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1 Introduction
Blackbox optimization (BBO) considers the development and analysis of algorithms designed for
objectives and constraints functions that are given by a process called a blackbox which returns an
output when provided an input but whose inner workings are analytically unavailable [12]. Mesh
adaptive direct-search (MADS) [7, 8] with progressive barrier (PB) is an algorithm for deterministic
BBO. This work considers the following constrained stochastic BBO problem

min
x∈D

f(x) (1)

where D = {x ∈ X : c(x) ≤ 0} ⊂ Rn is the feasible region, c = (c1, c2, . . . , cm)>, X is a subset
of Rn, f(x) = EΘ0 [fΘ0(x)] with f : X 7→ R, and cj(x) = EΘj

[
cΘj

(x)
]

with cj : X 7→ R for all
j ∈ J := {1, 2, . . . ,m}. EΘj

denotes the expectation with respect to the random variable Θj for all
j ∈ J ∪ {0}, which are supposed to be independent with unknown possibly different distributions.
fΘ0(·) denotes the noisy computable version of the numerically unavailable objective function f(·),
while for all j ∈ J , cΘj

(·) denotes the noisy computable version of the numerically unavailable
constraint cj(·). Note that the noisy objective function fΘ0 and the constraints cΘj

, j ∈ J, are typically
the outputs of a blackbox. By means of some useful terminology, constraints that must always be
satisfied, such as those defining X , are differentiated from those that need only to be satisfied at the
solution, such as c(x) ≤ 0. The former will be called unrelaxable non-quantifiable constraints and
the latter, relaxable quantifiable constraints [41].

Solving stochastic blackbox optimization problems such as Problem (1), which often arise in
signal processing and machine learning [27], has recently been a topic of intense research. Most
methods for solving such problems borrow ideas from the stochastic gradient method [49]. Several
works have also attempted to transfer ideas from deterministic DFO methods to the stochastic con-
text. However, most of such proposed methods are restricted to unconstrained optimization. Indeed,
after [18] which is among the first to propose a stochastic variant of the deterministic Nelder-Mead
(NM) method [47], [3] also considered the optimization of functions whose evaluations are subject
to random noise and proposed an algorithm which is shown to have convergence properties, based on
Markov chain theory [32]. Another stochastic variant of NM was recently proposed in [22] and was
proved to have global convergence properties with probability one. Using elements from [17, 40], [23]
proposed STORM, a trust-region algorithm designed for stochastic optimization problems, with al-
most sure global convergence results. Many other researches that extend the traditional deterministic
trust-region method to stochastic setting have been conducted in [28, 52]. In [48], a classical back-
tracking Armijo line search method [5] has been adapted to the stochastic optimization setting and
was shown to have first-order complexity bounds. Robust-MADS, a kernel smoothing-based variant
of MADS [7], was proposed in [13] to approach the minimizer of an objective function whose values
can only be computed with a random noise. It was shown to possess zeroth-order [9] convergence
properties. Another stochastic variant of MADS was proposed in [2] for BBO, where the noise cor-
rupting the blackbox was supposed to be Gaussian. Convergence results of the proposed method
have been derived, making use of statistical inference techniques. [11] proposed another stochastic
optimization approach using an algorithmic framework similar to that of MADS. StoMADS uses es-
timates of function values obtained from stochastic observations. By assuming that such estimates
satisfy a variance condition and are sufficiently accurate with a large but fixed probability conditioned
to the past, a Clarke [25] stationarity convergence result of StoMADS has been derived with proba-
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bility one, using martingale theory. A general framework for stochastic directional direct-search [26]
methods was introduced in [33] with expected complexity analysis.

All the above stochastic optimization methods are restricted to unconstrained problems and most
of them use estimated gradient information when seeking for an optimal solution. When the gradient
does not exist or is computationally expensive to estimate, heuristics such as simulated annealing
methods, genetic algorithms [39], and tabu/scatter search [38], are also used for problems with noisy
constraints but do not present any convergence theory. Surrogate model based methods for con-
strained stochastic BBO have also been a topic of intense research, including the response surface
methodology with stochastic constraints [4] developed for expensive simulation. In [16], the capa-
bilities of the deterministic constrained trust-region algorithm NOWPAC [15] are generalized for the
optimization of blackboxes with inherently noisy evaluations of the objective and constraint func-
tions. To mitigate the noise in the latter functions evaluations, the resulting gradient-free method
SNOWPAC utilizes Gaussian process surrogate combined with local fully linear surrogate models.
Another surrogate-based approach that has gained in increasing popularity in various research fields
is Kriging, also known as Bayesian optimization [45]. Various Bayesian optimization methods for
constrained stochastic BBO have been demonstrated to be efficient in practice [42, 54].

Developing direct-search methods for BBO has received renewed interest since such methods
generally known to be reliable and robust in practice [6], appear to be the most promising approach
in most of real applications where the gradient does not exist or is computationally expensive to
estimate. However, there is relatively scarce research on developing direct-search methods for con-
strained stochastic BBO, especially when noise is present in the constraint functions. A pattern search
and implicit filtering algorithm (PSIFA) [29, 30] was recently developed for linearly constrained prob-
lems with a noisy objective function, and was shown to have global convergence properties. A class of
direct-search methods for solving smooth linearly constrained problems was also studied in [34] but
even though using a probabilistic feasible descent based approach, this work assumes the objective
and constraints function values to be exactly computed without noise.

The present work introduces StoMADS-PB, a stochastic variant of the mesh adaptive direct-search
with progressive barrier [8], using elements from [7, 8, 11, 17, 23, 48] and is, to the best of our
knowledge, the first to propose a directional direct-search [26] stochastic BBO algorithm, capable to
handle general noisy constraints without requiring any feasible initial point. Its main contribution is
the analysis of the resulting new framework with fully supported theoretical results. StoMADS-PB
uses no gradient information to find descent directions or improve feasibility compared to prior work.
Rather, it uses so-called probabilistic estimates [23] of the objective and constraint function values
and also introduces probabilistic bounds on a constraint violation function values. The reliability of
such bounds is assumed to hold with a high but fixed probability. Moreover, although no distributions
are assumed for the estimates and no assumption is made about the way they are generated, they
are required to be sufficiently accurate with large but fixed probabilities and satisfy some variance
conditions.

The manuscript is organized as follows. Section 2 presents the general framework of the proposed
StoMADS-PB algorithm. Section 3 explains how the proposed method results in a stochastic process
and discusses requirements on random estimates to guarantee convergence. It also shows how such
estimates can be constructed in practice. Section 4 presents the main convergence results. Compu-
tational results are reported in Section 5 followed by a discussion and suggestions for future work.
Additional results are provided as an annex.
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2 The StoMADS-PB algorithm
StoMADS-PB is based on an algorithmic framework similar to that of MADS with PB [8]. For the
needs of the convergence analysis of Section 4, deterministic constraint violations are aggregated into
a single function h called the constraint violation function, defined using the `1-norm for needs of
convergence studies as opposed to [8] where an `2-norm has been favored

h(x) :=


m∑
j=1

max{cj(x), 0} if x ∈ X

+∞ otherwise.

According to this definition, h : Rn → R ∪ {+∞} and x ∈ D, i.e., x is feasible with respect to
the relaxable constraints if and only if h(x) = 0. Moreover, if 0 < h(x) < +∞, then x is called
infeasible and satisfies the unrelaxable constraints but not the relaxable ones.

In MADS with PB, feasibility improvement is achieved by decreasing h, specifically by compar-
ing its function value at a current point xk to that of a trial point xk + sk, where sk denotes a direction
around xk. Likewise, to decrease f , MADS with PB uses objective function values since they are
available in the deterministic setting.

The main challenge here is to guarantee for StoMADS-PB such decreases as well in f as in h
whereas their function values are unavailable numerically, using only information provided by the
noisy blackbox outputs fΘ0 and cΘj

, j ∈ J . This section shows how this can be achieved, making use
of so called ε-accurate estimates introduced in [23] and then presents the general framework of the
proposed method.

2.1 Feasibility and objective function improvements
At iteration k, let xk and xk + sk be two points of X . Since the constraint function values cj(xk) and
cj(x

k + sk), j ∈ J = {1, 2, . . . ,m}, are numerically unavailable, their corresponding estimates are
respectively constructed using evaluations of the noisy blackbox outputs cΘj

, j ∈ J . In general for
the remainder of the manuscript, unless otherwise stated, given a function g : X → R, an estimate
of g(xk) is denoted by gk0(xk) (or simply by gk0 if there is no ambiguity) while that of g(xk + sk) is
denoted by gks (xk+sk) or gks . In StoMADS-PB, the violations of the estimates ckj,0(xk) and ckj,s(x

k+sk)
of cj(xk) and cj(xk + sk), respectively, are aggregated in so-called estimated violations hk0(xk) and
hks(x

k + sk) defined as follows

hk0(xk) =


m∑
j=1

max
{
ckj,0(xk), 0

}
if xk ∈ X

+∞ otherwise
(2)

and hks(x
k + sk) =


m∑
j=1

max
{
ckj,s(x

k + sk), 0
}

if xk + sk ∈ X

+∞ otherwise.
(3)

In order for such estimated constraint violations to be reliable enough to determine whether h(xk +
sk) < h(xk) or not, the estimates ckj,0(xk) and ckj,s(x

k + sk) need to be sufficiently accurate. The
following definition similar to that of [11] is adapted from [23].
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Definition 1. Let ε > 0 be a fixed constant and {δkp}k∈N be a sequence of nonnegative real numbers.
For a given function g : X 7→ R and yk ∈ X , let gk be an estimate of g(yk). Then gk is said to be an
ε-accurate estimate of g(yk) for the given δkp , if∣∣gk − g(yk)

∣∣ ≤ ε(δkp)2.

As in [11], the role of δkp will be played by the so-called poll size parameter introduced in Sec-
tion 2.2. The following result provides bounds on h(xk) and h(xk + sk), respectively, which will
allow, in Proposition 2, to guarantee a decrease in the constraint violation function h by means of a
sufficient decrease condition on the estimated violations hk0 and hks .

Proposition 1. Let ckj,0 and ckj,s be ε-accurate estimates of cj(xk) and cj(xk + sk), respectively, with
xk and xk + sk ∈ X . Then the followings hold:

`k0(xk) :=
m∑
j=1

max
{
ckj,0 − ε(δkp)2, 0

}
≤ h(xk) ≤

m∑
j=1

max
{
ckj,0 + ε(δkp)2, 0

}
=: uk0(xk) (4)

and

`ks(x
k+sk) :=

m∑
j=1

max
{
ckj,s − ε(δkp)2, 0

}
≤ h(xk+sk) ≤

m∑
j=1

max
{
ckj,s + ε(δkp)2, 0

}
=: uks(x

k+sk)

Proof. The result is shown for h(xk) but the proof for h(xk + sk) is the same. Since ckj,0 is an ε-
accurate estimate of cj(xk) for all j ∈ J , then it follows from Definition 1 that

ckj,0 − ε(δkp)2 ≤ cj(x
k) ≤ ckj,0 + ε(δkp)2, for all j ∈ J,

which implies that

max
{
ckj,0 − ε(δkp)2, 0

}
≤ max

{
cj(x

k), 0
}
≤ max

{
ckj,0 + ε(δkp)2, 0

}
. (5)

Finally, summing each term of (5) from j = 1 to m leads to (4).

Definition 2. The estimates `k0(xk) and uk0(xk) of Proposition 1, satisfying `k0(xk) ≤ h(xk) ≤ uk0(xk),
are said to be ε-reliable bounds for h(xk). Similarly, the estimates `ks(x

k + sk) and uks(x
k + sk)

satisfying `ks(x
k + sk) ≤ h(xk + sk) ≤ uks(x

k + sk) are said to be ε-reliable bounds for h(xk + sk).

The following result provides sufficient information to identify a decrease in h and will be also
useful to determine an iteration type in Section 2.2.

Proposition 2. Let `k0(xk) and uk0(xk) be ε-reliable bounds for h(xk), and let `ks(x
k+sk) and uks(x

k+
sk) be ε-reliable bounds for h(xk + sk). Let hk0 and hks be the estimated constraint violations at xk

and xk + sk ∈ X , respectively. Let γ > 2 be a constant. Then the following holds:

if hks − hk0 ≤ −γmε(δkp)2, then h(xk + sk)− h(xk) ≤ −(γ − 2)mε(δkp)2 < 0. (6)
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Proof. It follows from Proposition 1 that

h(xk + sk)− h(xk) ≤
m∑
j=1

max
{
ckj,s + ε(δkp)2, 0

}
−

m∑
j=1

max
{
ckj,0 − ε(δkp)2, 0

}
. (7)

By noticing that
m∑
j=1

max
{
ckj,s + ε(δkp)2, 0

}
≤

m∑
j=1

max
{
ckj,s, 0

}
+mε(δkp)2 = hks +mε(δkp)2

m∑
j=1

max
{
ckj,0 − ε(δkp)2, 0

}
≥

m∑
j=1

max
{
ckj,0, 0

}
−mε(δkp)2 = hk0 −mε(δkp)2,

then it follows from (7) that

h(xk + sk)− h(xk) ≤ hks − hk0 + 2mε(δkp)2 ≤ −(γ − 2)mε(δkp)2,

where the last inequality follows from the assumption that hks − hk0 ≤ −γmε(δkp)2. The proof is
complete by noticing that γ > 2.

As in [8], the present research also introduces a nonnegative barrier threshold hkmax = uk0(xkinf),
where xkinf is a so-called ε-infeasible solution. Definition 3 presents ε-infeasible points and the up-
dating rules of xkinf is presented in Section 2.2. While xkinf is updated at the end of each iteration
of StoMADS-PB, hkmax is rather computed at the beginning of iterations in order to avoid keeping
its possibly inaccurate values from one iteration to another. In fact, estimates in StoMADS-PB are
always computed at the beginning of the iterations and their accuracy is improved compared to pre-
vious iterations as seen in Section 3.2. Consequently, even though the sequence {hkmax}k∈N has a
globally decreasing tendency, it is not nonincreasing as in MADS with PB, but can possibly increase
between successive iterations. The goal of StoMADS-PB is to accept only the trial points satisfy-
ing h(xk) ≤ hkmax, and any trial point xk for which the inequality uk0(xk) ≤ hkmax does not hold is
discarded from consideration since such an inequality implies that h(xk) ≤ hkmax due to (4). How-
ever, this is a sufficient acceptance condition since uk0(xk) > hkmax does not necessarily imply that
h(xk) ≤ hkmax does not hold, but rather leads to a situation of uncertainty which is not explicitly
distinguished in the present manuscript for the sake of simplicity.

The ε-reliable upper bound uk0(xk) previously obtained for h(xk) also allows to determine the
feasibility with respect to the relaxable constraints of a given trial point xk ∈ X . Indeed, it obviously
follows from (4) that h(xk) = 0 if uk0(xk) = 0, which is satisfied provided that ckj,0(xk) ≤ −ε(δkp)2,
for all j ∈ J . This means that in order for h(xk) = 0 to hold, all the estimates of constraint function
values must be sufficiently negative and not simply zero. By means of the following definition,
StoMADS-PB partitions the trial points into so-called ε-feasible and ε-infeasible points.

Definition 3. Let xk ∈ X be any trial point and uk0(xk) be an ε-reliable upper bound for h(xk).
Then xk is called ε-feasible if uk0(xk) = 0, and it is called ε-infeasible if 0 < uk0(xk) ≤ hkmax.
Similarly, xk + sk ∈ X is called ε-feasible if uks(x

k + sk) = 0, and it is called ε-infeasible if
0 < uks(x

k + sk) ≤ hkmax.

StoMADS-PB does not require that the starting point is ε-feasible. The algorithm can be applied
to any problem satisfying only the following assumption adapted from [8].
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Assumption 1. There exists some point x0 ∈ X such that f 0
0 (x0) and u0

0(x0) are both finite, and
u0

0(x0) ≤ h0
max.

The next result similar to that in [11] provides a sufficient information to identify a decrease in f
and also allows to determine an iteration type in Section 2.2.

Proposition 3. Let fk0 and fks be ε-accurate estimates of f(xk) and f(xk + sk), respectively, for xk

and xk + sk ∈ X . Let γ > 2 be a constant. Then the following holds:

if fks − fk0 ≤ −γε(δkp)2, then f(xk + sk)− f(xk) ≤ −(γ − 2)ε(δkp)2 < 0. (8)

Proof. The proof follows from Definition 1 and the next equality

f(xk + sk)− f(xk) = f(xk + sk)− fks +
(
fks − fk0

)
+ fk0 − f(xk).

2.2 The StoMADS-PB algorithm and parameter update
Recall first that MADS with PB is an iterative algorithm where every iteration comprises two main
steps: an optional step called the SEARCH, and the POLL. The SEARCH which typically consists
of a global exploration may use a plethora of strategies like those based on interpolatory models,
heuristics and surrogate functions or simplified physics models [8] to explore the variables space.
Each iteration of StoMADS-PB can also allow a SEARCH step, but it is not shown here for simplicity.
Similarly to MADS with PB, the POLL step of StoMADS-PB is more rigidly defined unlike the
freedom of the SEARCH and consists of a local exploration. During each of these two steps, a
finite number of trial points is generated on an underlying mesh Mk. The mesh is a discretization
of the variables space, whose coarseness or fineness is controlled by a mesh size parameter δkm thus
deviating from the notation ∆m

k from [8], since uppercase letters will be used to denote random
variables. For the remainder of the manuscript, sk = δkmd

k where dk is a nonzero direction around
xk ∈ Mk. The POLL step is governed by the poll size parameter δkp which is linked to δkm by δkm =
min{δkp , (δkp)2} [12]. As specified earlier, {δkp}k∈N will play the role of the sequence of nonnegative
real numbers introduced in Definition 1. Let ẑ ∈ N be a large fixed integer and τ ∈ (0, 1) ∩ Q be
a fixed rational constant. For the needs of Section 4, note also that as in [11], δkp is supposed to be
bounded above by the positive and fixed constant τ−ẑ in order for the random poll size parameter ∆k

p

introduced in Section 3.1 to be integrable. The definitions of the mesh Mk and the POLL set Pk
inspired from [8] are given next.

Definition 4. Let D ∈ Rn×p be a matrix, with columns denoted by the set D which form a positive
spanning set. At the beginning of iteration k, let xkinf and xkfeas denote respectively the ε-infeasible and
the ε-feasible incumbent solutions (there might be only one), and let Vk := {xkinf, x

k
feas} be the set of

such incumbents. The meshMk and the POLL set Pk are respectively

Mk := {xk + δkmd : xk ∈ Vk, d = Dy, y ∈ Zp} and Pk := Pk(xkinf) ∪ Pk(xkfeas),

where ∀xk ∈Mk ∩X , Pk(xk) = {xk + δkmd
k ∈Mk ∩X : δkm

∥∥dk∥∥∞ ≤ δkpb, d
k ∈ Dk

p(x
k)} is called

a frame around xk, with b = max{‖d′‖∞, d′ ∈ D}. Dk
p(x

k) is a positive spanning set which is said
to be a set of frame directions around xk. The set Dk

p of all polling directions at iteration k is defined
by Dk

p := Dk
p(x

k
inf)∪Dk

p(x
k
feas). When there is no incumbent ε-feasible solution xkfeas, then the set Vk is

reduced to {xkinf}, in which case Pk = Pk(xkinf) and Dk
p = Dk

p(x
k
inf).

7



After the POLL step is completed, StoMADS-PB computes not only estimates fk0 , fks , hk0 and hks
of f(xk), f(xk + sk), h(xk) and h(xk + sk), respectively at trial points xk ∈ Vk and xk + sk ∈ Pk,
but also upper bounds uks(x

k + sk) and uk0(xkinf), respectively for h(xk + sk) and h(xkinf). The values
of such estimates and bounds determine the iteration type of the algorithm and govern also the way
δkp is updated. Recall Definition 3 of ε-feasible and ε-infeasible points at the beginning of iteration k.
The incumbent solutions xkinf and xkfeas are constructed by ranking trial mesh points of X , making use
of the dominance notion inspired from [8].

Definition 5. The ε-feasible point xk + sk is said to dominate the ε-feasible point xk, denoted xk +
sk ≺f ;ε x

k, when fks − fk0 ≤ −γε(δkp)2, with uks(x
k + sk) = 0.

The ε-infeasible point xk + sk is said to dominate the ε-infeasible point xk, denoted xk + sk ≺h;ε x
k,

when fks − fk0 ≤ −γε(δkp)2 and hks − hk0 ≤ −γmε(δkp)2, with 0 < uks(x
k + sk) ≤ hkmax.

Adapting the terminologies from [8] and depending on the values of the aforementioned estimates
and bounds, there are four StoMADS-PB iterations types: an iteration can be either f -Dominating,
h-Dominating (the former and the latter are referred to as dominating iterations), Improving, or Un-
successful. During a dominating iteration, either the algorithm has found a first ε-feasible iterate or
a trial point that dominates an incumbent is generated. An iteration which is Improving is not domi-
nating but it aims to improve the feasibility of the ε-infeasible incumbent. Unsuccessful iterations are
neither dominating nor improving.

• At the beginning of iteration k, if there is no available ε-feasible solution, then the iteration is
called f -Dominating if for xk ∈ Vk, a first trial point xk + sk ∈ Pk satisfying uks(x

k + sk) = 0
is found, in which case h(xk + sk) = 0 due to Proposition 1, meaning that xk + sk is ε-feasible.
Otherwise, if an ε-feasible point that dominates the incumbent is generated, i.e., xk + sk ≺f ;ε

xkfeas for some xk ∈ Vk, then the inequality fks (xk + sk) − fk0 (xkfeas) ≤ −γε(δkp)2 leads to a
decrease in f due to Proposition 3. In either case, xk+1

feas := xk+sk and δk+1
p = min{τ−1δkp , τ

−ẑ}.
The ε-infeasible incumbent xkinf is not updated since there is no feasibility improvement.

• Iteration k is said to be h-Dominating whenever an ε-infeasible point that dominates the incum-
bent is generated, i.e., xkinf + sk ≺h;ε x

k
inf, which means that both inequalities fks (xkinf + sk) −

fk0 (xkinf) ≤ −γε(δkp)2 and hks(x
k
inf + sk)− hk0(xkinf) ≤ −γmε(δkp)2 hold. Consequently, it follows

from Propositions 2 and 3 that decreases occur both in f and h. In this case, xk+1
feas = xkfeas

and since feasibility is improved, xk+1
inf is set to equal xkinf + sk while the poll size parameter is

updated as at f -Dominating iterations.

• Iteration k is said to be Improving if it is not dominating but there is at least one ε-infeasible
point xkinf +s

k satisfying hks(x
k
inf +s

k)−hk0(xkinf) ≤ −γmε(δkp)2. Indeed, this means that xkinf +s
k

improves the feasibility of the ε-infeasible incumbent xkinf since the previous inequality leads
to a decrease in h due to Proposition 2. In this case, δkp is updated as in dominating iterations,
xk+1

feas = xkfeas while the ε-infeasible incumbent is updated according to

xk+1
inf ∈ argmin

xkinf+s
k

{
uks(x

k
inf + sk) : hks(x

k
inf + sk)− hk0(xkinf) ≤ −γmε(δkp)2

}
.

• Finally, an iteration is called Unsuccessful if it is neither dominating nor Improving. In this
case, δk+1

p = τδkp while neither xkinf nor xkfeas are updated.
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Remark 1. Denote by t > 0 the number of the first f -Dominating iteration of Algorithm 1 and assume
that t < +∞. Then it is easy to notice that xkfeas = x0

inf for all k = 0, 1, . . . , t while xt+1
feas 6= x0

inf.
Moreover, even though estimates fk0 (xkfeas), fks (xkfeas + sk), hk0(xkfeas) and hks(x

k
feas + sk) are computed

at xkfeas and xkfeas + sk ∈ Pk respectively for all k ≤ t, they are not used by the algorithm until the
end of iteration t and it can also be noticed that no point in Pk that is generated using Dk

p(x
k
feas) is

evaluated until the end of iteration t. In fact, setting the initial ε-feasible guess to equal x0
inf as it

is in Algorithm 1 and then computing the latter estimates are not necessary in practice. However,
doing so allows simply the aforementioned estimates to be defined for all k ≥ 0 for theoretical needs,
specifically the construction of the σ-algebra FC·Fk−1 in Section 3.

2.3 Frame center selection rule
Before describing the frame center selection rule, recall the set Vk of incumbent solutions introduced
in Definition 4 and the fact that POLL trial points are generated inside frames around such incumbents
At a given iteration, there are either one or two frame centers in Vk. When Vk contains only one
point, then using terminologies from [8], that point is called the primary frame center. In the event
that there are two incumbent solutions xkinf and xkfeas, one of them is chosen as the primary frame
center while the other one is the secondary frame center. The primary frame center in [8] is chosen
to be the infeasible incumbent solution while the secondary frame center is the feasible incumbent
whenever fFk −ρ > f Ik , where the positive scalar ρ is the so called frame center trigger, fFk and f Ik are
respectively the incumbent feasible and infeasible f -values at iteration k. Otherwise if the previous
inequality does not hold, the primary and secondary frame centers are the feasible and infeasible
incumbent solutions. Because of the unavailability of f function values for StoMADS-PB, a specific
frame center selection strategy using estimates of such function values is proposed and relies on the
following result.

Proposition 4. Let fk0 (xkfeas) and fk0 (xkinf) be ε-accurate estimates of f(xkfeas) and f(xkinf) respectively.
Let ρ > 0 be a scalar.

If fk0 (xkfeas)− ρ > fk0 (xkinf) + 2ε(δkp)2, then f(xkfeas)− ρ > f(xkinf). (9)

Proof. Assume that fk0 (xkfeas) − ρ > fk0 (xkinf) + 2ε(δkp)2. Then, it follows from the ε-accuracy of
fk0 (xkfeas) and fk0 (xkinf) that

f(xkinf)− f(xkfeas) =
[
f(xkinf)− fk0 (xkinf)

]
+
[
fk0 (xkinf)− fk0 (xkfeas)

]
+
[
fk0 (xkfeas)− f(xkfeas)

]
< 2ε(δkp)2 − (ρ+ 2ε(δkp)2) = −ρ. (10)

Thus according to Proposition 4, xkfeas is always chosen as the StoMADS-PB primary frame center
unless the estimates fk0 (xkfeas) and fk0 (xkinf) satisfy a sufficient decrease condition leading to the in-
equality f(xkfeas)− ρ > f(xkinf), which as in [8] allows the choice of the infeasible incumbent solution
as primary frame center.

As in [8], StoMADS-PB as implemented for the computational study in Section 5 places less
effort in polling around the secondary frame center than the primary one. Specifically, the default
strategy is to use a maximal positive basis [12] for the primary frame center and only two directions
with one being the negative of the first for the secondary frame center.
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Algorithm 1: StoMADS-PB
1 [0] Initialization
2 choose x0

inf ∈ X , δ0
p > 0, τ ∈ (0, 1) ∩Q, ε > 0, γ > 2 and ẑ ∈ N∗

3 set the feasibility success flag = FALSE, V0 ← {x0
inf} and x0

feas ← x0
inf

4 set the iteration counter k ← 0
5 [1] Parameter Update
6 set δkm ← min{δkp , (δkp)2}
7 [2] Poll
8 generate a finite list Pk of candidates using the polling directions Dk

p(x
k
inf) ∪ Dk

p(x
k
feas)

9 obtain estimates fk0 , f
k
s , h

k
0 and hks of f(xk), f(xk + sk), h(xk) and h(xk + sk)

10 respectively, at xk ∈ Vk ∪ {xkfeas}, xk + sk ∈ Pk, then compute bounds uks(x
k + sk)

11 and uk0(xkinf), using blackbox evaluations
12 set the barrier threshold hkmax ← uk0(xkinf)
13 f -Dominating
14 if flag = FALSE and uks(x

k + sk) = 0 or flag = TRUE and xk + sk ≺f ;ε x
k
feas

15 for some xk ∈ Vk and sk ∈ {δkmdk : dk ∈ Dk
p(x

k)}
16 set xk+1

inf ← xkinf, x
k+1
feas ← xk + sk and δk+1

p ← min{τ−1δkp , τ
−ẑ}

17 reset the feasibility success flag = TRUE, set Vk+1 ← {xk+1
inf , x

k+1
feas } and go to [4]

18 h-Dominating
19 else if xkinf + sk ≺h;ε x

k
inf for some sk ∈ {δkmdk : dk ∈ Dk

p(x
k
inf)}

20 set xk+1
inf ← xkinf + sk, xk+1

feas ← xkfeas and δk+1
p ← min{τ−1δkp , τ

−ẑ}
21 Improving
22 else if hks(x

k
inf + sk)− hk0(xkinf) ≤ −γmε(δkp)2 for some previously evaluated xkinf + sk

23 set xk+1
inf ∈ argminxkinf+s

k{uks(xkinf + sk) : hks(x
k
inf + sk)− hk0(xkinf) ≤ −γmε(δkp)2}

24 xk+1
feas ← xkfeas and δk+1

p ← min{τ−1δkp , τ
−ẑ}

25 Unsuccessful
26 otherwise, set xk+1

inf ← xkinf, x
k+1
feas ← xkfeas and δk+1

p ← τδkp
27 [3] Feasibility update
28 if flag = TRUE
29 set Vk+1 ← {xk+1

inf , x
k+1
feas }

30 otherwise, Vk+1 ← {xk+1
inf }

31 [4] Termination
32 if no termination criterion is met
33 set k ← k + 1 and go to [1]
34 otherwise stop

Figure 1: StoMADS-PB algorithm for constrained stochastic optimization.

3 Stochastic process generated by StoMADS-PB
The stochastic quantities in the present work are all defined on the same probability space (Ω,G,P).
The nonempty set Ω is referred to as the sample space and its subsets are called events. The collection
G of such events is called a σ-algebra or σ-field and P is a finite measure satisfying P(Ω) = 1,
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referred to as probability measure and defined on the measurable space (Ω,G). Each element ω ∈ Ω
is referred to as a sample point or a possible outcome. Let B(Rn) be the Borel σ-algebra of Rn, i.e.,
the one generated by its open sets. A random variableX is a measurable map defined on (Ω,G,P) into
the measurable space (Rn,B(Rn)), where measurability means that each event {X ∈ B} := X−1(B)
belongs to G for all B ∈ B(Rn) [20, 33].

The estimates fk0 (xk), fks (xk+sk), ckj,0(xk) and ckj,s(x
k+sk), for j = 1, 2, . . . ,m, xk ∈ {xkinf, x

k
feas}

and xk + sk ∈ Pk, of function values are computed at every iteration of Algorithm 1 using the
noisy blackbox evaluations. Because of the randomness of the blackbox outputs, such estimates can
respectively be considered as realizations of random estimates F k

0 (Xk), F k
s (Xk + Sk), Ck

j,0(Xk) and
Ck
j,s(X

k + Sk), for j = 1, 2, . . . ,m. Since each iteration k of Algorithm 1 is influenced by the
randomness stemming from such random estimates, Algorithm 1 results in a stochastic process. For
the remainder of the manuscript, uppercase letters will be used to denote random quantities while their
realizations will be denoted by lowercase letters. Thus, xk = Xk(ω), xkinf = Xk

inf(ω), xkfeas = Xk
feas(ω),

sk = Sk(ω), δkp = ∆k
p(ω) and δkm = ∆k

m(ω) denote respectively realizations ofXk, Xk
inf, X

k
feas, S

k, ∆k
p

and ∆k
m. Similarly, fk0 (xk) = F k

0 (Xk)(ω), fks (xk + sk) = F k
s (Xk +Sk)(ω), ckj,0(xk) = Ck

j,0(Xk)(ω),
ckj,s(x

k + sk) = Ck
j,s(X

k +Sk)(ω), hk0(xk) = Hk
0 (Xk)(ω), hks(x

k + sk) = Hk
s (Xk +Sk)(ω), `k0(xk) =

Lk0(Xk)(ω), `ks(x
k + sk) = Lks(X

k + Sk)(ω), uk0(xk) = Uk
0 (Xk)(ω) and uks(x

k + sk) = Uk
s (Xk +

Sk)(ω). When there is no ambiguity, F k
0 will be used instead of F k

0 (Xk), etc. In general, following
the notations in [11, 21, 23, 33, 48], F k

0 , F k
s , Hk

0 and Hk
s are respectively the estimates of f(Xk),

f(Xk + Sk), h(Xk) and h(Xk + Sk). Moreover, as highlighted in [11], the notation “f(Xk)” is used
to denote the random variable with realizations f(Xk(ω)).

The present research aims to show that the stochastic process
{
Xk

inf, X
k
feas,∆

k
p,∆

k
m, F

k
0 , F

k
s , H

k
0 , H

k
s ,

Lk0, U
k
0 , L

k
s , U

k
s

}
resulting from Algorithm 1 converges with probability one under some assumptions

on the estimates F k
0 , F

k
s , C

k
j,0, C

k
j,s, H

k
0 , H

k
s and on the bounds Lk0, U

k
0 , L

k
s , U

k
s . In particular, the esti-

mates F k
0 , F

k
s , C

k
j,0 and Ck

j,s will be assumed to be accurate while the bounds will be assumed to be
reliable, with sufficiently high but fixed probabilities, conditioned on the past.

3.1 Probabilistic bounds and probabilistic estimates
The previously mentioned notion of conditioning on the past is formalized following [11, 21, 23, 33,
48]. Denote by FC·Fk−1 the σ-algebra generated by F `

0(X`), F `
s (X` + S`), C`

j,0(X`) and C`
j,s(X

` + S`),
for j = 1, 2, . . . ,m, for X` ∈

{
X`

inf , X
`
feas

}
and for ` = 0, 1, . . . , k − 1. For completeness, FC·F−1

is set to equal σ(x0) = σ(x0
inf). Thus, {FC·Fk }k≥−1 is a filtration, i.e., a subsequence of increasing

σ-algebras of G.
Sufficient accuracy of functions estimates is measured using the poll size parameter and is for-

malized, following [11, 21, 23, 33, 48] by means of the definitions bellow.

Definition 6. A sequence of random estimates {F k
0 , F

k
s } is said to be β-probabilistically ε-accurate

with respect to the corresponding sequence {Xk, Sk,∆k
p} if the events

Jk = {F k
0 , F

k
s , are ε-accurate estimates of f(xk) and f(xk + sk), respectively for ∆k

p}

satisfy the following submartingale-like condition

P
(
Jk | FC·Fk−1

)
= E

(
1Jk | FC·Fk−1

)
≥ β,
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where 1Jk denotes the indicator function of the event Jk, i.e., 1Jk = 1 if ω ∈ Jk and 1Jk = 0
otherwise. The estimates are called “good” if 1Jk = 1. Otherwise they are called “bad”.

Definition 7. A sequence of random estimates {Ck
j,0, C

k
j,s} is said to be α1/m-probabilistically ε-

accurate for some j = 1, 2, . . . ,m with respect to the corresponding sequence {Xk, Sk,∆k
p} if the

events

Ijk = {Ck
j,0, C

k
j,s, are ε-accurate estimates of cj(xk) and cj(xk + sk), respectively for ∆k

p}

satisfy the following submartingale-like condition

P
(
Ijk | F

C·F
k−1

)
= E

(
1Ijk
| FC·Fk−1

)
≥ α1/m.

To formalize the sufficient reliability of random bounds in the present work, the following defini-
tion is introduced.

Definition 8. A sequence of random bounds {Lk0, Uk
0 , L

k
s , U

k
s } is said to be α-probabilistically ε-

accurate with respect to the corresponding sequence {Xk, Sk,∆k
p} if the events

Ik =
{

“Lk0 and Uk
0 are ε-reliable bounds for h(xk)”, and “Lks and Uk

s are ε-reliable bounds

for h(xk + sk)”, respectively for ∆k
p

}
(11)

satisfy the following submartingale-like condition

P
(
Ik | FC·Fk−1

)
= E

(
1Ik | FC·Fk−1

)
≥ P

(
m⋂
j=1

Ijk | F
C·F
k−1

)
≥ α,

The bounds are called “good” if 1Ik = 1. Otherwise, 1Ik = 0 and they are called “bad”.

The p-integrability of random variables [11, 20] is defined below and will be useful for the analysis
of Algorithm 1.

Definition 9. Let (Ω,G,P) be a probability space and p ∈ [1,+∞) be an integer. Then the Space
Lp(Ω,G,P) of so-called p-integrable random variables is the set of all real-valued random variables
X such that

‖X‖p :=

(∫
Ω

|X(ω)|p P (dω)

) 1
p

= (E (|X|p))
1
p < +∞.

As in [11], the following is assumed in order for the random variables f(Xk), h(Xk) and cj(Xk),
j ∈ J , to be integrable so that the conditional expectations E

(
f(Xk)|FC·Fk−1

)
, E
(
cj(X

k)|FC·Fk−1

)
, j ∈ J

and E
(
h(Xk)|FC·Fk−1

)
can be well defined [20].

Assumption 2. The objective function f and the constraints violation function h are locally Lipschitz
with constants λf > 0 and λh > 0, respectively. The constraint functions cj , j ∈ J , are continuous
on X . The set U ⊂ X containing all iterates realizations is compact.

Local Lipschitz in the above assumption means, Lipschitz with a finite constant in some nonempty
neighborhood intersected with X [8].
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Proposition 5. Under Assumption 2, there exists a finite constant κfmax satisfying
∣∣f(xk)

∣∣ ≤ κfmax for
all xk ∈ U . Moreover, the random variables f(Xk), h(Xk), cj(Xk) and ∆k

p belong to L1(Ω,G,P),
for all j ∈ J and for all k ≥ 0.

Proof. The proof is inspired from [11]. Since f is locally Lipschitz on the compact set U , the it is
bounded on U . Consequently, there exists a finite constant κfmax such that

∣∣f(xk)
∣∣ ≤ κfmax for all

xk ∈ U . Similarly, there exist κhmax satisfying
∣∣h(xk)

∣∣ ≤ κhmax and κcmax such that
∣∣cj(xk)∣∣ ≤ κcmax for

all j ∈ J and all xk ∈ U , since h is locally Lipschitz and cj is continuous on U . Thus, E
(∣∣f(Xk)

∣∣) :=∫
Ω

∣∣f(Xk(ω))
∣∣P(dω) ≤ κfmax < +∞. Similarly, E

(∣∣h(Xk)
∣∣) ≤ κhmax ≤ +∞ and for all j ∈ J ,

E
(∣∣cj(Xk)

∣∣) ≤ κcmax ≤ +∞. Finally, the integrability of ∆k
p follows from the fact that ∆k

p(ω) ≤ τ−ẑ

for all ω ∈ Ω, which implies that E
(∣∣∆k

p

∣∣) :=
∫

Ω

∣∣∆k
p(ω)

∣∣P(dω) ≤ τ−ẑ < +∞.

Next are stated some key assumptions on the nature of the stochastic information in Algorithm 1,
some of which are made in [11] and which will be useful for the convergence analysis of Section 4.

Assumption 3. For fixed α and β ∈ (0, 1), the followings hold for the random quantities generated
by Algorithm 1.

(i) The sequence of estimates {F k
0 , F

k
s } generated by Algorithm 1 is β-probabilistically ε-accurate.

(ii) The sequence of estimates {F k
0 , F

k
s } generated by Algorithm 1 satisfies the following variance

condition for all k ≥ 0,

E
(∣∣F k

s − f(Xk + Sk)
∣∣2 | FC·Fk−1

)
≤ ε2(1−

√
β)(∆k

p)
4

and E
(∣∣F k

0 − f(Xk)
∣∣2 | FC·Fk−1

)
≤ ε2(1−

√
β)(∆k

p)
4.

(12)

(iii) For all j = 1, 2, . . . ,m, the sequence of estimates {Ck
j,0, C

k
j,s} is α1/m-probabilistically ε-

accurate.

(iv) For all j = 1, 2, . . . ,m, the sequence of estimates {Ck
j,0, C

k
j,s} satisfies the following variance

condition for all k ≥ 0,

E
(∣∣Ck

j,s − cj(Xk + Sk)
∣∣2 | FC·Fk−1

)
≤ ε2

(
1− α1/2m

)
(∆k

p)
4

and E
(∣∣Ck

j,0 − cj(Xk)
∣∣2 | FC·Fk−1

)
≤ ε2

(
1− α1/2m

)
(∆k

p)
4.

(13)

(v) The sequence of random bounds {Lk0, Uk
0 , L

k
s , U

k
s } is α-probabilistically ε-reliable.

(vi) The sequence of random estimated violations {Hk
0 , H

k
s } satisfies

E
(∣∣Hk

s − h(Xk + Sk)
∣∣ | FC·Fk−1

)
≤ mε(1− α)1/2(∆k

p)
2

and E
(∣∣Hk

0 − h(Xk)
∣∣ | FC·Fk−1

)
≤ mε(1− α)1/2(∆k

p)
2.

(14)

An iteration k for which 1Ik1Jk = 1, i.e., for which the events Ik and Jk both occur, will be
called “true”. Otherwise, it will be called “false”. Even though the present algorithmic framework
does not allow to determine which iterations are true or false, Theorem 1 shows that true iterations
occur infinitely often for convergence to hold, provided that estimates and bounds are sufficiently
accurate. Theorem 1 will also be useful for the convergence analysis of Algorithm 1, more precisely
in Subsection 4.3.
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Theorem 1. Assume that Assumption 3 holds for αβ ∈ (1/2, 1). Then true iterations of Algorithm 1
occur infinitely often.

Proof. Consider the following random walk

Wk =
k∑
i=0

(2 · 1Ii1Ji − 1). (15)

Then, the result easily follows from the fact that
{

lim sup
k→+∞

Wk = +∞
}

almost surely, the proof of

which can be derived from that of Theorem 4.16 in [23] (usingFC·Fk−1 instead ofF I·Jk−1), where a similar
random walk was studied. Indeed, the latter result means that

P
({

ω ∈ Ω : ∃K(ω) ⊂ N such that lim
k∈K(ω)

Wk(ω) = +∞
})

= 1,

which implies that 1Ii1Ji = 1 infinitely often.

3.2 Computation of probabilistically accurate estimates and reliable bounds
This section discusses approaches for computing accurate random estimates and reliable bounds satis-
fying Assumption 3 in a simple random noise framework, and hence how corresponding deterministic
estimates can be obtained using evaluations of the stochastic blackbox. Such approaches strongly rely
on the computation of α1/m-probabilistically ε-accurate estimates {Ck

j,0, C
k
j,s}, using techniques de-

rived in [23].
Consider the following typical noise assumption often made in stochastic optimization literature:

EΘ0 [fΘ0(x)] = f(x) and VΘ0 [fΘ0(x)] ≤ V0 < +∞ for all x ∈ X
EΘj

[
cΘj

(x)
]

= cj(x) and VΘj

[
cΘj

(x)
]
≤ Vj < +∞ for all x ∈ X and for all j ∈ J,

where Vi > 0 is a constant for all i = 0, 1, . . . ,m. Let V = max{V0, V1, . . . , Vm}.
For some fixed j ∈ J , let Θ0

j and Θs
j be two independent random variables following the same

distribution as Θj . Let Θ0
j,`, ` = 1, 2, . . . , pkj and Θs

j,`, ` = 1, 2, . . . , pkj be independent random
samples of Θ0

j and Θs
j respectively, where pkj ≥ 1 is an integer denoting the sample size. In order to

satisfy Assumption 3-(iii), define Ck
j,0 and Ck

j,s respectively by

Ck
j,0 =

1

pkj

pkj∑
`=1

cΘ0
j,`

(xk) and Ck
j,s =

1

pkj

pkj∑
`=1

cΘs
j,`

(xk + sk).

By noticing that E
(
Ck
j,0

)
= cj(x

k) and that V
(
Ck
j,0

)
≤ V

pkj
for all j, then it follows from the Cheby-

shev inequality that

P
(∣∣Ck

j,0 − cj(xk)
∣∣ > ε(δkp)2

)
= P

(∣∣Ck
j,0 − E

(
Ck
j,0

)∣∣ > ε(δkp)2
)
≤ V

pkj ε
2(δkp)4

. (16)

Thus, choosing pkj such that

pkj ≥
V

ε2 (1− α1/2m) (δkp)4
(17)
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ensures that V
pkj ε

2(δkp )4
≤ 1− α1/2m. Then, combining (16) and (17) yields for all j ∈ J ,

P
(∣∣Ck

j,0 − cj(xk)
∣∣ ≤ ε(δkp)2

)
≥ α1/2m (18)

and similarly, P
(∣∣Ck

j,s − cj(xk + sk)
∣∣ ≤ ε(δkp)2

)
≥ α1/2m. It follows from the independence of the

random variables Θ0
j and Θs

j and both previous inequalities that

P
({∣∣Ck

j,0 − cj(xk)
∣∣ ≤ ε(δkp)2

}
∩
{∣∣Ck

j,s − cj(xk + sk)
∣∣ ≤ ε(δkp)2

})
≥ α1/m, (19)

which means that Assumption 3-(iii) holds. Estimates ckj,0 = Ck
j,0(ω) and ckj,s = Ck

j,s(ω), obtained
by averaging pkj realizations of cΘj

, resulting from the evaluations of the stochastic blackbox, respec-
tively at xk and xk + sk, are obviously ε-accurate.

In order to satisfy Assumption 3-(v), notice that the independence of the random variables Θj, j ∈
J combined with (18) implies

P

(
m⋂
j=1

{∣∣Ck
j,0 − cj(xk)

∣∣ ≤ ε(δkp)2
})

=
m∏
j=1

P
(∣∣Ck

j,0 − cj(xk)
∣∣ ≤ ε(δkp)2

)
≥ α1/2 (20)

and similarly, P

(
m⋂
j=1

{∣∣Ck
j,s − cj(xk + sk)

∣∣ ≤ ε(δkp)2
})
≥ α1/2. (21)

Define the random bounds Lk0(xk), Lks(x
k + sk), Uk

0 (xk) and Uk
s (xk + sk), respectively by

Lk0(xk) =
m∑
j=1

max
{
Ck
j,0 − ε(δkp)2, 0

}
, Uk

0 (xk) =
m∑
j=1

max
{
Ck
j,0 + ε(δkp)2, 0

}
Lks(x

k + sk) =
m∑
j=1

max
{
Ck
j,s − ε(δkp)2, 0

}
and Uk

s (xk + sk) =
m∑
j=1

max
{
Ck
j,s + ε(δkp)2, 0

}
.

Define the events Ek
0 and Ek

s respectively by

Ek
0 =

{
Lk0(xk) ≤ h(xk) ≤ Uk

0 (xk)
}

and Ek
s =

{
Lks(x

k + sk) ≤ h(xk + sk) ≤ Uk
s (xk + sk)

}
(22)

By noticing that

m⋂
j=1

{∣∣Ck
j,0 − cj(xk)

∣∣ ≤ ε(δkp)2
}

=
m⋂
j=1

{
Ck
j,0 − ε(δkp)2 ≤ cj(x

k) ≤ Ck
j,0 + ε(δkp)2

}
⊆ Ek

0 (23)

m⋂
j=1

{∣∣Ck
j,s − cj(xk + sk)

∣∣ ≤ ε(δkp)2
}
⊆ Ek

s , (24)

then combining respectively (20) and (23), and (21) and (24), yields

P
(
Ek

0

)
≥ P

(
m⋂
j=1

{∣∣Ck
j,0 − cj(xk)

∣∣ ≤ ε(δkp)2
})
≥ α1/2 (25)
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P
(
Ek
s

)
≥ P

(
m⋂
j=1

{∣∣Ck
j,s − cj(xk + sk)

∣∣ ≤ ε(δkp)2
})
≥ α1/2. (26)

It follows from the independence of the random variables Θ0
j,` and Θs

j,`, for all j ∈ J and for all
` = 1, 2, . . . , pkj , that the events Ek

0 and Ek
s are also independent. Hence, both inequalities (25)

and (26) imply that

α ≤ P

(
m⋂
j=1

{∣∣Ck
j,0 − cj(xk)

∣∣ ≤ ε(δkp)2
})
× P

(
m⋂
j=1

{∣∣Ck
j,s − cj(xk + sk)

∣∣ ≤ ε(δkp)2
})

= P

(
m⋂
j=1

{∣∣Ck
j,0 − cj(xk)

∣∣ ≤ ε(δkp)2
}
∩
{∣∣Ck

j,s − cj(xk + sk)
∣∣ ≤ ε(δkp)2

})
≤ P

(
Ek

0

)
× P

(
Ek
s

)
= P

(
Ek

0 ∩ Ek
s

)
,

which shows that Assumption 3-(v) holds.
In order to show that Assumption 3-(iv) holds, notice that E

(
Ck
j,0 − cj(xk)

)
= 0 for all j ∈ J ,

which implies that for all j ∈ J ,

E
(∣∣Ck

j,0 − cj(xk)
∣∣2) = V

(
Ck
j,0 − cj(xk)

)
= V

(
Ck
j,0

)
≤ V

pkj
≤ ε2

(
1− α1/2m

)
(δkp)4, (27)

where the last inequality in (27) follows from (17). Similarly, since E
(
Ck
j,s − cj(xk + sk)

)
= 0 for

all j ∈ J , then
E
(∣∣Ck

j,s − cj(xk + sk)
∣∣2) ≤ ε2

(
1− α1/2m

)
(δkp)4, (28)

which shows that Assumption 3-(iv) holds.
Before showing Assumption 3-(vi), let first notice that

∣∣Hk
0 − h(xk)

∣∣ =

∣∣∣∣∣
m∑
j=1

max{Ck
j,0, 0} −

m∑
j=1

max{cj(xk), 0}

∣∣∣∣∣
≤

m∑
j=1

∣∣max{Ck
j,0, 0} −max{cj(xk), 0}

∣∣ ≤ m∑
j=1

∣∣Ck
j,0 − cj(xk)

∣∣ , (29)

where the last inequality in (29) follows from the inequality |max{x, 0} −max{y, 0}| ≤ |x− y|, for
all x, y ∈ R. Moreover, it follows from the Cauchy-Schwarz inequality [20] that for all j ∈ J ,

E
(∣∣Ck

j,0 − cj(xk)
∣∣) ≤ [E(∣∣Ck

j,0 − cj(xk)
∣∣2)]1/2

≤ ε (1− α)1/2 (δkp)2, (30)

where the last inequality in (30) follows from (27). Thus, taking the expectation in (29), combined
with (30) yields

E
(∣∣Hk

0 − h(xk)
∣∣) ≤ m∑

j=1

E
(∣∣Ck

j,0 − cj(xk)
∣∣) ≤ mε (1− α)1/2 (δkp)2,
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and similarly E
(∣∣Hk

s − h(xk + sk)
∣∣) ≤ mε (1− α)1/2 (δkp)2,

which shows that Assumption 3-(vi) holds.
Finally, let compute estimates F k

0 and F k
s that satisfy Assumption 3-(i) and (ii). For that purpose,

let Θ0
0 and Θs

0 be two independent random variables following the same distribution as Θ0. Let
Θ0

0,`, ` = 1, 2, . . . , pk0 and Θs
0,`, ` = 1, 2, . . . , pk0 be independent random samples of Θ0

0 and Θs
0

respectively, where pk0 ≥ 1 denotes the sample size. Define F k
0 and F k

s respectively by

F k
0 =

1

pk0

pk0∑
`=1

fΘ0
0,`

(xk) and F k
s =

1

pk0

pk0∑
`=1

fΘs
0,`

(xk + sk).

Then E
(
F k

0

)
= f(xk), which implies that V

(
F k

0

)
≤ V

pk0
. Thus, it is easy to notice that the proof of

Assumption 3-(i) follows that of Assumption 3-(iii). More precisely, the following inequality holds:

P
({∣∣F k

0 − f(xk)
∣∣ ≤ ε(δkp)2

}
∩
{∣∣F k

s − f(xk + sk)
∣∣ ≤ ε(δkp)2

})
≥ β, (31)

provided that

pk0 ≥
V

ε2
(
1−
√
β
)

(δkp)4
(32)

Estimates fk0 = F k
0 (ω) and fks = F k

s (ω), obtained by averaging pk0 realizations of fΘ0 , resulting from
the evaluations of the stochastic blackbox, respectively at xk and xk+sk, are obviously ε-accurate. It is
also easy to notice that the proof of Assumption 3-(ii) follows that of Assumption 3-(iv). Specifically,

E
(∣∣F k

0 − f(xk)
∣∣2) ≤ ε2(1−

√
β)(δkp)4 and E

(∣∣F k
s − f(xk + sk)

∣∣2) ≤ ε2(1−
√
β)(δkp)4,

provided that pk0 is chosen according to (32).

4 Convergence analysis
Using ideas inspired by [8, 11, 23, 40, 48] this section presents convergence results of StoMADS-
PB, most of which are stochastic variants of those in [8]. It introduces the random time T at which
Algorithm 1 generates a first ε-feasible solution. Then assuming that T is either almost surely finite
or almost surely infinite, a so-called zeroth-order result [10, 11] is derived showing that there exists
a subsequence of Algorithm 1-generated random iterates with mesh realizations becoming infinitely
fine and which converges with probability one to a limit. This is achieved by showing by means of
Theorem 2 that the sequence of random poll size parameters converges to zero with probability one.
Section 4.2 analyzes the function h and the random ε-infeasible iterates generated by Algorithm 1.
In particular, it gives conditions under which an almost sure limit of a subsequence of such iterates is
shown in Theorem 4 to satisfy a first-order necessary optimality condition via the Clarke generalized
derivative of hwith probability one. Then, a similar result for f and the sequence of ε-feasible iterates
is derived in Theorem 6 of Section 4.3. Note finally that the proofs of the main results of this section
are presented in the Appendix.
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4.1 Zeroth-order convergence
Recall Remark 1 and denote by S k

X = {X`
feas : X`

feas 6= x0
inf, ` ≤ k} the set of all random ε-feasible

iterates generated by Algorithm 1 until the beginning of iteration k. Consider the following random
time T defined by

T := inf{k ≥ 0 : S k
X 6= ∅}. (33)

Then it is easy to notice that T ≥ 1 and that for all k ≥ 1, the occurrence of the event {T ≤ k} is
determined by observing the random quantities generated by Algorithm 1 until the iteration k − 1,
which means that T is a stopping time [32] for the stochastic process generated by Algorithm 1. The
following is assumed for the remainder of the analysis.

Assumption 4. The stopping time T associated to the stochastic process generated by Algorithm 1 is
either almost surely finite or almost surely infinite.

The next result implies that the sequence {∆k
p}k∈N of random poll size parameters converges to

zero with probability one and will be useful for the Clarke stationarity results of Sections 4.2 and 4.3.
It holds under the assumption below.

Assumption 5. The objective function f is bounded from below, i.e., there exists κfmin ∈ R such that
−∞ < κfmin ≤ f(x), for all x ∈ Rn.

Theorem 2. Let Assumptions 2, 4 and 5 be satisfied. Let γ > 2 and τ ∈ (0, 1) ∩Q. Let ν ∈ (0, 1) be
chosen such that

ν

1− ν
≥ 2(τ−2 − 1)

γ − 2
(34)

and assume that Assumption 3 holds for α and β chosen such that

αβ ≥ 4ν

(1− ν)(1− τ 2)

[
(1− α)1/2 + 2(1− β)1/2

]
. (35)

Then, the sequence {∆k
p}k∈N of frame size parameters generated by Algorithm 1 satisfies

+∞∑
k=0

(∆k
p)

2 < +∞ almost surely. (36)

The following result is a simple consequence of Theorem 2. It shows that the sequences {∆k
m}k∈N

and {∆k
p}k∈N converge to zero almost surely respectively.

Corollary 1. The followings hold under all the assumptions made in Theorem 2

lim
k→+∞

∆k
m = 0 almost surely and lim

k→+∞
∆k
p = 0 almost surely.

The next result shows that with probability one, the difference between the estimates and their
corresponding true function values converge to zero. This means that Algorithm 1 behaves like an
exact deterministic method asymptotically. This result will be also useful in Subsection 4.3 for the
proof of Theorem 5.
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Corollary 2. Let all assumptions that were made in Theorem 2 hold. Then,

lim
k→+∞

∣∣Hk
0 − h(Xk)

∣∣ = 0 almost surely and lim
k→+∞

∣∣F k
0 − f(Xk)

∣∣ = 0 almost surely, (37)

and the same result holds for
∣∣Hk

s − h(Xk + Sk)
∣∣ and

∣∣F k
s − f(Xk + Sk)

∣∣ respectively.

Definition 10. A convergent subsequence {xk}k∈K of Algorithm 1 iterates, for some subset of in-
dices K, is called a refining subsequence if and only if the corresponding subsequence {δkm}k∈K
converges to zero. The limit x̂ is called a refined point.

Combining the results of Corollary 1 and the compactness hypothesis of Assumption 2 was shown
in [11] to be enough to ensure the existence of refining subsequences. Specifically the following holds.

Theorem 3. Let the assumptions that were made in Corollary 1 hold. Then there exists at least one
refining subsequence {Xk}k∈K (whereK is a sequence of random variables) which converges almost
surely to a refined point X̂ .

4.2 Nonsmooth optimality conditions: Results for h
This subsection aims to show with probability one that Algorithm 1 generates a refining subsequence
{Xk

inf}k∈K with refined point X̂inf which satisfies a first-order necessary optimality condition via the
Clarke generalized derivative of h. As in [11], this optimality result strongly relies on the requirement
that the polling directions dk ∈ Dk

p(x
k
inf) of Algorithm 1 are such that δkp

∥∥dk∥∥∞ never approaches zero
for all k. The way such an expectation can be met is discussed in [11]. Indeed, by choosing the
columns of the matrix D used in the definition of the mesh Mk to be the 2n positive and nega-
tive coordinate directions, δ0

p = 1 and τ = 1/2, the directions δkpd
k were shown in [11] to satisfy

δkp
∥∥dk∥∥∞ ≥ 1 whenever dk is constructed by means of the so-called Householder matrix [12]. Thus,

the following assumption is made for the remainder of the analysis.

Assumption 6. Let dk ∈ Dk
p be any polling direction used by Algorithm 1 at iteration k. Then there

exists a constant dmin > 0 such that δkp
∥∥dk∥∥∞ ≥ dmin for all k ≥ 0.

The main result of this subsection relies on the properties of the random function Ψh
k introduced

next, a similar of which was used in [11].

Lemma 1. Let the same assumptions that were made in Theorem 2 hold and assume in addition
to (35) that αβ ∈ (1/2, 1). Consider the random function Ψh

k with realizations ψhk defined by

ψhk :=
h(xkinf)− h(xkinf + δkmd

k)

δkp
for all k ≥ 0,

where dk ∈ Dk
p(x

k
inf) denotes any available polling direction around xkinf at iteration k. Then the

following holds,
lim inf
k→+∞

Ψh
k ≤ 0 almost surely. (38)

The following definition of refining directions [7, 12] will be useful in the analysis.
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Definition 11. Let x̂ be the refined point associated to a convergent refining subsequence {xk}k∈K.
A direction v is said to be a refining direction for x̂ if and only if there exists an infinite subset L ⊆ K
with polling directions dk ∈ Dk

p(x
k) such that v = lim

k∈L
dk

‖dk‖∞
.

The analysis in this subsection also relies on the following definitions [8]. The Clarke generalized
derivative h◦(x̂; v) of h at x̂ ∈ X in the direction v ∈ Rn is defined by

h◦(x̂; v) := lim sup
y→x̂, y∈X

t↘0, y+tv∈X

h(y + tv)− h(y)

t
. (39)

As highlighted in [8], this definition from [36] is a generalization of the original one by Clarke [25]
to the case where the constraints violation function h is not defined outside X .

The analysis involves a specific cone THX (x̂inf) called the hypertangent cone [50] to X at x̂inf . The
hypertangent cone to a subset O ⊆ X at x̂ is defined by

THO (x̂) := {v ∈ Rn : ∃ε̄ > 0 such that y + tw ∈ O ∀y ∈ O ∩ Bε̄(x̂), w ∈ Bε̄(v) and 0 < t < ε̄}.

Next is stated a lemma [8] from elementary analysis, that will be useful latter in the present analysis.

Lemma 2. If {ak} is a bounded real sequence and {bk} is a convergent real sequence, then

lim sup
k

(ak + bk) = lim sup
k

ak + lim
k
bk.

The next result is a stochastic variant of Theorem 3.5 in [8]. Since the inequality h(xkinf + δkmd
k)−

h(xkinf) ≥ 0 on which relies the latter theorem does not hold in the present stochastic setting, then the
proof of the result below is based on the random function Ψh

k lim inf-type result of Lemma 1.

Theorem 4. Let Assumptions 1, 6 and all the assumptions made in Theorem 2 and Lemma 1 hold.
Then Algorithm 1 generates a convergent ε-infeasible refining subsequence {Xk

inf}k∈K , for some se-
quence K ⊆ K ′ of random variables satisfying limK′ Ψh

k ≤ 0 almost surely, such that if x̂inf ∈ X is a
refined point for a realization {xkinf}k∈K of {Xk

inf}k∈K for which the events ∆k
p → 0 and limK′ Ψh

k ≤ 0
both occur, and if v ∈ THX (x̂inf) is a refining direction for x̂inf , then h◦(x̂inf ; v) ≥ 0. In particular, this
means that

P
({
ω ∈ Ω : ∃K(ω) ⊆ N and ∃X̂inf(ω) = lim

k∈K(ω)
Xk

inf(ω), X̂inf(ω) ∈ X , such that

∀V (ω) ∈ THX (X̂inf(ω)), h◦(X̂inf(ω);V (ω)) ≥ 0
})

= 1.
(40)

Next is stated a stochastic variant of a result in [8], showing that Clarke stationarity is ensured
when the set of refining directions is dense in a nonempty hypertangent cone to X .

Corollary 3. Let all assumptions that were made in Theorem 4 hold. Let {Xk
inf}k∈K be the ε-infeasible

refining subsequence of Theorem 4, with realizations {xkinf}k∈K which converges to a refined point
x̂inf ∈ X . If the set of refining directions for x̂inf is dense in THX (x̂inf) 6= ∅, then x̂inf is a Clarke
stationary point for the problem min

x∈X
h(x).

Proof. The proof of this result is almost identical to the proof of a similar result (Corollary 3.6) in [8]
and hence will not be presented here again.
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4.3 Nonsmooth optimality conditions: Results for f
The analysis presented in this subsection assumes that Algorithm 1 generates infinitely many ε-
feasible points. It aims to show with probability one that StoMADS-PB generates a refining subse-
quence {Xk

feas}k∈K with refined point X̂feas, which satisfies a first-order necessary optimality condition
based on the Clarke derivative of f . The following lemma will be useful latter in the analysis.

Lemma 3. Let the same assumptions that were made in Theorem 2 hold and assume in addition
to (35) that αβ ∈ (1/2, 1). Assume that the random time T with realizations t is finite almost surely.
Consider the random function Ψf,T

k with realizations ψf,tk defined by

ψf,tk :=
f(xk∨tfeas)− f(xk∨tfeas + δkmd

k)

δkp
for all k ≥ 0,

where k ∨ t := max{k, t} and dk denotes any available polling direction around xk∨tfeas at iteration k.
Then the following holds,

lim inf
k→+∞

Ψf,T
k ≤ 0 almost surely. (41)

Now let prove that the almost sure limit X̂feas of any convergent refining subsequence of ε-
feasible iterates which drives the random estimated violations Hk

0 (Xk
feas) to zero almost surely, sat-

isfies P
(
X̂feas ∈ D

)
= 1. First, notice that the existence of such a refining subsequence can be

assumed. Indeed, it is known from Theorem 1 that true iterations occur infinitely often provided that
estimates and bounds are sufficiently accurate. In addition, every ε-feasible point xkfeas newly accepted
by Algorithm 1 satisfies uk0(xkfeas) = 0, which implies that hk0(xkfeas) = 0, thus leading to the overall
conclusion that lim inf

k→+∞
Hk

0 (Xk
feas) = 0 almost surely, which is implicitly assumed next.

Theorem 5. Let all the assumptions of Lemma 3 hold. Let X̂feas be the almost sure limit of a conver-
gent ε-feasible refining subsequence {Xk∨T

feas }k∈K for which lim
k∈K

Hk
0 (Xk∨T

feas ) = 0 almost surely. Then

P
(
X̂feas ∈ D

)
= 1. (42)

The following result is a stochastic variant of Theorem 3.3 in [8].

Theorem 6. Let Assumptions 1, 6 and all assumptions that were made in Theorem 2 and Lemma 3
hold. Let {Xk∨T

feas }k∈K be an almost surely convergent ε-feasible refining subsequence, for some se-
quence K of random variables satisfying limK Ψf,T

k ≤ 0 and limK H
k
0 (Xk∨T

feas ) = 0 almost surely.
Then, if x̂feas ∈ D is a refined point for a realization {xk∨tfeas}k∈K of {Xk∨T

feas }k∈K for which the events
∆k
p → 0, limK Ψf,T

k ≤ 0 and limK H
k
0 (Xk∨T

feas ) = 0 occur, and if v ∈ THD (x̂feas) is a refining direction
for x̂feas, then f ◦(x̂feas; v) ≥ 0. In particular, this means that

P
({
ω ∈ Ω : ∃K(ω) ⊆ N and ∃X̂feas(ω) = lim

k∈K(ω)
Xk∨T

feas (ω), X̂feas(ω) ∈ D, such that

∀V (ω) ∈ THD (X̂feas(ω)), f ◦(X̂feas(ω);V (ω)) ≥ 0
})

= 1.
(43)

Corollary 4. Let all assumptions that were made in Theorem 6 hold. Let {Xk∨T
feas }k∈K be the ε-feasible

refining subsequence of Theorem 6, with realizations {xk∨tfeas}k∈K which converges to a refined point
x̂feas ∈ D. If the set of refining directions for x̂feas is dense in THD (x̂feas) 6= ∅, then x̂feas is a Clarke
stationary point for (1).
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Proof. The proof of this result is almost identical to the proof of a similar result (Corollary 3.4) in [8]
and hence will not be presented here again.

5 Computational study
This section illustrates the performance and the efficiency of StoMADS-PB using noisy variants of
42 continuous analytical computational constrained problems from the optimization literature. The
sources and characteristics of these problems are summarized in Table 1. The number of variables
ranges from n = 2 to n = 20, where every problem has at least one constraint (m > 0) other than
bound constraints. In order to show the capability of StoMADS-PB to cope with noisy constrained
problems compared to MADS with PB [8] referred to as MADS-PB, the latter algorithm is compared
to several variants of StoMADS-PB. For all numerical investigations of both algorithms, only the
POLL step is used, i.e., no SEARCH step is involved. The OrthoMADS-2n directions [1] are used
for the POLL which is ordered by means of an opportunistic strategy [12]. MADS-PB and all the
proposed variants of StoMADS-PB are implemented in MATLAB.

The stochastic variants of the 42 abovementioned deterministic constrained optimization prob-
lems are solved using three different infeasible initial points for a total of 126 problem instances.
Inspired from [11], such stochastic variants are constructed by additively perturbing the objective f
by a random variable Θ0 and each constraint cj, j = 1, 2, . . . ,m by a random variable Θj as follows

fΘ0(x) = f(x) + Θ0 and cΘj
(x) = cj(x) + Θj, for all j ∈ J, (44)

where Θ0 is uniformly generated in the interval I(σ, x0, f) = [−σ |f(x0)− f ∗| , σ |f(x0)− f ∗|] and
Θj is uniformly generated in I(σ, x0, cj) = [−σ |cj(x0)| , σ |cj(x0)|]. The scalar σ > 0 is used to
define different noise levels, x0 denotes an initial point and f ∗ is the best known feasible minimum
value of f . The random variables Θ0,Θ1, . . . ,Θm are independent. For the remainder of the study,
the process which returns the vector [fΘ0(x), cΘ1(x), cΘ2(x), . . . , cΘm(x)] when provided the input x
will be referred to as noisy blackbox.

The MADS-PB algorithm [8] of which StoMADS-PB is a stochastic variant and to which the latter
is compared is an iterative direct-search method originally developed for deterministic constrained
blackbox optimization. In MADS-PB, feasibility is sought by progressively decreasing in an adaptive
manner a threshold imposed on a constraint violation function into which all the constraint violations
are aggregated. Any trial point with a constraint violation value greater than that threshold is rejected
out of hand. Full description of MADS-PB iterations and useful information for better understanding
of the algorithm behavior can also be found in [12].

The relative performance and efficiency of algorithms are assessed by performance profiles [31,
46] and data profiles [46], which require to define for a given computational problem a convergence
test. For each of the 126 problems, denote by xN the best feasible iterate found after N evaluations
of the noisy blackbox and let x∗ be the best feasible point obtained by all tested algorithms on all run
instances. Then, the convergence test from [14] used for the experiments is defined as follows:

f(xN) ≤ f(x∗) + τ(f̄feas − f(x∗)), (45)

where, τ ∈ [0, 1] is the convergence tolerance and f̄feas is a reference value obtained by taking
the average of the first feasible f function values over all run instances of a given computational
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problem for all algorithms. If no feasible point is found, then the convergence test fails. Otherwise, a
problem is said to be successfully solved within the tolerance τ if (45) holds. As highlighted in [14],
f̄feas = f(x0) for unconstrained computational problems, where x0 denotes the initial point.

The horizontal axis of the performance profiles shows the ratio of the number of noisy objective
function evaluations while the fraction of computational problems solved within the convergence tol-
erance τ is shown on the vertical axis. On the horizontal axis of the data profiles is shown the number
of function calls to the noisy blackbox divided by (n+1)1 while the vertical axis shows the proportion
of computational problems solved by all run instances of a given algorithm within a tolerance τ . As
emphasized in [12], performance profiles capture information on speed of convergence (i.e., the qual-
ity of a given algorithm’s output in terms of the objective function evaluations) and robustness (i.e.,
the fraction of computational problems solved) in a compact graphical format, while data profiles also
examine the robustness and efficiency from a different perspective.

Now recall that in StoMADS-PB, according to Section 3.2, the noisy blackbox needs to be evalu-
ated many times at a given point in order to compute function estimates unlike the MADS-PB method
where it is evaluated only once at each point. But since a limited budget of 1000(n+1) noisy blackbox
evaluations is set in all the experiments, that is, since MADS-PB and all variants of StoMADS-PB
stop as soon as the number of noisy blackbox evaluations reaches 1000(n + 1), only few calls to the
blackbox need to be used when computing StoMADS-PB function estimates. However, given that
such estimates are required to be sufficiently accurate in order for the solutions to be satisfactory,
a procedure inspired from [11] aiming at improving the estimates accuracy by making use of avail-
able samples at a given current point is proposed. Note in passing that the proposed computation
procedure is very efficient in practice as highlighted in [11] even though it is inherently biased. The
following computation scheme is described only for fk0 (xk) but is the same for fks (xk + sk), ckj,0(xk)
and ckj,s(x

k + sk), for all j ∈ J . First, let mention that during the optimization, all trial points xk used
by StoMADS-PB and all corresponding values fΘ0(x

k) are stored in a cache. When constructing an
estimate of f(xk) at the iteration k ≥ 1, denote by ak(xk)2 the number of sample values of fΘ0(x

k)
available in the cache from previous blackbox evaluations until iteration k− 1. Since all the values of
the noisy objective function fΘ0 are always computed independently of each other, the aforementioned
sample values can be considered as independent realizations fθ0,1(x

k), fθ0,2(x
k), . . . , fθ

0,ak(xk)
(xk) of

fΘ0(x
k), where for all ` = 1, 2, . . . , ak(xk), θ0,` is a realization of the random variable Θ0,` following

the same distribution as Θ0. Now let nk ≥ 1 be the number of blackbox evaluations at xk and con-
sider the following independent realizations θ0,ak(xk)+1, θ0,ak(xk)+2, . . . , θ0,ak(xk)+nk of Θ0. Then, an
estimate fk0 (xk) of f(xk) is computed according to,

fk0 (xk) =
1

pk

pk∑
`=1

fθ0,`(x
k), (46)

where pk = nk + ak(xk) is the sample size.
Same values are used to initialize most of the common parameters to StoMADS-PB and MADS-

PB. Specifically, the mesh refining parameter τ = 1/2, the frame center trigger ρ = 0.1 and δ0
m =

δ0
p = 1. Nevertheless in MADS-PB, the initial barrier threshold is set equal its default value, i.e.,
h0

max = +∞ [8] while in StoMADS-PB it equals u0
0(x0

inf), with uk0(xk) defined in (4) for all k ∈ N.

1n+1 is the number of evaluations required to construct a linear interpolant or a simplex gradient [12] in Rn [14, 46].
2It is implicitly assumed without any loss of generality that ak(xk) ≥ 1.
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The default values of Algorithm 1 parameters γ > 2 and ε > 03 are borrowed from [11] in which
StoMADS, an unconstrained stochastic variant of MADS [7] is introduced. Specifically, γ = 17 and
ε = 0.01.

Table 1: Description of the set of 42 analytical problems.
No Name Source n m Bnds No Name Source n m Bnds
1 ANGUN [54] 2 1 Yes 22 MAD1 [43] 2 1 No
2 BARNES [51] 2 3 Yes 23 MAD2 [43] 2 1 No
3 BERTSIMAS [19] 2 2 No 24 MAD6 [43] 7 7 Yes
4 CHENWANG_F2 [24] 8 6 Yes 25 MEZMONTES [44] 2 2 Yes
5 CHENWANG_F3 [24] 10 8 Yes 26 NEW-BRANIN [54] 2 1 Yes
6 CONSTR-BRANIN [54] 2 1 Yes 27 OPTENG-BENCH4 [37] 2 1 Yes
7 CRESCENT [8] 10 2 No 28 OPTENG-BENCH5 [37] 2 3 Yes
8 DEMBO5 [43] 8 3 Yes 29 OPTENG-RBF [37] 3 4 Yes
9 DISK [8] 10 1 No 30 PENTAGON [43] 6 15 No
10 G23 [9] 3 2 Yes 31 PRESSURE-VESSEL [44] 4 4 Yes
11 G210 [9] 10 2 Yes 32 SASENA [54] 2 1 Yes
12 G220 [9] 20 2 Yes 33 SNAKE [8] 2 2 No
13 GOMEZ [54] 2 1 Yes 34 SPEED-REDUCER [44] 7 11 Yes
14 HS15 [35] 2 2 Yes 35 SPRING [51] 3 4 Yes
15 HS19 [35] 2 2 Yes 36 TAOWANG_F1 [53] 2 2 Yes
16 HS22 [35] 2 2 No 37 TAOWANG_F2 [53] 7 4 Yes
17 HS23 [35] 2 5 Yes 38 WELDED-BEAM [44] 4 7 Yes
18 HS29 [35] 3 1 No 39 WONG2 [43] 10 3 No
19 HS43 [35] 4 3 No 40 ZHAOWANG_F5 [55] 13 9 Yes
20 HS108 [35] 9 13 Yes 41 ZILONG_G4 [54] 5 1 Yes
21 HS114 [35] 10 5 Yes 42 ZILONG_G24 [54] 2 1 Yes

Table 2: Percentage of problems solved for each noise level σ within a convergence tolerance τ .
τ = 10−1 τ = 10−3

Algorithm σ = 0.01 σ = 0.03 σ = 0.05 σ = 0.01 σ = 0.03 σ = 0.05

StoMADS-PB nk = 1 74.6% 78.57% 73.02% 44.44% 45.24% 45.24%
StoMADS-PB nk = 2 74.6% 76.98% 76.19% 47.62% 47.62% 50.79%
StoMADS-PB nk = 3 76.19% 65.08% 66.67% 48.41% 41.27% 38.10%
MADS-PB 69.5% 64.29% 54.76% 41.27% 36.51% 29.37%

Three variants of StoMADS-PB corresponding to nk = 1, nk = 2 and nk = 3 are compared to
MADS-PB. The data and performance profiles used for the comparisons are depicted on Figures 2, 4
and 6 and Figures 3, 5 and 7. Three levels of noise are used during the experiments, which correspond
to σ = 0.01, σ = 0.03 and σ = 0.05. For a given algorithm, the estimated percentages of problems

3The use of εf instead of ε is favored in [11].
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solved after 1000(n + 1) noisy blackbox evaluations for each noise level within a convergence tol-
erance τ are reported in Table 2. They are obtained based on the profiles graphs using MATLAB
tools.

The data and performance profiles show that when given the time, StoMADS-PB eventually out-
performs MADS-PB in general. Moreover as in [11], varying the value of the convergence tolerance τ
in the data profiles does not significantly alter the conclusions drawn from the performance profiles.
Indeed as expected, it can be easily observed from Table 2 that the higher the tolerance parameter τ ,
the larger the percentage of problems solved by all algorithms for a fixed noise level σ. Now notice
that while for a given τ , the fraction of problems solved by MADS-PB decreases when the noise
level increases from σ = 0.01 to σ = 0.05, this seems not to be the case for StoMADS-PB variants.
Before giving an insight as to why, recall that in the present constrained framework, the success or
failure of the convergence test (45) does not depend only on the values of the objective function f but
also on whether a feasible point is found or not, unlike the framework of [11] where no constraints
are involved. In fact, as highlighted in [11] from which is inspired the computation scheme (46),
even though the robustness and efficiency of each StoMADS-PB variants depends on the number nk

of noisy blackbox evaluations which is constant for all k, the quality of the solutions is influenced
by the sample size pk = nk + ak(xk) which is not constant. On one hand, this is the reason why
for nk = 1, StoMADS-PB does not have the same behavior as MADS-PB. On the other hand, such
computation scheme naturally favors StoMADS-PB by improving the accuracy of the estimates of
its constraints function values, thus allowing it to find more feasible solutions than MADS-PB and
consequently possibly solve larger fraction of problems when the noise level increases for a fixed
tolerance parameter τ .

Finally, based on Table 2, it can be noticed that for a given convergence tolerance τ , varying σ
seems not to have significant influences on the fractions of problems solved by StoMADS-PB variants
corresponding to nk = 1 and nk = 2. Moreover, even though for the lowest noise level studied
σ = 0.01, StoMADS-PB with nk = 3 solved the most problems, the corresponding percentage is not
significantly larger than that of StoMADS-PB with nk = 2. For all these reasons, the latter variant
seems preferable for constrained stochastic blackbox optimization problems.
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Figure 2: Data profiles for convergence tolerances
τ = 10−1 and τ = 10−3, and noise level σ = 0.01
on 126 analytical constrained test problems additively
perturbed in the intervals I(σ, x0, f) and I(σ, x0, cj).

Figure 3: Performance profiles for convergence tol-
erances τ = 10−1 and τ = 10−3, and noise level
σ = 0.01 on 126 analytical constrained test prob-
lems additively perturbed in the intervals I(σ, x0, f)
and I(σ, x0, cj).
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Figure 4: Data profiles for convergence tolerances
τ = 10−1 and τ = 10−3, and noise level σ = 0.03
on 126 analytical constrained test problems additively
perturbed in the intervals I(σ, x0, f) and I(σ, x0, cj).

Figure 5: Performance profiles for convergence tol-
erances τ = 10−1 and τ = 10−3, and noise level
σ = 0.03 on 126 analytical constrained test prob-
lems additively perturbed in the intervals I(σ, x0, f)
and I(σ, x0, cj).
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Figure 6: Data profiles for convergence tolerances
τ = 10−1 and τ = 10−3, and noise level σ = 0.05
on 126 analytical constrained test problems additively
perturbed in the intervals I(σ, x0, f) and I(σ, x0, cj).

Figure 7: Performance profiles for convergence tol-
erances τ = 10−1 and τ = 10−3, and noise level
σ = 0.05 on 126 analytical constrained test prob-
lems additively perturbed in the intervals I(σ, x0, f)
and I(σ, x0, cj).
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Concluding remarks
This research proposes the StoMADS-PB algorithm for constrained stochastic blackbox optimiza-
tion. The proposed method which uses an algorithmic framework similar to that of MADS considers
the optimization of objective and constraints functions whose values can only be accessed through
a stochastically noisy blackbox. It treats constraints using a progressive barrier approach, by aggre-
gating their violations into a single function. It does not use any model or gradient information to
find descent directions or improve feasibility unlike prior works, but instead, uses function estimates
and introduces probabilistic bounds on which sufficient decrease conditions are imposed. By requir-
ing the accuracy of such estimates and bounds to hold with sufficiently high but fixed probabilities,
convergence results of StoMADS-PB are derived, most of which are stochastic variants of those of
MADS.

Computational experiments conducted on several variants of StoMADS-PB on a collection of
constrained stochastically noisy problems showed the proposed method to eventually outperform
MADS, and also showed some of its variants to be almost robust to random noise despite the use
of very inaccurate estimates.

This research is to the best of our knowledge the first to propose a stochastic directional direct-
search algorithm for BBO, developed to cope with a noisy objective and constraints that are also
stochastically noisy.

future research could focus on improving the proposed method to handle large-scale machine
learning problems, making use for example of parallel space decomposition.
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Appendix
Now we prove a sequence of convergence results of Section 4.

Proof of Theorem 2

Proof. This theorem is proved using ideas from [11, 21, 23, 33, 40, 48]. According to Assumptions 4,
the proof considers two different parts: Part 1 assumes that T = +∞ almost surely, i.e., no ε-feasible
iterate is found by Algorithm 1, while Part 2 considers that T < +∞ almost surely. Part 1 considers
two separate cases: “good bounds” and “bad bounds”, each of which is broken into whether an
iteration is h-Dominating, Improving or Unsuccessful. Part 2 considers three separates cases: “good
estimates and good bounds”, “bad estimates and good bounds” and “bad bounds”, each of which is
broken into whether an iteration is f -Dominating, h-Dominating, Improving or Unsuccessful.
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In order to show (36), the goal of Part 1 is to show that there exists a constant η > 0 such that
conditioned on the almost sure event {T = +∞}, the following holds for all k ∈ N

E
(
Φk+1 − Φk|FC·Fk−1

)
≤ −η(∆k

p)
2, (47)

where Φk is the random function defined by

Φk :=
ν

mε
h(Xk

inf) + (1− ν)(∆k
p)

2, for all k ∈ N. (48)

Indeed, assume that (47) holds. Since Φk > 0 for all k ∈ N, then summing (47) over k ∈ N and
taking expectations on both sides lead to

E

[
+∞∑
k=0

(∆k
p)

2

]
≤ E (Φ0)

η
=

Φ0

η
, (49)

That is, (36) holds. Then, making use of the following random function

ΦT
k :=

ν

ε
(f(Xk∨T

feas )− κfmin) +
ν

mε
h(Xk

inf) + (1− ν)(∆k
p)

2, for all k ∈ N, (50)

where k ∨ T := max{k, T}, Part 2 aims to show that for the same previous constant η > 0, then
conditioned on the almost sure event {T < +∞}, the following holds for all k ∈ N

E
(
ΦT
k+1 − ΦT

k |FC·Fk−1

)
≤ −η(∆k

p)
2. (51)

Indeed, assume that (51) holds. Since ΦT
k > 0 for all k ≥ 0, then summing (51) over k ∈ N and

taking expectations on both sides, yield

E

[
+∞∑
k=0

(∆k
p)

2

]
≤

E
(
ΦT

0

)
η

=
1

η

[ν
ε

(
E
[
f(XT

feas)
]
− κfmin

)
+

ν

mε
h(x0

inf) + (1− ν)(δ0
p)

2
]

≤ 1

η

[ν
ε

(
κfmax − κ

f
min

)
+

ν

mε
h(x0

inf) + (1− ν)(δ0
p)

2
]

=: µ,

(52)

where the last inequality in (52) follows from the inequality f(Xk
feas) ≤ κfmax for all k ≥ 0, due to

Proposition 5, and the fact that T is finite almost surely.
The remainder of the proof is devoted to showing that (47) and (51) hold. The following events

are introduced for the sake of clarity in the analysis.
Df := {The iteration is f -Dominating}, Dh := {The iteration is h-Dominating},
I := {The iteration is Improving}, U := {The iteration is Unsuccessful}.

Part 1 (T = +∞ almost surely). The random function Φk defined in (48) will be shown to sat-
isfy (47) with η = 1

2
αβ(1 − ν)(1 − τ 2), no matter the change led in the objective function f by the

ε-infeasible iterates encountered by Algorithm 1. Moreover, since T is infinite almost surely, then
no iteration of Algorithm 1 can be f -Dominating. Two separate cases are distinguished and all that
follows is conditioned on the almost sure event {T = +∞}.
Case 1 (Good bounds, 1Ik = 1). No matter the type of iteration which occurs, the random function
Φk is shown to decrease and the smallest decrease is shown to happen on unsuccessful iterations, thus
yielding the following conclusion

E
[
1Ik(Φk+1 − Φk)|FC·Fk−1

]
≤ −α(1− ν)(1− τ 2)(∆k

p)
2. (53)
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(i) The iteration is h-Dominating (1Dh
= 1). The iteration is h-Dominating and the bounds are

good, so a decrease occurs in h according to (6) as follows

1Ik1Dh

ν

mε
(h(Xk+1

inf )− h(Xk
inf)) ≤ −1Ik1Dh

ν(γ − 2)(∆k
p)

2 (54)

The frame size parameter is updated according to ∆k+1
p = min{τ−1∆k

p, δmax}, which implies
that

1Ik1Dh
(1− ν)[(∆k+1

p )2 − (∆k
p)

2] ≤ 1Ik1Dh
(1− ν)(τ−2 − 1)(∆k

p)
2. (55)

Then, by choosing ν according to (34), the right-hand side term of (54) dominates that of (55).
Specifically, the following holds

−ν(γ − 2)(∆k
p)

2 + (1− ν)(τ−2 − 1)(∆k
p)

2 ≤ −1

2
ν(γ − 2)(∆k

p)
2. (56)

Then combining (54), (55) and (56) leads to

1Ik1Dh
(Φk+1 − Φk) ≤ −1Ik1Dh

1

2
ν(γ − 2)(∆k

p)
2. (57)

(ii) The iteration is Improving (1I = 1). The iteration is Improving and the bounds are good, so
again, a decrease occurs in h according to (6). Moreover, ∆k

p is updated as at h-Dominating
iterations. Thus, the change in Φk follows from (57) by replacing 1Dh

by 1I . Specifically,

1Ik1I(Φk+1 − Φk) ≤ −1Ik1I
1

2
ν(γ − 2)(∆k

p)
2. (58)

(iii) The iteration is Unsuccessful (1U = 1). There is a change of zero in h function values while
the frame size parameter is decreased. Consequently,

1Ik1U(Φk+1 − Φk) = −1Ik1U(1− ν)(1− τ 2)(∆k
p)

2 (59)

Then, the choice of ν according to (34) and the fact that 1 − τ 2 < τ−2 − 1 ensures that
unsuccessful iterations, more precisely (59), provide the worst case decrease when compared
to (57) and (58). Specifically, the following holds

−1

2
ν(γ − 2)(∆k

p)
2 ≤ −(1− ν)(1− τ 2)(∆k

p)
2. (60)

Thus, it follows from (57), (58), (59) and (60) that the change in Φk is bounded as follows

1Ik(Φk+1 − Φk) = 1Ik(1Dh
+ 1I + 1U)(Φk+1 − Φk) ≤ −1Ik(1− ν)(1− τ 2)(∆k

p)
2. (61)

Since Assumption 3 holds, then taking conditional expectations with respect to FC·Fk−1 on both sides of
the inequality in (61) leads to (53).
Case 2 (Bad bounds, 1Īk = 1). Since the bounds are bad, Algorithm 1 can accept an iterate which
leads to an increase in h and ∆k

p, and hence in Φk. Such an increase in Φk is controlled making use
of (14). Then, the probability of outcome (Part 1, Case 2) is adjusted to be sufficiently small so that
Φk can be reduced sufficiently in expectation. More precisely, the following will be proved

E
[
1Īk(Φk+1 − Φk)|FC·Fk−1

]
≤ 2ν(1− α)1/2(∆k

p)
2. (62)
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(i) The iteration is h-Dominating (1Dh
= 1). The change in h is bounded as follows

1Īk1Dh

ν

mε
(h(Xk+1

inf )− h(Xk
inf))

≤ 1Īk1Dh

ν

mε

[
(Hk

s −Hk
0 ) +

∣∣h(Xk+1
inf )−Hk

s

∣∣+
∣∣h(Xk

inf)−Hk
0

∣∣]
≤ 1Īk1Dh

ν

[
−γ(∆k

p)
2 +

1

mε

(∣∣h(Xk+1
inf )−Hk

s

∣∣+
∣∣h(Xk

inf)−Hk
0

∣∣)] , (63)

where (63) follows from Hk
s − Hk

0 ≤ −γmε(∆k
p)

2 which is satisfied for every h-Dominating
iteration. Moreover, the change in ∆k

p can be obtained simply by replacing in (55) 1Ik by 1Īk
as follows

1Īk1Dh
(1− ν)[(∆k+1

p )2 − (∆k
p)

2] ≤ 1Īk1Dh
(1− ν)(τ−2 − 1)(∆k

p)
2. (64)

Since choosing ν according to (34) ensures that −νγ(∆k
p)

2 + (1− ν)(τ−2− 1)(∆k
p)

2 ≤ 0, then
combining (63) and (64), yields

1Īk1Dh
(Φk+1 − Φk) ≤ 1Īk1Dh

ν

mε

(∣∣h(Xk+1
inf )−Hk

s

∣∣+
∣∣h(Xk

inf)−Hk
0

∣∣) . (65)

(ii) The iteration is Improving (1I = 1). ∆k
p is updated as at h-Dominating iterations and because

of bad bounds, the increase in h is bounded following (63). Thus, the bound on the change in
Φk can be obtained by replacing 1Dh

by 1I in (65) as follows

1Īk1I(Φk+1 − Φk) ≤ 1Īk1I
ν

mε

(∣∣h(Xk+1
inf )−Hk

s

∣∣+
∣∣h(Xk

inf)−Hk
0

∣∣) . (66)

(iii) The iteration is Unsuccessful (1U = 1). The change in h is zero and ∆k
p is decreased. Thus, the

change in Φk follows from (59) by replacing 1Ik by 1Īk and is trivially bounded as follows

1Īk1U(Φk+1 − Φk) ≤ 1Īk1U
ν

mε

(∣∣h(Xk+1
inf )−Hk

s

∣∣+
∣∣h(Xk

inf)−Hk
0

∣∣) . (67)

Finally, it follows from (65), (66), (67) and the inequality 1Īk ≤ 1, that

1Īk(Φk+1 − Φk) ≤
ν

mε

(∣∣h(Xk+1
inf )−Hk

s

∣∣+
∣∣h(Xk

inf)−Hk
0

∣∣) , (68)

Then, taking conditional expectations with respect to FC·Fk−1 on both sides of (68) and using the
inequalities (14) of Assumption 3, lead to (62).

Now, combining (53) and (62) yields,

E
(
Φk+1 − Φk|FC·Fk−1

)
= E

[
(1Ik + 1Īk)(Φk+1 − Φk)|FC·Fk−1

]
≤

[
−α(1− ν)(1− τ 2) + 2ν(1− α)1/2

]
(∆k

p)
2. (69)

Then, choosing α according to (35) implies that α ≥ 4ν(1− α)1/2

(1− ν)(1− τ 2)
, which ensures

−α(1− ν)(1− τ 2) + 2ν(1− α)1/2 ≤ −1

2
α(1− ν)(1− τ 2) ≤ −1

2
αβ(1− ν)(1− τ 2). (70)
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Thus, (47) follows from (69) and (70) with η = 1
2
αβ(1− ν)(1− τ 2).

Part 2 (T < +∞ almost surely). In order to show that the random function ΦT
k defined by

ΦT
k =

ν

ε
(f(Xk∨T

feas )− κfmin) +
ν

mε
h(Xk

inf) + (1− ν)(∆k
p)

2

satisfies (51) with the same constant η derived in Part 1, notice that whenever the event {T > k}
occurs, then f(X

(k+1)∨T
feas )− f(Xk∨T

feas ) = 0 since max{k, T} := k ∨ T = (k + 1) ∨ T = T . Thus, on
the event {T > k}, the random function Φk used in Part 1 has the same increments as ΦT

k . Specifically,

1{T<+∞}1{T>k}(Φ
T
k+1 − ΦT

k ) = 1{T<+∞}1{T>k}(Φk+1 − Φk).

Moreover, it follows from the definition of the stopping time T that no iteration can be f -Dominating
as in Part 1 when the event {T > k} occurs. Consequently, it easily follows from the analysis in
Part 1 and the fact that the random variable 1{T>k} is FC·Fk−1 -measurable that,

1{T>k}E
(
ΦT
k+1 − ΦT

k |FC·Fk−1

)
≤ −η(∆k

p)
21{T>k}. (71)

The remainder of the proof is devoted to showing that the following holds

1{T≤k}E
(
ΦT
k+1 − ΦT

k |FC·Fk−1

)
≤ −η(∆k

p)
21{T≤k}, (72)

since combining (71) and (72) leads to (51), which is the remaining overall goal. In all that follows,
it is assumed that the event {T ≤ k} occurs.
Case 1 (Good estimates and good bounds, 1Ik1Jk

= 1). Regardless of the iteration type, the
smallest decrease in ΦT

k is shown to happen on unsuccessful iterations, thus implying that

1{T≤k}E
[
1Ik1Jk(ΦT

k+1 − ΦT
k )|FC·Fk−1

]
≤ −αβ(1− ν)(1− τ 2)(∆k

p)
21{T≤k}. (73)

(i) The iteration is f -Dominating (1Df
= 1). The iteration is f -Dominating and the estimates are

good, so a decrease occurs in f according to (8) as follows

1{T≤k}1Ik1Jk1Df

ν

ε
(f(X

(k+1)∨T
feas )− f(Xk∨T

feas ))

≤ −1{T≤k}1Ik1Jk1Df
ν(γ − 2)(∆k

p)
2. (74)

Since the ε-infeasible iterate is not updated, then there is a change of zero in h. The frame size
parameter is updated according to ∆k+1

p = min{τ−1∆k
p, δmax}, thus implying that

1{T≤k}1Ik1Jk1Df
(1− ν)[(∆k+1

p )2− (∆k
p)

2] ≤ 1{T≤k}1Ik1Jk1Df
(1− ν)(τ−2− 1)(∆k

p)
2. (75)

Then, choosing ν according to (34) ensures that (56) holds, which implies that the right-hand
side term of (74) dominates that of (75), thus leading to the inequality below

1{T≤k}1Ik1Jk1Df
(ΦT

k+1 − ΦT
k ) ≤ −1{T≤k}1Ik1Jk1Df

1

2
ν(γ − 2)(∆k

p)
2. (76)

(ii) The iteration is h-Dominating (1Dh
= 1). There is a change of zero in f since Xk

feas is not
updated. Thus, the bound on the change in ΦT

k follows from multiplying both sides of (57) by
1{T≤k}1Jk , and replacing Φk by ΦT

k as follows

1{T≤k}1Ik1Jk1Dh
(ΦT

k+1 − ΦT
k ) ≤ −1{T≤k}1Ik1Jk1Dh

1

2
ν(γ − 2)(∆k

p)
2. (77)
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(iii) The iteration is Improving (1I = 1). Again, there is a change of zero in f . Thus, the bound
on the change in ΦT

k easily follows from multiplying both sides of (58) by 1{T≤k}1Jk , and
replacing Φk by ΦT

k as follows

1{T≤k}1Ik1Jk1I(Φ
T
k+1 − ΦT

k ) ≤ −1{T≤k}1Ik1Jk1I
1

2
ν(γ − 2)(∆k

p)
2. (78)

(iv) The iteration is Unsuccessful (1U = 1). There is a change of zero in f and in h since no iterate
is updated, while ∆k

p is decreased. Consequently, the bound on the change in ΦT
k follows from

multiplying both sides of (59) by 1{T≤k}1Jk , and replacing Φk by ΦT
k as follows

1{T≤k}1Ik1Jk1U(ΦT
k+1 − ΦT

k ) = −1{T≤k}1Ik1Jk1U(1− ν)(1− τ 2)(∆k
p)

2. (79)

Then combining (76), (77), (78), (79) and using (60), yields

1{T≤k}1Ik1Jk(ΦT
k+1 − ΦT

k ) ≤ −1{T≤k}1Ik1Jk(1− ν)(1− τ 2)(∆k
p)

2. (80)

Now, notice that under Assumption 3, simple calculations lead to E
(
1Ik1Jk |FC·Fk−1

)
≥ αβ. Then,

taking expectations with respect to FC·Fk−1 on both sides of (80) and using the FC·Fk−1 -measurability of
the random variables 1{T≤k} and ∆k

p, lead to (73).
Case 2 (Bad estimates and good bounds, 1Ik1J̄k

= 1). An increase in the difference of ΦT
k may

occurs since good bounds might not provide enough decrease to cancel the increase which occurs
in f whenever Algorithm 1 wrongly accepts an iterate because of bad estimates. Specifically, the
f -Dominating case dominates the worst-case increase in the change of ΦT

k , thus leading to

1{T≤k}E
[
1Ik1J̄k(ΦT

k+1 − ΦT
k )|FC·Fk−1

]
≤ 2ν(1− β)1/2(∆k

p)
21{T≤k}. (81)

(i) The iteration is f -Dominating (1Df
= 1). Whenever bad estimates occur and the iteration is

f -Dominating, the change in f is bounded as follows

1{T≤k}1Ik1J̄k1Df

ν

ε
(f(X

(k+1)∨T
feas )− f(Xk∨T

feas ))

≤ 1{T≤k}1Ik1J̄k1Df

ν

ε

[
(F k

s − F k
0 ) +

∣∣f(Xk+1
feas )− F k

s

∣∣+
∣∣f(Xk

feas)− F k
0

∣∣]
≤ 1{T≤k}1Ik1J̄k1Df

ν

[
−γ(∆k

p)
2 +

1

ε

(∣∣f(Xk+1
feas )− F k

s

∣∣+
∣∣f(Xk

feas)− F k
0

∣∣)]
(82)

where the last inequality in (82) follows from F k
s − F k

0 ≤ −γε(∆k
p)

2 which is satisfied for
every f -Dominating iteration. While the change in h is zero since Xk

inf is not updated, that in
∆k
p follows (75) by replacing 1Jk by 1J̄k as follows

1{T≤k}1Ik1J̄k1Df
(1− ν)[(∆k+1

p )2− (∆k
p)

2] ≤ 1{T≤k}1Ik1J̄k1Df
(1− ν)(τ−2− 1)(∆k

p)
2. (83)

Then, (82), (83) and the inequality −νγ(∆k
p)

2 + (1− ν)(τ−2 − 1)(∆k
p)

2 ≤ 0 due to (34) yield

1{T≤k}1Ik1J̄k1Df
(ΦT

k+1 − ΦT
k )

≤ 1{T≤k}1Ik1J̄k1Df

ν

ε

(∣∣f(Xk+1
feas )− F k

s

∣∣+
∣∣f(Xk

feas)− F k
0

∣∣) . (84)
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(ii) The iteration is h-Dominating (1Dh
= 1). The bound on the change in ΦT

k which can be
obtained by replacing 1Jk by 1J̄k in (77) is trivially bounded as follows

1{T≤k}1Ik1J̄k1Dh
(ΦT

k+1 − ΦT
k )

≤ 1{T≤k}1Ik1J̄k1Dh

ν

ε

(∣∣f(Xk+1
feas )− F k

s

∣∣+
∣∣f(Xk

feas)− F k
0

∣∣) . (85)

(iii) The iteration is Improving (1I = 1). Again, the change in ΦT
k which can be obtained by

replacing 1Jk by 1J̄k in (78) is trivially bounded as follows

1{T≤k}1Ik1J̄k1I (ΦT
k+1 − ΦT

k )

≤ 1{T≤k}1Ik1J̄k1I
ν

ε

(∣∣f(Xk+1
feas )− F k

s

∣∣+
∣∣f(Xk

feas)− F k
0

∣∣) . (86)

(iv) The iteration is Unsuccessful (1U = 1). Because of the decrease of the frame size parameter
and hence that in ΦT

k , the bound on the change in ΦT
k is obviously as follows

1{T≤k}1Ik1J̄k1U(ΦT
k+1 − ΦT

k )

≤ 1{T≤k}1Ik1J̄k1U
ν

ε

(∣∣f(Xk+1
feas )− F k

s

∣∣+
∣∣f(Xk

feas)− F k
0

∣∣) . (87)

Then, combining (84), (85), (86) and 1Ik1J̄k ≤ 1, yields

1{T≤k}1Ik1J̄k(ΦT
k+1 − ΦT

k )

≤ 1{T≤k}
ν

ε

(∣∣f(Xk+1
feas )− F k

s

∣∣+
∣∣f(Xk

feas)− F k
0

∣∣) . (88)

Since Assumption 3 holds, it follows from the conditional Cauchy-Schwarz inequality [20] that

E
(∣∣f(Xk

feas)− F k
0

∣∣ |FC·Fk−1

)
≤ E

(
1|FC·Fk−1

)1/2
[
E
(∣∣f(Xk

feas)− F k
0

∣∣2 |FC·Fk−1

)]1/2

≤ ε(1− β)1/2(∆k
p)

2, (89)

where (89) follows from (12) and the fact that E
(
1|FC·Fk−1

)
= 1. Similarly, the following holds

E
(∣∣f(Xk+1

feas )− F k
s

∣∣ |FC·Fk−1

)
≤ ε(1− β)1/2(∆k

p)
2. (90)

Thus, taking expectations with respect to FC·Fk−1 on both sides of (88) and then using (89), (90) and the
FC·Fk−1 -measurability of the random variables 1{T≤k} and ∆k

p, lead to (81).
Case 3 (Bad bounds, 1Īk = 1). The difference in ΦT

k may increase since even though good estimates
of f values occur, they might not provide enough decrease to cancel the increase in h whenever
Algorithm 1 wrongly accepts an iterate because of bad bounds. The following will be shown

1{T≤k}E
[
1Īk(ΦT

k+1 − ΦT
k )|FC·Fk−1

]
≤ 2ν

[
(1− α)1/2 + (1− β)1/2

]
(∆k

p)
21{T≤k}. (91)

(i) The iteration is f -Dominating (1Df
= 1). The change in ΦT

k is bounded, taking into account the
possible aforementioned increase in f . Since the change in h is zero, then it is easy to notice
that the bound on the change in ΦT

k can be derived from (84) by replacing 1Ik1J̄k by 1Īk as
follows

1{T≤k}1Īk1Df
(ΦT

k+1 − ΦT
k )

≤ 1{T≤k}1Īk1Df

ν

ε

(∣∣f(Xk+1
feas )− F k

s

∣∣+
∣∣f(Xk

feas)− F k
0

∣∣) . (92)
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(ii) The iteration is h-Dominating (1Dh
= 1). Since the change in f is zero, the bound on the

change in ΦT
k is obtained by multiplying both sides of (65) by 1{T≤k} and replacing Φk by ΦT

k

1{T≤k}1Īk1Dh
(Φk+1 − Φk) ≤ 1{T≤k}1Īk1Dh

ν

mε

(∣∣h(Xk+1
inf )−Hk

s

∣∣+
∣∣h(Xk

inf)−Hk
0

∣∣) . (93)

(iii) The iteration is Improving (1I = 1). The frame size parameter is updated as at h-Dominating
iterations and the change in f is zero. Thus, the bound on the change in ΦT

k follows from (93)
by replacing 1Dh

by 1I as follows

1{T≤k}1Īk1I(Φk+1 − Φk) ≤ 1{T≤k}1Īk1I
ν

mε

(∣∣h(Xk+1
inf )−Hk

s

∣∣+
∣∣h(Xk

inf)−Hk
0

∣∣) . (94)

(iv) The iteration is Unsuccessful (1U = 1). Because of the decrease of the frame size parameter
and hence that in ΦT

k , the bound on the change in ΦT
k is obviously as follows

1{T≤k}1Īk1U(ΦT
k+1 − ΦT

k )

≤ 1{T≤k}1Īk1Uν

[
1

ε

(∣∣f(Xk+1
feas )− F k

s

∣∣+
∣∣f(Xk

feas)− F k
0

∣∣)
+

1

mε

(∣∣h(Xk+1
inf )−Hk

s

∣∣+
∣∣h(Xk

inf)−Hk
0

∣∣)]
(95)

Since (95) dominates (92), (93) and (94), then combining all four cases lead to

1{T≤k}1Īk(ΦT
k+1 − ΦT

k )

≤ 1{T≤k}1Īkν

[
1

ε

(∣∣f(Xk+1
feas )− F k

s

∣∣+
∣∣f(Xk

feas)− F k
0

∣∣)
+

1

mε

(∣∣h(Xk+1
inf )−Hk

s

∣∣+
∣∣h(Xk

inf)−Hk
0

∣∣)]
(96)

Now, taking expectations with respect to FC·Fk−1 on both sides of (96) and using (14), (89) and (90)
lead to (91). Then, by combining the main results of Case 1, Case 2 and Case 3 of Part 2, specifi-
cally (73), (81) and (91), the following holds

1{T≤k}E
[
ΦT
k+1 − ΦT

k |FC·Fk−1

]
≤
[
−αβ(1− ν)(1− τ 2) + 2ν(1− α)1/2

+4ν(1− β)1/2
]

(∆k
p)

21{T≤k}.
(97)

Finally, choosing α and β according to (35) ensures that

−αβ(1− ν)(1− τ 2) + 2ν(1− α)1/2 + 4ν(1− β)1/2 ≤ −1

2
αβ(1− ν)(1− τ 2), (98)

and (72) obviously follows from (97) and (98) with the same constant η = 1
2
αβ(1 − ν)(1 − τ 2) as

Part 1, which achieves the proof.
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Proof of Corollary 2

Proof. Only (37) is proved but the proof also applies for
∣∣Hk

s − h(Xk + Sk)
∣∣ and

∣∣F k
s − f(Xk + Sk)

∣∣.
According to Assumption 3(vi), E

(∣∣Hk
0 − h(Xk)

∣∣ | FC·Fk−1

)
≤ mε(1−α)1/2(∆k

p)
2, which implies that

E
(∣∣Hk

0 − h(Xk)
∣∣) ≤ mε(1− α)1/2E

[
(∆k

p)
2
]
. (99)

By summing each side of (99) over k from 0 to N , and observing that

0 ≤ ShN :=
N∑
k=0

∣∣Hk
0 − h(Xk)

∣∣↗ +∞∑
k=0

∣∣Hk
0 − h(Xk)

∣∣ , and 0 ≤ S∆
N :=

N∑
k=0

(∆k
p)

2 ↗
+∞∑
k=0

(∆k
p)

2,

then, it follows from the monotone convergence theorem [32] that

E

(
+∞∑
k=0

∣∣Hk
0 − h(Xk)

∣∣) = E
(

lim
N→+∞

ShN

)
= lim

N→+∞
E
(
ShN
)

=
+∞∑
k=0

E
(∣∣Hk

0 − h(Xk)
∣∣)

≤ mε(1− α)1/2

+∞∑
k=0

E
[
(∆k

p)
2
]

= mε(1− α)1/2 lim
N→+∞

E
(
S∆
N

)
= mε(1− α)1/2E

(
lim

N→+∞
S∆
N

)
= mε(1− α)1/2E

[
+∞∑
k=0

(∆k
p)

2

]
≤ µ×mε(1− α)1/2 < +∞,

where µ is the constant of (52). This means that
+∞∑
k=0

∣∣Hk
0 − h(Xk)

∣∣ < +∞ almost surely, which

implies the first result of (37). The proof for
∣∣F k

0 − f(Xk)
∣∣ is similar by observing that (see (89))

E
(∣∣F k

0 − f(Xk)
∣∣ |FC·Fk−1

)
≤ ε(1− β)1/2(∆k

p)
2.

Proof of Lemma 1

Proof. The proof uses ideas derived in [11, 23]. The result is proved by contradiction conditioned on
the almost sure event E1 = {∆k

p → 0}. All that follows is conditioned on the event E1. Assume that
with nonzero probability, there exists a random variable E ′ > 0 such that

Ψh
k ≥ E ′, for all k ∈ N. (100)

Let {xkinf}k∈N, {sk}k∈N, {δkp}k∈N and ε′ > 0 be realizations of {Xk
inf}k∈N, {Sk}k∈N, {∆k

p}k∈N and E ′,
respectively for which (100) holds. Let ẑ be the same parameter of Algorithm 1 satisfying δkp ≤ τ−ẑ

for all k ≥ 0. Since δkp → 0 because of the conditioning on E1, there exists k0 ∈ N such that

δkp < λ := min

{
ε′

mε(γ + 2)
, τ 1−ẑ

}
, for all k ≥ k0. (101)
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Consequently and since τ < 1, the random variable Rk with realizations rk := − logτ

(
δkp
λ

)
satisfies

rk < 0 for all k ≥ k0. The main idea of the proof is to show that such realizations occur only with
probability zero, thus leading to a contradiction. Let first show that {Rk}k∈N is a submartingale. Let
k ≥ k0 be an iteration for which the events Ik and Jk both occur, which happens with probability of
at least αβ > 1/2. Then, it follows from the definition of the event Ik (see Definition 8) that

h(xkinf) ≤ uk0(xkinf) ≤
m∑
j=1

max
{
ckj,0(xkinf), 0

}
+mε(δkp)2 = hk0(xkinf) +mε(δkp)2, (102)

and h(xkinf + sk) ≥ `ks(x
k
inf + sk) ≥ hks(x

k
inf + sk)−mε(δkp)2. (103)

Hence, hks(x
k
inf + sk)− hk0(xkinf) = [h(xkinf + sk)− h(xkinf)] + [h(xkinf)− hk0(xkinf)]

+ [hks(x
k
inf + sk)− h(xkinf + sk)]

≤ 2mε(δkp)2 − ε′δkp ≤ 2mε(δkp)2 −mε(γ + 2)(δkp)2 = −γmε(δkp)2

(104)

where the first inequality in (104) follows from (100), (102) and (103) while the last one follows
from (101). Consequently, the iteration k of Algorithm 1 can not be unsuccessful. Thus, the frame
size parameter is updated according to δk+1

p = τ−1δkp since δkp < τ 1−ẑ. Hence, rk+1 = rk + 1.
Let F I·Jk−1 = σ(I0, I1, . . . , Ik−1) ∩ σ(J0, J1, . . . , Jk−1). For all other outcomes of Ik and Jk, which

will occur with a total probability of at most 1 − αβ, the inequality δk+1
p ≥ τδkp always holds, thus

implying that rk+1 ≥ rk − 1. Hence,

E
(
1Ik∩Jk(Rk+1 −Rk)|F I·Jk−1

)
= P

(
Ik ∩ Jk|F I·Jk−1

)
≥ αβ

and E
(
1Ik∩Jk(Rk+1 −Rk)|F I·Jk−1

)
≥ −P

(
Ik ∩ Jk|F I·Jk−1

)
≥ αβ − 1.

Thus, E
(
Rk+1 −Rk|F I·Jk−1

)
≥ 2αβ − 1 > 0, implying that {Rk} is a submartingale. The remainder

of the proof is almost identical to that of the proof of the lim inf-type first-order result in [23].
Now, let construct a random walk Wk with realizations wk on the same probability space as Rk,

which will serve as a lower bound on Rk. Define Wk as in (15) by

Wk =
k∑
i=0

(2 · 1Ii1Ji − 1), (105)

where the indicator random variables 1Ii and 1Ji are such that 1Ii = 1 if Ii occurs, 1Ii = 0 otherwise,
and similarly, 1Ji = 1 if Ji occurs while 1Ji = 0 otherwise. Then following the proof of Theorem 1,
it is easy to notice that {Wk} is a F I·Jk−1-submartingale (see also [23] for the same result), thus leading

to the conclusion that
{

lim sup
k→+∞

Wk = +∞
}

almost surely. Since by construction

rk − rk0 = −logτ

(
δkp

δk0p

)
= k − k0 ≥ wk − wk0 ,

then with probability one, Rk has to be positive infinitely often. Thus, the sequence of realizations
rk such that rk < 0 for all k ≥ k0 occurs with probability zero. Consequently, the assumption that
Ψh
k ≥ E ′ holds for all k ∈ N with a positive probability is false, which implies that (38) holds.
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Proof of Theorem 4

Proof. The theorem is proved using ideas derived in [8, 11]. Define the events E1 and E2 by

E1 =
{
ω ∈ Ω : ∆k

p(ω)→ 0
}

and E2 =
{
ω ∈ Ω : ∃K ′(ω) ⊂ N such that limK′(ω)Ψ

h
k(ω) ≤ 0

}
.

Then E1 and E2 are almost sure due to Corollary 1 and (38) respectively. Let ω ∈ E1 ∩ E2 be an
arbitrary outcome and note that the event E1 ∩ E2 is also almost sure as countable intersection of
almost sure events. Then limK′(ω) ∆k

p(ω) = 0. It follows from the compactness hypothesis of As-
sumption 2 that there exists K(ω) ⊆ K ′(ω) for which the subsequence {Xk

inf(ω)}k∈K(ω) converges to
a limit X̂inf(ω). Specifically, X̂inf(ω) is a refined point for the refining subsequence {Xk

inf(ω)}k∈K(ω).
Let v ∈ THX (X̂inf(ω)) be a refining direction for X̂inf(ω). Denote by V the random vector with re-
alizations v, i.e., v = V (ω), and let x̂inf = X̂inf(ω), xkinf = Xk

inf(ω), δkp = ∆k
p(ω), δkm = ∆k

m(ω),
ψhk = Ψh

k(ω) and K = K(ω). Since v is a refining direction, then there exists L ⊆ K and polling
directions dk ∈ Dk

p(x
k
inf) such that v = lim

k∈L
dk

‖dk‖∞
. For each k ∈ L, define

tk = δkm
∥∥dk∥∥∞ → 0, yk = xkinf + tk

(
dk

‖dk‖∞
− v
)
→ x̂inf ,

ak =
h(yk + tkv)− h(xkinf)

tk
and bk =

h(xkinf)− h(yk)

tk
,

where the fact that tk → 0 follows from Definition 4, specifically the inequality δkm
∥∥dk∥∥∞ ≤ δkpb.

Since h is λh–locally Lipschitz, then

|ak| ≤
λh

tk

∥∥(yk + tkv)− xkinf

∥∥
∞ = λh and |bk| ≤

λh

tk

∥∥xkinf − yk
∥∥
∞ = λh

∥∥∥∥ dk

‖dk‖∞
− v
∥∥∥∥
∞
→ 0,

which shows that Lemma 2 applies for both subsequences {ak}k∈L and {bk}k∈L. Moreover, com-
bining the inequality limL ψ

h
k ≤ 0 and Assumption 6 (the fact that δkp

∥∥dk∥∥∞ ≥ dmin > 0), yields

lim
k∈L

(
−ψhk

δkp‖dk‖∞

)
= lim

k∈L

h(xkinf + δkmd
k)− h(xkinf)

tk
≥ −d−1

min lim
k∈L

ψhk ≥ 0. (106)

Thus, by adding and subtracting h(xkinf) to the numerator of the definition of the Clarke derivative, and
using the fact that xkinf + δkmd

k ∈ X for sufficiently large k ∈ L since v is a hypertangent direction,

h◦(x̂inf ; v) ≥ lim sup
k∈L

h(yk + tkv)− h(xkinf) + h(xkinf)− h(yk)

tk
= lim sup

k∈L
(ak + bk)

= lim sup
k∈L

ak + lim
k∈L

bk = lim sup
k∈L

h(xkinf + δkmd
k)− h(xkinf)

tk
≥ 0,

where the last inequality follows from (106). Now, notice that it has been showed that every out-
come ω arbitrarily chosen in E1 ∩ E2, belongs to the event

E3 :=
{
ω ∈ Ω : ∃K(ω) ⊆ N and ∃X̂inf(ω) = lim

k∈K(ω)
Xk

inf(ω), X̂inf(ω) ∈ X , such that

∀V (ω) ∈ THX (X̂inf(ω)), h◦(X̂inf(ω);V (ω)) ≥ 0
}
,

thus implying that E1 ∩ E2 ⊆ E3. Then the proof is complete by noticing that P (E1 ∩ E2) = 1.
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Proof of Lemma 3

Proof. The proof is almost identical to those of Lemma 1 and a similar result in [11]. Hence, full
details are not provided here again. Unless otherwise stated, all the sequences, events and constants
considered are defined as in the proof of Lemma 1. The result is proved by contradiction and all
that follows is conditioned on the almost sure event E1 ∩ {T < +∞}. Assume that with nonzero
probability there exists a random variable E ′′ > 0 such that

Ψf,T
k ≥ E ′′, for all k ≥ 0. (107)

Let {xk∨tfeas}k∈N, {sk}k∈N, {δkp}k∈N and ε′′ > 0 be realizations of {Xk∨T
feas }k∈N, {Sk}k∈N, {∆k

p}k∈N
and E ′′, respectively for which (107) holds. Let k̄0 ∈ N∗ be such that

δkp < λ := min

{
ε′′

ε(γ + 2)
, τ 1−ẑ

}
for all k ≥ k̄0. (108)

The key element of the proof is to show that an iteration k ≥ k0 := max{k̄0, t} for which the events
Ik and Jk both occur can not be unsuccessful, thus leading to the fact that {Rk} is a submartingale.

It follows from (107) and (108) that

f(xkfeas + sk)− f(xkfeas) ≤ −ε′′δkp ≤ −(γ + 2)ε(δkp)2, for all k ≥ k0.

Since Jk occurs, fks (xkfeas + sk)− fk0 (xkfeas) = [f(xkfeas + sk)− f(xkfeas)] + [f(xkfeas)− fk0 (xkfeas)]

+ [fks (xkfeas + sk)− f(xkfeas + sk)]

≤ −(γ + 2)ε(δkp)2 + 2ε(δkp)2 = −γε(δkp)2,

which implies that the iteration k ≥ k0 of Algorithm 1 can not be unsuccessful.

Proof of Theorem 5

Proof. The proof results from Corollary 2 by observing that for all outcome ω in the almost sure event

E4 :=

{
ω ∈ Ω : ∀K(ω) ⊆ N, lim

k∈K(ω)

∣∣Hk
0 (Xk∨T

feas )(ω)− h(Xk∨T
feas (ω))

∣∣ = 0

}
∩ {T < +∞},

lim
k∈K(ω)

∣∣Hk
0 (Xk∨T

feas )(ω)− h(Xk∨T
feas (ω))

∣∣ = lim
k∈K(ω)

h(Xk∨T
feas (ω)) = h(X̂feas(ω)) = 0,

where the penultimate equality follows from the continuity of h in X . This means that

P
(
h(X̂feas) = 0

)
= P

(
X̂feas ∈ D

)
= 1.
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Proof of Theorem 6

Proof. First, notice that the fact that P
(
X̂feas ∈ D

)
= 1 follows from Theorem 5. Then the proof

easily follows from that of Theorem 4, by replacing h by f , x̂inf = X̂inf(ω) by x̂feas = X̂feas(ω),
xkinf = Xk

inf(ω) by xk∨tfeas = Xk∨T
feas (ω), ψhk = Ψh

k(ω) by ψf,tk = Ψf,T
k (ω) with t = T (ω) and THX (·) by

THD (·), for ω fixed and arbitrarily chosen in the almost sure event E1 ∩ E5 ∩ {T < +∞}, where

E5 =
{
ω ∈ Ω : ∃K(ω) ⊆ N such that X̂feas(ω) = lim

k∈K(ω)
Xk∨T

feas (ω), X̂feas(ω) ∈ D,

lim
k∈K(ω)

Ψf,T
k (ω) ≤ 0 and lim

k∈K(ω)
Hk

0 (Xk∨T
feas )(ω) = 0

}
.

(109)
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