-degree constrained) dec-

min orientation. Furthermore, we shall outline an algorithm to solve the minimum cost version of

the resource allocation problem of Harvey et al. [23] mentioned in Section 1.1.2. Moreover, as an

essential extension of the algorithm of Harada et al. [22], we describe a strongly polynomial algorithm
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to solve a minimum cost version of the decreasingly minimal degree-bounded subgraph problem in

a bipartite graph G = (S , T, E). One may consider two versions here. In the simpler one, we have

a cost-function on the node-set of G, that is, on the ground-set of the corresponding M-convex set.

Due to the matroidal description of the set of dec-min elements of an M-convex set, this min-cost

version becomes rather easy since the matroid greedy algorithm can be applied. Significantly more

complicated is the other min-cost version, where a cost-function is given on the set of edges of G. The

latter version is also solved in [13].

The topic of our investigations may be interpreted as a discrete counterpart of the work by Fu-

jishige [17] from 1980 on the lexicographically optimal base of a base-polyhedron B, where lexico-

graphical optimality is essentially the same as decreasing minimality. He proved that there is a unique

lexicographically optimal member x0 of B, and x0 is the unique minimum norm (that is, the minimum

square-sum) element of B. This uniqueness result reflects a characteristic difference between the be-

haviour of the fractional and the discrete versions of decreasing minimization since in the latter case

the set of dec-min elements (of an M-convex set) is typically not a singleton, and it actually has, as

indicated above, a matroidal structure. While the present paper focuses on the unweighted case, the

lexicographically optimal base of a base-polyhedron is defined and analyzed with respect to a weight

vector in [17].

Fujishige also introduced the concept of principal partitions concerning the dual structure of the

minimum norm point of a base-polyhedron. Actually, he introduced a special chain of the subsets

of ground-set S and his principal partition arises by taking the difference sets of this chain. We will

prove that there is an analogous concept in the discrete case, as well. As an extension of the above-

mentioned elegant result of Borradaile et al. [5] concerning graphs, we show that there is a ‘canonical

chain’ describing the structure of dec-min elements of an M-convex set. The relation between our

canonical partition and Fujishige’s principal partition is clarified in [12], showing that the canonical

partition is an intrinsic structure of an M-convex set consistent with the principal partition of a base-

polyhedron.

The paper of Fujishige is one of the early representatives of the rich literature of related topics. The

section of “Survey of early papers” in [12] provides a relatively complete overview of these results,

along with an outline of their relationship.

The present paper is organized, as follows. After formally introducing the basic notions, termi-

nology, and notation in Section 2, we prove, in Section 3, two characterizations of an element m of an

M-convex sets to be decreasingly minimal. The first one is a co-NP-characterization consisting of an

easily checkable certificate for m not to be dec-min, while the second one is an NP-characterization

consisting of an easily checkable certificate for m to be dec-min. The first characterization implies

immediately that m is dec-min precisely if it is inc-max. This is a property that fails to hold for the

intersection of two M-convex sets.

In Sections 4 and 5, we show how the set of all dec-min elements of an M-convex set can be

obtained from a matroid, and hence it is also an M-convex set. The main device is the dual concept of

canonical chains and partitions. In Section 6, we prove that an element m of an M-convex set is dec-

min if and only if its ℓ2-norm ‖·‖2 (or equivalently, the square sum of its components) is minimum. On

one hand, this result seems surprising in the light of the fact that there is an example for two elements

m1 and m2 of an M-convex set for which m1 is decreasingly smaller than m2, but ‖m1‖2 > ‖m2‖2. On

the other hand, we shall use the coincidence of dec-minimality and square-sum minimality to prove a

min-max theorem for the minimum square-sum of the components over the elements of an M-convex

set. As a special case, this provides a min-max formula for the the minimum of
∑
{̺D(v)2 : v ∈ V}

over all orientations D of an undirected graph on node-set V , where ̺D(v) denotes the in-degree of v

in D. To our best knowledge, no min-max formulas of similar type appeared earlier in the literature.

In Section 7, we discuss the relationship between the continuous and discrete versions of decreas-

ing minimization on a base-polyhedron. Both dec-min elements and partitions of the ground-set are

compared between the continuous and discrete versions. Finally in Section 8, we give a perspective

of our series of research on discrete decreasing minimization.
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1.3 Notation

Throughout the paper, S denotes a finite non-empty ground-set. For elements s, t ∈ S , we say that

X ⊂ S is an st-set if s ∈ X ⊆ S − t. For a vector m ∈ RS (or function m : S → R), the restriction of m

to X ⊆ S is denoted by m|X. We also use the notation m̃(X) =
∑

[m(s) : s ∈ X]. With a small abuse of

notation, we do not distinguish between a one-element set {s} called a singleton and its only element s.

When we work with a chain C of non-empty sets C1 ⊂ C2 ⊂ · · · ⊂ Cq, we sometimes use C0 to denote

the empty set without assuming that C0 is a member of C. The characteristic (or incidence) vector of

a subset Z is denoted by χZ , that is, χZ(s) = 1 if s ∈ Z and χZ(s) = 0 otherwise. For a polyhedron B,
....

B (pronounce: dotted B) denotes the set of integral members (elements, vectors, points) of B, that is,

....

B := B ∩ ZS . (1.1)

For a set-function h, we allow it to have value +∞ or −∞, while h(∅) = 0 is assumed throughout.

Where h(S ) is finite, the complementary function h is defined by h(X) = h(S ) − h(S − X). For

functions f : S → Z ∪ {−∞} and g : S → Z ∪ {+∞} with f ≤ g, the polyhedron T ( f , g) = {x ∈ RS :

f ≤ x ≤ g} is called a box. If g(s) ≤ f (s) + 1 holds for every s ∈ S , we speak of a small box. For

example, the (0, 1)-box is small, and so is any set consisting of a single integral vector.

2 Base-polyhedra and M-convex sets

Let S be a finite non-empty ground-set. Let b be a set-function for which b(X) = +∞ is allowed but

b(X) = −∞ is not. The submodular inequality for subsets X, Y ⊆ S is defined by

b(X) + b(Y) ≥ b(X ∩ Y) + b(X ∪ Y).

We say that b is submodular if the submodular inequality holds for every pair of subsets X, Y ⊆ S

with finite b-values. A set-function p is supermodular if −p is submodular.

For a submodular integer-valued set-function b on S for which b(∅) = 0 and b(S ) is finite, the

base-polyhedron B in RS is defined by

B = B(b) = {x ∈ RS : x̃(S ) = b(S ), x̃(Z) ≤ b(Z) for every Z ⊂ S }, (2.1)

which is possibly unbounded.

A special base-polyhedron is the one of matroids. Given a matroid M, Edmonds proved that the

polytope (that is, the convex hull) of the incidence (or characteristic) vectors of the bases of M is the

base-polyhedron B(r) defined by the rank function r of M, that is, B(r) = {x ∈ RS : x̃(S ) = r(S ) and

x̃(Z) ≤ r(Z) for every subset Z ⊂ S }. It can be proved that a kind of converse also holds, namely, every

(integral) base-polyhedron in the unit (0, 1)-cube is a matroid base-polyhedron. We call the translation

of a matroid base-polyhedron a translated matroid base-polyhedron. It follows that the intersection

of a base-polyhedron with a small box is a translated matroid base-polyhedron.

A base-polyhedron B(b) is never empty, and B(b) is known to be an integral polyhedron. (A

rational polyhedron is integral if each of its faces contains an integral element. In particular, a pointed

rational polyhedron is integral if all of its vertices are integral.) By convention, the empty set is

also considered a base-polyhedron. Note that a real-valued submodular function b also defines a base-

polyhedron B(b) but in the present work we are interested only in integer-valued submodular functions

and integral base-polyhedra.

We call the set
....

B of integral elements of an integral base-polyhedron B an M-convex set. Origi-

nally, this basic notion of DCA introduced by Murota [37] (see, also the book [38]), was defined as a

set of integral points in RS satisfying certain exchange axioms, and it is known that the two properties

are equivalent ([38, Theorem 4.15]). While an integral base-polyhedron B defines an M-convex set as
....

B = B ∩ ZS , an M-convex set induces an integral base-polyhedron as its convex hull. This implies,
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in particular, that two distinct integral base-polyhedra B1 and B2 define distinct M-convex sets
....

B1 and
....

B2. The set of integral elements of a translated matroid base-polyhedron will be called a matroidal

M-convex set.

A non-empty base-polyhedron B can also be defined by a supermodular function p for which

p(∅) = 0 and p(S ) is finite as follows:

B = B′(p) = {x ∈ RS : x̃(S ) = p(S ), x̃(Z) ≥ p(Z) for every Z ⊂ S }. (2.2)

It is known that B uniquely determines both p and b, namely, b(Z) = max{x̃(Z) : x ∈ B} and p(Z) =

min{x̃(Z) : x ∈ B}. The functions p and b are complementary functions, that is, b(X) = p(S )− p(S −X)

or p(X) = b(S ) − b(S − X) (where b(S ) = p(S )).

For a set Z ⊂ S , p|Z denotes the restriction of p to Z, while p′ = p/Z is the set-function on S − Z

obtained from p by contracting Z, which is defined for X ⊆ S − Z by p′(X) = p(X ∪ Z) − p(Z). ,Note

that p/Z and p|(S − Z) are complementary set-functions. It is also known for disjoint subsets Z1 and

Z2 of S that

(p/Z1)/Z2 = p/(Z1 ∪ Z2), (2.3)

When p(Z) is finite, the base-polyhedron B′(p|Z) is called the restriction of B′(p) to Z.

Let {S 1, . . . , S q} be a partition of S and let pi be a supermodular function on S i. Let p denote

the supermodular function on S defined by p(X) :=
∑

[pi(S i ∩ X) : i = 1, . . . , q] for X ⊆ S . The

base-polyhedron B′(p) is called the direct sum of the q base-polyhedra B′(pi). Obviously, a vector

x ∈ RS is in B′(p) if and only if each xi is in B′(pi) (i = 1, . . . , q), where xi denotes the restriction x|S i

of x to S i.

It is known that a face F of a non-empty base-polyhedron B is also a base-polyhedron. The (spe-

cial) face of B′(p) defined by the single equality x̃(Z) = p(Z) is the direct sum of the base polyhedra

B′(p|Z) and B′(p/Z). More generally, any face F of B can be described with the help of a chain

(∅ ⊂) C1 ⊂ C2 ⊂ · · · ⊂ Cℓ = S of subsets by F := {z : z ∈ B, p(Ci) = z̃(Ci) for i = 1, . . . , ℓ}. (In

particular, when ℓ = 1, the face F is B itself.) Let S 1 := C1 and S i := Ci −Ci−1 for i = 2, . . . , ℓ. Then

F is the direct sum of the base-polyhedra B′(pi), where pi is a supermodular function on S i defined by

pi(X) := p(X ∪ Ci−1) − p(Ci−1) for X ⊆ S i. In other words, pi is a set-function on S i obtained from p

by deleting Ci−1 and contracting S −Ci. The unique supermodular function pF defining the face F is

given by
∑

[pi(S i ∩ X) : i = 1, . . . , ℓ]. A face F is the set of elements x of B minimizing cx whenever

c : S → R is a linear cost function such that c(s) = c(t) if s, t ∈ S i for some i and c(s) > c(t) if s ∈ S i

and t ∈ S j for some subscripts i < j.

The intersection of an integral base-polyhedron B = B′(p) (= B(p)) and an integral box T ( f , g) is

an integral base-polyhedron. The intersection is non-empty if and only if

p ≤ g̃ and f̃ ≤ p. (2.4)

For an element m of a base-polyhedron B = B(b) defined by a submodular function b, we call

a subset X ⊆ S m-tight (with respect to b) if m̃(X) = b(X). It is known (e.g., Theorem 14.2.8 in

[10]) that, for a given subset X ⊆ S , the face BX := {x ∈ B : x̃(X) = b(X)} of B is a non-empty

base-polyhedron. This means that a subset X is m-tight precisely if m is in BX. Clearly, the empty set

and S are m-tight, and m-tight sets are closed under taking union and intersection (see, for example,

Lemma 2.4.7 in [10]). Therefore, for each subset Z ⊆ S , the intersection Tm(Z; b) of all m-tight

sets including Z is the unique smallest m-tight set including Z. When Z = {s} is a singleton, we

simply write Tm(s; b) to denote the smallest m-tight set containing s. This set admits a representation

Tm(s; b) = {t ∈ S : m + χs − χt ∈ B(b)}. When the submodular function b is understood from the

context, we abbreviate Tm(Z; b) to Tm(Z).

Analogously, when B = B′(p) is given by a supermodular function p, we call X ⊆ S m-tight (with

respect to p) if m̃(X) = p(X). In this case, we also use the analogous notation Tm(Z) = Tm(Z; p) and

Tm(s) = Tm(s; p). We have Tm(s; p) = {t ∈ S : m − χs + χt ∈ B′(p)}. Observe that for complementary

functions b and p, X is m-tight with respect to b precisely if S − X is m-tight with respect to p.
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Example 2.1. The set of in-degree vectors of orientations of a given undirected graph forms an M-

convex set. Consider the undirected graph G = (V, E) in the left-most of Figure 1, where V = {a, b, c}

and the set E of edges consists of ab, ac, and a pair of parallel edges between b and c. An orientation

of G means a directed graph D that is obtained from G by orienting the edges of G. The in-degree

vector of D is the vector m on V whose component at v ∈ V is equal to the number of edges entering

v in D. Three different orientations are depicted in Figure 1 with the corresponding in-degree vectors,

m1 = (2, 1, 1), m2 = (2, 2, 0), and m3 = (1, 3, 0). The set of in-degree vectors of all orientations of G

is known to form an M-convex set, say,
....

B. In the present example, the M-convex set
....

B consists of 10

members as

....

B = {(2, 1, 1), (2, 2, 0), (2, 0, 2), (1, 3, 0), (1, 0, 3), (1, 2, 1), (1, 1, 2), (0, 2, 2), (0, 3, 1), (0, 1, 3)},

where m1, m2, and m3 are underlined. Note that different orientations may result in the same in-degree

vector. The supermodular function p describing the M-convex set
....

B (or the base-polyhedron B) is

given as follows. For any X ⊆ V , let iG(X) denote the number of edges of G induced by X, that is,

iG(X) = |{uv ∈ E : {u, v} ⊆ X}|. This function iG is a (non-negative) integer-valued supermodular

function, and we have B = B′(p) for p = iG. For any orientation D with in-degree vector m, a subset

X of V is m-tight if and only if there is no edge entering X in D. In the present example, X = {b, c} is

m-tight for m = m1,m2, whereas it is not m3-tight.

3 Characterizing a decreasingly minimal element

3.1 Decreasing minimality

For a vector x, let x↓ denote the vector obtained from x by rearranging its components in a decreasing

order. For example, we call two vectors x and y (of same dimension) value-equivalent if x↓ = y↓.

A vector x is decreasingly smaller than vector y, in notation x <dec y if x↓ is lexicographically

smaller than y↓ in the sense that they are not value-equivalent and x↓( j) < y↓( j) for the smallest

subscript j for which x↓( j) and y↓( j) differ. For example, x = (2, 5, 5, 1, 4) is decreasingly smaller

than y = (1, 5, 5, 5, 1) since x↓ = (5, 5, 4, 2, 1) is lexicographically smaller than y↓ = (5, 5, 5, 1, 1).

We write x ≤dec y to mean that x is decreasingly smaller than or value-equivalent to y.

For a set Q of vectors, x ∈ Q is decreasingly minimal (dec-min, for short) if x ≤dec y for

every y ∈ Q. Note that the dec-min elements of Q are value-equivalent. Therefore an element m of

Q is dec-min if its largest component is as small as possible, within this, its second largest component

(with the same or smaller value than the largest one) is as small as possible, and so on. An element

x of Q is said to be a max-minimized element (a max-minimizer, for short) if its largest component

is as small as possible. A max-minimizer element x is pre-decreasingly minimal (pre-dec-min, for

short) in Q if the number of its largest components is as small as possible. Obviously, a dec-min

element is pre-dec-min, and a pre-dec-min element is max-minimized. In Example 2.1, for example,

m1 = (2, 1, 1) is dec-min in
....

B, m2 = (2, 2, 0) is a max-minimizer that is not dec-min, and m3 = (1, 3, 0)

is not a max-minimizer.

In an analogous way, for a vector x, we let x↑ denote the vector obtained from x by rearranging

its components in an increasing order. A vector y is increasingly larger than vector x, in notation

y >inc x, if they are not value-equivalent and y↑( j) > x↑( j) holds for the smallest subscript j for which

y↑( j) and x↑( j) differ. We write y ≥inc x if either y >inc x or x and y are value-equivalent. Furthermore,

we call an element m of Q increasingly maximal (inc-max for short) if its smallest component is

as large as possible over the elements of Q, within this its second smallest component is as large as

possible, and so on.

It should be emphasized that a dec-min element of a base-polyhedron B is not necessarily integer-

valued. For example, if B = {(x1, x2) : x1 + x2 = 1}, then x∗ = (1/2, 1/2) is a dec-min element of B.

In this case, the dec-min members of
....

B are (0, 1) and (1, 0).
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Therefore, finding a dec-min element of B and finding a dec-min element of
....

B (the set of integral

points of B) are two distinct problems, and we shall concentrate only on the second, discrete problem.

In what follows, the slightly sloppy term integral dec-min element of B will always mean a dec-min

element of
....

B. (The term is sloppy in the sense that an integral dec-min element of B is not necessarily

a dec-min element of B).

We call an integral vector x ∈ ZS uniform if all of its components are the same integer ℓ, and

near-uniform if its largest and smallest components differ by at most 1, that is, if x(s) ∈ {ℓ, ℓ + 1} for

some integer ℓ for every s ∈ S . Note that if Q consists of integral vectors and the component-sum is

the same for each member of Q, then any near-uniform member of Q is obviously both decreasingly

minimal and increasingly maximal integral vector.

3.2 Characterizing a dec-min element

Let B = B(b) = B′(p) be a base-polyhedron defined by an integer-valued submodular function b

or supermodular function p (where b and p are complementary set-functions). Let m be an integral

member of B, that is, m ∈
....

B. Recall the definition of m-tightness introduced at the end of Section 2.

The equivalences in the next claim will be used throughout.

Claim 3.1. Let m ∈
....

B, and let s and t be elements of S , and m′ := m+χs−χt. The following properties

are pairwise equivalent.

(A) m′ ∈
....

B.

(P1) There is no ts-set which is m-tight with respect to p.

(P2) s ∈ Tm(t; p).

(B1) There is no st-set which is m-tight with respect to b.

(B2) t ∈ Tm(s; b).

Proof. (A) ⇒ (P1) If X is a ts-set which is m-tight with respect to p, then m̃′(X) < m̃(X) = p(X),

showing that m′ <
....

B.

(P1) ⇒ (P2) Since Tm(t; p) is an m-tight set containing t, (P1) implies that s cannot be outside

Tm(t; p).

(P2)⇒ (A) Suppose that m′ is not in
....

B, that is, there is a subset X ⊂ S with m̃′(X) < p(X). Since

m and p are integer-valued and m̃(X) ≥ p(X), we get from the definition of m′ that m̃(X) = p(X) and

X is a ts-set, contradicting (P2).

(P1)⇔ (B1) Since p and b are complementary set-functions, a subset X is m-tight with respect to

p precisely if S − X is m-tight with respect to b.

(P2)⇔ (B2) Suppose that t < Tm(s; b), that is, there is an st-subset X which is m-tight with respect

to b. Then S − X is m-tight with respect to p, implying that s < Tm(t; p), that is, (P2) implies (B2).

The reverse implication follows analogously.

A 1-tightening step for m ∈
....

B is an operation that replaces m by m′ := m + χs − χt where

s and t are elements of S for which m(t) ≥ m(s) + 2 and m′ belongs to
....

B. Note that m′ is both

decreasingly smaller and increasingly larger than m. Intuitively, a 1-tightening step may be viewed as

a local improvement at m. Since the mean of the components of m does not change at a 1-tightening

step while the square-sum of the components of m strictly drops, consecutive 1-tightening steps may

occur only a finite number of times (even if B is unbounded).

As an example, consider the in-degree vector m = m3 = (1, 3, 0) in Example 2.1, where S =

{a, b, c} and m = (m(a),m(b),m(c)). For (s, t) = (a, b) we have m(t) ≥ m(s)+ 2 and m′ = m+ χs − χt =

(2, 2, 0) ∈
....

B. (Note that m′ is equal to m2 in Fig. 1.) Therefore, this is a 1-tightening step. In contrast,

for (s, t) = (c, b) and m = (1, 3, 0), we do not have a 1-tightening step since m(t) = m(s) + 1, although

m + χs − χt = (0, 3, 1) ∈
....

B.

The next claim shows equivalent conditions for the non-existence of a 1-tightening step.
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Claim 3.2. For an integral element m of the integral base-polyhedron B = B(b) = B′(p), the following

conditions are pairwise equivalent.

(A) There is no 1-tightening step for m.

(P1) m(s) ≥ m(t) − 1 holds whenever t ∈ S and s ∈ Tm(t; p).

(P2) Whenever m(t) ≥ m(s) + 2, there is a ts-set X which is m-tight with respect to p.

(B1) m(s) ≥ m(t) − 1 holds whenever s ∈ S and t ∈ Tm(s; b).

(B2) Whenever m(t) ≥ m(s) + 2, there is an st-set Y which is m-tight with respect to b.

Proof. (A)⇒ (P1) If we had a pair (s, t) of elements with t ∈ S , s ∈ Tm(t; p) for which m(s) ≤ m(t)−2,

then replacing m by m′ := m + χs − χt would be a 1-tightening step.

(P1) ⇒ (P2) Suppose that (s, t) is a pair of elements for which m(t) ≥ m(s) + 2 but no m-tight

ts-set exists. Then s ∈ Tm(t; p), contradicting (P1).

(P2)⇒ (A) Suppose there is a 1-tightening step for m, that is, there are elements s and t for which

m(t) ≥ m(s) + 2 and m′ := m + χs − χt is in
....

B. But m′ ∈
....

B implies that no m-tight ts-set can exist,

contradicting (P2).

(P1)⇔ (B1) follows from the equivalence of s ∈ Tm(t; p) and t ∈ Tm(t; b) established in Claim 3.1.

(P2)⇔ (B2) follows from the property that a subset of S is m-tight with respect to b precisely if

its complement is m-tight with respect to p.

For a given vector m in RS , we call a set X ⊆ S an m-top set (or a top-set with respect to m)

if m(u) ≥ m(v) holds whenever u ∈ X and v ∈ S − X. Both the empty set and the ground-set S

are m-top sets, and m-top sets are closed under taking union and intersection. If m(u) > m(v) holds

whenever u ∈ X and v ∈ S − X, we speak of a strict m-top set. A set X ⊆ S is a strict m-top set if

and only if X is represented as X = {s ∈ S : m(s) ≥ α} for some integer α. For example, the vector

m = (4, 2, 2, 1, 1), indexed by S = {s1, s2, s3, s4, s5}, has four strict m-top sets: the empty set, {s1},

{s1, s2, s3}, and S . Note that the number of strict non-empty m-top sets is at most n for every m ∈
....

B

while m ≡ 0 exemplifies that even all of the non-empty subsets of S can be m-top sets.

Theorem 3.3. Let b be an integer-valued submodular function and let p := b be its complementary

(supermodular) function. For an integral element m of the integral base-polyhedron B = B(b) = B′(p),

the following four conditions are pairwise equivalent.

(A) There is no 1-tightening step for m (or any one of the four other equivalent properties holds in

Claim 3.2).

(B) There is a chain C of m-top sets (∅ ⊂) C1 ⊂ C2 ⊂ · · · ⊂ Cℓ = S which are m-tight with respect to p

(or equivalently, whose complements are m-tight with respect to b) such that the restriction mi = m|S i

of m to S i is near-uniform for each member S i of the S -partition {S 1, . . . , S ℓ}, where S 1 = C1 and

S i := Ci −Ci−1 (i = 2, . . . , ℓ).

(C1) m is decreasingly minimal in
....

B.

(C2) m is increasingly maximal in
....

B.

Proof. (B)→(A): If m(t) ≥ m(s) + 2, then there is an m-tight set Ci containing t and not containing s,

from which Property (A) follows from Claim 3.2.

(A)→(B): Let C be a longest chain consisting of non-empty m-tight and m-top sets C1 ⊂ C2 ⊂

· · · ⊂ Cℓ = S . For notational convenience, let C0 = ∅ (but C0 is not a member of C). We claim that C

meets the requirement of (B). If, indirectly, this is not the case, then there is a subscript i ∈ {1, . . . , ℓ}

for which m is not near-uniform within S i := Ci −Ci−1. This means that the max m-value βi in S i is at

least 2 larger than the min m-value αi in S i, that is, βi ≥ αi+2. Let Z := ∪[Tm(t; p) : t ∈ S i, m(t) = βi].

Then Z is m-tight. Since Ci is m-tight, Tm(t; p) ⊆ Ci holds for t ∈ S i and hence Z ⊆ Ci. Furthermore,

(A) implies that m(v) ≥ βi − 1 for every v ∈ Z ∩ S i.
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Consider the set C′ := Ci−1 ∪ Z. Then C′ is m-tight, and Ci−1 ⊂ C′ ⊂ Ci. Moreover, we claim

that C′ is an m-top set. Indeed, if, indirectly, there is an element u ∈ C′ and an element v ∈ S − C′

for which m(u) < m(v), then u ∈ Z ∩ S i and v ∈ Ci − Z since both Ci−1 and Ci are m-top sets. But

this is impossible since the m-value of each element of Z ∩ S i is βi or βi − 1 while the m-value of each

element of Ci − Z is at most βi − 1.

The existence of C′ contradicts the assumption that C was a longest chain of m-tight and m-top

sets, and therefore m must be near-uniform within each S i, that is, C meets indeed the requirements in

(B).

(C1)→(A) and (C2)→(A): Property (A) must indeed hold since a 1-tightening step for m results

in an element m′ of
....

B which is both decreasingly smaller and increasingly larger than m.

(B)→(C1): We may assume that the elements of S are arranged in an m-decreasing order s1, . . . , sn

(that is, m(s1) ≥ m(s2) ≥ · · · ≥ m(sn)) in such a way that each Ci in (B) is a starting segment. Let

m′ be an element of
....

B which is decreasingly smaller than or value-equivalent to m. Recall that m|X

denoted the vector m restricted to a subset X ⊆ S .

Lemma 3.4. For each i = 0, 1, . . . , ℓ, vector m′|Ci is value-equivalent to vector m|Ci.

Proof. Induction on i. For i = 0, the statement is void so we assume that 1 ≤ i ≤ ℓ. By induction,

we may assume that the statement holds for j ≤ i − 1 and we want to prove it for i. Since m′|Ci−1 is

value-equivalent to m|Ci−1 and Ci−1 is m-tight, it follows that Ci−1 is m′-tight, too.

Let βi denote the max m-value of the elements of S i = Ci − Ci−1. By the hypothesis in (B), the

maximum and the minimum of the m-values in S i differ by at most 1. Hence we can assume that there

are ri > 0 elements in S i with m-value βi and |S i| − ri ≥ 0 elements with m-value βi − 1.

As m|Ci−1 is value-equivalent to m′|Ci−1 and m′ was assumed to be decreasingly smaller than

or value-equivalent to m, we can conclude that m′|(S − Ci−1) is decreasingly smaller than or value-

equivalent to m|(S −Ci−1). Therefore, S i contains at most ri elements of m′-value βi and hence

p(Ci) ≤ m̃′(Ci) = m̃′(Ci−1) + m̃′(S i)

≤ m̃′(Ci−1) + riβi + (|S i| − ri)(βi − 1)

= m̃(Ci−1) + riβi + (|S i| − ri)(βi − 1)

= m̃(Ci−1) + m̃(S i) = m̃(Ci) = p(Ci),

from which equality follows everywhere. In particular, S i contains exactly ri elements of m′-value βi

and |S i| − ri elements of m′-value βi − 1, proving the lemma.

By the lemma, m′ is value-equivalent to m, and hence m is a decreasingly minimal element of
....

B,

that is, (C1) follows.

(B)→(C2): The property in (C1) that m is decreasingly minimal in
....

B is equivalent to the statement

that −m is increasingly maximal in −
....

B, that is, (C2) holds with respect to −m and −
....

B. As we have

already proved the implications (C2)→(A)→(B)→(C1), it follows that (C1) holds for −m and −
....

B. But

(C1) for −m and −
....

B is just the same as (C2) for m and
....

B.

Example 3.1. Theorem 3.3 is illustrated here for a graph orientation problem. Consider the undirected

graph G = (V, E) in the left of Figure 2, where V = {a, b, c, d} and the set E of edges consists of bc,

cd, da, and five parallel edges between a and b. Recall that the associated M-convex set
....

B consists of

the in-degree vectors of all orientations of G. Let D denote the orientation of G depicted in the right

of Figure 2. We shall apply Theorem 3.3 to verify that the in-degree vector m = (3, 2, 2, 1) of D is a

dec-min element of
....

B.

To verify Condition (A) for m, first note that m+ χs − χt belongs to
....

B for s, t ∈ V precisely if there

is a dipath from s to t in D. For the in-degree vector m = (3, 2, 2, 1), we have m(t) ≥ m(s) + 2 only for
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(s, t) = (d, a), whereas there is no dipath from d to a in D. Therefore, no 1-tightening step exists for

m = (3, 2, 2, 1).

To verify Condition (B) for m, recall (from Example 2.1) that a subset X of V is m-tight if and only

if there is no edge entering X in D. The m-tight sets are {a, b} and {a, b, d} as well as the empty set and

V . These m-tight sets are m-top sets except for {a, b, d}. Thus the (longest) chain of non-empty m-top

and m-tight sets consists of C1 ⊂ C2 where C1 = {a, b} and C2 = {a, b, c, d}. This chain determines

the partition of V into two parts S 1 = {a, b} and S 2 = {c, d}, for which m1 = m|S 1 = (3, 2) and

m2 = m|S 2 = (2, 1) are both near-uniform. Therefore, Condition (B) is satisfied by m = (3, 2, 2, 1).

To verify Conditions (C1) and (C2), we may enumerate all possible in-degree vectors. The sub-

graph consisting of three edges bc, cd and da admits six in-degree vectors:

....

B0 = {(0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 1, 0), (1, 1, 0, 1), (0, 0, 2, 1), (0, 0, 1, 2)}.

By adding the five parallel edges we obtain

....

B = {m0 + (k, 5 − k, 0, 0) : m0 ∈
....

B0, 0 ≤ k ≤ 5}.

A straightforward inspection reveals that m = (3, 2, 2, 1) is dec-min and inc-max in
....

B. Note that there

are three further dec-min elements: (2, 3, 2, 1), (2, 3, 1, 2), and (3, 2, 1, 2).

Remark 3.1. The equivalence of (C1) and (C2) in Theorem 3.3 shows that an element of an M-

convex set is decreasingly minimal if and only if it is increasingly maximal. In the intersection of

two M-convex sets (called an M2-convex set in [38]), however, decreasing minimality and increasing

maximality do not coincide. For example, consider two M-convex sets

....

B1 = {(2, 0, 0, 0), (1,−1, 1, 1), (2,−1, 1, 0), (1, 0, 0, 1)},
....

B2 = {(2, 0, 0, 0), (1,−1, 1, 1), (2, 1, 0, 1), (1, 0, 1, 0)}.

In their intersection
....

B1 ∩
....

B2 = {(2, 0, 0, 0), (1,−1, 1, 1)}, the element x = (2, 0, 0, 0) is increasingly

maximal while y = (1,−1, 1, 1) is decreasingly minimal.

3.3 Minimizing the sum of the k largest components

A decreasingly minimal element of
....

B has the starting property that its largest component is as small

as possible. As a natural extension, one may be interested in finding a member of
....

B for which the sum

of the k largest components is as small as possible. We refer to this problem as min k-largest-sum.

Theorem 3.5. Let B be an integral base-polyhedron and k an integer with 1 ≤ k ≤ n. Then any

dec-min element m of
....

B is a solution to the min k-largest-sum problem.

Proof. Observe first that if z1 and z2 are dec-min elements of
....

B, then it follows from the very definition

of decreasing minimality that the sum of the first j largest components of z1 and of z2 are the same for

each j = 1, . . . , n.
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Let K denote the sum of the first k largest components of any dec-min element, and assume in-

directly that there is a member y ∈
....

B for which the sum of its first k largest components is smaller

than K. Assume that the componentwise square-sum of y is as small as possible. By the previous

observation, y is not a dec-min element. Theorem 3.3 implies that there are elements s and t of S for

which y(t) ≥ y(s) + 2 and y′ := y − χt + χs is in
....

B. The sum of the first k largest components of y′ is

at most the sum of the first k largest components of y, and hence this sum is also smaller than K. But

this contradicts the choice of y since the componentwise square-sum of y′ is strictly smaller than that

of y.

This theorem shows that M-convex sets have a striking property. Namely, any dec-min element

of an M-convex set
....

B is simultaneously a solution to the min k-largest-sum problem for each k =

1, 2, . . . , n. We say that such an element m is a simultaneous k-largest-sum minimizer. This notion

has been investigated in the literature of majorization [2, 33, 40] under the name of ‘least majorized’

element. In particular, Tamir [40] proved the existence of a least majorized integral element for integral

base-polyhedra. (Actually, he proved this even for g-polymatroids, but this more general result is an

easy consequence of the special case concerning base-polyhedra).

The following result shows that this property actually characterizes dec-min elements of an M-

convex set.

Theorem 3.6. Let B be an integral base-polyhedron. An element m of
....

B is dec-min if and only if m is

a simultaneous k-largest-sum minimizer.

Proof. The content of Theorem 3.5 is that a dec-min element is a simultaneous k-largest-sum mini-

mizer. To see the converse, let m ∈
....

B be a simultaneous k-largest-sum minimizer. Suppose indirectly

that m is not dec-min. By Theorem 3.3, there is a 1-tightening step for m, that is, there are elements s

and t of S with m(s) ≥ m(t) + 2 such that m′ := m − χs + χt is in
....

B. Let k′ denote the number of com-

ponents of m with value at least m(s). Then the sum of the k′ largest components of m′ is one less than

the sum of the k′ largest components of m, contradicting the assumption that m is k-sum-minimizer

for each k = 1, 2, . . . , n.

While the k-largest sum is a natural objective function to conceive from the definition of dec-

minimality, it is also possible to characterize the dec-min elements of an M-convex set as minimizers of

other convex functions, which we shall discuss in depth in Section 6. We now turn to investigating the

structure of the set of dec-min elements of an M-convex set. In particular, our next goal is to introduce

‘dual’ objects for dec-minimality, which we call the canonical chain and the canonical partition. These

‘dual’ objects are constructed in Sections 4 and 5 below.

4 Decomposition by pre-decreasingly minimal elements

We continue to assume that p is an integer-valued (with possible −∞ values but with finite p(S ))

supermodular function, which implies that B = B′(p) is a non-empty integral base-polyhedron.

One of the main goals of this paper is to show that the set dm(
....

B) of all dec-min elements of
....

B is an M-convex set, meaning that there exists an integral base-polyhedron B• ⊆ B (obtained by

intersecting a face of B with a ‘small’ integral box) such that dm(
....

B) is the set of integral elements of

B•. In addition, we shall show that B• is a special base-polyhedron which is obtained from a matroid

base-polyhedron by translating it with an integral vector. The base-polyhedron B• will be obtained

with the help of a decomposition of B along a certain ‘canonical’ partition {S 1, S 2, . . . , S q} of S into

non-empty sets. In this section, we construct the first member S 1 of this partition along with a matroid

on S 1. The set S 1, depending only on B, will be called the peak-set of B. The peak-set S 1 allows us

to decompose the problem of finding dec-min elements of
....

B to two independent problems on S 1 and

on S − S 1. In Section 5, we shall construct the other members S 2, S 3, . . . of the partition by applying

the same procedure iteratively.
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4.1 Max-minimizers and pre-dec-min elements

In Section 3.1 we introduced three related notions, dec-min elements, pre-dec-min elements, and

max-minimizers. A dec-min element is always pre-dec-min, and a pre-dec-min element is always a

max-minimizer. Recall that an element of
....

B is called a max-minimizer if its largest component is as

small as possible, while a max-minimizer is a pre-dec-min element of
....

B if the number of its maximum

components is smallest possible.

For a number β, we say that a vector is β-covered if each of its components is at most β. Through-

out our discussion, β1 denotes the smallest integer for which
....

B has a β1-covered element, that is,

β1 := min{max{z(s) : s ∈ S } : z ∈
....

B }. (4.1)

Note that an element m of
....

B is β1-covered precisely if m is a max-minimizer. Moreover, β1 is equal to

the largest component of any pre-dec-min (and hence any dec-min) element of
....

B. For any real number

α ∈ R, let ⌈α⌉ denote the smallest integer not smaller than α.

Theorem 4.1. For the largest component β1 of a max-minimizer of
....

B, one has

β1 = max{

⌈
p(X)

|X|

⌉
: ∅ , X ⊆ S }. (4.2)

Proof. Formula (2.4), when applied to the special case with f ≡ −∞ and g ≡ β, implies that B has a

β-covered element if and only if

β|X| ≥ p(X) whenever X ⊆ S . (4.3)

Moreover, if β is an integer and (4.3) holds, then B has an integral β-covered element. As β|X| ≥ p(X)

holds for an arbitrary β when X = ∅, it follows that the smallest integer β meeting this (4.3) is indeed

max{⌈p(X)/|X|⌉ : ∅ , X ⊆ S }.

For a β1-covered element m of
....

B, let r1(m) denote the number of β1-valued components of m.

Recall that for an element s ∈ S we denoted the unique smallest m-tight set containing s by Tm(s) =

Tm(s; p) (that is, Tm(s) is the intersection of all m-tight sets containing s). Furthermore, let

S 1(m) := ∪{Tm(t) : m(t) = β1}. (4.4)

Then S 1(m) is m-tight and S 1(m) is actually the unique smallest m-tight set containing all the β1-valued

elements of m.

Theorem 4.2. A β1-covered element m of
....

B is pre-dec-min if and only if m(s) ≥ β1 − 1 for each

s ∈ S 1(m).

Proof. Necessity. Let m be a pre-dec-min element of
....

B. For any β1-valued element t ∈ S and any

element s ∈ Tm(t), we claim that m(s) ≥ β1 − 1. Indeed, if we had m(s) ≤ β1 − 2, then the vector

m′ arising from m by decreasing m(t) by 1 and increasing m(s) by 1 belongs to B (since Tm(t) is the

smallest m-tight set containing t) and has one less β1-valued components than m has, contradicting the

assumption that m is pre-dec-min.

Sufficiency. Let m′ be an arbitrary β1-covered integral element of B. Abbreviate S 1(m) by Z and

let h′ denote the number of elements z ∈ Z for which m′(z) = β1. Then

|Z|(β1 − 1) + r1(m) = m̃(Z) = p(Z) ≤ m̃′(Z)

≤ h′β1 + (|Z| − h′)(β1 − 1) = |Z|(β1 − 1) + h′

≤ |Z|(β1 − 1) + r1(m′),

from which r1(m) ≤ r1(m′), as required.

Define the set-function h1 on S as follows.

h1(X) := p(X) − (β1 − 1)|X| for X ⊆ S . (4.5)
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Theorem 4.3. For the minimum number r1 of β1-valued components of a β1-covered member of
....

B,

one has

r1 = max{h1(X) : X ⊆ S }. (4.6)

Proof. Let m be an element of
....

B for which the maximum of its components is β1, and let X be an

arbitrary subset of S . Suppose that X has ℓ β1-valued components. Then

p(X) ≤ m̃(X) ≤ ℓβ1 + (|X| − ℓ)(β1 − 1) = |X|(β1 − 1) + ℓ ≤ |X|(β1 − 1) + r1(m), (4.7)

from which r1(m) ≥ p(X) − (β1 − 1)|X| = h1(X), implying that

r1 = min{r1(m) : m ∈
....

B, m is β1-covered } ≥ max{h1(X) : X ⊆ S }.

In order to prove the reverse inequality, we have to find a β1-covered integral element m of B

and a subset X of S for which r1(m) = h1(X), which is equivalent to requiring that each of the three

inequalities in (4.7) holds with equality. That is, the following three optimality criteria hold: (a) X

is m-tight, (b) X contains all β1-valued components of m, and (c) m(s) ≥ β1 − 1 for each s ∈ X.

Let m be a pre-dec-min element of B. Then S 1(m) is m-tight, S 1(m) contains all β1-valued elements

and, by Theorem 4.2, m(s) ≥ β1−1 for all s ∈ S 1(m), therefore m and S 1(m) satisfy the three optimality

criteria.

Note that r1 is the number of β1-valued components of any pre-dec-min element (and in particular,

any dec-min element) of
....

B.

4.2 The peak-set S 1

Since the set-function h1 introduced in (4.5) is supermodular, the maximizers of h1 are closed under

taking intersection and union. Let S 1 denote the unique smallest subset of S maximizing h1. In other

words, S 1 is the intersection of all sets maximizing h1. We call this set S 1 the peak-set of B (and of
....

B).

Theorem 4.4. For every pre-dec-min (and in particular, for every dec-min) element m of
....

B, the set

S 1(m) introduced in (4.4) is independent of the choice of m and S 1(m) = S 1, where S 1 is the peak-set

of B.

Proof. It follows from Theorem 4.3 that, given a pre-dec-min element m of B, a subset X is maxi-

mizing h1 precisely if the three optimality criteria mentioned in the proof hold. Since S 1(m) meets

the optimality criteria, it follows that S 1 ⊆ S 1(m). If, indirectly, there is an element s ∈ S 1(m) − S 1,

then m(s) = β1 − 1 since S 1 contains all the β1-valued elements. By the definition of S 1(m), there is a

β1-valued element t ∈ S 1(m) for which the smallest m-tight set Tm(t) contains s, but this is impossible

since S 1 is an m-tight set containing t but not s.

Since S 1 = S 1(m) is m-tight and near-uniform, we obtain that

β1 =

⌈
m̃(S 1)

|S 1|

⌉
=

⌈
p(S 1)

|S 1|

⌉
,

and the definitions of S 1 and r1 imply that

r1 = p(S 1) − (β1 − 1)|S 1|. (4.8)

Proposition 4.5. S 1 = {s ∈ S : there is a pre-dec-min element m ∈
....

B with m(s) = β1}. For every

pre-dec-min element m of
....

B, m(s) ≥ β1 − 1 holds for every s ∈ S 1, and m(s) ≤ β1 − 1 holds for every

s ∈ S − S 1.

Proof. If m(s) = β1 for some pre-dec-min m, then s ∈ S 1(m) = S 1. Conversely, let s ∈ S 1 and let

m be a pre-dec-min element. We are done if m(s) = β1. If this is not the case, then m(s) = β1 − 1

by Theorem 4.2. By the definition of S 1(m), there is an element t ∈ S 1(m) for which m(t) = β1

and s ∈ Tm(t). But then m′ := m + χs − χt is in
....

B, m′(s) = β1 and m′ is also pre-dec-min as it is

value-equivalent to m.
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4.3 Separating along S 1

Let S 1 be the peak-set occurring in Theorem 4.4 and let S ′
1

:= S − S 1. Let p1 = p|S 1 denote the

restriction of p to S 1, and let B1 ⊆ RS 1 denote the base-polyhedron defined by p1, that is, B1 := B′(p1).

Suppose that S ′
1
, ∅ and let p′

1
:= p/S 1, that is, p′

1
is the set-function on S ′

1
obtained from p by

contracting S 1 (p′
1
(X) = p(S 1 ∪ X) − p(S 1) for X ⊆ S ′

1
).

Consider the face F of B determined by S 1, that is, F is the direct sum of the base-polyhedra

B1 = B′(p1) and B′
1
= B′(p′

1
). Then the dec-min elements of

....

B1 are exactly the integral elements of

the intersection of B1 and the box given by {x : β1 − 1 ≤ x(s) ≤ β1 for every s}. Hence the dec-min

elements of
....

B1 are near-uniform.

Theorem 4.6. An integral vector m = (m1,m
′
1
) is a dec-min element of

....

B if and only if m1 is a dec-min

element of
....

B1 and m′
1

is a dec-min element of
....

B′
1
.

Proof. Suppose first that m is a dec-min element of
....

B. Then S 1 = S 1(m) by Theorem 4.4 and m is a

max-minimizer, implying that every component of m in S 1 is of value β1 − 1 or value β1, and m has

exactly r1 components of value β1. Therefore each of the components of m1 is β1 − 1 or β1, that is, m1

is near-uniform. Since m1 is obviously in
....

B1, m1 is indeed dec-min in
....

B1.

Since m̃(S 1) = p(S 1), for a set X ⊆ S ′
1
, we have

m̃′1(X) = m̃(X) = m̃(S 1 ∪ X) − m̃(S 1) = m̃(S 1 ∪ X) − p(S 1) ≥ p(S 1 ∪ X) − p(S 1) = p′1(X).

Furthermore

m̃′1(S ′1) = m̃(S ′1) = m̃(S 1 ∪ S ′1) − m̃(S 1) = p(S 1 ∪ S ′1) − p(S 1) = p′1(S ′1),

that is, m′
1

is in
....

B′
1
. If, indirectly, m′

1
is not dec-min, then, by applying Theorem 3.3 to S ′

1
, m′

1
, and p′

1
,

we obtain that there are elements t and s of S ′
1

for which m′
1
(t) ≥ m′

1
(s) + 2 and (∗) no ts-set exists

which is m′
1
-tight with respect to p′

1
. On the other hand, m is a dec-min element of

....

B for which

m(t) = m′1(t) ≥ m′1(s) + 2 = m(s) + 2,

and hence there must be a ts-set Y which is m-tight with respect to p.

Since S 1 is m-tight with respect to p, the set S 1∪Y is also m-tight with respect to p. Let X := S ′
1
∩Y .

Then

m̃(X) + m̃(S 1) = m̃(S 1 ∪ Y) = p(S 1 ∪ Y) = p(S 1 ∪ X),

and hence

m̃′1(X) = m̃(X) = p(S 1 ∪ X) − m̃(S 1) = p(S 1 ∪ X) − p(S 1) = p′1(X),

that is, X is a ts-set which is m′
1
-tight with respect to p′

1
, in contradiction with statement (∗) above that

no such set exists.

To see the converse, assume that m1 is a dec-min element of
....

B1 and m′
1

is a dec-min element of
....

B′
1
. This immediately implies that m is in the face F of B determined by S 1. Suppose, indirectly,

that m is not a dec-min element of
....

B. By Theorem 3.3, there are elements t and s of S for which

m(t) ≥ m(s) + 2 and (∗∗) no ts-set exists which is m-tight with respect to p. If t ∈ S 1, then s cannot be

in S 1 since the m-value of each element of S 1 is β1 or β1 − 1. But S 1 is m1-tight with respect to p and

hence it is m-tight with respect to p, contradicting property (∗∗). Therefore t must be in S ′
1
, implying,

by Proposition 4.5, that s is also in S ′
1
.

Since m′
1

is a dec-min element of
....

B′
1
, there must be a ts-set Y ⊂ S ′

1
which is m′

1
-tight with respect

to p′
1
. It follows that

m̃(Y) = m̃′1(Y) = p′1(Y) = p(S 1 ∪ Y) − p(S 1) ≤ m̃(S 1 ∪ Y) − m̃(S 1) = m̃(Y),
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from which m̃(S 1 ∪ Y) = p(S 1 ∪ Y), contradicting property (∗∗) that no ts-set exists which is m-tight

with respect to p.

An important consequence of Theorem 4.6 is that, in order to find a dec-min element of
....

B, it

will suffice to find separately a dec-min element of
....

B1 (which was shown above to be a near-uniform

vector) and a dec-min element of
....

B′
1
. The algorithmic details are discussed in [13].

Theorem 4.7. Let S 1 be the peak-set of
....

B. For an element m1 of
....

B1, the following properties are

pairwise equivalent.

(A1) m1 has r1 (= p(S 1)− (β1 − 1)|S 1| > 0) components of value β1 and |S 1| − r1 (≥ 0) components

of value β1 − 1.

(A2) m1 is near-uniform.

(A3) m1 is dec-min in
....

B1.

(B1) m1 is the restriction of a dec-min element m of
....

B to S 1.

(B2) m1 is the restriction of a pre-dec-min element m of
....

B to S 1.

Proof. The implications (A1)→(A2)→(A3) and (B1)→(B2) are immediate from the definitions.

(A3)→(B1): Let m′
1

be an arbitrary dec-min element of
....

B′
1
. By Theorem 4.6, m := (m1,m

′
1
) is a

dec-min element of
....

B and hence m1 is indeed the restriction of a dec-min element of
....

B to S 1.

(B2)→(A1): By Theorems 4.2 and 4.4, we have m1(s) ≥ β1 − 1 for each s ∈ S 1(m) = S 1, that is,

β1 − 1 ≤ m1(s) ≤ β1. By letting r′ denote the number of β1-valued components of m1, we obtain by

(4.8) that

r1 + (β1 − 1)|S 1| = p1(S 1) = m̃1(S 1) = (β1 − 1)|S 1 | + r′

and hence r′ = r1.

Theorem 4.6 implies that, in order to characterize the set of dec-min elements of
....

B, it suffices to

characterize the set of dec-min elements of
....

B′
1
.

Theorem 4.8. Let β2 denote the smallest integer for which
....

B′
1

has a β2-covered element, that is,

β2 = β(B
′
1
). Then

β2 = max{

⌈ p′
1
(X)

|X|

⌉
: ∅ , X ⊆ S − S 1}, (4.9)

where p′
1
(X) = p(X∪S 1)− p(S 1). Furthermore, β2 is the largest component in S −S 1 of every dec-min

element of
....

B, and β2 < β1.

Proof. Formula (4.9) follows by applying Theorem 4.1 to base-polyhedron B′
1

(= B′(p′
1
)) in place

of B. By Theorem 4.6, the largest component in S − S 1 of any dec-min element m of
....

B is β2. By

Theorem 4.4, S 1(m) = S 1, and the definition of S 1(m) shows that m(s) ≤ β1 − 1 holds for every

s ∈ S − S 1, from which β2 < β1 follows.

4.4 The matroid M1 on S 1

It is known from the theory of base-polyhedra that the intersection of an integral base-polyhedron

with an integral box is a (possibly empty) integral base-polyhedron. Moreover, if the box in question

is small, then the intersection is actually a translated matroid base-polyhedron (meaning that the inter-

section arises from a matroid base-polyhedron by translating it with an integral vector). This result is a

consequence of the theorem that (∗) any integral base-polyhedron in the unit (0, 1)-cube is the convex

hull of (incidence vectors of) the bases of a matroid.

Consider the special small integral box T1 ⊆ ZS 1 defined by

T1 := {x : β1 − 1 ≤ x(s) ≤ β1}
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and its intersection B•
1

:= B1 ∩ T1 with the base-polyhedron B1 investigated above. Therefore B•
1

is a

translated matroid base-polyhedron and Theorem 4.7 implies the following.

Corollary 4.9. The dec-min elements of
....

B1 are exactly the integral elements of the translated matroid

base-polyhedron B•
1
.

Our next goal is to reprove Corollary 4.9 by concretely describing the matroid in question and not

relying on the background theorem (∗) mentioned above. For a dec-min element m1 of
....

B1, let

L1(m1) := {s ∈ S 1 : m1(s) = β1}.

We know from Theorem 4.7 that |L1(m1)| = r1. Define a set-system B1 as follows:

B1 := {L ⊆ S 1 : L = L1(m1) for some dec-min element m1 of
....

B1}. (4.10)

We need the following characterization of B1.

Proposition 4.10. An r1-element subset L of S 1 is in B1 if and only if

|L ∩ X| ≥ p′1(X) := p1(X) − (β1 − 1)|X| whenever X ⊆ S 1. (4.11)

Proof. Suppose first that L ∈ B1, that is, there is a dec-min element m1 of
....

B1 for which L = L1(m1).

Then

(β1 − 1)|X| + |X ∩ L| = m̃1(X) ≥ p1(X),

for every subset X ⊆ S 1 from which (4.11) follows.

To see the converse, let L ⊆ S 1 be an r1-element set meeting (4.11). Let

m1(s) :=


β1 if s ∈ L

β1 − 1 if s ∈ S − L.
(4.12)

Then obviously L = L1(m1). Furthermore,

m̃1(S 1) = (β1 − 1)|S 1| + |L| = (β1 − 1)|S 1 | + r1 = p(S 1)

and

m̃1(X) = (β1 − 1)|X| + |L ∩ X| ≥ p1(X) whenever X ⊂ S 1,

showing that m1 ∈ B1. Since m1 ∈ T1, we conclude that m1 is a dec-min element of
....

B1.

Theorem 4.11. The set-system B1 defined in (4.10) forms the set of bases of a matroid M1 on ground-

set S 1.

Proof. The set-system B1 is clearly non-empty and all of its members are of cardinality r1. It is widely

known [6] that for an integral submodular function b on a ground-set S 1 the set-system

{ L ⊆ S 1 : |L ∩ X| ≤ b(X) whenever X ⊂ S 1, |L| = b(S 1) },

if non-empty, satisfies the matroid basis axioms. This implies for the supermodular function p′
1

that

the set-system {L : |L ∩ X| ≥ p′
1
(X) whenever X ⊂ S 1, |L| = p′

1
(S 1)}, if non-empty, forms the set

of bases of a matroid. By applying this fact to the supermodular function p′
1

defined by p′
1
(X) :=

p1(X) − (β1 − 1)|X|, one obtains that B1 is non-empty and forms the set of bases of a matroid.

With this matroid M1, we can rewrite Corollary 4.9 into a more explicit form, which is convenient

for our subsequent discussion.

Corollary 4.12. Let ∆1 : S 1 → Z denote the integral vector defined by ∆1(s) := β1 − 1 for s ∈ S 1.

A member m1 of
....

B1 is decreasingly minimal if and only if there is a basis B1 of M1 such that m1 =

χB1
+ ∆1.
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4.5 Value-fixed elements of S 1

We say that an element s ∈ S is value-fixed with respect to
....

B if m(s) is the same for every dec-min

element m of
....

B. In Section 6.3, we will show a description of value-fixed elements of
....

B. In the

present section, we consider the value-fixed elements with respect to B1, that is, s ∈ S 1 is value-fixed

if m1(s) is the same for every dec-min element m1 ∈
....

B1. Recall that m1 ∈
....

B1 was shown to be dec-min

precisely if β1 − 1 ≤ m1(s) ≤ β1 for each s ∈ S 1.

A loop of a matroid is an element s ∈ S 1 not belonging to any basis. (Often the singleton {s} is

called a loop, that is, {s} is a one-element circuit). A co-loop (or cut-element or isthmus) of a matroid

is an element s belonging to all bases.

Proposition 4.13. M1 has no loops.

Proof. By Proposition 4.5, for every s ∈ S 1 there is a pre-dec-min element m of
....

B for which m(s) = β1.

Then m1 := m|S 1 is a pre-dec-min element of
....

B1 by Theorem 4.7 from which s1 belongs to a basis of

M1 by Corollary 4.12.

The proposition implies that:

Proposition 4.14. If s ∈ S 1 is value-fixed (with respect to B1), then m1(s) = β1 for every dec-min

element m1 of
....

B1.

By Corollary 4.12, an element s ∈ S 1 is a co-loop of M1 if and only if m1(s) = β1 holds for every

dec-min element m1 of
....

B1. This and Theorem 4.6 imply the following.

Theorem 4.15. For an element s ∈ S 1, the following properties are pairwise equivalent.

(A) s is a co-loop of M1.

(B) s is value-fixed.

(C) m(s) = β1 holds for every dec-min element m of
....

B.

Our next goal is to characterize the set of value-fixed elements of S 1. Consider the family of

subsets S 1 defined by

F1 := {X ⊆ S 1 : β1|X| = p1(X)}. (4.13)

The empty set belongs to F1 and it is possible that F1 has no other members. By standard submodu-

larity arguments, F1 is closed under taking union and intersection. Let F1 denote the unique largest

member of F1. It is possible that F1 = S 1 in which case we call S 1 degenerate.

Theorem 4.16. An element s ∈ S 1 is value-fixed if and only if s ∈ F1.

Proof. Let m1 be a dec-min member of
....

B1. Then

β1|F1| ≥ m̃1(F1) ≥ p1(F1) = β1|F1|

and hence we must have β1 = m1(s) for every s ∈ F1, that is, the elements of F1 are indeed value-fixed.

Conversely, let s be value-fixed, that is, m1(s) = β1 for each dec-min element m1 of
....

B1. Let m1 be

a dec-min member of
....

B1. Let Z denote the unique smallest set containing s for which m̃1(Z) = p1(Z).

(That is, Z = Tm1
(s; p1).) We claim that m1(t) = β1 for every element t ∈ Z. For if m1(t) = β1 − 1 for

some t, then m′
1

:= m1 − χs + χt would also be a dec-min member of
....

B1, contradicting the assumption

that s is value-fixed. Therefore p1(Z) = m̃1(Z) = β1|Z| from which the definition of F1 implies that

Z ⊆ F1 and hence s ∈ F1.
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5 Description of the set of all decreasingly minimal elements

Let B = B′(p) denote again an integral base-polyhedron defined by the (integer-valued) supermodular

function p. As in the previous section,
....

B continues to denote the M-convex set consisting of the

integral vectors (points, elements) of B. Our present goal is to provide a complete description of the

set of all decreasingly minimal (= egalitarian) elements of
....

B by identifying a partition of the ground-

set, to be named the canonical partition, inherent in this problem. As a consequence, we show that

the set of dec-min elements has a matroidal structure and this feature makes it possible to solve the

minimum cost dec-min problem.

5.1 Canonical partition and canonical chain

In Section 4 we introduced the integer β1 as the minimum of the largest component of the elements

of
....

B as well as the peak-set S 1. The peak-set S 1 induces a face of B, which is the direct sum of

base-polyhedra B1 = B′(p1) and B′
1
= B′(p′

1
), where p1 denotes the restriction of p to S 1 and p′

1
is

obtained from p by contracting S 1 (that is, p′
1
(X) = p(S 1 ∪ X) − p(S 1)).

A consequence of Theorem 4.6 is that, in order to characterize the set of dec-min elements of
....

B,

it suffices to characterize separately the dec-min elements of
....

B1 and the dec-min elements of
....

B′
1
. By

Theorem 4.7, the dec-min elements of
....

B1 are characterized as those elements of
....

B1 which belong to

the small box T1 := {x ∈ RS 1 : β1 − 1 ≤ x(s) ≤ β1 for s ∈ S 1}. If the peak-set S 1 happens to be

the whole ground-set S , then the characterization of the set of dec-min elements of
....

B is complete. If

S 1 ⊂ S , then our remaining task is to characterize the set of dec-min elements of
....

B′
1
. This can be

done by repeating iteratively the separation procedure to the base-polyhedron B′
1
= B′(p′

1
) ⊆ RS−S 1

described in Section 4 for B.

In this iterative way, we are going to define a partition P∗ = {S 1, S 2, . . . , S q} of S which determines

a chain C∗ = {C1,C2, . . . ,Cq} where Ci := S 1 ∪ S 2 ∪ · · · ∪ S i (in particular Cq = S ), and the

supermodular function

p′i := p/Ci on set Ci := S −Ci

which defines the base-polyhedron B′
i
= B′(p′

i
) in RCi . Moreover, we define iteratively a decreasing

sequence β1 > β2 > · · · > βq of integers, a small box

Ti := {x ∈ RS i : βi − 1 ≤ x(s) ≤ βi for s ∈ S i}, (5.1)

and the supermodular function pi on S i, where

pi := p′i−1|S i (= (p/Ci−1)|S i), (5.2)

that is,

pi(X) = p(X ∪Ci−1) − p(Ci−1) for X ⊆ S i.

Let Bi := B′(pi) ⊆ RS i be the base-polyhedron defined by pi.

In the general step, suppose that the pairwise disjoint non-empty sets S 1, S 2, . . . , S j−1 have already

been defined, along with the decreasing sequence β1 > β2 > · · · > β j−1 of integers. If S = S 1 ∪ · · · ∪

S j−1, then by taking q := j− 1, the iterative procedure terminates. So suppose that this is not the case,

that is, C j−1 ⊂ S . We assume that p j−1 on S j−1 has been defined as well as p′
j−1

on C j−1.

Let

β j = max{

⌈ p′
j−1

(X)

|X|

⌉
: ∅ , X ⊆ C j−1}, (5.3)

that is,

β j = max{

⌈ p(X ∪C j−1) − p(C j−1)

|X|

⌉
: ∅ , X ⊆ C j−1}. (5.4)
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Note that, by the iterative feature of these definitions, Theorem 4.8 implies that

β j < β j−1.

Furthermore, let h j be a set-function on C j−1 defined as follows:

h j(X) := p′j−1(X) − (β j − 1)|X| for X ⊆ C j−1, (5.5)

and let S j ⊆ C j−1 be the peak-set of C j−1 assigned to B′
j−1

:= B′(p′
j−1

), that is, S j is the smallest

subset of C j−1 maximizing h j. Finally, let p j := p′
j−1
|S j and let p′

j
:= p′

j−1
/S j. Observe by (2.3) that

p′
j
= p/C j. Therefore p j is a set-function on S j while p′

j
is defined on C j.

We shall refer to the partition P∗ and the chain C∗ defined above as the canonical partition and

canonical chain of S , respectively, assigned to B, while the sequence β1 > · · · > βq will be called the

essential value-sequence of
....

B.

Example 5.1. In the orientation problem in Example 3.1, the essential value-sequence is given by

β1 = 3 and β2 = 2 (with q = 2) and the canonical partition is P∗ = {S 1, S 2} with S 1 = {a, b}

and S 2 = {c, d}. The canonical partition for the M-convex set arising from such orientation problem

coincides with the “density decomposition” of Borradaile et al. [5].

Example 5.2. In the proof of Theorem 3.3, we considered the longest chain consisting of non-empty

m-tight and m-top sets, where m is a dec-min element of the M-convex set
....

B. One may wonder

whether this longest chain is the same as the canonical chain of
....

B. The following example, from the

area of graph orientations, demonstrates that the answer is negative.

Let G = (V, E) be an undirected graph where V = {a, b, c, d, x, y} and E consists of four parallel

edges between a and b, four parallel edges between c and d, and the following four further edges: ax,

cx, by, dy. Consider the M-convex set
....

B consisting of the in-degree vectors of all possible orientations

of G. Graph G has an orientation where the in-degree of every node is 2. This shows that the vector

m := (2, 2, 2, 2, 2, 2) is in
....

B, and this uniform vector is obviously a dec-min element of
....

B. For this

m, the chain {a, b} ⊂ {a, b, c, d} ⊂ {a, b, c, d, x} ⊂ V is a longest chain consisting of four non-empty

m-tight and m-top sets (and there are three other longest chains). But the canonical chain of
....

B consists

of the single member {V}.

Let B⊕ denote the face of B defined by the canonical chain C∗, that is, B⊕ is the direct sum of

the q base-polyhedra B′(pi) (i = 1, . . . , q). Finally, let T ∗ be the direct sum of the small boxes Ti

(i = 1, . . . , q), that is, T ∗ is the integral box defined by the essential value-sequence as follows:

T ∗ := {x ∈ RS : βi − 1 ≤ x(s) ≤ βi whenever s ∈ S i (i = 1, . . . , q)}, (5.6)

and let

B• := B⊕ ∩ T ∗.

This set B• is an integral base-polyhedron, since the intersection of an integral base-polyhedron with

an integral box is always an integral base-polyhedron. Furthermore, B• is the direct sum of the q

base-polyhedra Bi ∩ Ti (i = 1, . . . , q), where Bi = B′(pi), implying that a vector m is in
....

B• if and only

if each mi is in
....

Bi ∩ Ti, where mi = m|S i.

Theorem 5.1. Let B = B′(p) be an integral base-polyhedron on ground-set S . The set of decreasingly

minimal elements of
....

B is (the M-convex set)
....

B•. Equivalently, an element m ∈
....

B is decreasingly

minimal if and only if its restriction mi := m|S i to S i belongs to Bi ∩ Ti for each i = 1, . . . , q, where

{S 1, . . . , S q} is the canonical partition of S belonging to B, Ti is the small box defined in (5.1), and Bi

is the base-polyhedron B′(pi) belonging to the supermodular set-function pi defined in (5.2).
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Proof. We use induction on q. Suppose first that q = 1, that is, S 1 = S and B1 = B. If m is a dec-min

element of B, then the equivalence of Properties (A1) and (A3) in Theorem 4.7 implies that m is in
....

B•.

If, conversely, m ∈
....

B•, then m is near-uniform and, by the equivalence of Properties (A1) and (A3) in

Theorem 4.7 again, m is dec-min.

Suppose now that q ≥ 2 and consider the base-polyhedron B′
1
= B′(p′

1
) appearing in Theorem 4.6.

The iterative definition of the canonical partition P∗ implies that the canonical partition of S − S 1

assigned to B′
1

is {S 2, . . . , S q} and the essential value-sequence belonging to B′
1

is β2 > β3 > · · · > βq.

Also, the canonical chain C′ := {C′
2
, . . . ,C′q} of B′

1
consists of the sets C′

i
= S 2 ∪ · · · ∪ S i = Ci − S 1

(i = 2, . . . , q).

By applying the inductive hypothesis to B′
1
, we obtain that an integral element m′

1
of B′

1
is dec-min

if and only if m′
1

is in the face of B′
1

defined by chain C′ and m′
1

belongs to the box T ′ := {x ∈ RS−S 1 :

βi − 1 ≤ x(s) ≤ βi whenever s ∈ S i (i = 2, . . . , q)}. By applying Theorem 4.6, we are done in this case

as well.

Corollary 5.2. Let B = B′(p) be an integral base-polyhedron on ground-set S . Let {C1, . . . ,Cq} be

the canonical chain, {S 1, . . . , S q} the canonical partition of S , and β1 > β2 > · · · > βq the essential

value-sequence belonging to
....

B. Then an element m ∈
....

B is decreasingly minimal if and only if each Ci

is m-tight (that is, m̃(Ci) = p(Ci)) and βi − 1 ≤ m(s) ≤ βi holds for each s ∈ S i (i = 1, . . . , q).

5.2 Obtaining the canonical chain and value-sequence from a dec-min element

The main goal of this section is to show that the canonical chain and value-sequence can be rather

easily obtained from an arbitrary dec-min element of
....

B. This approach will be crucial in developing

a polynomial algorithm in [13] for computing the essential value-sequence along with the canonical

chain and partition.

Let m be an element of
....

B. We called a set X ⊆ S m-tight if m̃(X) = p(X). Recall from Section 2

that, for a subset Z ⊆ S , Tm(Z) = Tm(Z; p) denoted the unique smallest m-tight set including Z, that

is, Tm(Z) is the intersection of all the m-tight sets including Z. Obviously,

Tm(Z) = ∪(Tm(z) : z ∈ Z). (5.7)

Let m be an arbitrary dec-min element of
....

B. We proved that m is in the face B⊕ of B defined by

the canonical chain C∗ = {C1, . . . ,Cq} belonging to B. Therefore each Ci is m-tight with respect to p.

Furthermore mi := m|S i belongs to the box Ti defined in (5.1). This implies that m(s) ≥ βi − 1 for

every s ∈ Ci and m(s′) ≤ βi+1 for every s′ ∈ Ci. (The last inequality holds indeed since s′ ∈ Ci implies

that s′ ∈ S j for some j ≥ i+ 1 from which m(s′) ≤ β j ≤ βi+1.) Since βi+1 ≤ βi − 1, we obtain that each

Ci is an m-top set.

Since mi is near-uniform on S i with values βi and possibly βi − 1, we obtain

βi =

⌈
m̃i(S i)

|S i|

⌉
=

⌈
pi(S i)

|S i|

⌉
=

⌈
p(Ci) − p(Ci−1)

|S i|

⌉
.

Let Li := {s ∈ S −Ci−1 : m(s) = βi} and let ri := |Li|. Then pi(S i) = m̃i(S i) = (βi −1)|S i |+ ri and hence

ri = p(Ci) − p(Ci−1) − (βi − 1)|S i|. (5.8)

The content of the next lemma is that, once Ci−1 is given, the next member Ci of the canonical

chain (and hence S i, as well) can be expressed with the help of m. Recall that Tm(Li) = Tm(Li; p)

denoted the smallest m-tight set including Li.

Lemma 5.3. Ci = Ci−1 ∪ Tm(Li; p).
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Proof. Recall the definition of function hi given in (5.5). We have

hi(S i) = ri (5.9)

since hi(S i) = p′
i−1

(S i)−(βi−1)|S i| = p(S i∪Ci−1)−p(Ci−1)−(βi−1)|S i| = m̃(Ci)−m̃(Ci−1)−(βi−1)|S i | =

m̃(S i) − (βi − 1)|S i | = ri.

Since Li ⊆ Ci and each of Ci−1, Ci, and Tm(Li) are m-tight, we have Ci−1 ∪ Tm(Li; p) ⊆ Ci. For

X′ := Tm(Li) ∩ Ci−1 we have

hi(X
′) = p(Ci−1 ∪ Tm(Li)) − p(Ci−1) − (βi − 1)|X′i |

= m̃(Ci−1 ∪ Tm(Li)) − m̃(Ci−1) − (βi − 1)|X′i |

= m̃(X′) − (βi − 1)|X′i | = |Li| = ri = hi(S i),

that is, X′ is also a maximizer of hi(X). Since S i was the smallest maximizer of hi, we conclude that

Ci−1 ∪ Tm(Li; p) ⊇ Ci.

The lemma implies that both the essential value-sequence β1 > · · · > βq and the canonical chain

C∗ belonging to
....

B can be directly obtained from m.

Corollary 5.4. Let m be an arbitrary dec-min element of
....

B. The essential value-sequence and the

canonical chain belonging to
....

B can be described as follows. Value β1 is the largest m-value and C1

is the smallest m-tight set containing all β1-valued elements. Moreover, for i = 2, . . . , q, βi is the

largest value of m|Ci−1 and Ci is the smallest m-tight set (with respect to p) containing each element

of m-value at least βi.

A detailed algorithm based on this corollary will be described in [13]. Note that a dec-min element

m of
....

B may have more than q distinct values. For example, if q = 1 and L1 ⊂ C1 = S , then m has

two distinct values, namely β1 on the elements of L1 and β1 − 1 on the elements of S − L1, while its

essential value-sequence consists of the single member β1.

A direct proof Corollary 5.4 implies that the chain of subsets and value-sequence assigned to a dec-

min element m of
....

B in the corollary do not depend on the choice of m. Here we describe an alternative,

direct proof of this consequence.

Theorem 5.5. Let m be an arbitrary dec-min element of
....

B. Let β1 denote the largest value of m and

let C1 denote the smallest m-tight set (with respect to p) containing all β1-valued elements. Moreover,

for i = 2, 3, . . . , q, let βi denote the largest value of m|Ci−1 and let Ci denote the smallest m-tight set

containing each element of m-value at least βi. Then the chain C1 ⊂ C2 ⊂ · · · ⊂ Cq and the sequence

β1 > β2 > · · · > βq do not depend on the choice of m.

Proof. Let z be dec-min element of
....

B. We use induction on the number of elements t of S for which

m(t) > z(t). If no such an element t exists, then m = z and there is nothing to prove. So assume that

z , m.

Let Li := {t ∈ S i : m(t) = βi}. As m is dec-min, the definition of Ci implies that m(s) = βi − 1

holds for every element s ∈ S i − Li. Let t ∈ Li and let s ∈ Tm(t) − Li. Then m′ := m + χs − χt is

also a dec-min element of
....

B, and we say that m′ is obtained from m by an elementary step. Observe

that Tm(t) = Tm′(s) and hence the chain and the value-sequence assigned to m′ is the same as those

assigned to m.

Let i denote the smallest subscript for which m|S i and z|S i differ. Since z is dec-min, z(s) ≤ βi

holds for every s ∈ S i. Let L′
i

:= {t ∈ S i : z(t) = βi}. Then z(v) ≤ βi − 1 for every v ∈ S i − L′
i
, and

|L′
i
| ≤ |Li| as z is dec-min. Therefore

z̃(S i) ≤ βi|L
′
i | + (βi − 1)(|S i − L′i |) = (βi − 1)|S i | + |L

′
i | ≤ (βi − 1)|S i | + |Li|.
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On the other hand,

z̃(S i) = z̃(Ci) − z̃(Ci−1) = z̃(Ci) − m̃(Ci−1)

≥ p(Ci) − m̃(Ci−1) = m̃(Ci) − m̃(Ci−1) = m̃(S i) = (βi − 1)|S i | + |Li|.

Therefore we have equality throughout, in particular, z̃(Ci) = p(Ci), |L
′
i
| = |Li|, and z(v) = βi − 1 for

every v ∈ S i − L′
i
.

Let t ∈ Li be an element for which m(t) > z(t). Then m(t) = βi and z(t) = βi − 1. It follows that

Tm(t) contains an element s for which z(s) > m(s), implying that m(s) = βi − 1 and z(s) = βi. Now

m(t) > m′(t) = z(t) holds for the dec-min element m′ := m+χs −χt obtained from m by an elementary

step, and therefore we are done by induction.

5.3 Matroidal description of the set of dec-min elements

In Section 4.4, we introduced a matroid M1 on S 1 and proved in Corollary 4.9 that the dec-min

elements of
....

B1 are exactly the integral elements of the translated base-polyhedron of M1, where the

translation means the addition of the constant vector (β1 − 1, . . . , β1 − 1) of dimension |S 1|. The

same notions and results can be applied to each subscript i = 2, . . . , q. Furthermore, by formulating

Lemma 4.11 for subscript i in place of 1, we obtain the following.

Proposition 5.6. The set-system Bi := {L ⊆ S i : L = Li(mi) for some dec-min element mi of
....

Bi}

forms the set of bases of a matroid Mi on ground-set S i. An ri-element subset L of S i is a basis of Mi

if and only if

|L ∩ X| ≥ p′i(X) := pi(X) − (βi − 1)|X| (5.10)

holds for every X ⊆ S i.

It follows that a vector mi on S i is a dec-min element of
....

Bi if and only if βi − 1 ≤ mi(s) ≤ βi for

each s ∈ S i and the set Li := {s ∈ S i : mi(s) = βi} is a basis of Mi. Let M∗ denote the direct sum of

matroids M1, . . . ,Mq and let ∆∗ ∈ ZS denote the translation vector defined by

∆∗(s) := βi − 1 whenever s ∈ S i, i = 1, . . . , q.

By integrating these results, we obtain the following characterization.

Theorem 5.7. Let B be an integral base-polyhedron. An element m of (the M-convex set)
....

B is de-

creasingly minimal if and only if m can be obtained in the form m = χL + ∆
∗ where L is a basis of the

matroid M∗. The base-polyhedron B• arises from the base-polyhedron of M∗ by adding the translation

vector ∆∗. Concisely, the set of dec-min elements of
....

B is a matroidal M-convex set.

Cheapest dec-min element An important algorithmic consequence of Theorems 5.1 and 5.7 is that

they help solve the cheapest dec-min element problem, which is as follows. Let c : S → R be a cost

function and consider the problem of computing a dec-min element m of an M-convex set
....

B for which

cm is as small as possible.

By Theorem 5.7 the set
....

B• of dec-min elements of
....

B can be obtained from a matroid M∗ by

translation. Namely, there is a vector ∆∗ ∈ ZS such that m is in
....

B• if and only if there is a basis

L of M∗ for which m = χL + ∆
∗. Note that the matroid M∗ arises as the direct sum of matroids Mi

defined on the members S i of the canonical partition. M1 is described in Proposition 4.10 and the other

matroids Mi may be determined analogously in an iterative way. To realize this algorithmically, we

must have a strongly polynomial algorithm to compute the canonical partition as well as the essential

value-sequence. Such an algorithm will be described in [13].

Therefore, in order to find a minimum c-cost dec-min element of
....

B, it suffices to find a minimum

c-cost basis of M∗. Note that, in applying the greedy algorithm to the matroids Mi in question, we
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need a rank oracle, which can be realized with the help of a submodular function minimization oracle

by relying on the definition of bases in (4.11).

Recall that for integral bounds f ≤ g, the intersection B1 of a base-polyhedron B and the box

T ( f , g), if non-empty, is itself a base-polyhedron. Therefore the algorithm above can be applied to

the M-convex set
....

B1, that is, we can compute a cheapest dec-min element of the intersection
....

B1 =....

B ∩ T ( f , g).

6 Integral square-sum and difference-sum minimization

For a vector z ∈ ZS , we can conceive several natural functions to measure the uniformity of its

component values z(s) for s ∈ S . Here are two examples:

square-sum : W(z) :=
∑

[z(s)2 : s ∈ S ], (6.1)

difference-sum : ∆(z) :=
∑

[|z(s) − z(t)| : s , t, s, t ∈ S ]. (6.2)

For vectors z1 and z2 with z̃1(S ) = z̃2(S ), z1 may be felt more uniform than z2 if W(z1) < W(z2),

and z1 may also be felt more uniform if ∆(z1) < ∆(z2). The first goal of this section is to show, by

establishing a fairly general theorem, that a dec-min element of an M-convex set
....

B is simultaneously

a minimizer of these two functions. The second goal of this section is to derive a min-max formula for

the minimum integral square-sum of an element of an M-convex set
....

B, along with characterizations

of (integral) square-sum minimizers and dual optimal solutions.

6.1 Symmetric convex minimization

Let S be a non-empty ground-set of n elements: S = {1, 2, . . . , n}. We say that a function Φ : ZS → R

is symmetric if

Φ(z(1), z(2), . . . , z(n)) = Φ(z(σ(1)), z(σ(2)), . . . , z(σ(n))) (6.3)

for all permutations σ of (1, 2, . . . , n). We call a function Φ : ZS → R convex if

λΦ(x) + (1 − λ)Φ(y) ≥ Φ(λx + (1 − λ)y) (6.4)

whenever x, y ∈ ZS , 0 < λ < 1, and λx + (1 − λ)y is an integral vector; and strictly convex if

λΦ(x) + (1 − λ)Φ(y) > Φ(λx + (1 − λ)y) (6.5)

whenever x, y ∈ ZS , 0 < λ < 1, and λx + (1 − λ)y is an integral vector.

In the special case of a function in one variable, it can easily be shown that the convexity of

ϕ : Z→ R is equivalent to the weaker requirement that the inequality

2ϕ(k) ≤ ϕ(k − 1) + ϕ(k + 1) (6.6)

holds for every integer k. Such function ϕ is often called a (univariate) discrete convex function. It is

strictly convex in the sense of (6.5) if and only if 2ϕ(k) < ϕ(k − 1)+ϕ(k + 1) holds for every integer k.

For example, ϕ(k) = k2 is strictly convex while ϕ(k) = |k| is convex but not strictly. Given a function

ϕ in one variable satisfying (6.6), define Φ by

Φ(z) :=
∑

[ϕ(z(s)) : s ∈ S ] (6.7)

for z ∈ ZS . Such a function Φ is called a symmetric separable convex function; note that Φ is indeed

convex in the sense of (6.4). When ϕ is strictly convex, Φ is also strictly convex.

Example 6.1. The square-sum W(z) in (6.1) is a symmetric convex function which is separable and

strictly convex.
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Example 6.2. The difference-sum ∆(z) in (6.2) is a symmetric convex function which is neither sepa-

rable nor strictly convex. More generally, for a nonnegative integer K, the function defined by

∆K(z) :=
∑

[(|z(s) − z(t)| − K)+ : s , t, s, t ∈ S ]

is a symmetric convex function, where (x)+ = max{x, 0}.

The following statements show a close relationship between decreasing minimality and the mini-

mization of symmetric convex Φ over an M-convex set
....

B.

Proposition 6.1. Let B be an integral base-polyhedron andΦ a symmetric convex function. Then each

dec-min element of
....

B is a minimizer of Φ over
....

B.

Proof. Since the dec-min elements of
....

B are value-equivalent and Φ is symmetric, the Φ-value of each

dec-min element is the same value µ. We claim that Φ(m) ≥ µ for each m ∈
....

B. Suppose indirectly

that there is an element m of
....

B for which Φ(m) < µ. Then m is not dec-min in
....

B and Property (A) in

Theorem 3.3 implies that there is a 1-tightening step for m resulting in decreasingly smaller member

of
....

B, that is, there exist s, t ∈ S such that m(t) ≥ m(s) + 2 and m′ := m + χs − χt ∈
....

B.

Let α = m(t) − m(s), where α ≥ 2, and define z = m + α(χs − χt). Since z is obtained from

m by interchanging the components at s and t, the symmetry of Φ formulated in (6.3) implies that

Φ(m) = Φ(z). Note that the vector z may not be a member of
....

B. For λ = 1 − 1/α we have

λm + (1 − λ)z =

(
1 −

1

α

)
m +

1

α
(m + α(χs − χt)) = m + χs − χt = m′ ∈

....

B (⊆ ZS ), (6.8)

from which λΦ(m) + (1 − λ)Φ(z) ≥ Φ(m′) by convexity (6.4). Since Φ(m) = Φ(z), this implies

Φ(m) ≥ Φ(m′). After a finite number of such 1-tightening steps, we arrive at a dec-min element m0 of
....

B, for which µ = Φ(m0) ≤ Φ(m) < µ, a contradiction.

Note that if Φ is convex but not strictly convex, then Φ may have minimizers that are not dec-min

elements. This is exemplified by the identically zero function Φ for which every member of
....

B is a

minimizer. However, for strictly convex functions we have the following characterization.

Theorem 6.2. Given an integral base-polyhedron B and a symmetric strictly convex function Φ, an

element m of
....

B is a minimizer of Φ if and only if m is a dec-min element of
....

B.

Proof. If m is a dec-min element, then m is a Φ-minimizer by Proposition 6.1. To see the converse, let

m be a Φ-minimizer of
....

B. If, indirectly, m is not a dec-min element, then Property (A) in Theorem 3.3

implies that there is a 1-tightening step for m, that is, there exist s, t ∈ S such that m(t) ≥ m(s) + 2

and m′ := m + χs − χt ∈
....

B. For α = m(t) − m(s), λ = 1 − 1/α, and z = m + α(χs − χt), we have

(6.8), from which we obtain λΦ(m)+ (1−λ)Φ(z) > Φ(m′) by strict convexity (6.5). Since z is obtained

from m by interchanging the components at s and t, the symmetry of Φ formulated in (6.3) implies

that Φ(m) = Φ(z). But then Φ(m) > Φ(m′) would follow, in contradiction to the assumption that m is

a minimizer of Φ.

We obtain the following as corollaries of this theorem.

Corollary 6.3. Let B be an integral base-polyhedron and Φ a symmetric separable convex function.

Then each dec-min element of
....

B is a minimizer of Φ over
....

B, and the converse is also true if, in

addition, Φ is strictly convex.

Corollary 6.4. For an M-convex set
....

B, an element m of
....

B is a square-sum minimizer if and only if m

is a dec-min element of
....

B.
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An immediate consequence of Corollary 6.3 is that a square-sum minimizer of
....

B minimizes an

arbitrary symmetric separable convex function Φ. Note, however, that this consequence immediately

follows from a much earlier result of Groenevelt [21] below, which deals with the minimization of a

(not-necessarily symmetric) separable convex function.

Theorem 6.5 (Groenevelt [21]; cf. [18, Theorem 8.1]). Let B be an integral base-polyhedron,
....

B be

the set of its integral elements, and Φ(z) =
∑

[ϕs(z(s)) : s ∈ S ] for z ∈ ZS , where ϕs : Z→ R ∪ {+∞}

is a discrete convex function for each s ∈ S . An element m of
....

B is a minimizer of Φ(z) if and only if

ϕs(m(s) + 1) + ϕt(m(t) − 1) ≥ ϕs(m(s)) + ϕt(m(t)) whenever m + χs − χt ∈
....

B.

A dec-min element is also characterized as a difference-sum minimizer.

Theorem 6.6. For an M-convex set
....

B, an element m of
....

B is a difference-sum minimizer if and only if

m is a dec-min element of
....

B.

Proof. By Proposition 6.1 every dec-min element is a difference-sum minimizer. To show the con-

verse, suppose indirectly that there is difference-sum minimizer m that is not dec-min in
....

B. Property

(A) in Theorem 3.3 implies that there is a 1-tightening step for m, that is, there exist s, t ∈ S such that

m(t) ≥ m(s)+ 2 and m′ := m+χs −χt ∈
....

B. Here we observe that |m′(s)−m′(t)| = |m(s)−m(t)| − 2 and

(|m′(v) − m′(s)| + |m′(v) − m′(t)|) − (|m(v) − m(s)| + |m(v) − m(t)|) =


−2 if m(s) < m(v) < m(t)

0 otherwise.

This shows ∆(m′) ≤ ∆(m) − 2, a contradiction.

Remark 6.1. Corollary 6.4 says that an element m of an M-convex set
....

B is dec-min precisely if m

is a square-sum minimizer. One may feel that it would have been a more natural approach to derive

this equivalence by showing that x ≤dec y holds precisely if W(x) ≤ W(y). Perhaps surprisingly,

however, this equivalence fails to hold, that is, the square-sum is not order-preserving with respect to

the quasi-order ≤dec. To see this, consider the following four vectors in increasing order:

m1 = (2, 3, 3, 1) <dec m2 = (3, 3, 3, 0) <dec m3 = (2, 2, 4, 1) <dec m4 = (3, 2, 4, 0).

Their square-sums admit a different order:

W(m1) = 23, W(m2) = 27, W(m3) = 25, W(m4) = 29.

The four vectors mi (i = 1, 2, 3, 4) form an M-convex set. Among these four elements, m1 is the unique

dec-min element and the unique square-sum minimizer but the decreasing-order and the square-sum

order of the other three elements are different. We remark that if ϕ in (6.7) is not only strictly convex

but ‘rapidly’ increasing as well, then x <dec y can be proved to be equivalent to Φ(x) < Φ(y). This

intuitive notion of rapid increase is formalized in [12].

Remark 6.2. For the intersection of two M-convex sets, dec-min elements and square-sum minimizers

may not coincide. Here is an example. Let
....

B1 = {(3, 3, 3, 0), (2, 2, 4, 1), (2, 3, 3, 1), (3, 2, 4, 0)} and
....

B2 = {(3, 3, 3, 0), (2, 2, 4, 1), (3, 2, 3, 1), (2, 3, 4, 0)}, which are both M-convex. In their intersection
....

B1∩
....

B2 = {(3, 3, 3, 0), (2, 2, 4, 1)}, the vector (3, 3, 3, 0) is the unique dec-min element while (2, 2, 4, 1)

is the unique square-sum minimizer. This demonstrates that the two notions of optima may differ for

the intersection of two M-convex sets.

Remark 6.3. In Section 3.3, we considered the minimum k-largest-sum problem that aimed at finding

an element of
....

B for which the sum of the k largest components is as small as possible. For each k, the

sum of the k largest components is a symmetric convex function, and hence Theorem 3.5 is a special

case of Proposition 6.1. It is noted, however, that Theorem 6.2 is not applicable to the k-largest-sum

problem, as this function is not strictly convex. Nevertheless, a dec-min element can be characterized

in terms of the k-largest-sum if we simultaneously consider the functions for all k (Theorem 3.6).
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Remark 6.4. For a, b, c ≥ 0, the function defined by

Φ(z) = a
∑

s∈S

|z(s)| + b
∑

s,t

|z(s) − z(t)| + c
∑

s,t

|z(s) + z(t)|

is a symmetric convex function. More generally, a function of the form

Φ(z) =
∑

s∈S

ϕ1(z(s)) +
∑

s,t

ϕ2(|z(s) − z(t)|) +
∑

s,t

ϕ3(z(s) + z(t)),

where ϕ1, ϕ2, ϕ3 : Z → R are (discrete) convex functions (as defined in (6.6)), is a symmetric convex

function which is not separable. Such a function is an example of the so-called 2-separable convex

functions. By Theorem 6.2, a dec-min element of
....

B is a minimizer of function Φ over
....

B. The

minimization of 2-separable convex functions is investigated in depth by Hochbaum and others [1, 24,

25] using network flow techniques.

Remark 6.5. A min-max formula can be derived for the square-sum (see Section 6.2) and, more gen-

erally, for separable convex functions from the Fenchel-type duality theorem in DCA [37, 38]. How-

ever, we cannot use the Fenchel-type duality theorem to obtain a min-max formula for non-separable

symmetric convex functions, since non-separable symmetric convex functions are not necessarily M-

convex.

6.2 Min-max theorem for integral square-sum

Recall the notation W(z) =
∑

[z(s)2 : s ∈ S ] for the square-sum of z ∈ ZS . Given a polyhedron B, we

say that an element m ∈
....

B is a square-sum minimizer (over
....

B) or that m is an integral square-sum

minimizer of B if W(m) ≤ W(z) holds for each z ∈
....

B. The main goal of this section is to derive a

min-max formula for the minimum integral square-sum of an element of an M-convex set
....

B, along

with a characterization of (integral) square-sum minimizers.

A set-function p on S can be considered as a function defined on (0, 1)-vectors. It is known that

p can be extended in a natural way to every vector π in RS , as follows. For the sake of this definition,

we may assume that the elements of S are indexed in a decreasing order of the components of π, that

is, π(s1) ≥ · · · ≥ π(sn) (where the order of the components of π with the same value is arbitrary). For

j = 1, . . . , n, let I j := {s1, . . . , s j} and let

p̂(π) := p(In)π(sn) +

n−1∑

j=1

p(I j)[π(s j) − π(s j+1)]. (6.9)

Obviously, p(Z) = p̂(χZ). The function p̂ is called [10, Section 14.5.1] the linear extension of p,

where p̂ is a piecewise-linear function in π.

Remark 6.6. The linear extension was first considered by Edmonds [6] who proved for a polymatroid

P = P(b) defined by a monotone, non-decreasing submodular function b that max{πx : x ∈
....

P} = b̂(π)

when π is non-negative. The same approach shows for a base-polyhedron B = B′(p) defined by a

supermodular function p that min{πx : x ∈
....

B} = p̂(π). Another basic result is due to Lovász [32] who

proved that p is supermodular if and only if p̂ is concave. We do not, however, explicitly need these

results, and only remark that in the literature the linear extension is often called Lovász extension.

Our approach is as follows. First, we consider an arbitrary set-function p on S (supermodular or

not) along with the polyhedron

B = B′(p) := {x : x ∈ RS , x̃(Z) ≥ p(Z) for every Z ⊂ S and x̃(S ) = p(S )},
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and develop an easily checkable lower bound for the minimum square-sum over the integral elements

of B. If this lower bound is attained by an element m of
....

B, then m is certainly a square-sum minimizer

independently of any particular property of p. For general p, the lower bound (not surprisingly) is

not always attainable. We shall prove, however, that it is attainable when p is supermodular. That is,

we will have a min-max theorem for the minimum square-sum over an M-convex set
....

B, or in other

words, we will have an easily checkable certificate for an element m of
....

B to be a minimizer of the

square-sum.

We shall need the following two claims. For any real number α ∈ R, let ⌊α⌋ denote the largest

integer not larger than α, and ⌈α⌉ the smallest integer not smaller than α.

Claim 6.7. For m, π ∈ ZS , one has

∑

s∈S

⌊
π(s)

2

⌋⌈
π(s)

2

⌉
≥

∑

s∈S

m(s)[π(s) − m(s)]. (6.10)

Moreover, equality holds if and only if

m(s) ∈

{⌊
π(s)

2

⌋
,

⌈
π(s)

2

⌉}
for every s ∈ S . (6.11)

Proof. The claim follows by observing that ⌊a/2⌋⌈a/2⌉ ≥ b(a − b) holds for any pair of integers a and

b, where equality holds precisely if b ∈
{
⌊a/2⌋, ⌈a/2⌉

}
.

Let p be an arbitrary set-function on S with p(∅) = 0 and consider an integral element m of the

polyhedron B = B′(p). Recall that a non-empty subset X ⊆ S was called a strict π-top set if π(u) > π(v)

held whenever u ∈ X and v ∈ S − X. In what follows, for an m ∈
....

B, m-tightness of a subset Z ⊆ S

means m̃(Z) = p(Z).

Claim 6.8. For m ∈
....

B and π ∈ ZS , one has

p̂(π) ≤
∑

s∈S

m(s)π(s). (6.12)

Moreover, equality holds if and only if each (of the at most n) strict π-top set is m-tight.

Proof. Suppose that the elements of S are indexed in such a way that π(s1) ≥ π(s2) ≥ · · · ≥ π(sn). For

j = 1, . . . , n, let I j := {s1, . . . , s j}. Then

p̂(π) = p(In)π(sn) +

n−1∑

j=1

p(I j)[π(s j) − π(s j+1)]

≤ m̃(In)π(sn) +

n−1∑

j=1

m̃(I j)[π(s j) − π(s j+1)]

=
∑

1≤i≤ j≤n

m(si)π(s j) −
∑

1≤i≤ j≤n−1

m(si)π(s j+1)

=
∑

1≤i≤ j≤n

m(si)π(s j) −
∑

1≤i< j′≤n

m(si)π(s j′)

=

n∑

j=1

m(s j)π(s j),

from which (6.12) follows. Furthermore, we have equality in (6.12) precisely if m̃(I j) = p(I j) holds

whenever π(s j) − π(s j+1) > 0. But this latter condition is equivalent to requiring that each strict π-top

set is m-tight.
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Proposition 6.9. Let p be an arbitrary set-function on S with p(∅) = 0 and let m be an integral

element of the polyhedron B = B′(p). Then

∑

s∈S

m(s)2 ≥ p̂(π) −
∑

s∈S

⌊
π(s)

2

⌋⌈
π(s)

2

⌉
(6.13)

whenever π ∈ ZS is an integral vector. Furthermore, equality holds for m and π if and only if the

following optimality criteria hold:

(O1) (6.11) holds: m(s) ∈

{⌊
π(s)

2

⌋
,

⌈
π(s)

2

⌉}
for every s ∈ S , (6.14)

(O2) each strict π-top-set is m-tight with respect to p. (6.15)

Proof. Let π ∈ ZS . By the two preceding claims,

∑

s∈S

m(s)2 =
∑

s∈S

m(s)π(s) −
∑

s∈S

m(s)[π(s) − m(s)] ≥ p̂(π) −
∑

s∈S

⌊
π(s)

2

⌋⌈
π(s)

2

⌉
, (6.16)

from which (6.13) follows. The claims also immediately imply that we have equality in (6.13) pre-

cisely if the optimality criteria (O1) and (O2) hold.

The min-max formula in the next theorem concerning min square-sum over the integral elements

of an integral base-polyhedron can be derived from the more general Fenchel-type duality theorem

in DCA (see [37] and also Theorem 8.21, page 222, in the book [38]), or from a recent framework

[15] of separable discrete convex function minimization over the integer points in an integral box-

TDI polyhedron. However, our proof relies only on the relatively simple characterization of dec-min

elements described in Theorem 3.3. In particular, we need no results of Sections 4 and 5.

Theorem 6.10. Let B = B′(p) be a base-polyhedron defined by an integer-valued supermodular

function p. Then

min{
∑

s∈S

m(s)2 : m ∈
....

B} = max{ p̂(π) −
∑

s∈S

⌊
π(s)

2

⌋⌈
π(s)

2

⌉
: π ∈ ZS }. (6.17)

Proof. By Proposition 6.9, min ≥ max holds in (6.17) and hence all what we have to prove is that there

is an element m ∈
....

B and an integral vector π ∈ ZS meeting the two optimality criteria formulated in

Proposition 6.9. Let m be an arbitrary dec-min element of
....

B. By Property (B) of Theorem 3.3, there

is a chain (∅ ⊂) C1 ⊂ C2 ⊂ · · · ⊂ Cℓ = S of m-tight and m-top sets for which the restrictions of m onto

the difference sets S i := Ci − Ci−1 (i = 1, . . . , ℓ) are near-uniform in S i (where C0 := ∅). Note that

{S 1, . . . , S ℓ} is a partition of S .

For i = 1, . . . , ℓ, let βi(m) := max{m(s) : s ∈ S i}. Define πm : S → Z by

πm(s) := 2βi(m) − 1 if s ∈ S i (i = 1, . . . , ℓ).

We have

⌊πm(s)/2⌋ = βi(m) − 1 ≤ m(s) ≤ βi(m) = ⌈πm(s)/2⌉

for every s ∈ S i, and hence Optimality criterion (O1) holds for m and πm.

We claim that each strict πm-top set Z is a member of chain C. Indeed, as πm is uniform in each S j,

if Z contains an element of S j, then Z includes the whole S j. Furthermore, since each member of C is

an m-top set, we have β1(m) ≥ β2(m) ≥ · · · ≥ βℓ(m), and hence if Z includes S j, then it includes each

S i with i < j. Therefore every strict πm-top set is indeed a member of the chain, implying Optimality

criterion (O2).

It should be noted that the optimal dual solution πm obtained in the proof of the theorem is actually

an odd vector in the sense that each of its component is an odd integer.
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Corollary 6.11. There is an odd dual optimizer π in the min-max formula (6.17), that is, the min-max

formula in Theorem 6.10 can be re-written as follows:

min{
∑

s∈S

m(s)2 : m ∈
....

B} = max{ p̂(π) −
∑

s∈S

π(s)2 − 1

4
: π ∈ ZS , π is odd }. (6.18)

We emphasize that for the proof of Theorem 6.10 and Corollary 6.11 we relied only on Theo-

rem 3.3 and did not need the characterization of the set of dec-min elements of
....

B given in Section 5.

In the proof of Theorem 6.10, we chose an arbitrary dec-min element m of
....

B and an arbitrary chain

of m-tight and m-top sets such that m is near-uniform on each difference set. In Section 5, we proved

that there is a single canonical chain C∗ which meets these properties for every dec-min element of
....

B.

Therefore the dual optimal π∗ assigned to C∗ is also independent of m. Namely, consider the canonical

S -partition {S 1, . . . , S q} and the essential value-sequence β1 > · · · > βq. Define π∗ by

π∗(s) := 2βi − 1 if s ∈ S i (i = 1, . . . , q). (6.19)

As we pointed out in the proof of Theorem 6.10, this π∗ is also a dual optimum in (6.17). We shall

prove in the next section that π∗ is actually the unique smallest dual optimum in (6.17).

6.3 The set of optimal duals to integral square-sum minimization

We proved earlier that an element m ∈
....

B is a square-sum minimizer precisely if it is a dec-min

element. This and Theorem 5.1 imply that the square-sum minimizers of
....

B are the integral members

of a base-polyhedron B• obtained by intersecting a particular face of B with a special small box. This

means that the integral square-sum minimizers form an M-convex set.

Our next goal is to reveal the structure of the set Π of the dual optima in Theorem 6.10 and we

provide a description of Π as the integral solution set of feasible potentials in a box. This shows

another connection to DCA, which is discussed after the proof of Theorem 6.10.

Recall that the optimality criteria for a dec-min element m of
....

B and for an integral vector π were

given by (O1) and (O2) in (6.14)–(6.15). These immediately imply the following.

Proposition 6.12. For an integral vector π, the following are equivalent.

(A) π is a dual optimum (that is, π belongs to Π).

(B) There is a dec-min element m of
....

B such that m and π meet the optimality criteria.

(C) For every dec-min m of
....

B, m and π meet the optimality criteria.

Consider the canonical S -partition {S 1, . . . , S q}, the essential value-sequence β1 > β2 > · · · > βq,

and the matroids Mi on S i (i = 1, . . . , q). We can use the notions and the results of Section 4.5

formulated for M1 to each Mi (i = 1, . . . , q). To follow the pattern of F1 introduced in (4.13), let

Fi := {X ⊆ S i : βi|X| = pi(X)}, (6.20)

where pi was defined by pi(X) = p(Ci−1 ∪ X) − p(Ci−1) for X ⊆ S i. Since βi|X| ≥ pi(X) for every

X ⊆ S i and pi is supermodular, Fi is closed under taking intersection and union. Let Fi denote the

unique largest member of Fi, that is, Fi is the union of the members of Fi. Both Fi = ∅ and Fi = S i

are possible. As a generalization of Theorems 4.15 and 4.16 we obtain the following.

Theorem 6.13. For an element s ∈ S i (i = 1, . . . , q), the following properties are pairwise equivalent.

(A) s is value-fixed.

(B) m(s) = βi holds for every dec-min element m of
....

B.

(C) s ∈ Fi.

(D) s is a co-loop of Mi.
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Define a digraph Di = (Fi, Ai) on node-set Fi in which st is an arc if s, t ∈ Fi and there is no ts-set

in Fi. This implies that no arc of Di enters any member of Fi.

Theorem 6.14. An integral vector π ∈ ZS is an optimal dual solution to the integral minimum square-

sum problem (that is, π ∈ Π) if and only if the following three conditions hold for each i = 1, . . . , q :

π(s) = 2βi − 1 for every s ∈ S i − Fi, (6.21)

2βi − 1 ≤ π(s) ≤ 2βi + 1 for every s ∈ Fi, (6.22)

π(s) − π(t) ≥ 0 whenever s, t ∈ Fi and st ∈ Ai. (6.23)

Proof.

Claim 6.15. Optimality criterion (O1) in (6.14) is equivalent to

(O1′) 2m(s) − 1 ≤ π(s) ≤ 2m(s) + 1 for s ∈ S . (6.24)

Proof. When π(s) is even, we have the following equivalences:

m(s) ∈

{⌊
π(s)

2

⌋
,

⌈
π(s)

2

⌉}
⇔ π(s) = 2m(s)

⇔ 2m(s) − 1 ≤ π(s) ≤ 2m(s) + 1.

When π(s) is odd, we have the following equivalences:

m(s) ∈

{⌊
π(s)

2

⌋
,

⌈
π(s)

2

⌉}
⇔ π(s) − 1 ≤ 2m(s) ≤ π(s) + 1

⇔ 2m(s) − 1 ≤ π(s) ≤ 2m(s) + 1.

Suppose first that π ∈ ZS is an optimal dual solution. Then the optimality criteria (O1′) and (O2)

formulated in (6.24) and (6.15) hold for every dec-min element m of
....

B.

Let s be an element of S i − Fi. Since s is not value-fixed, there are dec-min elements m and m′ of
....

B for which m(s) = βi − 1 and m′(s) = βi. By applying (6.24) to m and to m′, we obtain that

2βi − 1 = 2m′(s) − 1 ≤ π(s) ≤ 2m(s) + 1 = 2(βi − 1) + 1 = 2βi − 1,

from which π(s) = 2βi − 1 follows, and hence (6.21) holds indeed.

Let s be an element of Fi. As s is value-fixed, m(s) = βi holds for any dec-min element m of
....

B.

We obtain from (6.24) that

2βi − 1 = 2m(s) − 1 ≤ π(s) ≤ 2m(s) + 1 = 2βi + 1

and hence (6.22) holds.

To derive (6.23), suppose indirectly that st is an arc in Ai for which π(t) > π(s) (≥ 2βi − 1). Let

Z := {v ∈ S : π(v) ≥ π(t)}. Then Z is a strict π-top set, and moreover, we have Ci−1 ⊆ Z ⊆ (Ci−1∪Fi)−s,

where the latter inclusion follows from (6.21) and π(t) > 2βi − 1. By Optimality criterion (O2), Z is

m-tight with respect to p. Let X := Z ∩ S i. Then X ⊆ Fi and hence

p(Z) = m̃(Z) = m̃(Ci−1) + m̃(X) = p(Ci−1) + βi|X|,

from which

βi|X| = p(Z) − p(Ci−1) = pi(X),

that is, X is in Fi, contradicting the definition of Ai which requires that st enters no member of Fi.

Suppose now that πmeets the three properties (6.21), (6.22), and (6.23). Let m ∈
....

B be an arbitrary

dec-min element. Consider an element s of S i. If s ∈ Fi, that is, if s is value-fixed, then m(s) = βi. By
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(6.22), we have 2m(s) − 1 ≤ π(s) ≤ 2m(s) + 1, that is, Optimality criterion (O1′) holds. If s ∈ S i − Fi,

then π(s) = 2βi − 1 by (6.21), from which

⌊
π(s)

2

⌋
=
π(s) − 1

2
= βi − 1 ≤ m(s) ≤ βi =

π(s) + 1

2
=

⌈
π(s)

2

⌉
,

showing that Optimality criterion (O1′) holds.

To prove optimality criterion (O2), let Z be a strict π-top set and let µ := min{π(v) : v ∈ Z}. Let i

denote the largest subscript for which X := Z ∩ S i , ∅. Then µ ≤ 2βi + 1 ≤ 2βi−1 − 1 ≤ π(u) holds for

every u ∈ Ci−1, from which Ci−1 ⊆ Z as Z is a strict π-top set.

If µ = 2βi − 1, then S i ⊆ Z as Z is a strict π-top set, from which Z = Ci, implying that Z is an

m-tight set in this case. Therefore we suppose µ ≥ 2βi, from which X ⊆ Fi follows. Now X ∈ Fi, for

otherwise there is an arc st ∈ Ai (s, t ∈ Fi) entering X, and then π(t) ≤ π(s) holds by Property (6.23);

this contradicts the assumption that Z is a strict π-top set. By X ∈ Fi we have βi|X| = pi(X), whereas

m(s) = βi for each s ∈ X by X ⊆ Fi. Hence

m̃(Z) = m̃(X) + m̃(Ci−1) = βi|X| + p(Ci−1)

= pi(X) + p(Ci−1) = p(X ∪ Ci−1) − p(Ci−1) + p(Ci−1) = p(Z),

that is, Z is indeed m-tight.

We now relate Theorem 6.10 to a concept from discrete convex analysis, where two kinds of

discrete convexity play major roles as mutually ‘conjugate’ notions of discrete convexity [37, 38].

One of them is M-convexity and the other is called L-convexity. One of the equivalent definitions says

that a set L of integer vectors is an L-convex set if it is the set of integer-valued feasible potentials

in the network flow problem. Formally, L = {π ∈ ZS : π(v) − π(u) ≤ g(uv) (u, v ∈ S )}, where g is

an integer-valued function on the ordered pairs of elements of S . A set of integer vectors is called

an L♮-convex set (pronounce L-natural convex set) if it is the intersection of an L-convex set with an

integral box.

In (6.19), we defined a special dual optimal solution π∗ by π∗(s) = 2βi − 1 whenever s ∈ S i

(i = 1, . . . , q). Theorem 6.14 and the definition we use for L♮-convex sets immediately implies the

following.

Corollary 6.16. The set Π of optimal dual integral vectors π in the min-max formula (6.17) of The-

orem 6.10 is an L♮-convex set. The unique smallest element of Π (that is, the unique smallest dual

optimum) is π∗.

It will be worth mentioning that L♮-convexity of the set of optimal dual integral vectors is a general

phenomenon that is true in separable convex function minimization on an M-convex set; see Section

5 of [12]. Indeed, this is a consequence of conjugacy between M-convexity and L-convexity. It is also

known that every L♮-convex set has a unique smallest (and a unique largest) element.

7 Continuous versus discrete

In this paper, we have concentrated on discrete decreasing minimization whose continuous counterpart

had been investigated earlier. In this section, we briefly look at the relationship between the continuous

(fractional) and discrete (integral) settings.

First of all, there is a fundamental difference between the problems of finding a dec-min element

of a base-polyhedron and that of an M-convex set (the set of integral elements of an integral base-

polyhedron). In the former case (investigated by Fujishige [17, 18]), there alway exists a single,

unique dec-min element, while in the latter, the dec-min elements of an M-convex set have an elegant

matroidal structure. Namely, Theorem 5.7 shows that the set of dec-min elements of an M-convex set

arises from the bases of a matroid by translating their incidence vectors with an integral vector.

34



In spite of such fundamental difference, a dec-min element can be characterized, in either case,

as a square-sum minimizer. In the continuous case, it is well-known [17, 18] that the unique dec-

min element of a base-polyhedron coincides with the minimum norm point of the base-polyhedron,

whereas, in the discrete case, Corollary 6.4 shows that the square-sum minimizers are exactly the

dec-min elements of an M-convex set. Furthermore, a dec-min element can be characterized by a

symmetric strictly convex function, which is stated in Theorem 6.2 for the discrete case as a discrete

counterpart of a result of Maruyama [34] for the continuous case. See also Nagano [39, Corollary 13].

Symmetric convex function minimization is studied, mainly for the continuous case, in the literature

of majorization [2, 33].

In the following, we show links between the continuous and discrete versions of decreasing min-

imization by considering an integral base-polyhedron B and the asociated M-convex set
....

B. The fol-

lowing theorems, given in [12], formalize the intuitive feeling that the minimum norm points (dec-min

elements) of an M-convex set
....

B and the unique minimum norm point (dec-min element) of the corre-

sponding base-polyhedron B are ‘close’ to each other.

Theorem 7.1 ([12, Theorem 6.6]). Let mR be the minimum norm point of an integral base-polyhedron

B. Then every dec-min element m of
....

B satisfies ⌊mR⌋ ≤ m ≤ ⌈mR⌉.

Theorem 7.2 ([12, Theorem 6.7]). The minimum norm point of an integral base-polyhedron B can be

represented as a convex combination of the dec-min elements of
....

B.

Since the (unique) minimum norm point of base-polyhedron B is the (unique) dec-min element of

B, Theorem 7.2 can be reformulated in the following equivalent form.

Theorem 7.3. The (unique) dec-min element of an integral base-polyhedron B can be represented as

a convex combination of the dec-min elements of
....

B.

This result looks quite natural and even straightforward. However, one has to be cautious with such

a naive intuition. In fact, the analogous statement fails to hold for an M2-convex set (the intersection

of two M-convex sets), as is demonstrated in the following example.

Example 7.1. Consider the following two M-convex sets:

....

B1 = {(1, 0, 0, 0), (0,−1, 1, 1), (1,−1, 1, 0), (0, 0, 0, 1)},
....

B2 = {(1, 0, 0, 0), (0,−1, 1, 1), (1, 1, 0, 1), (0, 0, 1, 0)}.

In their intersection
....

B1 ∩
....

B2 = {(1, 0, 0, 0), (0,−1, 1, 1)}, the element z = (1, 0, 0, 0) is the unique

dec-min element. In the continuous version, B1 ∩ B2 is the line segment connecting (1, 0, 0, 0) and

(0,−1, 1, 1). The middle point x = (1/2,−1/2, 1/2, 1/2) is the unique dec-min element of B1 ∩ B2.

(Note that x is decreasingly smaller than z.) We cannot represent x as a convex combination of a single

element z.

Not only the dec-min elements for B and
....

B are related as above, but the ‘dual objects’ (namely, the

chains and partitions) for B and
....

B are related as follows. Actually, Theorems 7.1 and 7.2 are proved

in [12] on the basis of this relationship between the ‘dual objects.’ Recall that the principal partition

is the continuous counterpart of the canonical partition, while the critical values are the continuous

counterpart of essential values (see [18, Section 7.2], [19] for notions related to the principal partition).

Theorem 7.4 ([12, Theorem 6.5]). Let B be an integral base-polyhedron.

(1) An integer β is an essential value of
....

B if and only if there exists a critical value λ of B satisfying

β ≥ λ > β − 1.

(2) The essential values β1 > β2 > · · · > βq of
....

B are obtained from the critical values λ1 > λ2 > · · · >

λr of B as the distinct members of the rounded-up integers ⌈λ1⌉ ≥ ⌈λ2⌉ ≥ · · · ≥ ⌈λr⌉.
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(3) The canonical partition {S 1, S 2, . . . , S q} of
....

B is obtained from the principal partition {Ŝ 1, Ŝ 2, . . . , Ŝ r}

of B as an aggregation as

S j =
⋃

i∈I( j)

Ŝ i ( j = 1, 2, . . . , q),

where I( j) = {i : ⌈λi⌉ = β j} for j = 1, 2, . . . , q.

(4) The canonical chain {C j} of
....

B is a subchain of the principal chain {Ĉi} of B, which is given by

C j = Ĉi with the maximum index i in I( j).

8 Conclusion

The present work is the first member of a series of papers concerning discrete decreasing minimization.

In the companion paper [13] we give a strongly polynomial algorithm for finding a dec-min element

of an M-convex set and discuss applications of discrete decreasing minimization to the ‘background

problems’ mentioned in Section 1.1.

While the present framework of decreasing minimization on an M-convex set is effective for a

fairly wide class of graph orientation problems [13], there are other important graph orientation prob-

lems that do not fit in this framework. For example, for strong orientations of mixed graphs, dec-min

orientations and inc-max orientations do not coincide. The reason behind this phenomenon is that the

set of in-degree vectors of strong orientations of a mixed graph is not an M-convex set anymore. It is,

in fact, the intersection of two M-convex sets. By investigating the decreasing minimization problem

over the intersection of two M-convex sets we can solve a broader class of graph orientation problems,

see [16].

Decreasing minimization on an M-convex set contains the integer version of Megiddo’s problem

[35] of finding a maximum flow that is ‘lexicographically optimal’ on the set of edges leaving the

source node. In [14] this problem is generalized to the problem of finding an integral feasible flow

that is decreasing minimal on an arbitrarily specified subset of edges. The structure of decreasingly

minimal integral feasible flows is clarified and a strongly polynomial algorithm for finding such a

dec-min flow is developed. A further generalization to integral submodular flows is reported in [16].
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grateful to M. Kovács for drawing our attention to some important papers in the literature concerning

fair resource allocation problems. Special thanks are due to T. Migler for her continuous availability

to answer our questions concerning the paper [4] and the work by Borradaile, Migler, and Wilfong

[5], which paper was also a prime driving force in our investigations. We are grateful to B. Shepherd
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[30] Katrenič, J., Semanišin, G.: Maximum semi-matching problem in bipartite graphs. Discus-

siones Mathematicae, Graph Theory 33, 559–569 (2013)

[31] Levin, A., Onn, S.: Shifted matroid optimization. Operations Research Letters 44, 535–539

(2016)

[32] Lovász, L.: Submodular functions and convexity. In: Bachem, A., Grötschel, M., Korte, B.

(eds.) Mathematical Programming—The State of the Art, pp. 235–257. Springer, Berlin (1983)

[33] Marshall, A.W., Olkin, I., Arnold, B.C.: Inequalities: Theory of Majorization and Its Applica-

tions, 2nd edn. Springer, New York (2011), (1st edn., 1979)

[34] Maruyama, F.: A unified study on problems in information theory via polymatroids. Graduation

Thesis, University of Tokyo, Japan, 1978. (In Japanese.)

[35] Megiddo, N.: Optimal flows in networks with multiple sources and sinks. Mathematical Pro-

gramming 7, 97–107 (1974)

[36] Megiddo, N.: A good algorithm for lexicographically optimal flows in multi-terminal networks.

Bulletin of the American Mathematical Society 83, 407–409 (1977)

38



[37] Murota, K.: Discrete convex analysis. Mathematical Programming 83, 313–371 (1998)

[38] Murota, K.: Discrete Convex Analysis. Society for Industrial and Applied Mathematics,

Philadelphia (2003)

[39] Nagano, K.: On convex minimization over base polytopes. In: Fischetti, M., Williamson, D.P.

(eds.): Integer Programming and Combinatorial Optimization. Lecture Notes in Computer Sci-

ence, vol. 4513, pp. 252–266 (2007)

[40] Tamir, A.: Least majorized elements and generalized polymatroids. Mathematics of Operations

Research 20, 583–589 (1995)

39


	1 Introduction
	1.1 Background problems
	1.1.1 Orientations of graphs
	1.1.2 A resource allocation problem
	1.1.3 Network flows
	1.1.4 Matroid bases

	1.2 Main goals
	1.3 Notation

	2 Base-polyhedra and M-convex sets
	3 Characterizing a decreasingly minimal element
	3.1 Decreasing minimality
	3.2 Characterizing a dec-min element
	3.3 Minimizing the sum of the k largest components

	4 Decomposition by pre-decreasingly minimal elements
	4.1 Max-minimizers and pre-dec-min elements
	4.2 The peak-set S1
	4.3 Separating along S1
	4.4 The matroid M1 on S1
	4.5 Value-fixed elements of S1

	5 Description of the set of all decreasingly minimal elements
	5.1 Canonical partition and canonical chain
	5.2 Obtaining the canonical chain and value-sequence from a dec-min element
	5.3 Matroidal description of the set of dec-min elements

	6 Integral square-sum and difference-sum minimization
	6.1 Symmetric convex minimization
	6.2 Min-max theorem for integral square-sum
	6.3 The set of optimal duals to integral square-sum minimization

	7 Continuous versus discrete
	8 Conclusion

