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Abstract
This paper studies convex generalized Nash equilibrium problems that are given by
polynomials. We use rational and parametric expressions for Lagrange multipliers to
formulate efficient polynomial optimization for computing generalizedNash equilibria
(GNEs). The Moment-SOS hierarchy of semidefinite relaxations are used to solve the
polynomial optimization. Under some general assumptions, we prove the method can
find aGNE if there exists one, or detect nonexistence ofGNEs. Numerical experiments
are presented to show the efficiency of the method.
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1 Introduction

The generalized Nash equilibrium problem (GNEP) is a kind of game to find strategies
for a group of players such that each player’s objective function is optimized, for given
other players’ strategies. Suppose there are N players and the i th player’s strategy is
a vector xi ∈ R

ni (the ni -dimensional real Euclidean space). We write that

xi := (xi,1, . . . , xi,ni ), x := (x1, . . . , xN ).
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1486 J. Nie, X. Tang

The total dimension of all strategies is n := n1+· · ·+nN . Themain task of the GNEP
is to find a tuple u = (u1, . . . , uN ) of strategies such that each ui is a minimizer of
the i th player’s optimization

Fi (u−i ) :

⎧
⎪⎨

⎪⎩

min
xi ∈Rni

fi (u1, . . . , ui−1, xi , ui+1, . . . , uN )

s.t. gi, j (u1, . . . , ui−1, xi , ui+1, . . . , uN ) = 0 ( j ∈ Ei ),

gi, j (u1, . . . , ui−1, xi , ui+1, . . . , uN ) ≥ 0 ( j ∈ Ii ),

(1.1)

where u−i := (u1, . . . , ui−1, ui+1, . . . , uN ), the fi and gi, j are continuously differ-
entiable functions in xi , and the Ei , Ii are disjoint finite (possibly empty) labeling sets.
The point u satisfying the above is called a generalized Nash equilibrium (GNE). For
notational convenience, when the i th player’s strategy is considered, we use x−i to
denote the subvector of all players’ strategies except the i th one, i.e.,

x−i := (x1, . . . , xi−1, xi+1, . . . , xN ),

and write x = (xi , x−i ) accordingly.
This paper focuses on the generalized Nash equilibrium problem of Polynomi-

als (GNEPP), i.e., all the functions fi and gi, j are polynomials in x . For each
i = 1, . . . , N , let Xi be the point-to-set map such that

Xi (x−i ) :=
{

xi ∈ R
ni

∣
∣
∣
∣
gi, j (xi , x−i ) = 0, j ∈ Ei ,

gi, j (xi , x−i ) ≥ 0, j ∈ Ii

}

. (1.2)

The Xi (x−i ) is the feasible strategy set of Fi (x−i ). The domain of Xi is

dom(Xi ) := {x−i ∈ R
n−ni : Xi (x−i ) �= ∅}.

The tuple x is said to be a feasible point of the GNEP if xi ∈ Xi (x−i ) for all i . Denote
the set

X :=
{

x ∈ R
n
∣
∣
∣
∣
gi, j (xi , x−i ) = 0, j ∈ Ei , i = 1, . . . , N ,

gi, j (xi , x−i ) ≥ 0, j ∈ Ii , i = 1, . . . , N

}

. (1.3)

Then x is a feasible point for the GNEP if and only if x ∈ X .

Definition 1.1 The GNEP given by (1.1) is called convex 1 if for all i = 1, . . . , N and
for all given x−i ∈ dom(Xi ), the objective fi (xi , x−i ) is convex in xi on Xi (x−i ), all
gi, j (xi , x−i ) ( j ∈ Ei ) are affine linear in xi , and all gi, j (xi , x−i ) ( j ∈ Ii ) are concave
in xi .

1 In some literature, this is also called player-convex, to distinguish from jointly-convex GNEPs; see [14].
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For instance, consider the 2-player GNEPP

min
x1∈R3

3∑

j=1
(x1, j − x2, j )

2 min
x2∈R3

3∑

j=1

(
(x2, j )

4 − x2, j

3∏

k=1
x1,k

)

s.t. xT
2 x1 − 1 = 0, s.t. ‖x1‖2 − ‖x2‖2 ≥ 0.

(x11, x12, x13) ≥ 0;
(1.4)

In the above, the ‖ · ‖ denotes the Euclidean norm. For each i , the Hessian of fi with
respect to xi is positive semidefinite for all x−i ∈ dom(Xi ). All players have convex
optimization problems, so this is a convex GNEP. One can directly check that it has a
unique GNE u = (u1, u2) with

u1 =
(

3
√
2√
3
,

3
√
2√
3
,

3
√
2√
3

)

, u2 =
(

1
6
√
108

,
1

6
√
108

,
1

6
√
108

)

.

GNEPs originated from economics in [4,10]. Recently, it has been widely used
in many areas, such as economics, transportation, telecommunications and pollution
control. Convex GNEPs often appear in applications. We refer to [1,3,8,52] for recent
work on applications of GNEPs. Some application examples are shown in Sect. 6.

For the classical Nash equilibrium problems (NEPs) of polynomials, there exist
semidefinite relaxation methods [2,48,50]. Convex GNEPs can be reformulated as
variational inequality (VI) or quasi-variational inequality (QVI) problems [15,23,24,
36,51]. TheKarush-Kuhn-Tucker (KKT) system for all player’s optimization problems
is considered in [13]. The penalty functions are used to solve convex GNEPs in [18,
19,22]. Some methods using the Nikaido-Isoda function are given in [14,57,58]. The
Lemke’s method is used to solve affine GNEPs [54]. For general nonconvex GNEPs,
we refer to [5,12,16,28,47]. It is generally quite difficult to solve GNEPs, even if they
are convex. This is because the KKT system of a convex GNEP may still be difficult
to solve. The set of GNEs may be nonconvex, even for convex NEPs (see [48]). We
refer to [17,20] for surveys on GNEPs.

Contributions

This paper focuses on convex GNEPPs. Under some constraint qualifications, a feasi-
ble point is a GNE if and only if it satisfies the KKT conditions. We introduce rational
and parametric expressions for Lagrange multipliers and formulate polynomial opti-
mization for computing GNEs. Our major results are:

– For GNEPPs, we introduce the rational expression for Lagrange multipliers and
study their properties. We prove the existence of rational expressions and give a
sufficient and necessary condition for positivity of denominators. Moreover, we
give parametric expressions for Lagrange multipliers for several cases. For all
GNEPs, parametric expressions always exist.

– Using rational and parametric expressions, we formulate polynomial optimization
and propose an algorithm for computing GNEs. Under some general assumptions,
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1488 J. Nie, X. Tang

we prove that the algorithm can compute a GNE if it exists, or detect nonexistence
of GNEs. This is the first numerical method that has these properties, to the best
of the authors’ knowledge.

– TheMoment-SOS semidefinite relaxations are used to solve polynomial optimiza-
tion for finding and verifying GNEs. Numerical experiments are presented to show
the efficiency of the method.

The paper is organized as follows. Some preliminaries about polynomial optimiza-
tion are given in Sect. 2. We introduce rational expressions for Lagrange multipliers
in Sect. 3. The parametric expressions for Lagrange multipliers are given in Sect. 4.
We formulate polynomial optimization problems for computing GNEs and show how
to solve them using the Moment-SOS hierarchy in Sect. 5. Numerical experiments
and applications are given in Sect. 6. Conclusions and some discussions are given in
Sect. 7.

2 Preliminaries

Notation

The symbol N (resp., R, C) stands for the set of nonnegative integers (resp., real
numbers, complex numbers). For a positive integer k, denote the set [k] := {1, . . . , k}.
For a real number t , �t	 (resp., 
t�) denotes the smallest integer not smaller than t
(resp., the biggest integer not bigger than t). We use ei to denote the vector such that
the i th entry is 1 and all others are zeros. By writing A � 0 (resp., A  0), we
mean that the matrix A is symmetric positive semidefinite (resp., positive definite).
For the i th player’s strategy vector xi ∈ R

ni , the xi, j denotes the j th entry of xi ,
for j = 1, . . . , ni . When we write (y, x−i ), it means that the i th player’s strategy is
y ∈ R

ni , while the vector of all other players’ strategy is fixed to be x−i . Let R[x]
denote the ring of polynomials with real coefficients in x , and R[x]d denote its subset
of polynomials whose degrees are not greater than d. For the i th player’s strategy
vector xi , the notation R[xi ] and R[xi ]d are defined in the same way. For i th player’s
objective fi (x), the notation∇xi fi ,∇2

xi
fi respectively denote its gradient and Hessian

with respect to xi .
In the following, we use the letter z to represent either x , xi or (x, ω) for some

new variables ω, for convenience of discussion. Suppose z := (z1, . . . , zl). For a
polynomial p(z) ∈ R[z], the p = 0 means p(z) is identically zero on R

l . We say the
polynomial p is nonzero if p �= 0. Let α := (α1, . . . , αl) ∈ N

l , and we denote

zα := zα1
1 · · · zαl

l , |α| := α1 + · · · + αl .

For an integer d > 0, denote the monomial power set

N
l
d := {α ∈ N

l : |α| ≤ d}.
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Convex generalized Nash equilibrium problems and polynomial… 1489

We use [z]d to denote the vector of all monomials in z whose degree is at most d,
ordered in the graded alphabetical ordering. For instance, if z = (z1, z2), then

[z]3 = (1, z1, z2, z21, z1z2, z22, z31, z21z2, z1z22, z32).

Throughout the paper, a property is said to hold generically if it holds for all points in
the space of input data except a set of Lebesgue measure zero.

2.1 Ideals and positive polynomials

Let F := R or C. For a polynomial p ∈ F[z] and subsets I , J ⊆ F[z], define the
product and Minkowski sum

p · I := {pq : q ∈ I }, I + J := {a + b : a ∈ I , b ∈ J }.

The subset I is an ideal if p · I ⊆ I for all p ∈ F[z] and I + I ⊆ I . For a tuple of
polynomials q = (q1, . . . , qm), the set

Ideal[q] := q1 · F[z] + · · · + qm · F[z]

is the ideal generated by q, which is the smallest ideal containing each qi .
We review basic concepts in polynomial optimization. A polynomial σ ∈ R[z]

is said to be a sum of squares (SOS) if σ = p21 + · · · + p2k for some polynomials
pi ∈ R[z]. The set of all SOS polynomials in z is denoted as Σ[z]. For a degree d, we
denote the truncation

Σ[z]d := Σ[z] ∩ R[z]d .

For a tuple g = (g1, . . . , gt ) of polynomials in z, its quadratic module is the set

Qmod[g] := Σ[z] + g1 · Σ[z] + · · · + gt · Σ[z].

Similarly, we denote the truncation of Qmod[g]

Qmod[g]2d := Σ[z]2d + g1 · Σ[z]2d−deg(g1) + · · · + gt · Σ[z]2d−deg(gt ).

The tuple g determines the basic closed semi-algebraic set

S(g) := {z ∈ R
l : g1(z) ≥ 0, . . . , gt (z) ≥ 0}. (2.1)

For a tuple h = (h1, . . . , hs) of polynomials in R[z], its real zero set is

Z(h) := {z ∈ R
l : h1(z) = . . . = hs(z) = 0}.

The set Ideal[h] + Qmod[g] is said to be archimedean if there exists ρ ∈ Ideal[h] +
Qmod[g] such that the set S(ρ) is compact. If Ideal[h] + Qmod[g] is archimedean,
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1490 J. Nie, X. Tang

then Z(h) ∩ S(g) must be compact. Conversely, if Z(h) ∩ S(g) is compact, say,
Z(h) ∩ S(g) is contained in the ball R − ‖z‖2 ≥ 0, then Ideal[h] + Qmod[g, R −
‖z‖2] is archimedean and Z(h) ∩ S(g) = Z(h) ∩ S(g, R − ‖z‖2). Clearly, if f ∈
Ideal[h] +Qmod[g], then f ≥ 0 on Z(h) ∩ S(g). The reverse is not necessarily true.
However, when Ideal[h] + Qmod[g] is archimedean, if f > 0 on Z(h) ∩ S(g), then
f ∈ Ideal[h]+Qmod[g]. This conclusion is referenced as Putinar’s Positivstellensatz
[53]. Interestingly, if f ≥ 0 on Z(h) ∩ S(g), we also have f ∈ Ideal[h] + Qmod[g],
under some standard optimality conditions [40].

2.2 Localizing andmomentmatrices

Let RN
l
2d denote the space of all real vectors that are labeled by α ∈ N

l
2d . A vector

y ∈ R
N

l
2d is labeled as

y = (yα)α∈Nl
2d

.

Such y is called a truncated multi-sequence (tms) of degree 2d. For a polynomial
f = ∑

α∈Nl
2d

fαzα ∈ R[z]2d , define the operation

〈 f , y〉 :=
∑

α∈Nl
2d

fα yα. (2.2)

The operation 〈 f , y〉 is a bilinear function in ( f , y). For a polynomial q ∈ R[z], with
deg(q) ≤ 2d, and the integer t = d − �deg(q)/2	, the outer product q · [z]t ([z]t )

T is
a symmetric matrix polynomial in z, with length

(n+t
t

)
. We write the expansion as

q · [z]t ([z]t )
T =

∑

α∈Nl
2d

zα Qα,

for some symmetric matrices Qα . Then we define the matrix function

L(d)
q [y] :=

∑

α∈Nl
2d

yα Qα. (2.3)

It is called the dth localizing matrix of q generated by y. For given q, thematrix L(d)
q [y]

is linear in y. Localizing and moment matrices are important for getting semidefinite
relaxations of solving polynomial optimization [29,38,39]. They are also useful for
solving truncated moment problems [21,43] and tensor decompositions [44,45]. We
refer to [31,32,34,35,37,42,50] for more references about polynomial optimization
and moment problems.

2.3 Lagrangemultiplier expressions

We study optimality conditions for generalized Nash equilibrium problems. Con-
sider the i th player’s optimization. For convenience, suppose Ei ∪ Ii = [mi ] and
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Convex generalized Nash equilibrium problems and polynomial… 1491

gi := (gi,1, . . . , gi,mi ). For a given x−i , under some suitable constraint qualifications
(e.g., the linear independence constraint qualification (LICQ),Mangasarian-Fromovite
constraint qualification (MFCQ), or the Slater’s Condition; see [7] for them), if xi

is a minimizer of Fi (x−i ), then there exists a Lagrange multiplier vector λi :=
(λi,1, . . . , λi,mi ) such that

⎧
⎨

⎩

∇xi fi (x) − ∑mi
j=1 λi, j∇xi gi, j (x) = 0,

λi ⊥ gi (x), gi, j (x) = 0 ( j ∈ Ei ),

λi, j ≥ 0 ( j ∈ Ii ), gi, j (x) ≥ 0 ( j ∈ Ii ).

(2.4)

This is called the first order Karush-Kuhn-Tucker system for Fi (x−i ). Such (xi , λi )

is called a critical pair of Fi (x−i ). Therefore, if x is a GNE, under constraint qualifi-
cations, then (2.4) holds for all i ∈ [N ], i.e., there exist Lagrange multiplier vectors
λ1, . . . , λN such that

⎧
⎨

⎩

∇xi fi (x) − ∑mi
j=1 λi, j∇xi gi, j (x) = 0 (i ∈ [N ]),

λi ⊥ gi (x) (i ∈ [N ]), gi, j (x) = 0 (i ∈ [N ], j ∈ Ei ),

λi, j ≥ 0 (i ∈ [N ], j ∈ Ii ), gi, j (x) ≥ 0 (i ∈ [N ], j ∈ Ii ).

(2.5)

A point x satisfying (2.5) is called a KKT point for the GNEP. For convex GNEPs,
each KKT point is a GNE [17, Theorem 4.6].

For each critical pair (xi , λi ) of Fi (x−i ), the Eq. (2.4) implies that

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∇xi gi,1(x) ∇xi gi,2(x) · · · ∇xi gi,mi (x)

gi,1(x) 0 · · · 0
0 gi,2(x) · · · 0
...

...
. . .

...

0 0 · · · gi,mi (x)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸
Gi (x)

⎡

⎢
⎢
⎢
⎣

λi,1
λi,2
...

λi,mi

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸
λi

=

⎡

⎢
⎢
⎢
⎣

∇xi fi (x)

0
...

0

⎤

⎥
⎥
⎥
⎦

︸ ︷︷ ︸

f̂i (x)

. (2.6)

If there exists a matrix polynomial Li (x) such that

Li (x)Gi (x) = Imi , (2.7)

then the Lagrange multipliers λi can be expressed as

λi = Li (x) f̂i (x).

The vector of polynomials λi (x) := (λi,1(x), . . . , λi,mi (x)) is called a polynomial
expression for Lagrange multipliers [46], where λi, j (x) is the j th component of
Li (x) f̂i (x). The matrix polynomial Gi (x) is said to be nonsingular if it has full
column rank for all x ∈ C

n . It was shown that Gi (x) is nonsingular if and only
if there exists Li (x) ∈ R[x](mi +ni )×mi such that (2.7) holds [46, Proposition 5.1].
The nonsingularity of Gi (x) is independent of objective functions or other player’s
constraints.
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1492 J. Nie, X. Tang

For example, consider the GNEP given by (1.4). The first player’s optimization has
a polynomial expression of Lagrange multipliers

λ1,1 = xT
1 ∇x1 f1, λ1, j+1 = ∂ f1(x)

∂x1, j
− λ1,1x2, j ( j = 1, 2, 3). (2.8)

For the second player, thematrix polynomialG2(x) is not nonsingular, and polynomial
expressions do not exist. In Sect. 6,we give a rational expression for the second player’s
Lagrange multipliers.

3 Rational expressions for Lagrangemultipliers

In Sect. 2.3, a polynomial expression for the i th player’s Lagrange multipliers exists
if and only if the matrix Gi (x) is nonsingular. For classical NEPs of polynomials,
the nonsingularity holds generically [46,48]. However, this is often not the case for
GNEPs. Let gi = (gi,1, . . . , gi,mi ) be the tuple of constraining polynomials in Fi (x−i )

and Gi (x) be the matrix polynomial as in (2.7). If there exists a matrix polynomial
L̂i (x) and a nonzero scalar polynomial qi (x) such that

L̂i (x)Gi (x) = qi (x) · Imi , (3.1)

then qi (x)λi = L̂i (x) f̂i (x) for all critical pairs (xi , λi ) of Fi (x−i ). Let

λ̂i (x) := L̂i (x) f̂i (x). (3.2)

Denote by λ̂i, j (x) the j th entry of λ̂i (x).

Definition 3.1 For the i th player’s optimization Fi (x−i ), if there exist polynomials
λ̂i,1, . . . , λ̂i,mi and a nonzero polynomial qi such that qi (x) ≥ 0 for all x ∈ X , and
λ̂i, j (x) = qi (x)λi, j holds for all critical pairs (xi , λi ), then we call the tuple

λ̂i/qi := (λ̂i,1(x)/qi (x), . . . , λ̂i,mi (x)/qi (x))

a rational expression for Lagrange multipliers.

The following is an example of rational expression.

Example 3.2 Consider the 2-player convex GNEP

min
x1∈R2

f1(x1, x2) min
x2∈R1

f2(x1, x2)

s.t. 2 − xT
1 x1 − x2 ≥ 0; s.t. 3x2 − xT

1 x1 ≥ 0, 1 − x2 ≥ 0.
(3.3)

The matrices of polynomials G1(x) and G2(x) are

G1(x) :=
⎡

⎣
−2x1,1
−2x1,2

2 − xT
1 x1 − x2

⎤

⎦ , G2(x) :=
⎡

⎣
3 −1

3x2 − xT
1 x1 0

0 1 − x2

⎤

⎦ .
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For x1 = (0, 0) and x2 = 2, the G1(x) is the zero vector. For x1 = (
√
3, 0) and

x2 = 1, rank(G2(x)) = 1. Both G1(x), G2(x) are not nonsingular, so there are no
polynomial expressions for Lagrange multipliers. However, (3.1) holds for

q1(x) = 2 − x2, q2(x) = 1 − 1
3 xT

1 x1,

L̂1(x) = [− x1,1
2 − x1,2

2 1
]
, L̂2(x) =

[ 1
3 − 1

3 x2
1
3

1
3

1
3 xT

1 x1 − x2 1 1

]

.
(3.4)

The Lagrange multiplier expressions are

λ1 = −xT
1 ∇x1 f1
2q1

, λ2,1 = (1 − x2)

3q2
· ∂ f2
∂x2

, λ2,2 = xT
1 x1 − 3x2

3q2
· ∂ f2
∂x2

. (3.5)

In Sect. 3.2, we show that if none of the gi, j is identically zero, then a rational
expression for λi always exists.

3.1 Optimality conditions and rational expressions

Suppose for each i , there exists a rational expression λ̂i /qi for the i th player’s Lagrange
multiplier vector. Since qi (x)λi, j = λ̂i (x) and qi (x) ≥ 0 for all x ∈ X , the following
holds for all KKT points

⎧
⎪⎨

⎪⎩

qi (x)∇xi fi (x) − ∑mi
j=1 λ̂i, j (x)∇xi gi, j (x) = 0 (i ∈ [N ]),

λ̂i (x) ⊥ gi (x), gi, j (x) = 0 ( j ∈ Ei , i ∈ [N ]),
gi, j (x) ≥ 0, λ̂i, j (x) ≥ 0 ( j ∈ Ii , i ∈ [N ]).

(3.6)

Under some constraint qualifications, if x is a GNE, then it satisfies (3.6). For convex
GNEPs, if x satisfies (3.6) and qi (x) > 0, then x must be a GNE, since it satisfies
(2.5) with λi, j given by λi, j = λ̂i, j (x)/qi (x). This leads us to consider the following
optimization problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min
x∈X

[x]T
1 Θ[x]1

s.t. qi (x)∇xi fi (x) − ∑mi
j=1 λ̂i, j (x)∇xi gi, j (x) = 0 (i ∈ [N ]),

λ̂i, j (x) ⊥ gi, j (x) ( j ∈ Ei ∪ Ii , i ∈ [N ]),
λ̂i, j (x) ≥ 0 ( j ∈ Ii , i ∈ [N ]).

(3.7)

In the above, Θ is a generically chosen positive definite matrix. The following propo-
sition is straightforward.

Proposition 3.3 For the GNEPP given by (1.1), suppose for each i ∈ [N ], the
Lagrange multiplier vector λi has the rational expression as in Definition 3.1.

(i) If (3.7) is infeasible, then the GNEP has no KKT points. Therefore, if every GNE
is a KKT point, then the infeasibility of (3.7) implies the nonexistence of GNEs.

(ii) Assume the GNEP is convex. If u is a feasible point of (3.7) and qi (u) > 0 for all
i ∈ [N ], then u must be a GNE.
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1494 J. Nie, X. Tang

In Proposition 3.3 (ii), if qi (u) = 0, then u may not be a GNE. The following is
such an example.

Example 3.4 [18, Example A.8] Consider the 3-player convex GNEP

min
x1∈R1

−x1 min
x2∈R1

(x2 − 0.5)2 min
x3∈R1

(x3 − 1.5x1)2

s.t. x3 ≤ x1 + x2 ≤ 1, s.t. x3 ≤ x1 + x2 ≤ 1, s.t. 0 ≤ x3 ≤ 2.
x1 ≥ 0; x2 ≥ 0;

For the first two players (i = 1, 2), the Eq. (3.1) holds for

L̂i (x) :=
⎡

⎣
xi (1 − x1 − x2) xi xi x1 + x2 − 1
xi (x3 − x1 − x2) xi xi x1 + x2 − x3

0 0 0 1 − x3

⎤

⎦ , qi (x) := xi (1 − x3).

For the third player (i = 3), the Eq. (3.1) holds for

L̂3(x) := 1

2
·
[
2 − x3 1 1
−x3 1 1

]

, q3 := 1.

The Lagrange multiplier expressions can be obtained by letting λ̂i (x) := L̂i (x) f̂i (x).
It is clear that u1 = 0, u2 = 0.5, u3 = 0 satisfy (2.5) with q1(u) = 0. However,
u1 = 0 is not a minimizer for the first player’s optimization F1(u−1). It is interesting
to note that for u1 = 2

3 , u2 = 1
3 , u3 = 1, the tuple u = (u1, u2, u3) satisfies (2.5) with

q1(u) = q2(u) = 0, but u is still a GNE [18].

We would like to remark that for some special GNEPs, the equality qi (u) = 0 may
imply that ui is a minimizer of Fi (u−i ). See Example 3.8 for such a case.

3.2 Existence of rational expressions

We study the existence of rational expressions with nonnegative qi (x). The following
is a useful lemma.

Lemma 3.5 For the i th player’s optimization Fi (x−i ), if every gi, j (x) is not identically
zero, then a rational expression exists for λi .

Proof Let Hi (x) = Gi (x)T Gi (x), where Gi (x) is the matrix polynomial in (2.6).
If every gi, j (x) is not identically zero, then the determinant det Hi (x) is also not
identically zero. Let adj Hi (x) denote the adjoint matrix of Hi (x), then

Hi (x) · adj Hi (x) = det Hi (x) · Imi .

For L̂i (x) := adj Hi (x) · Gi (x)T , we get the rational expression

λi, j (x) = 1

det Hi (x)
L̂i (x) · f̂i (x). (3.8)
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Moreover, qi (x) ≥ 0 for all x , since Hi (x) is positive semidefinite everywhere. ��
The rational expression in (3.8)may not be very practical, because the determinantal

polynomials often have high degrees. In practice, we usually have rational expressions
with low degrees. If each qi (x) > 0 for all x ∈ X , then every solution of (3.7) is a
GNE. Onewonders when a rational expression exists with qi (x) > 0 on X . Thematrix
polynomial Gi is said to be nonsingular on X if Gi (x) has full column rank for all
x ∈ X . For the GNEP given in Example 3.2, both G1(x) and G2(x) are nonsingular
on X . The following proposition is useful.

Proposition 3.6 The matrix Gi (x) is nonsingular on X if and only if there exists a
matrix polynomial L̂i (x) satisfying (3.1) with qi (x) > 0 on X.

Proof First, if the matrix polynomial Gi (x) has full column rank for all x ∈ X ,
let Hi (x) := Gi (x)T Gi (x), then Hi (x) is positive definite and the determinant
det Hi (x) > 0 for all x ∈ X . Therefore, for L̂i (x) := adj Hi (x), the Eq. (3.8) is
satisfied with qi (x) := det Hi (x) > 0 over X . Second, if (3.1) holds with qi (x) > 0
on X , then Gi (x) is clearly nonsingular on X . ��
Remark 1 If Gi (x) is nonsingular on X , then the LICQCmust hold for the i th player’s
optimization. Furthermore, if this holds for all i ∈ [N ], then all GNEs are KKT points.

3.3 A numerical method for finding rational expressions

We give a numerical method for finding rational expressions for Lagrange multipliers.
It was introduced in [49] for solving bilevel optimization problems. Let Gi (x) be the
matrix polynomial defined in (2.6). For convenience, denote the tuples

gE := (gi, j )i∈[N ], j∈Ei , gI := (gi, j )i∈[N ], j∈Ii .

For a priori degree d, consider the following linear convex optimization:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max
L̂i ,qi ,γ

γ

s.t. L̂i · Gi = qi · Imi , qi (v) = 1,
qi − γ ∈ Ideal[gE ]2d + Qmod[gI ]2d ,

L̂i ∈ (R[x]2d−degGi )
mi ×(mi +ni ).

(3.9)

In the above, the first equality is the same as (3.1). The second equality ensures that
qi is not identically zero, where v is a priori point in X . The constraint qi − γ ∈
Ideal[gEi ] + Qmod[gEi ] forces the qi (x) ≥ γ on X . Therefore, if the maximum γ is
positive, then qi (x) > 0 on X . By Lemma 3.5, one can always find a feasible γ ≥ 0
satisfying (3.9), for some d ≤ deg(H(x)), if none of gi, j (x) is identically zero. By
Proposition 3.6, if each Gi (x) is nonsingular on X and the archimedeanness holds for
X , then there must exist γ > 0 satisfying (3.9) for some d. If (L̂i , qi , γ ) is a feasible
point of (3.9), then one can get a rational expression for Lagrangemultipliers by letting
λ̂i, j (x) = L̂i (x) f̂i (x).
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Example 3.7 Consider the GNEP in Example 3.2. We have

gE = ∅, gI = (2 − xT
1 x1 − x2, 3x2 − xT

1 x1, 1 − x2).

Let L̂1(x) and L̂2(x) be the matrix polynomials in (3.4), and q1(x) = 2− x2, q2(x) =
1 − 1

3 xT
1 x1. Let v := (0, 0, 1) for both players, and γ1 = 1, γ2 = 1/2. Then, the

(L̂i (x), qi (x), γi ) is a feasible point of (3.11), for each i = 1, 2. In fact, we have

q1(v) = q2(v) = 1, q1(x) − γ1 = 1 − x2 = 1 · (1 − x2) ∈ Qmod[gI ]2,
q2(x) − γ2 = 1

2 − 1
3 xT

1 x1 = 1
4 (2 − xT

1 x1 − x2) + 1
12 (3x2 − xT

1 x1) ∈ Qmod[gI ]2.

The rational expressions for Lagrange multipliers are given by (3.5).

Example 3.8 Consider the following GNEP

min
x1∈R3

f1(x1, x2) min
x2∈R3

f2(x1, x2)

s.t. 1 − xT
1 x1 − xT

2 x2 ≥ 0; s.t. 1 − xT
1 x1 − xT

2 x2 ≥ 0.

The constraining tuples gE := ∅, gI := (1 − xT
1 x1 − xT

2 x2). Let v := (0, 0, 0),
γ1 = γ2 = 0, q1(x) = 1 − xT

2 x2, q2(x) = 1 − xT
1 x1, and

L̂1 =
[

−1

2
x1,1, −1

2
x1,2, −1

2
x1,3, 1

]

, L̂2 =
[

−1

2
x2,1, −1

2
x2,2, −1

2
x2,3, 1

]

.

One can verify that q1(v) = q2(v) = 1 and

q1(x) − γ1 = 1 − xT
2 x2 = xT

1 x1 + 1 · (1 − xT
1 x1 − xT

2 x2) ∈ Qmod[gI ]2,
q2(x) − γ2 = 1 − xT

1 x1 = xT
2 x2 + 1 · (1 − xT

1 x1 − xT
2 x2) ∈ Qmod[gI ]2.

ByProposition 3.6,we know (L̂1(x), q1(x), γ1) and (L̂2(x), q2(x), γ2) areminimizers
of (3.9) for i = 1, 2 respectively. Therefore, we get the rational expression

λ1 = −xT
1 ∇x1 f1

2 · q1(x)
, λ2 = −xT

2 ∇x2 f2
2 · q2(x)

. (3.10)

For each i = 1, 2, if qi (x) = 0, then 0 ≤ xi
T xi ≤ 1 − x−i

T x−i = 0. This implies
xi = (0, 0, 0) is the only feasible point of the i th player’s optimization and hence it is
the minimizer. Therefore, each feasible point of (3.7) is a GNE.

One can solve (3.9) numerically for getting rational expressions. This is done in
Example 6.6.
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4 Parametric expressions for Lagrangemultipliers

For some GNEPs, it may be difficult to find convenient rational expressions for
Lagrange multipliers. Sometimes, the denominators may have high degrees. This is
the case especially when mi > ni . If some qi has high degree, the polynomial opti-
mization (3.6) also has a high degree, which makes the result moment SDP relaxations
(see Sects. 5.1 and 5.2) very difficult to be solved. To fix such issues, we introduce
parametric expressions for Lagrange multipliers.

Definition 4.1 For the i th player’s optimization Fi (x−i ), a parametric expression for
the Lagrange multipliers is a tuple of polynomials

λ̂i (x, ωi ) := (λ̂i,1(x, ωi ), . . . , λ̂i,mi (x, ωi )),

in x and in a parameter ωi := (ωi,1, . . . , ωi,si ) with si ≤ mi , such that (xi , λi )

is a critical pair if and only if there is a value of ωi such that (2.4) is satisfied for
λi, j = λ̂i, j (x, ωi ) with j ∈ [mi ].

The following is an example of parametric expressions.

Example 4.2 Consider the 2-player convex GNEP

min
x1∈R2

f1(x1, x2) min
x2∈R2

f2(x1, x2)

s.t. x1,1 − 2x1,2 + x2,2 ≥ 0, s.t. x1,2 + x2,2 − x22,1 + 1 ≥ 0,
1 − x2,1 · xT

1 x1 ≥ 0, 2 − x2,2 ≥ 0, 1 + x2,2 ≥ 0,
x1,1 ≥ 0, x1,2 ≥ 0; x2,1 ≥ 0.

The Lagrange multipliers can be expressed as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1,1 = ω1,1,

λ1,2 = 1
2 x1,1(

∂ f1
∂x1,1

− ω1,1) + 1
2 x1,2(

∂ f1
∂x1,2

+ 2ω1,1),

λ1,3 = ∂ f1
∂x1,1

− ω1,1 + 2x2,1x1,1λ1,2,

λ1,4 = ∂ f1
∂x1,2

+ 2ω1,1 + 2x2,1x1,2λ1,2;
λ2,1 = ω2,1,

λ2,2 = − 1
3 ·

[
(

∂ f2
∂x2,1

+ 2x2,1ω2,1)x2,1 + (
∂ f2
∂x2,2

− ω2,1)(x2,2 + 1)
]
,

λ2,3 = ∂ f2
∂x2,2

+ λ2,2 − ω2,1,

λ2,4 = ∂ f2
∂x2,1

+ 2x2,1ω2,1.

(4.1)

Parametric expressions are quite useful for solving the GNEPs. The following are
some useful cases.

(i) Suppose the i th player’s optimizationFi (x−i ) contains the nonnegative constraints,
i.e., its constraints are

xi,1 ≥ 0, . . . , xi,ni ≥ 0, gi, j (x) ≥ 0 ( j = ni + 1, . . . , mi ).
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Let si := mi − ni , then a parametric expression is

(λi,1, . . . , λi,ni ) = ∇xi fi − ∑si
k=1 ωi,k · ∇xi gi,k+ni ,

(λi,ni +1, . . . , λi,mi ) = (ωi,1, . . . , ωi,si ).
(4.2)

(ii) Suppose the i th player’s optimization Fi (x−i ) contains box constraints, i.e., its
constraints are

xi, j − ai, j ≥ 0, bi, j − xi, j ≥ 0, j = 1, . . . , ni

gi, j (x) ≥ 0. j = ni + 1, . . . , mi

Let si := mi − 2ni , then a parametric expression is

λi, j = b−xi, j
b−a ·

(
∂ fi
∂xi, j

− ∑si
k=1 ωi,k · ∂gi,k+2ni

∂xi, j

)
, j = 1, 3, . . . , 2ni − 1

λi, j = a−xi, j
b−a ·

(
∂ fi
∂xi, j

− ∑si
k=1 ωi,k · ∂gi,k+2ni

∂xi, j

)
, j = 2, 4, . . . , 2ni

λi, j = ωi, j−2ni . j = 2ni + 1, . . . , mi

(4.3)

(iii) Suppose the i th player’s optimization Fi (x−i ) contains simplex constraints, i.e.,
its constraints are

1 − eT xi ≥ 0, xi,1 ≥ 0, . . . , xi,ni ≥ 0, gi, j (x) ≥ 0, j = ni + 2, . . . , mi .

Let si := mi − ni − 1, then a parametric expression is

λi, j = (∇xi fi − ∑si
k=1 ωi,k · ∇xi gi,k+ni +1)

T xi , j = 1

λi, j = ∂ fi
∂xi, j−1

− ∑si
k=1 ωi,k · ∂gi,k+ni +1

∂xi, j−1
− λi,1, j = 2, . . . , ni + 1

λi, j = ωi, j−ni −1. j = ni + 2, . . . , mi

(4.4)

(iv) Suppose the i th player’s optimization Fi (x−i ) contains linear constraints, i.e., its
constraints are

aT
j xi − b j (x−i ) ≥ 0, j = 1, . . . , r , gi, j (x) ≥ 0, j = r + 1, . . . , mi ,

where each b j is a polynomial in x−i . Let A = [
a1 · · · ar

]T . Assume rankA = r .
If we let si := mi − r , then a parametric expression is

(λi,1, . . . , λi,r ) = (AAT )−1A(∇xi fi − ∑si
k=1 ωi,k · ∇xi gi,k+r ),

(λi,r+1, . . . , λi,mi ) = (ωi,1, . . . , ωi,si ).
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(v) Suppose there exists a labeling subset Ti := (t1, . . . , tr ) ⊆ [mi ] such that

Ĝi (x) :=

⎡

⎢
⎢
⎢
⎣

∇xi gi,t1(x) . . . ∇xi gi,tr (x)

gi,t1(x)

. . .

gi,tr (x)

⎤

⎥
⎥
⎥
⎦

is nonsingular for all x ∈ C
n . By [46, Proposition 5.1], there exists a matrix

polynomial Di (x) such that Di (x)·Ĝi (x) = Ir . Let si := mi −r , then a parametric
expression is

(λi,1, . . . , λi,r ) = Di (x)(∇xi fi − ∑si
k=1 ωi,k · ∇xi gi,k+r ),

(λi,r+1, . . . , λi,mi ) = (ωi,1, . . . , ωi,si ).

We would like to remark that parametric expressions for Lagrange multipliers
always exist. For instance, one can get a parametric expression by letting ωi, j = λi, j

for all j . Such expression is called a trivial parametric expression. However, it is
preferable to have small si , to save computational costs.

4.1 Optimality conditions and parametric expressions

Suppose all players have parametric expressions for their Lagrange multipliers as in
Definition 4.1. Let s := s1 + · · · + sN , and denote

x := (x, ω1, . . . , ωN ).

The optimality conditions (2.5) can be equivalently expressed as

⎧
⎪⎨

⎪⎩

∇xi fi (x) − ∑mi
j=1 λ̂i, j (x)∇xi gi, j (x) = 0 (i ∈ [N ]),

λ̂i (x) ⊥ gi (x), gi, j (x) = 0 ( j ∈ Ei , i ∈ [N ]),
gi, j (x) ≥ 0, λ̂i, j (x) ≥ 0 ( j ∈ Ii , i ∈ [N ]).

(4.5)

For convex GNEPs, a point x is a GNE if there exists ω := (ω1, . . . , ωN ) such that x
satisfies (4.5). Therefore, we consider the optimization

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min
x∈X×Rs

[x]T1 Θ [x]1

s.t. ∇xi fi (x) − ∑mi
j=1 λ̂i, j (x)∇xi gi, j (x) = 0 (i ∈ [N ]),

λ̂i, j (x) ⊥ gi, j (x) ( j ∈ Ei ∪ Ii , i ∈ [N ]),
λ̂i, j (x) ≥ 0 ( j ∈ Ii , i ∈ [N ]).

(4.6)

In the above, the Θ is a generically chosen positive definite matrix. The following
proposition is straightforward.
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Proposition 4.3 For the GNEPP given by (1.1), suppose each player’s optimization
has a parametric expression for their Lagrange multipliers as in Definition 4.1.

(i) If (4.6) is infeasible, then the GNEP has no KKT points. If every GNE is a KKT
point, then the infeasibility of (4.6) implies nonexistence of GNEs.

(ii) Assume the GNEP is convex. If (u, w) is a feasible point of (4.6), then u is a GNE.

5 The polynomial optimization reformulation

In this section, we give an algorithm for solving convex GNEPs. We assume each λi

has either a rational or parametric expression, as in Definition 3.1 or 4.1. If λi has
a polynomial or parametric expression, we let qi (x) := 1. If λi has a polynomial or
rational expression, then we let si = 0. Recall the notation

x := (x, ω1, . . . , ωN ).

Choose a generic positive definite matrix Θ . Then solve the following polynomial
optimization

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

min
x

[x]T1 Θ [x]1

s.t. qi (x)∇xi fi (x) − ∑mi
j=1 λ̂i, j (x)∇xi gi, j (x) = 0 (i ∈ [N ]),

λ̂i, j (x) ⊥ gi, j (x) ( j ∈ Ei ∪ Ii , i ∈ [N ]),
gi, j (x) = 0 ( j ∈ Ei , i ∈ [N ]),
gi, j (x) ≥ 0 ( j ∈ Ii , i ∈ [N ]),
λ̂i, j (x) ≥ 0 ( j ∈ Ii , i ∈ [N ]).

(5.1)

If (5.1) is infeasible, then there are no KKT points. SinceΘ is positive definite, if (5.1)
is feasible, then it must have a minimizer, say, (u, w) ∈ X × R

s . For convex GNEPs,
if qi (u) > 0 for all i , then u must be a GNE. If qi (u) ≤ 0 for some i , then u may or
may not be a GNE. To check this, we solve the following optimization problem for
those i with qi (u) ≤ 0

{
δi := min

xi
fi (xi , u−i ) − fi (ui , u−i )

s.t. gi, j (xi , u−i ) = 0 ( j ∈ Ei ), gi, j (xi , u−i ) ≥ 0 ( j ∈ Ii ).
(5.2)

This is a polynomial optimization in xi . Since u ∈ X , the point ui is feasible for (5.2),
so δi ≤ 0. If δi ≥ 0 for all i , then u must be a GNE. The following is an algorithm for
solving the GNEP.

Algorithm 5.1 For the convex GNEP given by (1.1), do the following:

Step 0 Choose a generic positive definite matrix Θ of length n + s + 1.
Step 1 Solve the polynomial optimization (5.1). If it is infeasible, then there are no KKT

points and stop; otherwise, solve it for a minimizer (u, w).
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Step 2 If all qi (u) > 0, then u is a GNE. Otherwise, for those i with qi (u) ≤ 0, solve the
optimization (5.2) for the minimum value δi . If δi ≥ 0 for all such i , then u is a
GNE; otherwise, it is not.

In Step 0, we can choose Θ = RT R for a randomly generated square matrix R
of length n + s + 1. When Θ is a generic positive definite matrix, the optimization
(5.1) must have a unique minimizer, if its feasible set is nonempty. This is shown in
Theorem 5.4(ii). Since the objective fi (xi , u−i ) is assumed to be convex in xi , if it
is bounded from below on Xi (u−i ), then (5.2) must have a minimizer (see [6, Theo-
rem 3]). In applications, we are mostly interested in cases that (5.2) has a minimizer,
for the existence of a GNE. In the Sects. 5.1 and 5.2, we will discuss how to solve
polynomial optimization problems in Algorithm 5.1, by the Moment-SOS hierarchy
of semidefinite relaxations. The convergence of Algorithm 5.1 is shown as follows.

Theorem 5.2 For the convex GNEPP given by (1.1), suppose each Lagrange multiplier
vector λi has a rational expression as in Definition 3.1 or a parametric expression as
in Definition 4.1

(i) If (u, w) is a feasible point of (5.1) such that qi (u) > 0 for all i , then u is a GNE.
(ii) Assume every GNE is a KKT point. If (5.1) is infeasible, then the GNEP has no

GNEs. If Θ is positive definite and every qi (x) > 0 for all feasible x of (5.1), then
Algorithm 5.1 will find a GNE if it exists.

Proof (i) This is directly implied by Propositions 3.3 and 4.3.
(ii) If (5.1) is infeasible, then there is no GNE, because every GNE is assumed to be a

KKT point and it must be feasible for (5.1). Next, assume (5.1) is feasible. Since
Θ is positive definite, the optimization (5.1) has a minimizer, say, (u, w). By the
given assumption, we have qi (u) > 0 for all i . So u is a GNE, by (i). ��

Remark 2 For convex GNEPs, we can choose not to use nontrivial expressions for
Lagrangemultipliers, i.e., we consider the polynomial optimization (5.1) with si = mi

andλi, j = ωi, j for all i and j . Bydoing this,we canget an algorithm likeAlgorithm5.1
to get GNEs. However, this approach is usually very inefficient computationally,
because it results in more variables for the polynomial optimization (5.1). Note that
when Lagrange multiplier expressions (LMEs) are not used, each Lagrange multiplier
is treated as a new variable. Moreover, solving (5.1) without LMEsmay require higher
order Moment-SOS relaxations. This is shown in numerical experiments in Sect. 5.1.
In Example 6.1(i-ii), we compare the performance of Algorithm 5.1 with and without
LMEs. Computational results show the advantage of using them.

In Theorem 5.2(ii), if qi (x) > 0 for all x ∈ X , then we must have qi (x) > 0 for
all feasible x of (5.1). Suppose (u, w) is a computed minimizer of (5.1). If u is not a
GNE, i.e., δi < 0 for some i , we can letN ⊆ [N ] be the labeling set of i with δi < 0.
By Theorem 5.2, we know qi (u) = 0 for all i ∈ N . For a priori small ε > 0, we can
add the inequalities qi (x) ≥ ε (i ∈ N ) to the optimization (5.1), to exclude u from
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the feasible set. Then we solve the following new optimization

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min
x∈X×Rs

[x]T1 Θ [x]1

s.t. qi (x)∇xi fi (x) − ∑mi
j=1 λ̂i, j (x)∇xi gi, j (x) = 0 (i ∈ [N ]),

λ̂i, j (x) ⊥ gi, j (x) ( j ∈ Ei ∪ Ii , i ∈ [N ]),
λ̂i, j (x) ≥ 0 ( j ∈ Ii , i ∈ [N ]),
qi (x) ≥ ε (i ∈ N ).

(5.3)

If ε > 0 is not small enough, the constraint qi (x) ≥ ε may also exclude some GNEs.
If the new optimization (5.3) is infeasible, one can heuristically get a candidate GNE
by choosing a different generic positive definite Θ in (5.1). In computational practice,
when a GNE exists, it is very likely that we can get one by doing this. However, how to
detect nonexistence of GNEs when (5.1) is feasible can be theoretically difficult. The
theoretical side of this problem is mostly open, to the best of the authors’ knowledge.

5.1 The optimization for all players

We discuss how to solve the polynomial optimization problems in Algorithm 5.1, by
using the Moment-SOS hierarchy of semidefinite relaxations [29,31,32,34,35]. We
refer to the notation in Sects. 2.1 and 2.2.

First, we discuss how to solve the optimization (5.1). Denote the polynomial tuples

Φi :=
{

qi (x)∇xi fi (x) −
mi∑

j=1

λ̂i, j (x)∇xi gi, j (x)
}

∪
{

gi, j (x) : j ∈ Ei

}

∪
{
λ̂i, j (x) · gi, j (x) : j ∈ Ii

}
, (5.4)

Ψi :=
{

gi, j (x) : j ∈ Ii

}
∪
{
λ̂i, j (x) : j ∈ Ii

}
. (5.5)

For notational convenience, for a vector p = (p1, . . . , ps), the set {p} stands for
{p1, . . . , ps}, in the above. Denote the unions

Φ :=
N⋃

i=1

Φi , Ψ :=
N⋃

i=1

Ψi .

They are both finite sets of polynomials. Then, the optimization (5.1) can be equiva-
lently written as

⎧
⎨

⎩

ϑmin := min
x

θ(x) := [x]T
1 Θ[x]1

s.t. p(x) = 0 (∀ p ∈ Φ),

q(x) ≥ 0 (∀ q ∈ Ψ ).

(5.6)
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Denote the degree

d0 := max{�deg(p)/2	 : p ∈ Φ ∪ Ψ }.

For a degree k ≥ d0, consider the kth order moment relaxation for solving (5.6)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ϑk := min
y

〈θ, y〉
s.t. y0 = 1, L(k)

p [y] = 0 (p ∈ Φ),

Mk[y] � 0, L(k)
q [y] � 0 (q ∈ Ψ ),

y ∈ R
N

n+s
2k .

(5.7)

Its dual optimization problem is the kth order SOS relaxation

{
max γ

s.t. θ − γ ∈ Ideal[Φ]2k + Qmod[Ψ ]2k .
(5.8)

For relaxation orders k = d0, d0 + 1, . . ., we get the Moment-SOS hierarchy of
semidefinite relaxations (5.7)–(5.8). This produces the following algorithm for solving
the polynomial optimization problem (5.6).

Algorithm 5.3 Let θ,Φ,Ψ be as in (5.6). Initialize k := d0.

Step 1 Solve the semidefinite relaxation (5.7). If it is infeasible, then (5.6) has no
feasible points and stop; otherwise, solve it for a minimizer y∗.

Step 2 Let u = (u, w) := (y∗
e1, . . . , y∗

en+s
). If u is feasible for (5.6) and ϑk = θ(u),

then u is a minimizer of (5.6). Otherwise, let k := k + 1 and go to Step 1.

In the Step 2, ei denotes the labeling vector such that its i th entry is 1 while all
other entries are 0. For instance, when n = s = 2, ye3 = y0010. The optimization (5.7)
is a relaxation of (5.6). This is because if x is a feasible point of (5.6), then y = [x]2k

must be feasible for (5.7). Hence, if (5.7) is infeasible, then (5.6) must be infeasible,
which also implies the nonexistence of KKT points. Moreover, the optimal value ϑk

of (5.7) is a lower bound for the minimum value of (5.6), i.e., ϑk ≤ θ(x) for all x that
is feasible for (5.6). In the Step 2, if u is feasible for (5.6) and ϑk = θ(u), then umust
be a minimizer of (5.6). The Algorithm 5.3 can be implemented in GloptiPoly 3
[27]. The convergence of Algorithm 5.3 is shown as follows.

Theorem 5.4 Assume the set Ideal[Φ] + Qmod[Ψ ] ⊆ R[x] is archimedean.

(i) If (5.6) is infeasible, then the moment relaxation (5.7) must be infeasible when the
order k is big enough.

(ii) Suppose (5.6) is feasible and Θ is a generic positive definite matrix. Then (5.6) has
a unique minimizer. Let u(k) be the point u produced in the Step 2 of Algorithm 5.3
in the kth loop. Then u(k) converges to the unique minimizer of (5.6). In particular,
if the real zero set of Φ is finite, then u(k) is the unique minimizer of (5.6), when k
is sufficiently large.
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Proof (i) If (5.6) is infeasible, the constant polynomial−1 can be viewed as a positive
polynomial on the feasible set of (5.6). Since Ideal[Φ]+Qmod[Ψ ] is archimedean,
we have −1 ∈ Ideal[Φ]2k + Qmod[Ψ ]2k , for k big enough, by the Putinar Posi-
tivstellensatz [53]. For such a big k, the SOS relaxation (5.8) is unbounded from
above, hence the moment relaxation (5.7) must be infeasible.

(ii) When the optimization (5.6) is feasible, it must have a unique minimizer, say, x∗.
To see this, let θ be defined as in (5.6), K be the feasible set of (5.6), and R2(K )

be the set of tms’s in RN
n
2 admitting K-representing measures. Consider the linear

conic optimization problem

{
min 〈θ, y〉
s.t. y0 = 1, y ∈ R2(K ).

(5.9)

If Θ is generic in the cone of positive definite matrice, the objective 〈θ, y〉 is a
generic linear function in y. By [41, Proposition 5.2], the optimization (5.9) has a
unique minimizer. The minimum value of (5.9) is equal to ϑmin. Therefore, (5.6)
has a unique minimizer whenΘ is generic. The convergence of u(k) to x∗ is shown
in [55] or [38, Theorem 3.3]. For the special case that Φ(x) = 0 has finitely many
real solutions, the point u(k) must be equal to x∗, when k is large enough. This is
shown in [33] (also see [39]). ��

The archimedeaness of the set Ideal[Φ]+Qmod[Ψ ] is essentially requiring that the
feasible set of (5.6) is compact. The archimedeaness is sufficient but not necessary for
Algorithm 5.3 to converge. Even if the archimedeaness fails to hold, Algorithm 5.3 is
still applicable for solving (5.1). If the point u(k) is feasible and ϑk = θ(u(k)), then u(k)

must be aminimizer of (5.1), regardless of the archimedeaness holds or not. Moreover,
without archimedeaness, the infeasibility of (5.7) still implies that (5.1) is infeasible.
In our computational practice, Algorithm 5.3 almost always has finite convergence.

The polynomial optimization (5.3) can be solved in the same way by the Moment-
SOS hierarchy of semidefinite relaxations. The convergence property is the same. For
the cleanness of this paper, we omit the details.

5.2 Checking generalized Nash equilibria

Suppose u = (u, w) ∈ R
n × R

s is a minimizer of (5.1). For convex GNEPPs, if all
qi (u) > 0, then u is a GNE, by Theorem 5.2(i). If qi (u) ≤ 0 for some i , we need to
solve the optimization (5.2), to check if u = (ui , u−i ) is a GNE or not, Note that (5.2)
is a convex polynomial optimization problem in xi . For given u−i , if it is bounded
from below, then (5.2) achieves its optimal value at a minimizer.
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Consider the i th player’s optimization with qi (u) ≤ 0. For notational convenience,
we denote the polynomial tuples

Hi (u) := {
gi, j (xi , u−i ) : j ∈ Ei

} ∪ {
λ̂i, j (xi , u−i ) · gi, j (xi , u−i ) : j ∈ Ii

}

∪{qi (xi , u−i )∇xi fi (xi , u−i ) −
mi∑

j=1

λ̂i, j (xi , u−i )∇xi gi, j (xi , u−i )
}
,

(5.10)

Ji (u) := {
gi, j (xi , u−i ) : j ∈ Ii

} ∪ {
λ̂i, j (xi , u−i ) : j ∈ Ii

}
. (5.11)

Like in (5.4)-(5.5), the set {p} stands for {p1, . . . , ps}, when p = (p1, . . . , ps) is a
vector of polynomial. The sets Hi (u), Ji (u) are finite collections.

Under some suitable constraint qualification conditions (e.g., the Slater’s Condi-
tion), when (5.2) has a minimizer, it is equivalent to

⎧
⎪⎨

⎪⎩

ηi := min
xi ∈Rni

ζi (xi ) := fi (xi , u−i ) − fi (ui , u−i )

s.t. p(xi ) = 0 (p ∈ Hi (u)),

q(xi ) ≥ 0 (q ∈ Ji (u)).

(5.12)

Denote the degree in variables xi for its constraining polynomials

di := max
{�deg(ζi (xi , u−i ))/2, deg(p(xi ))/2,

deg(q(xi ))/2 : p ∈ Hi (u), q ∈ Ji (u)	}. (5.13)

For a degree k ≥ di , the kth order moment relaxation for (5.6) is

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

η
(k)
i := min

y
〈ζi (xi ), y〉

s.t. y0 = 1, L(k)
p [y] = 0 (p ∈ Hi (u)),

Mk[y] � 0, L(k)
q [y] � 0 (q ∈ Ji (u)),

y ∈ R
N

ni
2k .

(5.14)

The dual optimization problem of (5.14) is the kth order SOS relaxation

{
max γ

s.t. ζi (xi ) − γ ∈ Ideal[Hi (u)]2k + Qmod[Ji (u)]2k .
(5.15)

By solving the above relaxations for k = di , di + 1, . . ., we get the Moment-SOS
hierarchy of relaxations (5.14)-(5.15). This gives the following algorithm.

Algorithm 5.5 For a minimizer u = (ui , u−i ) of (5.1) with qi (u) ≤ 0, solve the i th
player’s optimization (5.12). Initialize k := di .

Step 1 Solve the moment relaxation (5.14) for the minimum value η
(k)
i and a minimizer

y∗. If η
(k)
i ≥ 0, then ηi = 0 and stop; otherwise, go to the next step.
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Step 2 Let t := di as in (5.13). If y∗ satisfies the rank condition

rank Mt [y∗] = rank Mt−di [y∗], (5.16)

then extract a set Ui of r := rank Mt (y∗) minimizers for (5.12) and stop.
Step 3 If (5.16) fails to hold and t < k, let t := t +1 and then go to Step 2; otherwise,

let k := k + 1 and go to Step 1.

We would like to remark that the optimization (5.12) is always feasible, because ui

is a feasible point since u is a minimizer of (5.1). The moment relaxation (5.14) is also
feasible. Because η

(k)
i is a lower bound for ηi , and ηi ≤ ζi (ui , u−i ) = 0, if η

(k)
i ≥ 0,

then ηi must be 0. In Step 2, the rank condition (5.16) is called flat truncation [38].
It is a sufficient (and almost necessary) condition to check convergence of moment
relaxations. When (5.16) holds, the method in [26] can be used to extract r minimizers
for (5.12). The Algorithm 5.5 can also be implemented in GloptiPoly 3 [27]. If
Ideal[Hi (u)] + Qmod[Ji (u)] is archimedean, then η

(k)
i → ηi as k → ∞ [29]. It is

interesting to remark that

I1 := Ideal[gi, j (xi , u−i ) : j ∈ Ei ] ⊆ Ideal[Hi (u)],
I2 := Qmod[gi, j (xi , u−i ) : j ∈ Ii ] ⊆ Qmod[Ji (u)].

If I1+ I2 is archimedean, then Ideal[Hi (u)]+Qmod[Ji (u)]must also be archimedean.
Furthermore, we have the following convergence theorem for Algorithm 5.5.

Remark 3 To check the flat truncation (5.16), we need to evaluate the ranks of Mt [y∗]
and Mt−di [y∗]. Evaluating matrix ranks is a classical problem in numerical linear
algebra. When a matrix is near to be singular, it may be difficult to determine its rank
accurately, due to round-off errors. In computational practice, we often determine the
rank of a matrix as the number of its singular values larger than a tolerance (say, 10−6).
We refer to [11] for determining matrix ranks numerically. Moreover, when (5.12) has
a unique minimizer, the ranks of Mt [y∗] and Mt−di [y∗] are one, the flat truncation
(5.16) is relatively easy to check by looking at the largest singular value.

Theorem 5.6 For the convex polynomial optimization (5.2), assume its optimal value
is achieved at a KKT point. If either one of the following conditions hold,

(i) The set I1+ I2 is archimedean, and the Hessian ∇2
xi

ζi (x∗
i , u−i )  0 for a minimizer

x∗
i of (5.12); or

(ii) The real zero set of polynomials in Hi (u) is finite,

then Algorithm 5.5 must terminate within finitely many loops.

Proof Since its optimal value is achieved at a KKT point, the optimization prob-
lem (5.2) is equivalent to (5.12).

(i) If I1 + I2 is archimedean and ∇2
xi

ζi (x∗
i , u−i )  0 if x∗

i is a minimizer of (5.12),
then ζi (xi ) − ηi ∈ I1 + I2, by [9, Corollary 3.3]. Since

I1 + I2 ⊆ Ideal[Hi (u)] + Qmod[Ji (u)],
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we have ζi (xi ) − ηi ∈ Ideal[Hi (u)]2k + Qmod[Ji (u)]2k for all k big enough.
Therefore, Algorithm 5.5must terminate within finitely many loops, by the duality
theory.

(ii) If the real zero set of polynomials in Hi (u) is finite, then the conclusion is implied
by [39, Theorem 1.1] and [38, Theorem 2.2]. ��

Remark 4 If the objective polynomial in (5.2) is SOS-convex and its constraining
ones are SOS-concave (see [25] for the definition of SOS-convex polynomials), then
Algorithm 5.5 must terminate in the first loop (see [30]). If the optimal value of (5.2)
is not achieved at a KKT point, the classical Moment-SOS hierarchy of semidefinite
relaxations can be used to solve it.We refer to [9,29–32,34,35] for the work for solving
general polynomial optimization.

6 Numerical experiments

In this section, we apply Algorithm 5.1 to solve convex GNEPs. To use it, we need
Lagrange multiplier expressions. This can be done as follows.

– When polynomial expressions exist, we always use them. In particular, we use
polynomial expressions for the first player of the GNEP given by (1.4), the first
player in Example 6.1(ii), the third player in Examples 3.4 and 6.7(i-ii), the pro-
duction unit and market players in Example 6.9.

– We use rational expressions for all players in Examples 6.3, 6.4 and 6.6. Moreover,
rational expressions are used for the second player of the GNEP given by (1.4),
the first two players in Examples 3.4 and 6.7(i-ii), and the consumer players in
Example 6.9. For Example 6.6, the rational expression is obtained by solving (3.9)
numerically.

– When it is difficult to find convenient polynomial or rational expressions, we use
parametric expressions for Lagrange multipliers. For all players in Examples 6.5,
6.8, we use parametric expressions.

We apply the software GloptiPoly 3 [27] and SeDuMi [56] to solve the
Moment-SOS relaxations for the polynomial optimization (5.6) and (5.12).We use the
software YALMIP for solving (3.9). The computation is implemented in an Alienware
Aurora R8 desktop, with an Intel® Core(TM) i7-9700 CPU at 3.00GHz×8 and 16GB
of RAM, in a Windows 10 operating system. For neatness of the paper, only four
decimal digits are shown for the computational results.

In Step 2 of Algorithm 5.1, if the optimal values δi ≥ 0 for each i such that
qi (u) ≤ 0, then the computedminimizer of (5.1) is a GNE. In numerical computations,
we may not have δi ≥ 0 exactly due to round-off errors. Typically, when δi is near
zero, say, δi ≥ −10−6, we regard the computed solution as an accurate GNE. In the
following, all the GNEPs are convex.

Example 6.1 (i) For the GNEP given by (1.4), the first player has a polynomial expres-
sion for Lagrange multipliers given by (2.8), and the second player has a rational
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Table 1 The computational
results for Example 6.1(i)

Algorithm 5.1 Without LME
Time GNE Time GNE

k = 2 n.a. n.a. 4.03 No

k = 3 2.83 Yes 1350.09 No

expression given as

λ2,1 = −xT
2 ∇x2 f2
2q2(x)

, q2(x) = xT
1 x1.

For each i , the qi (x) > 0 for all x ∈ X . We ran Algorithm 5.1 and obtained the GNE
u = (u1, u2) with

u1 ≈ (0.7274, 0.7274, 0.7274), u2 ≈ (0.4582, 0.4582, 0.4582). (6.1)

It took around 2.83 seconds.
(ii) If the first player’s objective is changed to

f1(x) = (x2,1 + x2,2 − 2x2,3)(x1,1 + x1,2 − 2x1,3)
2 + x1,1 + x1,2 − 2x1,3,

then the GNEP has no GNE, detected by Algorithm 5.1. It took around 70.31 seconds
to detect the nonexistence. The matrix polynomials G1(x) and G2(x) are nonsingular
on X , so all GNEs must be KKT points if they exist.

In the following, we compare the performance of Algorithm 5.1 with the method
of solving the optimization (5.1) without using Lagrange multiplier expressions, i.e.,
each Lagrange multiplier is treated as a new variable for polynomials. The comparison
for Example 6.1(i) is given in Table 1. The computational results for the method using
Lagrange multiplier expressions (i.e., for Algorithm 5.1) are given in the column
labeled “Algorithm 5.1”. The results for the method without using Lagrangemultiplier
expressions are given in the column labeled “Without LME”. In the rows, the value
k is the relaxation order for solving (5.1). The subcolumn “time” lists the consumed
time (in seconds) for solving the moment relaxation of order k, and the subcolumn
“GNE” shows if a GNE is obtained or not. When k = 2 for Algorithm 5.1, the degree
of relaxation is less than appearing polynomials, so we display that “not applicable
(n.a.)”. For Example 6.1(ii), the comparison is given in Table 2. This GNEP does not
have a GNE. When no LMEs are used, the 4th order moment relaxation cannot be
solved due to out of memory. However this can be done by using nontrivial LMEs.

Example 6.2 Consider the GNEP in Example 3.4. We use Lagrange multiplier expres-
sions given there. By Algorithm 5.1, we obtained a feasible point û ≈ 10−4 ·
(0.1274, 0.4102, 0.3219) of (5.1) with q1(û) ≈ 0.1274 · 10−4 and q2(û) ≈ 0.4102 ·
10−4. We solved (5.2), for i = 1, 2, to check if û is a GNE or not, and got
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Table 2 The computational results for Example 6.1(ii)

Algorithm 5.1 Without LME
Time Nonexistence of GNE Time Nonexistence of GNE

k = 2 n.a. n.a. 3.67 Not detected

k = 3 2.77 Not detected 1201.75 Not detected

k = 4 70.31 Detected Out of memory

δ1 ≈ −1.0000, δ2 ≈ −1.8996 · 10−10. Therefore, we solved (5.3) with N = {1}
and ε = 0.1, and obtained a GNE u = (u1, u2, u3) with

u1 ≈ 0.5000, u2 ≈ 0.5000, u3 ≈ 0.7500, q1(u) ≈ q2(u) ≈ 0.1250.

It took around 0.89 second.

Example 6.3 Consider the GNEP in Example 3.2 with objectives

f1(x) =
2∑

j=1

(x1, j − 1)2 + x2(x1,1 − x1,2), f2(x) = (x2)
3 − x1,1x1,2x2 − x2.

The rational expressions for both players are given by (3.5). For each i , the qi (x) > 0
for all x ∈ X . We ran Algorithm 5.1 and got the GNE u = (u1, u2) with

u1 ≈ (0.4897, 1.0259), u2 ≈ 0.7077.

It took around 0.20 second.

Example 6.4 Consider the GNEP in Example 3.8 with objectives

f1(x) = 10xT
1 x2 −

3∑

j=1

x1, j , f2(x) =
3∑

j=1

(x1, j x2, j )
2 + (3

3∏

j=1

x1, j − 1)
3∑

j=1

x2, j .

We use rational expressions as in (3.10). From Example 3.8, we know all feasible
points of (5.1) are GNEs. By Algorithm 5.1, we got the GNE u = (u1, u2) with

u1 ≈ (0.9864, 0.0088, 0.0088), u2 ≈ (0.0836, 0.0999, 0.0999).

It took around 2.03 seconds.

Example 6.5 Consider the GNEP in Example 4.2 with objectives

f1(x) = x2,1(x1,1)3 + (x1,2)3 − ∑2
j=1 x1, j · ∑2

j=1 x2, j ,

f2(x) = (x1,1 + x1,2)(x2,1)3 − 3x2,1 + (x2,2)2 + x1,1x1,2x2,2.
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We use parametric expressions as in (4.1). For each i , the qi (x) > 0 for all x ∈ X . By
Algorithm 5.1, we got the GNE u = (u1, u2) with

u1 ≈ (0.6475, 0.2786), u2 ≈ (1.0391,−0.0902).

It took around 63.97 seconds.

Example 6.6 Consider the 2-player GNEP

min
x1∈R2

(x1,1)2 + 2(x1,2)2 min
x2∈R2

‖x1‖2 · ‖x2‖2 + 3xT
1 x2

+3
∑2

j=1 x1, j (x2, j )
2 +x2,1 − x2,2

s.t. x1,1 + 2x1,2 − x2,1 ≤ 1, s.t. (x2,1)2 + x1,2x2,1 ≤ 2,
(x1,2)2 + (x2,1)2 ≤ 3, (x1,1)2 + (x2,2)2 ≤ 3,
x1,1 ≥ 0, x2,2 ≥ 0.

We solve (3.9) numerically for i = 1, 2 with v = (0, 0, 0, 0), d = 2 to get rational
expressions for λi ’s. By Algorithm 5.1, we got the GNE u = (u1, u2) with

u1 ≈ (0.0000,−1.3758), q1(u) ≈ 6.7538;
u2 ≈ (−0.2641, 1.3544), q2(u) ≈ 2.3227.

It took around 0.41 second in solving (3.9) for both players, and 6.40 seconds to find
the GNE. For neatness of the paper, we do not display Lagrangemultiplier expressions
obtained by solving (3.9).

Example 6.7 (i) Consider the 3-player GNEP

1st player:

{
min

x1∈R2
x2,1(x1,1)2 + x2,2(x1,2)2 − (x3,1)2x1,1 − (x3,2)2x1,2

s.t. xT
1 x1 ≤ 1 + xT

2 x2;

2nd player:

{
min

x2∈R2
(x2,1)3 + (x2,2)3 − x1,1x2,1x3,1 − x1,2x2,2x3,2

s.t. x2,1 + x2,2 ≤ 1 + xT
3 x3, x2,1 ≥ 0, x2,2 ≥ 0;

3rd player:

{
min

x3∈R2

(∑3
i=1(xi,1 + xi,2)

)2 − x3,1 − x3,2

s.t. x3,1 ≥ x1,1, x3,2 ≥ x1,2.

The first player’s Lagrange multipliers have a rational expression, that

λ1 = −xT
1 ∇x1 f1
2q1(x)

, q1(x) = 1 + xT
2 x2.

For the second player, we let q2(x) = 1+ xT
3 x3, and there exists a rational expression

for λ2, that

λ2,1 = −xT
2 ∇x2 f2
q2(x)

, λ2,2 = ∂ f2
∂x2,1

+ λ2,1, λ2,3 = ∂ f2
∂x2,2

+ λ2,1.
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For λ3, we use the polynomial expression that

λ3,1 = ∂ f3
∂x3,1

, λ3,2 = ∂ f3
∂x3,2

.

For each i , the qi (x) > 0 for all x ∈ X . By Algorithm 5.1, we got the GNE u =
(u1, u2, u3) with

u1 ≈ (0.1097, 0.0750), u2 ≈ (0.0663, 0.0458), u3 ≈ (0.1205, 0.0828).

It took around 3.23 seconds.
(ii) If the third player’s objective function becomes

(∑3
i=1(xi,1 − xi,2)

)2 − x3,1 − x3,2,

then Algorithm 5.1 took around 2.86 seconds to detect nonexistence of GNEs. Note
that all the matrix polynomials Gi (x) (i = 1, . . . , 3) are nonsingular on X , so all
GNEs must be KKT points if they exist.

Example 6.8 [18, Example A.3] Consider the GNEP of 3 players. For i = 1, 2, 3, the
i th player aims to minimize the quadratic function

fi (x) = 1

2
xT

i Ai xi + xT
i (Bi x−i + bi ).

All variables have box constraints −10 ≤ xi, j ≤ 10, for all i, j . In addition to them,
the first player has linear constraints x1,1 + x1,2 + x1,3 ≤ 20, x1,1 + x1,2 − x1,3 ≤
x2,1 − x3,2 + 5; the second player has x2,1 − x2,2 ≤ x1,2 + x1,3 − x3,1 + 7; and the
third player has x3,2 ≤ x1,1 + x1,3 − x2,1 + 4. The values of parameters are set as
follows

A1 =
⎡

⎣
20 5 3
5 5 −5
3 −5 15

⎤

⎦ , A2 =
[
11 −1
−1 9

]

, A3 =
[
48 39
39 53

]

,

B1 =
⎡

⎣
−6 10 11 20
10 −4 −17 9
15 8 −22 21

⎤

⎦ , B2 =
[
20 1 −3 12 1
10 −4 8 16 21

]

,

B3 =
[
10 −2 22 12 16
9 19 21 −4 20

]

, b1 =
⎡

⎣
1

−1
1

⎤

⎦ , b2 =
[
1
0

]

, b3 =
[−1

2

]

.

Weuse parametric expressions for Lagrangemultipliers as in (4.3). It is clear qi (x) = 1
for all x ∈ X and for all i = 1, 2, 3. By Algorithm 5.1, we got the GNE u =
(u1, u2, u3) with

u1 ≈ (−0.3805,−0.1227,−0.9932), u2 ≈ (0.3903, 1.1638),
u3 ≈ (0.0504, 0.0176).
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It took around 8.18 seconds.

Example 6.9 Consider the GNEP based on the Arrow and Debreu model of a compet-
itive economy [4,18]. The first N1 players are consumers, the second N2 players are
production units, and the last player is the market, so N = N1+ N2+1. In this GNEP,
each player has n1 = · · · = nN variables. Let Qi ∈ R

ni ×ni , bi ∈ R
ni , ξi ∈ R

ni+ and
ai,k ∈ R+ be parameters. These players’ optimization problems are:

The i th player (a consumer):

⎧
⎨

⎩

min
xi ∈Rni+

1
2 xT

i Qi xi − bT
i xi

s.t. xT
N xi ≤ xT

N ξi + ∑N−1
k=N1+1 ai,k xT

N xk .

The i th player (a production unit):

⎧
⎨

⎩

min
xi ∈Rni+

−xT
N xi

s.t. xT
i xi ≤ i − N1.

The N th player (the market):

⎧
⎨

⎩

min
xN ∈Rni+

xT
N

(∑N−1
k=N1+1 xk − ∑N1

k=1(xk − ξk)
)

s.t.
∑ni

j=1 xN , j = 1.

For each i ∈ [N1], the Lagrange multipliers have rational expressions as

λi,1 = −xT
i ∇xi fi

qi (x)
, λi, j = ∂ fi

∂xi, j
+ xN , j · λi,1 ( j = 1, . . . , ni ),

where qi (x) = xT
N ξi + ∑N−1

k=N1+1 ai,k xT
N xk > 0 for all x ∈ X . For each i = N1 +

1, . . . , N1 + N2, the i th player (a production unit) has polynomial expressions

λi,1 = −xT
i ∇xi fi

2(i − N1)
, λi, j = ∂ fi

∂xi, j
+ 2xi, j · λi,1 ( j = 1, . . . , ni ).

For the last player (the market), we substitute xN ,ni by 1 − ∑ni −1
j=1 xN , j , then the

constraints become 1 − ∑ni −1
j=1 xN , j ≥ 0, xN ,1 ≥ 0, . . . , xN ,ni −1 ≥ 0, and hence

λN ,1 = −
∑ni −1

j=1

∂ fN

∂xN , j
· xN , j , λN , j+1 = ∂ fN

∂xN , j
+ λN ,1 ( j = 1, . . . , ni − 1).

For each i = 1, . . . , N1, when ni = 2, the parameters are given as

Qi =
[
0.75 + 0.25i 1.5 − 0.5i
1.5 − 0.5i i

]

, bi =
[
0.4 + 0.1i
0.9 + 0.1i

]

, ξi =
[

i
i

]

,

ai, j = 0.2 + 0.1i ( j = N1 + 1, . . . , N1 + N2).
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When ni = 3, the parameters are given as:

Qi =
⎡

⎣
−1 + 2i −i i

−i 1 + i 1 − i
i 1 − i 1 + i

⎤

⎦ , bi =
⎡

⎣
0.4 + 0.1i
0.9 + 0.1i
1.4 + 0.1i

⎤

⎦ , ξi =
⎡

⎣
i
i
i

⎤

⎦ ,

ai, j = 0.2 + 0.1i ( j = N1 + 1, . . . , N1 + N2).

The numerical results are presented in Table 3. The “N” is the total number of all
players, the “N1” and “N2” are the number of consumers and production units respec-
tively, the “n” (resp., “ni”) is the dimension of “x” (resp., “xi”), the “u” is the GNE
obtained by Algorithm 5.1, the “q(u)” gives the value of the denominator vector
q(u) := (q1(u), . . . , qN1(u)), and “time” shows the consumed time (in seconds).

6.1 Comparison with other methods

We compare our method (i.e., Algorithm 5.1) with some classical methods for solving
convex GNEPPs, such as the two-step method in [23] based on Quasi-variational
formulation, the penalty method in [18], the exact version of interior point method
based on the KKT system in [13], and the Augmented-Lagrangian method in [28]. All
examples in Sect. 6 are tested for comparisions. For Example 6.9, we test for the case
that N1 = N2 = 1, ni = 3.

For a computed tuple u := (u1, . . . , uN ), we use the value

ξ := max
{

max
i∈[N ], j∈Ii

{−gi, j (u)}, max
i∈[N ], j∈Ei

{|gi, j (u)|}}

to measure the feasibility violation. Clearly, the point u is feasible if and only if ξ ≤ 0.
If we solve (5.2) for all i ∈ [N ], the accuracy parameter of u is δ := maxi∈[N ] |δi |. For
these methods, we use the following stopping criterion: For each time we get a new
iterate u, if its feasibility violation ξ < 10−6, then we compute the accuracy parameter
δ. If δ < 10−6, then we stop the iteration.

For these classical methods, the parameters are the same as given in [13,18,23,
28,57]. When implementing the QVI method, we use Moment-SOS relaxations to
find projections into given sets (the maximum number of iterations for line search
is set to be 100). For the penalty method, the MATLAB function fsolve is used
to implement the Levenberg-Marquardt Algorithm for solving all equations involved
(the maximum number of iterations is set to be 100). The full penalization is used
when we implement the Augmented-Lagrangian method, and a Levenberg-Marquardt
type method (see [28, Algorithm 24]) is exploited to solve penalized subproblems.
We let 1000 be the maximum number of iterations for the QVI method, let 1000 be
the maximum number of outer iterations for the penalty method and the Augmented-
Lagrangian method, and let 10, 000 be the maximum number of iterations for the
interior point method. For initial points, we use (1, 0, 0, 1, 0, 0) for Example 6.1(i-ii),
(0, 0, 0, 0, 0, 0, 0, 0, 1) for Example 6.9, and the zero vectors for other GNEPs. If the
maximum number of iterations is reached but the stopping criterion is not met, we
still solve the (5.2) to check if the latest iterating point is a GNE or not.
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Table 3 Numerical results of Example 6.9

Number
of

players
Dimension u q(u) Time

N = 5
N1 = 2
N2 = 2

n = 10
ni = 2

(0.0000, 1.0000, 0.2889, 0.4778,
0.4166, 0.9091, 0.5892, 1.2856,

0.3143, 0.6857)

1.4907
2.6543

1.37

N = 6
N1 = 3
N2 = 2

n = 12
ni = 2

(0.0000, 1.0000, 0.2889, 0.4778,
0.4667, 0.4000, 0.4354, 0.9002,
0.6157, 1.2731, 0.3260, 0.6740)

1.5423
2.7230
3.9038

3.82

N = 7
N1 = 3
N2 = 3

n = 14
ni = 2

(0.0000, 1.0000, 0.2889, 0.4778,
0.4667, 0.4000, 0.5587, 0.8294,
0.7901, 1.1729, 0.9677, 1.4365,

0.4025, 0.5975)

1.8961
3.1948
4.4935

21.26

N = 8
N1 = 4
N2 = 3

n = 16
ni = 2

(0.0000, 1.0000, 0.2889, 0.4778,
0.4667, 0.4000, 0.5704, 0.3963,
0.5835, 0.8121, 0.8251, 1.1485,
1.0106, 1.4067, 0.4181, 0.5819)

1.8913
3.1884
4.4855
5.7826

106.78

N = 9
N1 = 4
N2 = 4

n = 18
ni = 2

(0.0000, 1.0000, 0.2889, 0.4778,
0.4667, 0.4000, 0.5704, 0.3963,
0.6258, 0.7800, 0.8850, 1.1031,
1.0838, 1.3510, 1.2515, 1.5600,

0.4451, 0.5549)

2.3116
3.7489
5.1861
6.6233

465.71

N = 3
N1 = 1
N2 = 1

n = 9
ni = 3

(1.3076, 1.0871, 0.0962,
0.8087, 0.5882, 0.0000,
0.5789, 0.4211, 0.0000)

1.2148 0.50

N = 4
N1 = 2
N2 = 1

n = 12
ni = 3

(1.3696, 1.0886, 0.0652,
0.3500, 0.7875, 0.5625,
0.6245, 0.7810, 0.0000,
0.4443, 0.5557, 0.0000)

1.2134
2.2846

3.76

N = 5
N1 = 2
N2 = 2

n = 15
ni = 3

(1.7172, 1.3109, 0.0000,
0.3500, 0.7875, 0.5625,
0.7006, 0.7135, 0.0097,
0.9908, 1.0091, 0.0006,
0.4953, 0.5044, 0.0003)

1.5121
2.6829

42.66

N = 6
N1 = 3
N2 = 2

n = 18
ni = 3

(1.7734, 1.3398, 0.0000,
0.3500, 0.7875, 0.5625,
0.2250, 0.7958, 0.6542,
0.5780, 0.8160, 0.0001,
0.8174, 1.1541, 0.0040,
0.4146, 0.5854, 0.0000)

1.5192
2.6923
3.8653

473.84

The numerical results are presented in Table 4, and the comparison is summarized
in the following.

1. The QVI method failed to find a GNE for Example 6.1(i), because the projection
set in Step 2 is empty. Therefore the line-search could not finish (see [23, Algo-
rithm 4.1]). This is also the case for Examples 6.1(ii) and 6.7(ii), for which the
GNEs do not exist. For Examples 6.2 and 6.4, the sequence generated by QVI is
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Table 4 Comparison with some methods

Example QVI Penalty IPM A-L Alogrithm 5.1

6.1(i) Time Fail Fail Fail Fail 2.83

Error 4 × 10−9

6.1(ii) Time Fail Fail Fail Fail 70.31

Error no GNE

6.2 Time Fail 3.45 0.19 Fail 0.89

Error 2 × 10−6 3 × 10−7 7 × 10−7

6.3 Time 2.63 8.46 0.12 0.08 0.20

Error 8 × 10−7 3 × 10−6 2 × 10−7 2 × 10−7 1 × 10−8

6.4 Time Fail 4.51 0.29 Fail 2.03

Error 3 × 10−5 8 × 10−7 4 × 10−7

6.5 Time 185.29 4.02 37.7 0.03 63.97

Error 9 × 10−5 2 × 10−6 5 × 10−4 3 × 10−7 4 × 10−7

6.6 Time 7.78 Fail 0.17 Fail 6.40

Error 6 × 10−7 3 × 10−7 1 × 10−7

6.7(i) Time 72.18 0.39 0.16 0.05 3.23

Error 4 × 10−7 8 × 10−8 5 × 10−7 1 × 10−10 7 × 10−9

6.7(ii) Time Fail Fail Fail Fail 2.86

Error no GNE

6.8 Time Fail 0.38 0.16 0.01 8.18

Error 9 × 10−8 1 × 10−8 1 × 10−8 3 × 10−8

6.9 Time 1.223 6.26 0.14 Fail 0.50

Error 3 × 10−5 8 × 10−6 3 × 10−7 7 × 10−7

alternating between several points and none of them is a GNE. For Example 6.8,
the sequence does not converge.

2. The penalty method failed to find a GNE for Examples 6.1(i) and 6.6, because the
equation Fεk (x) = 0 cannot be solved for some k (see [18, Algorithm 3.3]). This
is also the case for Examples 6.1(ii) and 6.7(ii), for which the GNEs do not exist.

3. The interior-point method failed to find a GNE for Examples 6.1(i), 6.1(ii) and
6.7(ii), because the step-length is too small to efficiently decrease the violation
of KKT conditions. Note that for Examples 6.1(ii) and 6.7(ii), the GNEs do not
exist, so the Newton type directions usually do not satisfy the sufficient descent
conditions.

4. The Augmented-Lagrangian method failed to find a GNE for Example 6.1(i),
because the maximum penalty parameter (1012) is reached before a GNE is
obtained. This is also the case for Example 6.1(ii), for which the GNEs do not exist.
For Examples 6.2, 6.4, 6.6, 6.7(ii) and 6.9, the Augmented-Lagrangian method
failed to find a GNE, because the penalization subproblems cannot be efficiently
solved.
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7 Conclusions and discussions

This paper studies convex GNEPs given by polynomials. The rational and para-
metric expressions for Lagrange multipliers are used. Based on these expressions,
Algorithms 5.1 is proposed for computing a GNE. The Moment-SOS hierarchy of
semidefinite relaxations are used to solve the appearing polynomial optimization prob-
lems. Under some general assumptions, we show that Algorithm 5.1 is able to find a
GNE if there exists one, or detect nonexistence of GNEs if there is none.

For future work, it is interesting to solve nonconvex GNEPPs. Under some con-
straint qualifications, the KKT system (2.5) is necessary but not sufficient for GNEs.
A solution u of (2.5) may not be a GNE for nonconvex GNEPPs. If u is not a GNE,
one needs to find an efficient method to obtain a different candidate. Such a method
is proposed for solving NEPs [48]. For GNEPs, it is not clear how to generalize the
method in [48]. When the point u is not a GNE, how can we exclude it and find a
better candidate? When (5.1) is feasible, how do we detect nonexistence of GNEs?
These questions are mostly open, to the best of the authors’ knowledge.
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