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Abstract

We study the problem of approximating the cone of positive semidefinite (PSD) matrices with a cone
that can be described by smaller-sized PSD constraints. Specifically, we ask the question: “how closely
can we approximate the set of unit-trace n× n PSD matrices, denoted by D, using at most N number
of k× k PSD constraints?” In this paper, we prove lower bounds on N to achieve a good approximation
of D by considering two constructions of an approximating set. First, we consider the unit-trace n× n
symmetric matrices that are PSD when restricted to a fixed set of k-dimensional subspaces in R

n. We
prove that if this set is a good approximation of D, then the number of subspaces must be at least
exponentially large in n for any k = o(n). Second, we show that any set S that approximates D
within a constant approximation ratio must have superpolynomial Sk

+-extension complexity. To be more
precise, if S is a constant factor approximation of D, then S must have Sk

+-extension complexity at least
exp(C · min{√n, n/k}) where C is some absolute constant. In addition, we show that any set S such
that D ⊆ S and the Gaussian width of D is at most a constant times larger than the Gaussian width of
D must have S

k
+-extension complexity at least exp(C ·min{n1/3,

√

n/k}). These results imply that the
cone of n× n PSD matrices cannot be approximated by a polynomial number of k × k PSD constraints
for any k = o(n/ log2 n). These results generalize the recent work of Fawzi [Faw21] on the hardness of
polyhedral approximations of Sn

+, which corresponds to the special case with k = 1.

1 Introduction

Semidefinite programming (SDP) is a branch of convex optimization that considers problems of the form

maximize 〈C,X〉
subject to 〈Ai, X〉 = bi, i = 1, . . . ,m,

X ∈ S
n
+,

(1)

where C,Ai’s are n × n symmetric matrices and S
n
+ denotes the cone of n× n positive semidefinite (PSD)

matrices. SDP has attracted great interest in many fields as a powerful tool to provide theoretical guarantees
as well as practical algorithms. Although current SDP solvers utilizing interior-point methods can solve an
SDP up to arbitrary accuracy, they suffer from large computational cost and memory requirement when n
is large. Indeed, such scalability issues remain as major challenges for researchers in the field.

To deal with these problems, one can seek an alternative formulation of the problem (1) that is com-
putationally more tractable. For instance, one can try to replace the PSD cone with a computationally
more tractable convex cone K to approximate the feasible set. If K is a polyhedral cone, we obtain a linear
programming (LP) approximation of (1), and if K is a second-order cone, then we get a second-order cone
programming (SOCP) approximation, etc. These approximate conic programs can be solved potentially
much faster than the original SDP, but possibly at the expense of the quality of the solution.

There arises an inevitable question: “how much error is incurred in the optimal value of (1) when S
n
+ is

replaced by K?” In this work, we study this problem by asking the following question:

“How closely can we approximate S
n
+ with a cone K that can be described using at most N

number of k × k PSD constraints?”

We remark that we consider in this work global, non-adaptive approximations of Sn
+ that do not make use

of the problem data C, (Ai, bi)
m
i=1.
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Contributions To formally state the question above, we need to specify the notion of approximation as
well as what ‘a cone K that can be described using at most N number of k × k PSD constraints’ means.

Notions of Approximation. First, we specify the notions of approximation for cones as follows. Let
H = {X ∈ S

n : Tr X = 1} and let BH (K) = (K ∩H) − 1
nIn for any cone K, where In is the n× n identity

matrix. That is, BH (K) is the unit-trace affine section of K translated by − 1
nIn; note that 0 ∈ BH

(
S

n
+

)
.

For ǫ > 0, we say K is an ǫ-approximation of Sn
+ if BH

(
S

n
+

)
⊆ BH (K) ⊆ (1 + ǫ)BH

(
S

n
+

)
.

This notion of approximation is natural and closely related to quantifying the difference in the optimal
value (optimality gap) induced by relaxing S

n
+ to K. Suppose that we are given a problem of the form (1)

with m = 1, A1 = In, and b1 = 1, and we relax the problem by replacing S
n
+ with a cone K ⊇ S

n
+. If K is

an ǫ-approximation of Sn
+, then the relative optimality gap is at most ǫ for all C ∈ S

n.
We also define two auxiliary notions of approximation for the convenience of our analysis. Observe that

the notion of ǫ-approximation requires BH (K) to approximate BH

(
S

n
+

)
well in all directions in the ambient

space. We introduce more lenient notions of approximation by requiring the relative optimality gap to be
small only on average for randomized C with standard Gaussian distribution. Specifically, K is called an
ǫ-approximation of Sk

+ in the average sense if BH

(
S

n
+

)
⊆ BH (K) and wG

(
BH (K)

)
≤ (1+ǫ)·wG

(
BH

(
S

n
+

) )

where wG(S) = Eg [supx∈S〈g, x〉] denotes the Gaussian width of S. Likewise, K is called an ǫ-approximation

of S
k
+ in the dual-average sense if BH

(
S

n
+

)
⊆ BH (K) and wG

(
BH (K)◦

)
≥ 1

1+ǫ · wG

(
BH

(
S

n
+

)◦ )
. More

details about these notions can be found in Section 3.

k-PSD Approximations of Sn
+. In Section 4, we consider approximating S

n
+ by enforcing PSD constraints

on certain k-dimensional subspaces in Rn. We begin by formally defining the k-PSD approximation of Sn
+.

Definition 1.1 (k-PSD approximation). Let V = {V1, . . . , VN} be a set of k-dimensional subspaces of Rn.
The k-PSD approximation of Sn

+ induced by V is the convex cone

S
n,k
+ (V) :=

{
X ∈ S

n : vTXv ≥ 0, ∀v ∈ Vi, ∀i = 1, . . . , N}.

Note that Sn
+ ⊆ S

n,k
+ (V) and that Sn,k

+ (V) can be characterized using at most N = |V| number of k×k PSD

constraints. A prominent example is the so-called sparse k-PSD approximation, denoted by S
n,k
+ , which is

a k-PSD approximation of Sn
+ induced by the collection of N =

(
n
k

)
subspaces of k-sparse vectors in Rn.

Our first main results (Theorem 1 and Corollary 1) state that if Sn,k
+ (V) is a dual-average ǫ-approximation

of Sn
+, then N ≥ exp

(
n ·max{1/(1 + ǫ)−

√

k/n, 0}2
)

is necessary, regardless of the choice of the subspaces

V1, . . . , VN ; see Remark 6 in Section 4.1. For instance, Corollary 1 implies that for any ǫ > 0, Sn,k
+ cannot

be a dual-average ǫ-approximation of Sn
+ unless k = Ωn(n).

We remark that the conclusion of Theorem 1 (and Corollary 1) is possibly too conservative, especially
when the subspaces have overlaps. It is because the proof of Theorem 1 only takes the number of subspaces
into consideration, and is oblivious to the configuration of the subspaces in V . In Section 4.2, we elaborate
on this point with an example of the sparse k-PSD approximation. Although Corollary 1 already suggests
that k must scale at least linearly as n in order for S

n,k
+ to approximate S

n
+, it becomes uninformative once

k/n exceeds a certain threshold (approximately 0.137); see Section 4.2.1 and Figure 4b.
In Section 4.2.2, a tailored analysis for the sparse k-PSD approximation is provided. To be specific,

we consider a carefully designed matrix in S
n,k
+ \ S

n
+ to show ǫ∗(Sn

+,S
n,k
+ ) ≥ n−k

k−1 (Proposition 1) where

ǫ∗(Sn
+,S

n,k
+ ) := inf{ǫ > 0 : S

n,k
+ is an ǫ-approximation of Sn

+}. Furthermore, we prove a sharper lower

bound for ǫ∗dual-avg(S
n
+,S

n,k
+ ) that is strictly positive for all 1 ≤ k < n, using the duality between S

n,k
+ and

the cone of factor width at most k (Proposition 2). See Figure 1a for comparison between these tailored
results and the weak bound obtained from Corollary 1.

Approximate Extended Formulations of Sn
+. Recall that a k-PSD approximation of Sn

+ is the intersection of
sets in S

n, each of which is described with a k×k PSD constraint. Instead of directly intersecting sets in S
n,

we may introduce additional variables in pursuit of a more compact description. To be precise, we can lift
S

n to a higher-dimensional space by embedding, intersect the lifted space with k × k PSD constraints, and
then project the intersection back to describe a set in S

n. The resulting description is called an extended
formulation of the set, and the preimage of the projection is called the lifted representation (or PSD lift)
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Table 1: Overview of our results about the hardness of approximating S
n
+ with S

k
+, presented in terms of

the number N of the k×k PSD constraints needed to construct an ǫ-approximation of Sn
+. Here, C1, C2 > 0

are some universal constants and & indicates that the inequality holds asymptotically in the limit n→ ∞.

Notion of Approx. k-PSD Approximations of Sn
+ Approximate Extended Formulations of Sn

+

ǫ-approx.
(Definition 3.1)

N & exp
(

n · max
{

1
1+ǫ −

√
k
n , 0

}2)

(Theorem 1 & Corollary 1)

N & exp
(

C1 · min
{√

n
1+ǫ ,

1
1+ǫ

n
k

})

(Theorem 2)

avg. ǫ-approx.
(Definition 3.2)

Same lower bound
as on the right

N & exp
(

C2 · min
{(

n
(1+ǫ)2

)1/3
, 1

1+ǫ

√
n
k

})

(Theorem 3)

of the set. The S
k
+-extension complexity of a set S, denoted by xcSk

+
(S), counts the minimum number of

k × k PSD constraints required to describe S using extended formulation (i.e., with an arbitrary number of
additional variables allowed in the description).

In Section 5, we argue that any set that well approximates BH

(
S

n
+

)
must have S

k
+-extension com-

plexity at least superpolynomially large in n for all k much smaller than n. That is, it is impossi-
ble to approximate BH

(
S

n
+

)
using only polynomially many k × k PSD constraints, for any construc-

tion of the approximating set. To be precise, if S is an ǫ-approximation of BH

(
S

n
+

)
, then xcSk

+
(S) ≥

exp
(
C · min

{
( n
1+ǫ )1/2, 1

1+ǫ
n
k

})
(Theorem 2); and if S is an average ǫ-approximation of BH

(
S

n
+

)
, then

xc
S

k
+

(S) ≥ exp
(
C · min

{
( n
(1+ǫ)2 )1/3, 1

1+ǫ (nk )1/2
})

(Theorem 3). These results are visually illustrated in

Figure 1b. We remark that these results extend [Faw21, Theorems 1 & 2] beyond the special case k = 1.
Nevertheless, we do not know whether our extension complexity lower bounds are tight. It might be

possible to achieve stronger extension complexity lower bounds (i.e., move the curves upward) by means of
a more sophisticated analysis. We leave it as an interesting open problem.

Summary of Results. Table 1 summarizes the results in this paper. The lower bounds in the table imply the
hardness of approximating S

n
+ by using only a small number of k × k PSD constraints when k = o(n).

(a) Hardness results for sparse k-PSD approximations.
Generic (Cor. 1) and tailored bounds (Props. 1 & 2).

(b) Impossibility of approximating BH(Sn
+) with a

polynomial number of k × k PSD constraints.

Figure 1: Summary of our results about the hardness of approximating S
n
+.
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Discussion and Related Work Here we make a few comments on our results and some related work.

• Blekherman et al. [BDMS20] also investigated the question of how well Sn,k
+ approximates S

n
+. They

use the quantity distF (Sn,k
+ ,Sn

+) := supX∈S
n,k
+ ,‖X‖F=1 infY ∈Sn

+
‖X − Y ‖F to measure the quality of

approximation, and thus, their result has a connection with our result on ǫ-approximation. In this work,
we extend the scope of the question in two directions: first, we consider the ‘average’ distance with
the notion of average ǫ-approximation as well as the maximal distance; second, our result (Theorem 1)

applies to not only S
n,k
+ , but also S

n,k
+ (V) with an arbitrary collection of k-dimensional subspaces V .

• Fawzi [Faw21] showed that any polytope that well approximates BH

(
S

n
+

)
must have LP extension

complexity at least exponentially large in n. Our Theorems 2 and 3 generalize their results beyond
the special case of k = 1. Our proof refines and adapts the ideas from [Faw21] to prove a lower bound
for arbitrary k. Specifically, we devise a different way of decomposing the component functions of the
S

k
+-factorization of the slack matrix into their sharp and flat parts, which enable us to apply Fawzi’s

argument even when k > 1. In addition, we compare the variance of two representations of the slack
matrix instead of their tail probabilities to obtain a nontrivial Sk

+-extension complexity lower bound
even when k = Ωn(

√
n). See the proof of Theorem 2 in Section 5.2 for details.

• Here we compare our Theorem 2 (extension complexity lower bound for an ǫ-approximation ofBH

(
S

n
+

)
)

with a back-of-the-envelope calculation based on known results about the LP extension complexity of
BH

(
S

n
+

)
. Assume that there is a set S such that xcSk

+
(S) = N and S is an ǫ-approximation of

BH

(
S

n
+

)
. On the one hand, each of the N cones of k × k PSD matrices can be approximated by

exp(ck) facets of linear inequalities, where c > 0 is an absolute constant; see Aubrun and Szarek
[AS17a, Proposition 10]. Thus, the LP extension complexity of S is at most N exp(ck). On the other
hand, the LP extension complexity of S is at least exp(c′

√
n); see Fawzi [Faw21, Theorem 1]. There-

fore, we get N ≥ exp(c′
√
n − ck). This lower bound becomes trivial when k = Ωn(

√
n). In contrast,

the lower bound from Theorem 2 remains superpolynomial as long as k = on(n/ logn).

• We also remark some works that studied lower bounds on the semidefinite extension complexity of
polytopes associated with NP-Hard combinatorial problems. Fawzi and Parrilo [FP13] showed that
the S

k
+-extension complexity of the correlation polytope, COR(n) := conv

{
vvT : v ∈ {0, 1}n

}
, is

exponentially large in n for any fixed constant k. Their proof relies on a combinatorial argument
that counts possible sparsity patterns of certain matrices with small PSD rank. Lee, Raghavendra,
and Steurer [LRS15] proved a stronger lower bound on the semidefinite extension complexity of the
correlation polytope, based on the notion of low-degree sum-of-squares proof. While these works
consider a similar problem to ours, the object of study is different; in this work, we are interested in
the approximate semidefinite extension complexity of the spectrahedron BH(Sn

+).

• Let Dk = (Sn,k
+ )∗ ∩H . In our analysis, wG(Dk) turns out to be the expectation of the largest k-sparse

eigenvalue of the Gaussian Orthogonal Ensemble (GOE) (divided by
√

2). In this work, we only provide
an asymptotic upper bound for wG(Dk) using Slepian’s lemma (Proposition 2), however, it might be
possible to prove a lower bound for wG(Dk) with tools from random matrix theory.

• We do not know whether our lower bounds in Theorems 2 and 3 are tight. We remark that our proof
techniques utilize information from the slack matrix only up to degree 2, i.e., up to the second moment.
It may be possible to achieve a stronger lower bound by exploiting higher-order moments.

• In this work, we consider the question of approximating S
n
+ ∩ H and show that at least superpoly-

nomially many k × k PSD constraints are needed when k ≪ n. However, if one is allowed to exploit
the problem data – C,Ai, bi – it could be still possible to construct a good approximation F ′ of the
feasible set F = {X ∈ S

n
+ : 〈Ai, X〉 = bi} with a smaller number of S

k
+ so that the optimality gap

supX∈F ′〈C,X〉 − supX∈F 〈C,X〉 is small as empirically evidenced in [AM19].

Organization In Section 2, we review some background materials. In Section 3, we define the notions of
approximation that will be used in this paper. In Section 4, we consider the k-PSD approximations of Sn

+.
Specifically, Section 4.1 discusses a generic lower bound on the number of subspaces required to approximate

4



S
n
+, and Section 4.2 provides a more refined analysis tailored to the so-called sparse k-PSD approximation

of Sn
+. In Section 5, we consider the approximate extended formulations of Sn

+. In Section 5.1, we present
two main theorems about the hardness of approximating S

n
+. Section 5.2 and Section 5.3 are dedicated to

their proofs.

Notation For x ∈ R, [x]+ := max{x, 0}. For a positive integer n, we let [n] := {1, 2, . . . , n}. Rn denotes
the n-dimensional real Euclidean space and Sn−1 is the unit sphere in Rn. We also let S

n denote the set of
n × n real symmetric matrices. Given X ∈ S

n and I ⊂ [n], let XI ∈ S
|I| denote the principal submatrix

of X with row/column indices in I. For a matrix X ∈ S
n, λ1(X) ≥ · · · ≥ λn(X) are the eigenvalues of

X in descending order. A matrix X ∈ S
n is positive semidefinite, denoted by X � 0, if vTXv ≥ 0 for all

v ∈ Rn. We let S
n
+ := {X ∈ S

n : X � 0}. The letter H is reserved to indicate the subspace of unit trace:
H = {X ∈ S

n : Tr X = 1}, and In denotes the n×n identity matrix. For a cone K ⊆ S
n, its base (translated

by − 1
nIn) is the compact set defined to be BH (K) :=

(
K ∩H

)
− 1

nIn = {X − 1
nIn ∈ S

n : X ∈ K ∩H}, and
we define B∗

H (K) := BH (K∗) for notational convenience. Given a set S, we let cl(S), conv(S), and cone(S)
denote the closure, the convex hull, and the conical hull of S, respectively. Lastly, we let N(µ,Σ) denote the
multivariate Gaussian distribution with mean µ and covariance Σ.

2 Background

In this section, we review some mathematical preliminaries that are used in our proof of the main theorems.
Expert readers may want to skip this section and continue reading from Section 3.

2.1 Primer on Convex Geometry

We recall some basic concepts and results in convex analysis. The materials in this section are standard and
can be found in classic references; we refer the interested readers to [Roc70] and [AS17b] for more details.

Duality If S ⊆ Rd, the polar of S (in Rd) is the closed convex set

S◦ :=
{
y ∈ R

d : 〈x, y〉 ≤ 1 for all x ∈ S
}
. (2)

We observe a few properties involving polars. First of all, if S ⊆ T , then S◦ ⊇ T ◦. Next, it is useful to note
that (S ∪ T )◦ = S◦ ∩ T ◦ for any S, T ⊆ Rd, and that (S ∩ T )◦ = cl conv(S◦ ∪ T ◦) if S, T are closed, convex,
and contain the origin. Lastly, if S is a closed, convex set that contains the origin, then (S◦)◦ = S; this is
known as the bipolar theorem in convex analysis (see Lemma 2.2).

A nonempty closed convex set K ⊂ Rd is called a cone if K is invariant under positive scaling, i.e.,
whenever x ∈ K and t ≥ 0, then tx ∈ K. Given a cone K, its dual cone K∗ (in R

d) is defined via

K∗ :=
{
y ∈ R

d : 〈x, y〉 ≥ 0 for all x ∈ K
}
. (3)

Note that K∗ = −K◦. Thus, it follows from the properties of polars that (i) (K∗)∗ = K; (ii) if K1 ⊆ K2, then
K∗

1 ⊇ K∗
2 ; and (iii)

(
K1 ∩K2

)∗
= cl cone(K1 ∪ K2) for two cones K1,K2.

The notion of cone duality is closely related to that of set polarity. To clarify the link, we first define a
base of a closed convex cone K. Fix a nonzero vector e ∈ Rd and the corresponding affine hyperplane

He := {x ∈ R
d : 〈e, x〉 = 〈e, e〉}.

If e ∈ K∗ \ K⊥ where K⊥ = {v ∈ R
d : 〈v, x〉 = 0, ∀x ∈ K}, then we call the set Kb

e := K ∩He as the base of
K with respect to e. The duality of cones carries over to a duality of bases as follows.

Lemma 2.1 ([AS17b], Lemma 1.6). Let K ⊂ R
d be a closed convex cone and e ∈ K∩K∗ be a nonzero vector.

Then
(K∗)be =

{
y ∈ He : 〈−(y − e), x− e〉 ≤ 〈e, e〉 for all x ∈ Kb

e

}
.

In other words, if we translate He so that e becomes the origin, and consider Kb
e and (K∗)be as subsets of that

vector space, then (K∗)be = −〈e, e〉(Kb
e)

◦.

Remark 1. In this paper, we are concerned with cones K such that Sn
+ ⊆ K ⊆ S

n and the unit-trace subspace
H . Note that H = He with e = 1

nIn. We let BH (K) = Kb
e − 1

nIn denote the base of K with respect to
e = 1

nIn, translated by − 1
nIn to contain 0.
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Minkowski Functional and support function Let S be a nonempty subset of Rd. The Minkowski
functional (or gauge function) of S is defined to be the function pS : Rd → [0,∞] valued in the extended real
numbers such that

pS(x) := inf{λ ∈ R : λ > 0 and x ∈ λS}. (4)

We follow the convention that the infimum of the empty set is positive infinity ∞. The support function of
S is defined as hS : Rd → [0,∞] such that

hS(x) := sup
z∈S

〈x, z〉. (5)

There is a duality between the gauge function and the support function. In words, the gauge function of
a convex set is the support function of its polar, and vice versa.

Lemma 2.2 ([Roc70], Theorem 14.5). Let S be a closed convex set containing the origin. Then the polar
S◦ is another closed convex set containing the origin, and (S◦)◦ = S. Moreover,

pS(x) = hS◦(x) and pS◦(x) = hS(x).

Mean Width Given a nonempty, bounded set S ⊂ Rd, we define the mean width of S as the average of
hS(u) with u distributed uniformly over the unit sphere in the ambient space:

w(S) :=

∫

Sd−1

hS(u)dσ(u),

where Sd−1 is the unit sphere in Rd and σ is the normalized Haar measure on Sd−1 (uniform probability
measure on Sd−1). It is often convenient to consider the Gaussian variant of the mean width because its
value does not depend on the ambient dimension.

Definition 2.1 (Gaussian width). For any nonempty bounded set S ⊂ Rd, the Gaussian (mean) width of S
is defined as

wG(S) := EghS(g) = Eg

[

sup
x∈S

〈g, x〉
]

=
1

(2π)d/2

∫

Rd

sup
x∈S

〈z, x〉 exp(−‖z‖2/2)dz.

where g is a standard Gaussian random vector in Rd.

It is easy to verify that wG(S) = κdw(S) where κd := Eg‖g‖2 =
√
2Γ((d+1)/2)
Γ(d/2) . Note that κd depends only on

d and is of order
√
d (it is known that

√

d− 1/2 ≤ κd ≤
√

d− d/(2d+ 1)).
The Gaussian width has many nice properties. Here we list a few of them that we use in later sections.

1. The Gaussian width does not depend on the ambient dimension.

2. The Gaussian width is invariant under translation and rotation.

3. If S ⊆ S′, then wG(S) ≤ wG(S′).

Urysohn’s Inequality Given a bounded measurable set S ⊂ R
d, its volume radius is defined as

vrad(S) :=

(
vol(S)

vol(B2
d)

)1/d

where B2
d is the unit d-dimensional Euclidean ball. The volume radius of S is the radius of the Euclidean

ball that has the same volume as S.
A set K ⊂ Rd is a convex body if it is a convex, compact set with nonempty interior. The following

inequality, known as Urysohn’s inequality, states that the mean width is minimized for Euclidean balls,
among the sets that have the same volume.

Lemma 2.3 (Urysohn’s inequality; [AS17b], Propositions 4.15 & 4.16). Let K ⊂ Rd be a convex body
containing the origin in its interior. Then

1

w(K◦)
≤ vrad(K) ≤ w(K).

6



2.2 Lifts, Extension Complexity and Slack Operator

Here we briefly review the K-extension complexity of a convex body and its connection to the K-rank of its
slack operator. We refer interested readers to [GPT13] and [FGP+20] for more details.

Let K be a closed convex cone. Given a positive integer r, let Kr = K × · · · × K (r times) denote the
Cartesian product of r copies of K. We say that a set S ⊂ Rd admits a Kr-lift if S can be expressed as

S = π
(
Kr ∩ L

)

where π is a linear map and L is an affine subspace. The convex set Kr ∩ L is called a Kr-lift of S. The
K-extension complexity of S, denoted by xcK(S), is defined as the smallest r such that S admits a Kr-lift.

Let P,Q be two convex bodies such that P ⊆ Q ⊆ Rd and the origin is contained in the interior of P .
Let Q◦ be the polar of Q; see (2). We let ext(P ) denote the set of extreme points of P and define the slack
operator sP,Q for (P,Q) as follows.

Definition 2.2 (slack operator). For a pair of convex bodies P ⊆ Q with 0 in the interior of P , the map
sP,Q : ext(P )×ext(Q◦) → R such that sP,Q(x, y) = 1−〈x, y〉 is called its associated slack operator. The slack
operator sP,Q admits a K-factorization if there exists a pair of maps A : ext(P ) → K and B : ext(Q◦) → K∗

such that sP,Q(x, y) = 〈A(x), B(y)〉 for all x ∈ ext(P ) and y ∈ ext(Q◦).

Note that sP,Q(x, y) ≥ 0 for all (x, y) ∈ ext(P ) × ext(Q◦) because P ⊆ Q and therefore 〈x, y〉 ≤ 1 for all
(x, y) ∈ P ×Q◦ by definition of the polar.

The existence of a K-lift of a convex body S is closely related to that of a K-factorization of sP,Q for some
convex bodies P,Q such that P ⊆ S ⊆ Q. This connection is originally established by Yannakakis [Yan91]
for the special case with K = R+, motivated by computational considerations about linear programming
(LP). This special case of the R+-extension complexity is widely known as the LP extension complexity (or
the extension complexity of polytopes), which counts the minimum number of linear inequalities required to
describe S. If xcR+(S) = N , then one can optimize a linear function on S by solving a linear program with
N inequality constraints. Note that a polytope is generated by a finite number of extreme points, and thus
its slack operator is a nonnegative matrix (so called slack matrix). Yannakakis’ theorem states that the LP
extension complexity of a polytope is equal to the nonnegative rank of its slack matrix.

The Yannakakis’ theorem is later generalized in [GPT13]. We state a generalized version of Yannakakis
theorem in the next lemma (cf. [FGP+20, Proposition 3.12]), which immediately follows from the proof of
[GPT13, Theorem 3].

Lemma 2.4. Let P,Q be a pair of convex bodies such that P ⊆ Q. If there is a convex body S such that
S admits a proper K-lift and P ⊆ S ⊆ Q, then sP,Q has a K-factorization. Conversely, if sP,Q admits a
K-factorization, then there exists a convex set S such that S has a K-lift and P ⊆ S ⊆ Q.

In this paper, we are interested in the case where K is a Cartesian product of small PSD cones, S
k
+

where k ≥ 1 is a fixed constant. We define the S
k
+-extension complexity of S, denoted by xcSk

+
(S), to be

the smallest integer r such that S admits a (Sk
+)r-lift. Given a nonnegative operator s, we define rankSk

+
(s)

to be the least r such that s admits a (Sk
+)r-factorization. As a consequence of Lemma 2.4, we obtain

inf
S:P⊆S⊆Q

xcSk
+

(S) = rankSk
+

(sP,Q). (6)

We remark that if xcSk
+

(S) = N , then one can optimize a linear function on S by solving an SDP involving

N variables in S
k
+.

2.3 Fourier Analysis on the Hypercube and Hypercontractivity

Later in the proof of Theorems 2 and 3, we consider a certain slack operator restricted on the n-dimensional
hypercube and use its degree-2 Fourier component to prove extension complexity lower bounds. Specifically,
we will need to control the norm of the degree-2 Fourier component. We review the necessary notions here
and refer the interested readers to a more comprehensive reference, e.g., [O’D14].
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Let Hn = {−1, 1}n denote the vertex set of the n-dimensional hypercube. Every function f : Hn → R

has a unique Fourier expansion
f = f0 + f1 + · · · + fn

where each fk is a homogeneous multilinear polynomial of degree k. We call fk the k-th harmonic component
of f and let projk : f 7→ fk denote the projection onto the degree-k harmonic subspace (the subspace of
homogeneous polynomials of degree k).

Given ρ ∈ [0, 1], the noise operator Tρ smooths f : Hn → R, by attenuating its high-frequency modes.
To be precise, Tρ acts on f multiplying the k-th Fourier coefficient of f by ρk, i.e.,

Tρf =
n∑

k=0

ρkfk.

For ρ < 1, Tρf is ‘smoother’ than f as the high-frequency terms of f are diminished. In one extreme, Tρf
is constant equal to Ef when ρ = 0; in the other extreme where ρ = 1, there is no smoothing and Tρf = f .

Next, we recall that the p-norm (p ≥ 1) of f : Hn → R is defined as

‖f‖p =
(

Ex∼µ(Hn)

[
|f(x)|p

])
1
p

.

where µ(Hn) denotes the uniform probability measure over Hn. Note that ‖f‖p ≤ ‖f‖q for p ≤ q. When
p < q, there is no general way to control ‖f‖q with ‖f‖p, and the ratio ‖f‖q/‖f‖p can be arbitrarily large;
the ratio becomes larger as f fluctuates more wildly.

The hypercontractive inequality for Tρ due to Bonami and Beckner [Bon70, Bec75] provides an upper
bound on ‖Tρf‖q in terms of ‖f‖p with p < q, thereby giving an estimate for how much smoother Tρf is,
when compared to f . It can be stated as follows.

Lemma 2.5 (Hypercontractivity). Given f : Hn → R, for any 0 < ρ ≤ 1 and p ≥ 1, we have ‖Tρf‖q ≤ ‖f‖p
where q = 1 + 1

ρ2 (p− 1).

We use Lemma 2.5 to control the norm of the degree-2 harmonic component of a bounded nonnegative
function as stated below in Lemma 2.6, following [RK11, Lemma 2.3] and [Faw21, Lemma 3]. Its proof is
included in Appendix A for completeness.

Lemma 2.6. Let f : Hn → R satisfy (i) 0 ≤ f(x) ≤ Λ for all x ∈ Hn; and (ii) Ex∼µ(Hn)[f(x)] ≤ 1. Then

‖proj2f‖2 ≤
{

Λ if Λ < e,

e log(Λ) if Λ ≥ e.

2.4 Some Useful Facts about (Sub-)Gaussians

Here we collect a few facts about Gaussians that are useful to control the fluctuation of Gaussian processes.
These are standard results and more details can be found in references such as [BLM13], [Ver18] and [AS17b].

2.4.1 Gaussian Random Matrices and Sub-gaussian Random Variables

Standard Gaussian Distribution in S
n Recall that the space Sn of real symmetric n×nmatrices can be

viewed as real Euclidean space of dimension
(
n+1
2

)
equipped with the trace inner product 〈A,B〉 = Tr(AB).

We define the standard Gaussian distribution in S
n via the natural isomorphism between S

n and R(n+1
2 ).

Definition 2.3. A random matrix A ∈ S
n has the standard Gaussian distribution if the random variables

(aij)1≤i≤j≤n are independent, with aii ∼ N(0, 1) and aij ∼ N(0, 1/2) for i < j.

Note that A is a standard Gaussian vector in the space S
n if and only if

√
2A is a GOE(n) (Gaussian

Orthogonal Ensemble) matrix, cf. [AS17b, Section 6.2]. The GOE has the property of orthogonal invariance,
i.e., if A ∈ S

n is a GOE(n) matrix, then for any fixed orthogonal matrix U ∈ O(n), the random matrix
UAUT is also a GOE(n) matrix.

8



Sub-Gaussian and Sub-exponential Random Variables Many interesting properties of Gaussian
random variables are due to the fast decaying tail probabilities. Such properties are shared by some of
non-Gaussian random variables, so called the class of sub-Gaussian random variables. This notion can be
formalized based on the moment-generating function E[eλX ]:

Definition 2.4. A random variable X is sub-Gaussian with parameter v > 0 if E[X ] = 0 and

E[eλX ] ≤ exp
(λ2

2
v
)

, ∀λ ∈ R.

Definition 2.5. A random variable X is sub-exponential with parameters v, c > 0 if E[X ] = 0 and

E[eλX ] ≤ exp
(λ2

2
v
)

, ∀λ such that |λ| ≤ 1

c
.

For example, exponential and chi-squared random variables (with centering) are sub-exponential. Informally,
a sub-gaussian random variable can be viewed as a sub-exponential random variable with c tending to 0.

A sub-exponential random variable exhibits sub-Gaussian tail behavior around its center and have expo-
nentially decaying tail probabilities far away from 0. More precisely, the following tail probability bounds
can be obtained by the Cramér-Chernoff method: if X is a sub-exponential random variable with parameters
(v, c), then for every t > 0,

max
{

Pr[X > t], Pr[X < −t]
}
≤
{

e−t2/2v if 0 ≤ t ≤ v
c ,

e−t/2c if t > v
c .

2.4.2 Useful Inequalities

Gaussian Comparison Inequality The following fundamental inequality, known as Slepian’s lemma,
expresses that a Gaussian process can get farther (i.e., has a larger supremum) when it has weaker corre-
lations. We refer the interested readers to [Ver18, Theorem 7.2.1] and [AS17b, Proposition 6.6] for more
details.

Definition 2.6. A random process (Xt)t∈T is a Gaussian process if the random vector (Xt)t∈T0 has normal
distribution for all finite subsets T0 ⊂ T .

Lemma 2.7 (Slepian’s lemma). Let (Xt)t∈T and (Yt)t∈T be Gaussian processes. Suppose that for all t, s ∈ T ,
the following three conditions hold: (i) EXt = EYt = 0; (ii) EX2

t = EY 2
t ; and (iii) EXtXs ≥ EYtYs. Then

for every τ ∈ R,

Pr

[

sup
t∈T

Xt ≥ τ

]

≤ Pr

[

sup
t∈T

Yt ≥ τ

]

.

There is a well known upper bound for the expectation of the largest eigenvalue of a standard Gaussian
random matrix in S

n. Its proof is based on the Slepian’s lemma and standard; see Appendix A for the proof.

Lemma 2.8. If a random matrix G ∈ S
n has the standard Gaussian distribution, then

EG

[
λ1(G)

]
= EG

[

sup
v∈Sn−1

〈v,Gv〉
]

≤
√

2n.

Remark 2. It is known that limn→∞ EG

[
λ1(G)

]
/
√

2n = 1. Indeed, not only its expected value, but also

its limiting distribution is known in the literature. The quantity λ1(G) −
√

2n is of order n−1/6 and its
distribution converges to the Tracy-Widom distribution after normalization.

Gaussian Concentration A smooth function of independent Gaussian random variables is sub-Gaussian.
The following result is widely known as the Gaussian concentration inequality; see [BLM13, Theorem 5.5]
for example. Note that the sub-Gaussian parameter L2 depends only on the smoothness of the function, and
not on the number of Gaussian random variables.
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Lemma 2.9 (Gaussian concentration). Let X = (X1, . . . , Xn) be a vector of n independent standard Gaus-
sian random variables. If f : Rd → R is L-Lipschitz (with respect to the ℓ2 norm), then f(X) − Ef(X) is
sub-Gaussian with sub-Gaussian parameter L2.

The following lemma states that the support function of a convex set concentrates around its mean. It
can be proved applying Lemma 2.9 to the support function, which is Lipschitz with the Lipschitz constant
being the diameter of the set. We provide a proof in Appendix A for readers’ convenience.

Lemma 2.10. Let K ⊂ R
d be a convex set containing 0. Let wG(K) denote the Gaussian width of K. Then

for any α ≥ 0,

max

{

Pr
g∼N(0,Id)

[

max
x∈K

〈g, x〉 < (1 − α)wG(K)
]

, Pr
g∼N(0,Id)

[

max
x∈K

〈g, x〉 > (1 + α)wG(K)
]}

≤ exp

(

− α2

4π

)

.

MGF of Sub-Gaussian Chaos of Order 2 We review the concentration of quadratic forms of the type

n∑

i,j=1

aijXiXj = XTAX

where A = (aij) is an n×n matrix of coefficients, and X = (X1, . . . , Xn) is a random vector with independent
coordinates. Such a quadratic form is known as a chaos (of order 2) in probability theory.

WhenXi’s are sub-Gaussian random variables (e.g., Gaussian or Rademacher), the quadratic formXTAX
is sub-exponential. The following upper bound is well known, and can be used to derive a Bernstein-type
exponential concentration results (e.g., Hanson-Wright inequality) for XTAX . Its proof is based on standard
techniques such as decoupling and comparison to Gaussian chaos. We omit the proof here and refer the
interested readers to [Ver18, Sections 6.1 & 6.2] for more details.

Lemma 2.11 (MGF of sub-Gaussian chaos of order 2). Let X = (X1, . . . , Xn) ∈ Rn be a random vector
with independent sub-Gaussian coordinates with sub-Gaussian parameter v, and let A be an n × n matrix
with zero diagonal. Then XTAX is sub-exponential with parameters (c1‖A‖2F v, c2‖A‖op) for some absolute
constants c1, c2 > 0, i.e.,

E exp
(
λXTAX

)
≤ exp

(λ2

2
c1‖A‖2Fv

)

, for all λ s.t. |λ| ≤ 1

c2‖A‖op
.

Observe that for any function f : Hn → R, its degree-2 projection, proj2(f), is a multilinear quadratic
form on Hn. That is, there exists some matrix A with zero diagonal1 such that proj2(f)(x) = xTAx for all
x ∈ Hn. Therefore, the random variable proj2(f)(X) derived from the uniform random vector X ∼ µ(Hn)
is sub-exponential by Lemma 2.11. We formally state this observation in the following lemma to use later
in the proof of Theorem 2; see Appendix A for its proof.

Lemma 2.12. Let X be a random vector uniformly distributed over Hn. For any function f : Hn → R,
the derived random variable proj2(f)(X) is sub-exponential with parameters (c1M

2
f , c2Mf) where Mf =

‖proj2f‖2/
√

2, and c1, c2 > 0 are the same absolute constants that appear in Lemma 2.11. That is,

EX∼µ(Hn) exp
(
λ proj2(f)(X)

)
≤ exp

(
λ2

2
c1M

2
f

)

, for all λ s.t. |λ| ≤ 1

c2Mf
.

Maximal Inequalities The following simple maximal inequality is well known, and it is asymptotically
sharp if the random variables are i.i.d. Gaussian. Its proof can be found in Appendix A.

Lemma 2.13. Let X1, . . . , XN be sub-exponential random variables with parameters (v, c). Then

E

[

max
i∈[N ]

Xi

]

≤ max
{√

2v logN, 2c logN
}
.

1More precisely, Aij = 1
2
EX∼µ(Hn)[XiXjf(X)] for i, j ∈ [n] such that i 6= j.
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3 Three Notions of Approximation

Recall that we want to approximate the positive semidefinite cone S
n
+ with a convex cone K ⊇ S

n
+ so that

the feasible set BH (K) =
(
K ∩ H

)
− 1

nIn (cf. Remark 1) well approximates BH

(
S

n
+

)
. In Section 3.1, we

introduce three notions of approximation for sets. In Section 3.2, we extend these notions to cones to assess
the quality of K as an approximation of Sn

+.
Specifically, we first define a natural notion of ǫ-approximation for sets that contain the origin (Defi-

nition 3.1). Then, we additionally describe two auxiliary notions of approximation for the convenience of
our analysis, namely, the average ǫ-approximation (Definition 3.2) and the dual-average ǫ-approximation
(Definition 3.3). These two auxiliary notions can be obtained by relaxing a quantifier in the definition of
ǫ-approximation. These relaxed notions are closely related, but incomparable to each other. They will be
respectively used in Section 4 and Section 5 to prove the hardness of approximating S

n
+ with a small number

of k × k PSD constraints.

3.1 Notions of Approximation for Sets

To begin with, we define the notion of ǫ-approximation for sets containing the origin.

Definition 3.1 (ǫ-approximation). Let P be a set containing 0. For ǫ > 0, a set S is an ǫ-approximation
of P if P ⊆ S ⊆ (1 + ǫ)P . Given two sets P, S that contain 0, we let

ǫ∗(P, S) := inf{ǫ > 0 : S is an ǫ-approximation of P}.

This is a natural notion to quantify how tightly a set P containing 0 can be approximated by another set
S ⊇ P . Recall the definition of the support function hS(x) := supz∈S〈x, z〉, cf. (5). We observe that if S is
an ǫ-approximation of P , then

hP (x) ≤ hS(x) ≤ (1 + ǫ)hP (x) for all x. (7)

That is, if S is an ǫ-approximation of P , then for every direction in the ambient space, the distance from the
supporting hyperplane of S to the origin is at most (1+ǫ) times the distance from the supporting hyperplane
of P to the origin. Moreover, when P and S are convex, the converse is also true.

Next, we define a more lenient notion of approximation by relaxing the quantifier ‘for all x’ in (7) by
taking average over random direction x. To this end, recall the notion of Gaussian width from Definition
2.1 that wG(S) = EG [hS(G)] for any nonempty bounded set S ⊂ Rd, where G is a standard Gaussian.

Definition 3.2 (average ǫ-approximation). Let P be a set containing 0. For ǫ > 0, a set S is an average
ǫ-approximation of P , or ǫ-approximation of P in the average sense, if P ⊆ S and wG(S) ≤ (1 + ǫ)wG(P ).
Given two sets P, S that contain 0, we let

ǫ∗avg(P, S) := inf{ǫ > 0 : S is an average ǫ-approximation of P}.

By definition, S is an average ǫ-approximation of P if and only if EG[hS(G)−hP (G)] ≤ ǫ ·EG

[
hP (G)

]
where

G is a standard Gaussian random matrix in S
n.

Note that average ǫ-approximation is a weaker notion than ǫ-approximation because ǫ∗(P, S) ≥ ǫ∗avg(P, S).
That is, for a fixed ǫ > 0, if S is an ǫ-approximation of P , then S is also an average ǫ-approximation of P .
As a matter of fact, average ǫ-approximation is a strictly weaker notion because there exists a pair of sets
(P, S) such that ǫ∗(P, S) > ǫ∗avg(P, S), i.e., there exists some ǫ > 0 for which S is not an ǫ-approximation of
P whereas S is an average ǫ-approximation of P . We illustrate this point with the following two examples.

Example 3.1. Let P = {(x, y) ∈ R2 : x2+y2 ≤ 1} and S = {(x, y) ∈ R2 : x2/4+y2 ≤ 1}. Then ǫ∗(P, S) = 1.
On the other hand, ǫ∗avg(P, S) = 4

πE(3/4) − 1 ≈ 0.54196 where E(m) is the complete elliptic integral of the
second kind with parameter m = k2. The value of ǫ∗avg(P, S) can be computed by observing that wG(P ) =

EG∈N(0,I2)‖g‖2 and wG(S) = Eg∈N(0,I2)‖g‖2 · 1
2π

∫ 2π

0

√

4 cos2 θ + sin2 θdθ = 4
πE(3/4)Eg∈N(0,I2)‖g‖2.

Example 3.2. Let P = {x ∈ Rn : ‖x‖2 ≤ 1}} and S = {x ∈ Rn : ‖x‖1 ≤ √
n}} where ‖ · ‖p denotes

the ℓp-norm. Then ǫ∗(P, S) =
√
n − 1. On the other hand, ǫ∗avg(P, S) = f(n) where f(n) is a function

of n such that f(n) ≈ √
2 logn for sufficiently large n. It is because wG(P ) = Eg∼N(0,In)‖g‖2 ≈ √

n and
wG(S) =

√
n · Eg∼N(0,In) maxi∈[n] |gi| ≈

√
2n logn.
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P

S

(1 + ǫ)P

1

ǫ

(a) S is an ǫ-approximation of P

P S

(b) S ‘poorly’ approximates P only in some directions

Figure 2: Cartoons illustrating the difference between ǫ-approximation and average ǫ-approximation.

In the two examples above, we observed there exists ǫ > 0 such that S is an ǫ-approximation of P in the
average sense, while it is not an ǫ-approximation. This happens because hS(G)−hP (G) is small on average,
but the difference can be potentially large for some G. In other words, S approximates P well on average,
but poorly for certain ‘bad’ directions in the ambient space, as illustrated in Figure 2. Nevertheless, the set
of ‘bad’ directions might have only a small measure as in Example 3.2, and the notion of ǫ-approximation
as in Definition 3.1 can be overly conservative. That is why we additionally consider the notion of average
ǫ-approximation, which is more lenient with the shape of the approximating set S.

One drawback of evaluating the quality of approximation with the notion of average ǫ-approximation
is that it only measures the difference averaged over an ensemble of random objectives. Thus, we cannot
control the gap hS(x)− hP (x) for any specific x, however, we can still establish a probabilistic upper bound
on hS(G) − hP (G) when G is randomly drawn from the standard Gaussian distribution.

Lemma 3.1. Let S be an average ǫ-approximation of P for some ǫ > 0. Then for all τ > 0,

Pr
G∼std Gaussian

[

hS(G) − hP (G) > τ
]

≤ ǫ
wG(P )

τ
.

Lemma 3.1 operationally means that if S is an average ǫ-approximation of P for small ǫ, then hS(x)−hP (x)
can be large only for x in a set that has small measure. In particular, the probability upper bound converges
to 0 as ǫ→ 0. That is, hS(x) − hP (x) converges to 0 for all x (but those in a set of measure-zero) as ǫ→ 0.

Proof of Lemma 3.1. Note that hS(G) − hP (G) ≥ 0 for all g because P ⊆ S. The conclusion follows from
Markov’s inequality and the observation that wG(S) − wG(P ) ≤ ǫ · wG(P ).

Lastly, we revisit Definition 3.1 to introduce an alternative relaxation of ǫ-approximation, namely, the
‘dual’ version of average ǫ-approximation. Recall from (4) that the gauge function of S is defined as pS(x) :=
inf{λ ∈ R : λ > 0 and x ∈ λS}. Observe that P ⊆ S ⊆ (1 + ǫ)P if and only if 1

1+ǫpP (x) ≤ pS(x) ≤ pP (x) for
all x. When P and S are closed convex sets, pP (x) = hP◦(x) and pS(x) = hS◦(x) by Lemma 2.2. Therefore,
S is an ǫ-approximation of P if and only if 1

1+ǫhP◦(x) ≤ pS◦(x) ≤ pP◦(x) for all x. As before, we ease the

condition “ 1
1+ǫhP◦(x) ≤ pS◦(x) for all x” by averaging over x to reach at the following definition.

Definition 3.3 (dual-average ǫ-approximation). Let P be a set containing 0. For ǫ > 0, a set S is a
dual-average ǫ-approximation of P , or ǫ-approximation of P in the dual-average sense, if P ⊆ S and
wG(S◦) ≥ 1

1+ǫwG(P ◦). Given two sets P, S that contain 0, we define

ǫ∗dual-avg(P, S) := inf{ǫ > 0 : S is a dual-average ǫ-approximation of P}.

Note that dual-average ǫ-approximation is also a weaker notion than ǫ-approximation. That is, for a
fixed ǫ > 0, if S is an ǫ-approximation of P , then S is also a dual-average ǫ-approximation of P . In Section
4, we use the notion of dual-average ǫ-approximation as a technical tool to prove the hardness of k-PSD
approximations of Sn

+.
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d d 1/d 1/d

Ball

Needle Ball

Pancake

Figure 3: The sets described in Example 3.3.

The notion of dual-average ǫ-approximation is closely related to the notion of average ǫ-approximation;
they are dual to each other. However, they are not equivalent notions of approximation, i.e., there exist
convex sets P, S such that S is a good approximation of P in the average sense, but not in the dual average
sense. The opposite is also possible. See the next remark and Example 3.3.

Remark 3. For ǫ > 0, S is an average ǫ-approximation of P if and only if P ◦ is a dual-average ǫ-approximation
of S◦. In other words, ǫ∗avg(P, S) = ǫ∗dual-avg(S◦, P ◦). In this sense, the notion of dual-average ǫ-approximation
is the dual of the notion of average ǫ-approximation.

Example 3.3 (Ball, Needle, and Pancake). Consider a d-dimensional unit ℓ2-ball and a ‘needle’ obtained
by taking the convex hull of the union of the ball and two points that are located on the opposite side of the
origin at distance d. The polar of this ‘needle’ is the ‘pancake’ obtained by intersecting the unit ball with
a slab of thickness 2/d along its equator. These three sets are illustrated in Figure 3. We observe that the
Gaussian width of the ball, the needle, and the pancake are approximately

√

d− 1/2, d
√

2/π, and
√

d− 3/2,
respectively. Thus, the ball is a good approximation of the pancake in the average sense, but not in the
dual-average sense. Likewise, the needle is a good approximation of the ball in the dual-average sense, but
not in the average sense.

3.2 Notions of Approximation for Cones

Recall that our primary motivation for introducing the notions of approximation is to quantify the optimality
gap that arises from a conic programming relaxation of the problem in (1). Suppose that we are to relax the
problem (1) by replacing the PSD cone S

n
+ with a larger cone K ⊇ S

n
+. Letting P = {X ∈ S

n
+ : 〈Ai, X〉 =

bi, i = 1, . . . ,m} and S = {X ∈ K : 〈Ai, X〉 = bi, i = 1, . . . ,m} denote the feasible sets of the original and
the relaxed problems, we can see that S ⊇ P and there arises an increase in the optimal value, ΓP,S(C) :=
hS(C) − hP (C), as a result of the relaxation.

We extend the notions of approximation for sets, defined in Section 3.1, to the notions for cones by fixing
a certain affine constraint. Recall that for a cone K, we let BH (K) :=

(
K ∩H

)
− 1

nIn =
{
X − 1

nIn ∈ S
n :

X ∈ K ∩H
}

where H = {X ∈ S
n : Tr X = 1} and In denotes the n× n identity matrix. Note that BH (K)

is the feasible set of the problem (1), translated by − 1
nIn, when the affine constraint in (1) is the unit trace

constraint. We define the notions of approximation for cones as follows.

Definition 3.4 (ǫ-approximation for cones in S
n). A cone K ⊆ S

n is an ǫ-approximation (average ǫ-
approximation / dual-average ǫ-approximation, resp.) of S

n
+ if BH (K) is an ǫ-approximation (average

ǫ-approximation / dual-average ǫ-approximation, resp.) of BH

(
S

n
+

)
. Also, we let

ǫ∗(Sn
+,K) := ǫ∗(BH

(
S

n
+

)
, BH (K))

and define ǫ∗avg(S
n
+,K) and ǫ∗dual-avg(S

n
+,K) in a similar manner.

Remark 4. For later use, we remark here that wG

(
BH

(
S

n
+

) )
≤

√
2n and that limn→∞

wG(BH(Sn
+))√

2n
= 1

because S
n
+ ∩H = conv{vvT : v ∈ Sn−1}, cf. Lemma 2.8 and Remark 2.

13



4 k-PSD Approximations of Sn
+

One option to relax the PSD constraint X ∈ S
n
+ in (1) is to enforce the PSD constraints only on the smaller

k × k principal submatrices of X , which leads to the following relaxation:

maximize 〈C,X〉
subject to 〈Ai, X〉 = bi, i = 1, . . . ,m,

k × k principal submatrices of X ∈ S
k
+.

(8)

Note that the PSD cone S
n
+ in (1) is replaced with a relaxed cone that is defined using (k × k)-sized PSD

constraints, and (8) can be solved more efficiently when k ≪ n. For example, k = 1 yields a linear program-
ming (LP) approximation and k = 2 produces a second-order cone programming (SOCP) approximation of
the original SDP [AM19].

In this section, we consider a scheme to approximate S
n
+ by enforcing k×k PSD constraints on particular

subspaces. To be precise, we choose a fixed set of k-dimensional subspaces in Rn and define a cone of n× n
symmetric matrices that are PSD when restricted to these subspaces. The cone associated with (8) is an
example of this construction that is obtained by imposing PSD constraints on the

(
n
k

)
subspaces of k-sparse

vectors in Rn, and will be referred to as the sparse k-PSD approximation of Sn
+.

In Section 4.1, we formalize the definition of the k-PSD approximation and prove a lower bound on the
number of k × k PSD constraints required. We show that when k is much smaller than n, it is necessary to
impose PSD constraints on at least exponentially many subspaces to produce a cone that approximates S

n
+

well. In Section 4.2, we discuss the sparse k-PSD approximation in more detail.

4.1 Lower Bound for k-PSD Approximations of Sn
+

We recall the definition of the k-PSD approximation of Sn
+ from Definition 1.1.

Definition 4.1 (k-PSD approximation of Sn
+; restatement of Definition 1.1). Let V = {V1, . . . , VN} be a set

of k-dimensional subspaces of Rn. The k-PSD approximation of Sn
+ induced by V is the convex cone

S
n,k
+ (V) :=

{
X ∈ S

n : vTXv ≥ 0, ∀v ∈ Vi, ∀i = 1, . . . , N}.

Note that Sn,k
+ (V) ⊇ S

n
+ is the set of n×n symmetric matrices whose associated quadratic forms are positive

semidefinite when restricted to V1 ∪ · · · ∪ VN . Thus, if Ui ∈ Rn×k is a matrix whose columns form a basis of
Vi, then S

n,k
+ (V) =

{
X ∈ S

n : UT
i XUi ∈ S

k
+, ∀i = 1, . . . , N}.

Our first main theorem presents an upper bound on the Gaussian width of the base of the dual cone of
S

n,k
+ (V) as a function of k and N = |V|.

Theorem 1. Let n, 1 ≤ k ≤ n be positive integers and V = {V1, . . . , VN} be any set of k-dimensional
subspaces of Rn. Then

wG

(

B∗
H

(

S
n,k
+ (V)

))

≤
√

2k +
√

2 logN.

Recall that wG

(
B∗

H

(
S

n
+

) )
= wG

(
BH

(
S

n
+

) )
≈

√
2n, cf. Remark 4. Comparing the upper bound in

Theorem 1 against
√

2n, we can contrast the size of B∗
H

(

S
n,k
+ (V)

)

relative to B∗
H

(
S

n
+

)
. For example, when

k and N are small,
√

2k +
√

2 logN ≪
√

2n, and we can intuitively see that the dual of the cone S
n,k
+ (V)

is much smaller than the original PSD cone S
n
+. Therefore, the primal cone S

n,k
+ (V) is too big to well

approximate S
n
+ in such a case.

Remark 5. Note that the upper bound in Theorem 1 holds regardless of the subspaces V1, . . . , VN in V , i.e.,
it is oblivious to the configuration of the subspaces. That is, this upper bound is valid even for the “best”
possible configuration of subspaces to imitate the expressive power of the full-sized PSD cone. We also note
that this upper bound could conceivably be too conservative, especially when N is large, because it implicitly
hinges on the union bound (through the use of Lemma 2.13).
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Proof of Theorem 1. First of all, due to the translation invariance of the Gaussian width, we have

wG

(

B∗
H

(

S
n,k
+ (V)

))

= wG

(

S
n,k
+ (V)∗ ∩H − 1

n
In

)

= wG

(

S
n,k
+ (V)∗ ∩H

)

.

Next, we let Ui ∈ Rn×k be a matrix whose columns form an orthonormal basis of Vi for each Vi ∈ V .
We observe that S

n,k
+ (V)∗ = cl cone

(⋃

i∈[N ]{UiZU
T
i : Z ∈ S

k
+}
)

because (Sk
+)∗ = S

k
+ and (C1 ∩ C2)∗ =

cl cone(C∗
1 ∪C∗

2 ), cf. Section 2.1. Thus, it follows that Sn,k
+ (V)∗∩H = conv

(
⋃

i∈[N ]{Uivv
TUT

i : v ∈ S
k−1}

)

.

Note that 〈G,Uivv
TUT

i 〉 = 〈UT
i GUi, vv

T 〉, and therefore,

wG

(

S
n,k
+ (V)∗ ∩H

)

= EG

[

sup
i∈[N ]

v∈Sn−1

〈
UT
i GUi, vv

T
〉
]

= EG

[

sup
i∈[N ]

λ1(UT
i GUi)

]

≤ sup
i∈[N ]

EG

[
λ1(UT

i GUi)
]

+ EG

[

sup
i∈[N ]

(

λ1(UT
i GUi) − EG

[
λ1(UT

i GUi)
])
]

.

Note that for every i ∈ [N ], the random matrix UT
i GUi ∈ S

k has the standard Gaussian distribution in
S

k. By Lemma 2.8, EG

[
λ1(UT

i GUi)
]
≤

√
2k. Moreover, the function G 7→ λ1(UT

i GUi) is 1-Lipschitz, and

therefore, the random variable λ1(UT
i GUi)−EG

[
λ1(UT

i GUi)
]

is sub-Gaussian with sub-Gaussian parameter

1 by Lemma 2.9. Lemma 2.13 implies that EG

[

supi∈[N ]

(
λ1(UT

i GUi) − EG

[
λ1(UT

i GUi)
])]

≤ √
2 logN .

Now we discuss how Theorem 1 implies the hardness of approximating S
n
+ with a small number of k× k

PSD constraints. In the next corollary, we show that if N = |V| is below a certain threshold determined by

n, k, ǫ, then S
n,k
+ (V) cannot be a dual-average ǫ-approximation of Sn

+. Thus, it cannot be an ǫ-approximation
of Sn

+, either.

Corollary 1. Let n, k be positive integers such that 1 ≤ k ≤ n, and ǫ > 0. If Sn,k
+ (V) is a dual-average

ǫ-approximation of Sn
+, then |V| ≥ exp

(
n · ϕ(n, k, ǫ)

)
where

ϕ(n, k, ǫ) =

[
1

1 + ǫ

wG

(
BH

(
S

n
+

) )

√
2n

−
√

k

n

]2

+

.

Proof of Corollary 1. Suppose that S
n,k
+ (V) is a dual-average ǫ-approximation of Sn

+. Then by definition of
the dual-average approximation (see Definitions 3.3 and 3.4),

wG

(

BH

(

S
n,k
+ (V)

)◦ )
≥ 1

1 + ǫ
wG

(

BH

(
S

n
+

)◦ )
. (9)

By Lemma 2.1, we haveBH

(

S
n,k
+ (V)

)◦
= −nB∗

H

(

S
n,k
+ (V)

)

andBH

(
S

n
+ ∩H

)◦
= −nB∗

H

(
S

n
+

)
= −nBH

(
S

n
+

)

because S
n
+ is self-dual. Thus, Theorem 1, combined with the inequality (9), implies

1

1 + ǫ
wG

(

BH

(
S

n
+

) )

≤ wG

(

BH

(

S
n,k
+ (V)∗

))

≤
√

2k +
√

2 log |V|.

Note that this inequality holds if and only if

√

log |V| ≥ 1√
2(1 + ǫ)

wG

(

BH

(
S

n
+

) )

−
√
k,

which is again equivalent to

|V| ≥ exp

[
wG

(
BH

(
S

n
+

) )

√
2(1 + ǫ)

−
√
k

]2

+

= exp
(
n · ϕ(n, k, ǫ)

)
.
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Remark 6. Recall from Remark 2 that limn→∞ wG

(
BH

(
S

n
+

) )
/
√

2n = 1. With k = ⌊δn⌋ for 0 < δ < 1,

lim
n→∞

ϕ
(
n, ⌊δn⌋, ǫ

)
=

[
1

1 + ǫ
−
√
δ

]2

+

.

That is, when n is sufficiently large, |V| ≥ exp
(
n
[
1/(1 + ǫ) −

√
δ
]2

+

)
is necessary for the cone S

n,k
+ (V) to be

a dual-average ǫ-approximation of Sn
+.

As discussed in Remark 5, our lower bound in Corollary 1 can be conservative due to the union bound. In
fact, we do not know whether our lower bound is tight. Thus, it is possible that even if N ≥ exp

(
n·ϕ(n, k, ǫ)

)
,

there does not exist any V such that |V| = N and S
n,k
+ (V) is a dual-average ǫ-approximation of Sn

+.

4.2 Example: the Sparse k-PSD Approximation of Sn
+

In this section, we consider the sparse k-PSD approximation, which is a concrete example of the k-PSD
approximation of Sn

+ (Definition 4.1) discussed in the previous section.

Definition 4.2 (Sparse k-PSD approximation of Sn
+). Given positive integers n and 1 ≤ k ≤ n, the sparse

k-PSD approximation of Sn
+ is the set

S
n,k
+ :=

{
X ∈ S

n : XI � 0, ∀I ⊂ [n] with |I| ≤ k
}
.

We observe that the sparse k-PSD approximation is an instance of the k-PSD approximation S
n,k
+ (V) such

that V = {VI : I ∈ [n] with |I| = k}} where VI = {v ∈ Rn : vi = 0, ∀i 6∈ I}. Note that |V| =
(
n
k

)
.

In Section 4.2.1, we examine the implications of Corollary 1 for the sparse k-PSD approximation of Sn
+.

In Section 4.2.2, we provide a more refined analysis that is tailored to S
n,k
+ , based on properties that are

specific to S
n,k
+ . It turns out that we can derive stronger hardness results from the tailored approach.

4.2.1 A Weak Bound Using Corollary 1

First of all, we inspect what the lower bound obtained in Section 4.1 implies for the sparse k-PSD approxi-
mation of Sn

+. According to the contrapositive of Corollary 1, when n and ǫ > 0 are fixed, Sn,k
+ cannot be

a dual-average ǫ-approximation of Sn
+ if k satisfies the following inequality:

(
n

k

)

< exp

(

n ·
[

1

1 + ǫ

wG

(
BH

(
S

n
+

) )

√
2n

−
√

k

n

]2

+

)

. (10)

Let’s assume k = δn for some 0 < δ < 1 and n tends to infinity. By Stirling’s approximation,

log

(
n

k

)

=
(
1 + on(1)

)
H2

(
k

n

)

n,

where H2(p) = −p log p − (1 − p) log(1 − p) is the binary entropy function defined for p ∈ [0, 1]. With this
asymptotic approximation and the observation that wG

(
BH

(
S

n
+

) )
/
√

2n ≤ 1, we take logarithm of both
sides of (10) to obtain the inequality (in the limit n→ ∞),

H2(δ) <

[
1

1 + ǫ
−
√
δ

]2

+

. (11)

Given ǫ ≥ 0, let gǫ(δ) :=
[

1
1+ǫ −

√
δ
]2

+
−H2(δ). Note that gǫ is strictly convex on the interval δ ∈ [0, 1]

and gǫ(0) > 0. Moreover, if ǫ > 0, then gǫ(1/(1 + ǫ)2) < 0. By the intermediate value theorem, there exists
a unique 0 < δ∗(ǫ) < 1/(1 + ǫ)2 such that gǫ(δ

∗(ǫ)) = 0 and gǫ(δ) > 0 for all 0 ≤ δ < δ∗(ǫ). As a result, if

k/n < δ∗(ǫ), then S
n,k
+ cannot be a dual-average ǫ-approximation of Sn

+. The expressions on both sides of
Eq. (11) are illustrated in Figure 4a for a few values of ǫ; the plot of δ∗(ǫ) vs ǫ is depicted in Figure 4b.
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(a) Plot of the expressions in Eq. (11): H2(δ) (entropy)
vs [ 1/(1+ǫ)−

√
δ ]2+ for ǫ = 0, 0.2, and 0.5. The location

of δ∗(ǫ) are also annotated.

(b) Plot of δ∗(ǫ) vs ǫ. For a fixed ǫ > 0, if k/n is con-
tained in the blue region, Sn,k

+ cannot be a dual-average
ǫ-approximation of Sn

+.

Figure 4: Illustration of the hardness results obtained by applying Corollary 1 to the sparse k-PSD.

Recall the definition of ǫ∗dual-avg(P, S) = inf{ǫ > 0 : S is a dual-average ǫ approximation of P}, which
indicates the ‘best possible’ (i.e., the smallest) ǫ > 0 for which S is a dual-average ǫ-approximation of P .

For fixed n and k, the preceding discussion leads to a lower bound on ǫ∗dual-avg(S
n
+,S

n,k
+ ) as

ǫ∗dual-avg(S
n
+,S

n,k
+ ) ≥ sup

{

ǫ > 0 : H2

(k

n

)

<

[
1

1 + ǫ
−
√

k

n

]2

+

}

=: ξ(k/n). (12)

On the one hand, we can already see from the above discussion that for any fixed ǫ > 0, S
n,k
+ with

k = on(n) cannot be an ǫ-approximation of Sn
+ (in the dual-average sense). That is, k must scale linearly

with respect to n for Sn,k
+ to be a good approximation of Sn

+. On the other hand, the lower bound on k from
the discussion above – k/n ≥ δ∗(ǫ) – becomes uninformative once k increases beyond a certain threshold
because δ∗(ǫ) < δ∗(0) ≈ 0.137 for all ǫ > 0. In other words, if k/n > δ∗(0), then we can only get a trivial

lower bound ǫ∗dual-avg(Sn
+,S

n,k
+ ) > −∞, and do not know whether S

n,k
+ approximates S

n
+ well or not.

We remark that this is possibly due to the conservative nature of inequality (10), which is inherited from
Corollary 1. Recall that the cardinality lower bound from Corollary 1 is oblivious to the configuration of
the subspaces V1, . . . , VN in V . That is, it is valid even for the “best” possible configuration of subspaces
to imitate the expressive power of the full-sized PSD cone. Nevertheless, the subspaces of k-sparse vectors
have overlaps, and some of them could be redundant. Thus, the general lower bound from Corollary 1 can
be excessively conservative to apply to the sparse k-PSD approximation of Sn

+.

Indeed, we can acquire a tighter lower bound for ǫ∗dual-avg(S
n
+,S

n,k
+ ) by using the knowledge about the

subspaces of Sn,k
+ . This is the topic that will be discussed in Section 4.2.2.

4.2.2 A More Refined Analysis Tailored to S
n,k
+

In this section, we derive lower bounds on ǫ∗(Sn
+,S

n,k
+ ) and ǫ∗dual-avg(Sn

+,S
n,k
+ ) with an analysis that exploits

specific properties of Sn,k
+ . More precisely, we construct a matrix on the boundary of BH(Sn,k

+ ) to argue a

lower bound on ǫ∗(Sn
+,S

n,k
+ ), and characterize ǫ∗dual-avg(S

n
+,S

n,k
+ ) by observing that the Gaussian width of

B∗
H(Sn,k

+ ) is the expectation of the largest k-sparse eigenvalue of a standard Gaussian random matrix. The

resulting lower bounds imply stronger hardness results for approximating S
n
+ with S

n,k
+ than those discussed

in Section 4.2.1.
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Hardness of ǫ-approximation First of all, we discuss how hard it is to approximate S
n
+ with S

n,k
+ in the

ǫ-approximation sense (see Definition 3.1) when k is small. For that purpose, we consider a specific matrix
on the line segment connecting 1

n1n1
T
n and 1

nIn where 1n ∈ Rn×1 denotes the n× 1 column matrix with all

entries equal to 1. Specifically, we construct a matrix M ∈ BH(Sn,k
+ ) that is far away from BH

(
S

n
+

)
, and

prove a lower bound for ǫ > 0 as a necessary condition for M ∈ (1 + ǫ) ·BH

(
S

n
+

)
.

Proposition 1. If Sn,k
+ is an ǫ-approximation of Sn

+, then k >
n−1
1+ǫ .

Proof. Let P1(n) := 1n1
T
n/n and P2(n) := In − P1(n). Note that P1(n) and P2(n) are projection matrices.

For a, b ∈ R, we define
G(a, b;n) := aP1(n) + bP2(n).

It is easy to verify that the eigenvalues of G(a, b;n) are a with multiplicity 1, and b with multiplicity n− 1.

Next, recall from Definition 4.2 that G(a, b;n) ∈ S
n,k
+ if and only if G(a, b;n)[k] � 0. Observe that

G(a, b;n)[k] = ka+(n−k)b
n P1(k)+bP2(k) � 0 if and only if ka+(n−k)b ≥ 0 and b ≥ 0. Letting a = k−n

n(k−1) and

b = k
n(k−1) , we observe that (1) G(a, b;n) ∈ S

n,k
+ because ka+(n−k)b = 0 and b ≥ 0; and (2) G(a, b;n) ∈ H

because Tr G(a, b;n) = a+ b(n− 1) = 1. Next, we can also verify that G(a, b;n) − 1
nIn ∈ (1 + ǫ) ·BH

(
S

n
+

)

if and only if ǫ ≥ n−k
k−1 . It is because G(a, b;n) + ǫ

nIn = G
(
a + ǫ

n , b + ǫ
n ;n

)
∈ S

n
+ if and only if a + ǫ

n ≥ 0.

Rewriting ǫ ≥ n−k
k−1 as a condition for k in terms of ǫ, we obtain k ≥ n−1

1+ǫ + 1.

Alternatively, when k is fixed, Proposition 1 implies that

ǫ∗(Sn
+,S

n,k
+ ) ≥ n− k

k − 1
≥ 1 − k/n

k/n
=: ζ(k/n). (13)

Hardness of dual average ǫ-approximation Next, we re-examine how well Sn,k
+ can approximate S

n
+

in the dual-average sense (Definition 3.3) to find a better lower bound on ǫ∗dual-avg(Sn
+,S

n,k
+ ). We use the

duality between S
n,k
+ and its dual cone, (Sn,k

+ )∗ = cone{vvT : v ∈ Rn with ‖v‖0 ≤ k}, which is the cone of
matrices that have factor width at most k [BCPT05].

Observe that S
n
+ ∩ H = {X ∈ S

n
+ : Tr(X) = 1} = conv{vvT : x ∈ Rn, ‖v‖2 = 1}. For any G ∈ S

n,
maxX∈Sn

+∩H〈G,X〉 = λ1(G) and thus, wG

(
S

n
+∩H

)
is equal to the expectation of the largest eigenvalue of a

random matrix that has the standard Gaussian distribution in S
n (Definition 2.3). Likewise, (Sn,k

+ )∗ ∩H =
conv{vvT : x ∈ Rn, ‖v‖2 = 1, ‖v‖0 ≤ k}, and maxX∈(Sn,k

+ )∗∩H〈G,X〉 is the largest k-sparse eigenvalue of G.

Based on these observations, we show an asymptotic upper bound on the ratio wG

(
B∗

H(Sn,k
+ )

)
/wG(B∗

H(Sn
+))

in Proposition 2 that subsequently leads to a tighter lower bound on ǫ∗dual-avg(Sn
+,S

n,k
+ ) in (16).

Proposition 2. Fix 0 < δ < 1 and let k = ⌊δn⌋. Then

lim
n→∞

wG

(
B∗

H(Sn,k
+ )

)

wG

(
B∗

H(Sn
+)
) ≤

(∫ δ

0

Qχ2(1 − s)ds

)1/2

, (14)

where Qχ2 denotes the quantile function2 of the χ2-distribution with one degree of freedom. Moreover,

∫ δ

0

Qχ2(1 − s)ds = δ +

√

2

π
Φ−1

(

1 − δ

2

)

exp

(

− 1

2

[

Φ−1
(

1 − δ

2

)]2)

(15)

where Φ(x) is the cumulative distribution function of the standard normal distribution.

Before we prove Proposition 2, we note that it implies the following lower bound in the asymptotic limit
n→ ∞:

ǫ∗dual-avg(Sn
+,S

n,k
+ ) ≥

(∫ δ

0

Qχ2(1 − s)ds

)−1/2

− 1 =: ψ(k/n). (16)

2That is, Qχ2(s) := inf{x ∈ R : Fχ2(x) ≥ s} for 0 < s ≤ 1 where Fχ2 be the cumulative distribution function of the

χ2-distribution with one degree of freedom.
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See Figure 1 (left) in Section 1 to compare the three lower bounds, ξ (Corollary 1 and (12)), ζ (Proposition 1
and (13)), and ψ (Proposition 2 and (16)). We make two remarks: one on the advantage of tailored analysis

for S
n,k
+ ; and the other on comparing the rate of convergence for ζ vs ψ.

• (Generic vs tailored) The lower bound ψ gives a sharper lower bound than ξ. In particular, ψ(δ) > 0
for all 0 < δ < 1 and ψ gracefully converges to 0 as k/n→ 1, whereas ξ(δ) = 0 for all δ ≥ δ∗(0).

• (ǫ-approx. vs dual-avg. ǫ-approx.) We can see from the expression in (15) that ψ(1 − δ) = Θδ(δ
3) as

δ → 0. This sharply contrasts with ϕ(1 − δ) = Θδ(δ). That is, Sn,k
+ gets harder to approximate S

n
+ in

both senses as k diminishes from n, but at a much slower rate in the dual-average sense.

Proof of Proposition 2. Fix k ∈ {0, 1, . . . , n}. Let T = {u ∈ Rn : ‖u‖2 ≤ 1, ‖u‖0 ≤ k} and observe that

wG

(
B∗

H(Sn,k
+ )

)
= wG

(
(Sn,k

+ )∗ ∩H
)

= EG

[

sup
u∈T

〈
G, uuT

〉
]

.

We consider a Gaussian process (Xu)u∈T such that Xu = uTGu+ γ with G being standard Gaussian in S
n

and γ ∼ N(0, 1) independent of G. It is easy to verify that

EG

[

sup
u∈T

〈
G, uuT

〉
]

= EG,γ

[

sup
u∈T

{
uTGu+ γ

}
]

= EG,γ

[

sup
u∈T

Xu

]

.

Next, we introduce an instrumental Gaussian process (Yu)u∈T such that Yu = gTu with g ∼ N(0, 2In).
It is easy to check that for all u, v ∈ T , (1) EXu = EYu = 0; (2) EX2

u = EY 2
u = 2; and (3) EXuXv −

EYuYv = (1 − uT v)2 ≥ 0. Now we can apply Slepian’s lemma (Lemma 2.7) to obtain EG,γ

[
supu∈T Xu

]
≤

Eg∼N(0,2In)

[
supu∈T Yu

]
. Then it follows that

wG

(
B∗

H(Sn,k
+ )

)
= EG,γ

[

sup
u∈T

Xu

]

≤ Eg∼N(0,2In)

[
sup
u∈T

Yu
]

= Eg∼N(0,2In) sup
u∈Rn

‖u‖2≤1,‖u‖0≤k

gTu.

Therefore,

1√
2n
wG

(
B∗

H(Sn,k
+ )

)
≤ Eg∼N(0,2In)

[

‖g‖2√
2n

sup
u∈Rn

‖u‖2≤1,‖u‖0≤k

gTu

‖g‖2

]

.

Note that when g ∼ N(0, 2In), ‖g‖2√
2n

→ 1 in probability as n → ∞. Thus, it suffices to identify the limit of

sup u∈Rn

‖u‖2≤1,‖u‖0≤k

gT u
‖g‖2

(in probability) to compute the expectation on the right-hand side.

Given x ∈ Rn, we let (x2i )↓ denote the i-th largest element in the set {x21, x22, . . . , x2n}. Observe that

sup
u∈Rn

‖u‖2≤1,‖u‖0≤k

gTu

‖g‖2
=

1

‖g‖2

∑k
i=1(g2i )↓

√
∑k

i=1(g2i )↓
=

(
1

‖g‖22

k∑

i=1

(g2i )↓
)1/2

and that (g21)↓ ≥ (g22)↓ ≥ · · · ≥ (g2n)↓ are χ2 order statistics of degree 1, multiplied by a factor of 2. It is well
known from literature on extreme order statistics (e.g., [OVW16, Theorem 2.7]) that for any fixed 0 < δ < 1,

1

‖g‖22

⌊δn⌋
∑

i=1

(g2i )↓ −→
∫ δ

0

Qχ2(1 − s)ds in probability as n→ ∞.

Combining these observations and the well-known fact that limn→∞
wG(B∗

H (Sn
+))√

2n
= 1, cf. Remark 4, we

obtain the desired inequality:

lim
n→∞

wG

(
B∗

H(Sn,k
+ )

)

wG

(
B∗

H(Sn
+)
) = lim

n→∞

√
2n

wG

(
B∗

H(Sn
+)
) lim

n→∞
wG

(
B∗

H(Sn,k
+ )

)

√
2n

≤
(∫ δ

0

Qχ2(1 − s)ds

)1/2

.

We conclude the proof by computing the integral in the upper bound. An explicit formula for the integral
is well known; see [OVW16, Remark 2.8], for example.

∫ δ

0

Qχ2(1 − s)ds = 2

∫ ∞

Φ−1(1− δ
2 )

s2Φ′(s)ds = δ +

√

2

π
Φ−1

(

1 − δ

2

)

exp

(

− 1

2

[

Φ−1
(

1 − δ

2

)]2)

.
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Hardness of average ǫ-approximation As a matter of fact, we can derive the following corollary from
Proposition 2 by applying Urysohn’s inequality (Lemma 2.3), thereby obtaining an asymptotic lower bound

on ǫ∗avg(Sn
+,S

n,k
+ ) (see Definition 3.2).

Corollary 2. Fix 0 < δ < 1 and let k = ⌊δn⌋. Then

lim
n→∞

wG

(
BH(Sn,k

+ )
)

wG

(
BH(Sn

+)
) ≥ 1

4

(∫ δ

0

Qχ2(1 − s)ds

)−1/2

.

Corollary 2 implies that ǫ∗avg(Sn
+,S

n,k
+ ) ≥ 1

4

( ∫ δ

0 Qχ2(1 − s)ds
)−1/2 − 1. Note that this lower bound is

more conservative than the lower bound for ǫ∗dual-avg(S
n
+,S

n,k
+ ) in (16), due to the additional multiplier 1/4

that arises from the use of Urysohn’s inequality. It might be possible to derive a better lower bound for
ǫ∗avg(Sn

+,S
n,k
+ ), which is beyond the scope of this paper.

Proof of Corollary 2. By Lemma 2.1, we observe that BH(Sn,k
+ ) = − 1

nB
∗
H(Sn,k

+ )◦. It follows from Lemma

2.3 that w
(
BH(Sn,k

+ )
)
≥ 1

n·w
(
B∗

H(Sn,k
+ )
) , and therefore,

wG

(
BH(Sn,k

+ )
)
≥ κ2d

n · wG

(
B∗

H(Sn,k
+ )

)

where d =
(
n+1
2

)
− 1 is the dimension of H . Since κ2d ≥ d− 1

2 , we obtain for any 0 < δ < 1,

lim
n→∞

wG

(
BH(Sn,k

+ )
)

√
2n

≥ lim
n→∞

√
2n

wG

(
B∗

H(Sn,k
+ )

)
1

2n2

{(
n+ 1

2

)

− 3

2

}

=
1

4f(δ)
.

5 Approximate Extended Formulations of Sn
+

Now we further extend our discussion beyond the k-PSD approximation. Specifically, we consider an arbitrary
approximation of Sn

+ through extended formulations. This defines a much broader class of approximations
as we are allowed to introduce as many new variables as we want. However, even in this case, at least
superpolynomially many k × k PSD constraints are required to approximate S

n
+ when k ≪ n. In Section

5.1, we present our two main theorems about the extension complexity lower bounds that hold for any
ǫ-approximation of BH(Sn

+). Sections 5.2 and 5.3 are dedicated to the proof of the theorems.

5.1 Theorem Statements

Recall that BH

(
S

n
+

)
= S

n
+ ∩ H − 1

nIn. In this section, we present two main theorems on the hardness

of approximating BH

(
S

n
+

)
with a small number of k × k PSD constraints. Our first theorem is about an

S
k
+-extension complexity lower bound that holds for any ǫ-approximation of BH

(
S

n
+

)
.

Theorem 2. There exists a constant C > 0 such that if S is an ǫ-approximation of BH

(
S

n
+

)
, then

xcSk
+

(S) ≥ exp

(

C · min

{√
n

1 + ǫ
,

1

1 + ǫ

n

k

})

.

Theorem 2 suggests that at least Ωn(exp(
√
n)) copies of S

k
+ are required to approximate S

n
+ when

k = On(
√
n). When k = Ωn(

√
n), this extension complexity lower bound gracefully decreases to 1 as k

increases to n. We remark that Theorem 2 holds for arbitrary k, and thus, extends the result of Fawzi
[Faw21, Theorem 1] beyond the special case of k = 1. A more formal version of Theorem 2 and its proof are
deferred until Section 5.2.

Next, we consider the S
k
+-extension complexity of a set that is an average ǫ-approximation of BH

(
S

n
+

)
.
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Theorem 3. There exists a constant C > 0 such that if S is an average ǫ-approximation of BH

(
S

n
+

)
, then

xc
S

k
+

(S) ≥ exp

(

C · min

{( n

(1 + ǫ)2

)1/3

,
1

1 + ǫ

√
n

k

})

.

Theorem 3 is a stronger result than Theorem 2 because it provides an extension complexity lower bound for
a broader range of sets that approximate BH

(
S

n
+

)
. Again, this result subsumes [Faw21, Theorem 2] as a

special case for k = 1. Specifically, Theorem 3 states that even if we relax the notion of approximation, we
still need at least superpolynomially many number of k × k PSD constraints to approximate S

n
+ when k is

small, namely, when k is smaller than 1
(1+ǫ)2

n
log2 n

. A more formal version of Theorem 3 and its proof can

be found in Section 5.3.
Theorem 2 and Theorem 3 imply that any set that well approximates BH

(
S

n
+

)
must have S

k
+-extension

complexity at least superpolynomially large in n for all k much smaller than n. Thus, we conclude that
it is impossible to approximate BH

(
S

n
+

)
using only polynomially many k × k PSD constraints, for any

construction of the approximating set. Note that these are stronger hardness results than those discussed in
Section 4, which only apply to the k-PSD approximations. Lastly, we mention that we do not know whether
our lower bounds are tight. Thus, it might be possible to achieve even stronger lower bounds by means of a
more sophisticated analysis.

5.2 Proof of Theorem 2

Let c = max
{√

c1/2 log 3,
√

2c2
}

denote an absolute constant with c1, c2 > 0 being the constants that
appear in Lemma 2.11. We state a full version of Theorem 2 as follows.

Theorem 4. If S is an ǫ-approximation of BH

(
S

n
+

)
, then for all positive integer 1 ≤ k ≤ n,

log xcSk
+

(S) ≥ −α+ β

2
+

√
(α− β

2

)2

+ γ

where

α = 2k log 3, β = log
( n3

8 · c log 3

)

, γ =
1

2e · c
n− 1

(1 + ǫ)
.

Now we discuss how Theorem 2 can be derived from Theorem 4. Suppose that n is sufficiently large,
tending to infinity.

• When k = on(
√

n
1+ǫ), we observe that γ ≫ max{α2, β2}, and therefore, −α+β

2 +
{

(α−β
2 )2+γ

}1/2 ≈ √
γ.

• When k = ωn(
√

n
1+ǫ ), α ≫ max{β,√γ}. Thus,

{
(α−β

2 )2 + γ
}1/2 ≈ α

2

(
1 + 4γ

α2

)1/2 ≈ α
2

(
1 + 2γ

α2

)
. As a

result, −α+β
2 +

{
(α−β

2 )2 + γ
}1/2 ≈ γ

α .

In the rest of this section, we prove Theorem 4. Our proof is based on similar arguments to those found
in the proof of [Faw21, Theorem 1], but with appropriate adaptations. Indeed, our results can be seen as
an extension of Fawzi’s beyond the special case with k = 1, which is made possible by introducing different
notions of normalization, (21), and decomposition of Sk

+-factors into sharp and flat components, (22).

Proof of Theorem 4. We begin with a rough sketch of the main ideas used in the proof. First, we consider
the generalized slack matrix s of the pair

(
BH

(
S

n
+

)
, (1 + ǫ)BH

(
S

n
+

) )
restricted to the hypercube Hn. In

light of the generalized Yannakakis theorem (Lemma 2.4), the S
k
+-extension complexity of S is bounded from

below by the S
k
+-rank of the slack matrix s, cf. (6). Thus, it suffices to prove a lower bound for rankSk

+
(s).

To this end, we express the slack matrix s in two equivalent ways: one obtained from the knowledge
about the extreme points of BH

(
S

n
+

)
, and the other obtained by assuming that s admits a S

k
+-factorization

having N factors. Interpreting the extreme points of BH

(
S

n
+

)
and (1+ǫ)BH

(
S

n
+

)
as formal variables, x and

y, we may view the two expressions of the slack matrix as bivariate polynomials. Next, we ‘smooth out’ the
two expressions with respect to one variable, x, by taking projection onto the harmonic subspace of degree
2; and then take expectation with respect to the other variable, y. Comparing the two resulting expressions,
we derive a lower bound on the number of factors N , which implies a lower bound on the S

k
+-extension

complexity of S.
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Step 1. Slack Matrix and S
k
+-Factorization We consider the (generalized) slack operator associated

to the pair
(
BH

(
S

n
+

)
, (1+ ǫ)BH

(
S

n
+

) )
. Let Sn−1 = {x ∈ Rn : ‖x‖2 = 1}. Observe that the extreme points

of BH

(
S

n
+

)
are x̃x̃T − 1

nIn for x̃ ∈ Sn−1, and that
(
(1 + ǫ)BH

(
S

n
+

) )◦
= − n

1+ǫBH

(
S

n
+

)
. Thus, we are led

to study the following infinite matrix:

(x̃, ỹ) ∈ S
n−1 × S

n−1 7→ 1 −
〈

x̃x̃T − 1

n
In, − n

1 + ǫ

(

ỹỹT − 1

n
In

)〉

=
n

1 + ǫ
(x̃T ỹ)2 +

ǫ

1 + ǫ
.

We consider the PSD rank (Sk
+-rank) of the finite submatrix restricted to x̃, ỹ ∈

{
− 1√

n
, 1√

n

}n ⊂ Sn−1.

Specifically, we consider the following matrix s defined on the n-dimensional hypercube, with a proper
reparametrization (x =

√
nx̃ and y =

√
nỹ):

s : (x, y) ∈ {−1, 1}n × {−1, 1}n 7→ 1

1 + ǫ

(
1

n
(xT y)2 + ǫ

)

. (17)

Assuming that we can write the matrix (17) as a sum of N trace inner products of Sk
+ factors, we have

1

1 + ǫ

(
1

n
(xT y)2 + ǫ

)

= s(x, y) =

N∑

i=1

〈fi(x), gi(y)〉 , ∀x, y ∈ Hn (18)

where fi, gi : Hn → S
k
+ are some matrix-valued functions on Hn.

In this proof, we use the two expressions of s(x, y) in (18) to derive a lower bound on N . First, we fix
y ∈ Hn and ‘smooth out’ the expressions on both sides of (18) with respect to x by taking projection onto
the space of harmonic polynomials of degree 2. Then we plug x = y and consider the expectation of the
smoothed functions with respect to y ∈ Hn.

More precisely, for each fixed y ∈ Hn, we let qy(x) = (xT y)2−n. Also, let µ denote the uniform probability
measure onHn. The inner product of any two functions f, g : Hn → R is defined as 〈f, g〉µ = Ex∼µ

[
f(x)g(x)

]
.

We observe that 〈f(x), qy(x)〉µ = 2 proj2f(y).
Taking the inner product of both sides of (18) with qy(x), we obtain

Ex∼µ

[
1

(1 + ǫ)n
qy(x)2 + qy(x)

]

=
N∑

i=1

〈
Ex∼µ

[
qy(x)fi(x)

]
, gi(y)

〉
.

Subsequently, we get the following equation by taking expectation over y ∼ µ:

Ey∼µEx∼µ

[
1

(1 + ǫ)n
qy(x)2 + qy(x)

]

︸ ︷︷ ︸

=:LHS

= Ey∼µ

N∑

i=1

〈
Ex∼µ

[
qy(x)fi(x)

]
, gi(y)

〉

︸ ︷︷ ︸

=:RHS

. (19)

The rest of the proof is organized as follows. In Step 2, we compute the expectation on the left-hand side
exactly. In Step 3, we derive an upper bound on the expectation on the right-hand side as a function of N .
In the end, we obtain the desired lower bound on N in Step 4 by comparing these two quantities.

Step 2. The Left-hand Side of (19). We evaluate the left-hand side of (19) based on the following
observations:

Ex∼µ

[
(xT y)2

]
= Ex∼µ

[( n∑

i=1

xiyi

)2
]

=
n∑

i,j=1

yiyjEx∼µ[xixj ] =
n∑

i=1

Ex∼µ[x2i ]

= n,

Ex∼µ

[

(xT y)4
]

= Ex∼µ

[( n∑

i=1

xiyi

)4
]

=

n∑

i=1

Ex∼µ[x4i ] + 3

n∑

i=1
j 6=i

Ex∼µ[x2i ] · Ex∼µ[x2j ]

= n+ 3n(n− 1).
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Therefore, Ex∼µ[qy(x)] = Ex∼µ

[
(xT y)2 − n

]
= 0 and Ex∼µ[qy(x)2] = Ex∼µ

[
(xT y)4 − 2n(xT y)2 + n2

]
=

2n(n− 1). It follows that for any y ∈ Hn,

Ex∼µ

[
1

(1 + ǫ)n
qy(x)2 + qy(x)

]

=
2

1 + ǫ
(n− 1). (20)

This does not depend on y, and therefore, LHS in (19) = 2
1+ǫ (n− 1).

Step 3. An Upper Bound for the Right-hand Side of (19). Now, we prove an upper bound on the
right-hand side of (19), which has the form of an increasing function of N . This step is the most technical
part of the proof, and is composed of four mini-steps.

First of all, we claim that we may assume without loss of generality that the factor functions fi, gi satisfy

∥
∥Ex∼µ[fi(x)]

∥
∥
op

= 1, ∀i ∈ [N ] and
N∑

i=1

Tr
(
gi(y)

)
= 1, ∀y ∈ Hn. (21)

Next, in Step 3-B, we decompose each fi into its sharp component f ♯
i and flat component f ♭

i with a fixed
threshold Λ ≥ e whose value will be determined later in Step 4 of the proof; see (22). Then due to linearity

of expectation, we observe that RHS = 2
[
Ey

∑N
i=1 proj2f

♯
i (y)gi(y) + Ey

∑N
i=1 proj2f

♭
i (y)gi(y)

]
. Lastly, we

prove upper bounds for the two terms separately in Step 3-C and Step 3-D.
The key idea is that for all i ∈ [N ], f ♯

i is supported only on a set of small measure due to the normalization,
and ‖proj2(vT f ♭

i v)‖2 ≤ e log Λ for all v ∈ Sk−1 due to hypercontractivity (Lemma 2.6).

Step 3-A: Normalization of Factor Functions fi, gi We claim that if s(x, y) admits a (Sk
+)N -

factorization, then we may assume (21) without loss of generality. More precisely, we show it is possible to
normalize arbitrary factor functions {(f̃i, g̃i)}Ni=1 to {(fi, gi)}Ni=1 so that the conditions in (21) are satisfied.

Suppose that s(x, y), defined in (17), admits a factorization {(f̃i, g̃i)}Ni=1 such that f̃i, g̃i : Hn → S
k
+ and

s(x, y) =
∑N

i=1

〈

f̃i(x), g̃i(y)
〉

for all x, y ∈ Hn. For each i ∈ [N ], we can see that Ex[f̃i(x)] ∈ S
k
+, and

therefore, we may define Wi = Ex[f̃i(x)]1/2 to be the principal square root of Ex[f̃i(x)]. Let W †
i denote the

Moore-Penrose pseudoinverse of Wi.
Now for each i ∈ [N ], we let fi(x) = W †

i f̃i(x)W †
i and gi(y) = Wig̃i(y)Wi. It is easy to verify that

〈fi(x), gi(y)〉 = Tr
(
W †

i f̃i(x)W †
i Wig̃i(y)Wi

)
= Tr

(
f̃i(x)g̃i(y)

)
=
〈
f̃i(x), g̃i(y)

〉
for all x, y ∈ Hn. Therefore,

{(fi, gi)}Ni=1 also constitutes a valid S
k
+-factorization of s(x, y).

It remains to check if {(fi, gi)}Ni=1 satisfies (21). First, we can easily observe that

Ex∼µ[fi(x)] = W †
i Ex∼µ[f̃i(x)]W †

i = W †
i W

2
i W

†
i = ΠR(Wi)

where R(Wi) is the range of Wi and ΠR(Wi) is the projection matrix onto R(Wi). Thus,
∥
∥Ex∼µ[fi(x)]

∥
∥
op

=

‖ΠR(Wi)‖op = 1. Next, we revisit (18), fix any y ∈ Hn, and take expectation with respect to x ∼ µ. On

the left-hand side, we obtain Ex∼µ

[
1

1+ǫ

(
1
n (xT y)2 + ǫ

)]
= 1 because Ex∼µ

[
(xT y)2

]
= n (see Step 2). On the

right-hand side, we have

Ex∼µ

N∑

i=1

〈fi(x), gi(y)〉 =

N∑

i=1

〈Ex∼µ[fi(x)], gi(y)〉 =

N∑

i=1

〈
ΠR(Wi), gi(y)

〉
=

N∑

i=1

Tr gi(y)

because ΠR(Wi)gi(y) = gi(y) for all y ∈ Hn, by definition of gi. Therefore,
∑N

i=1 Tr gi(y) = 1 for all y ∈ Hn.

Step 3-B: Decomposition of fi We decompose each fi into its ‘sharp’ (spiky) component f ♯
i and the

‘flat’ component f ♭
i using a fixed threshold Λ whose value will be determined later in Step 4 of the proof. To

be specific, for each i ∈ [N ], we define the component functions f ♯
i , f

♭
i : Hn → S

k
+ as follows. Given x ∈ Hn,

let fi(x) =
∑k

a=1 λauau
T
a be the eigendecomposition of fi(x). Then we let

f ♯
i (x) =

k∑

a=1

λa1{λa>Λ}uau
T
a , and f ♭

i (x) =

k∑

a=1

λa1{λa≤Λ}uau
T
a . (22)
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Observe that fi = f ♯
i + f ♭

i and
〈
f ♯
i (x), f ♭

i (x)
〉

= Tr
(
f ♯
i (x)f ♭

i (x)
)

= 0 for all x ∈ Hn. From now on, we may

refer to f ♯
i (f ♭

i , resp.) as the sharp component (flat component, resp.) of fi.
By linearity of expectation, we can decompose the expression on the right-hand side of (19) as follows:

RHS in (19) = Ey∼µ

N∑

i=1

〈

Ex∼µ[qy(x)f ♯
i (x)], gi(y)

〉

+ Ey∼µ

N∑

i=1

〈

Ex∼µ[qy(x)f ♭
i (x)], gi(y)

〉

. (23)

Step 3-C. Upper Bound on the Contribution of Sharp Components in (23) In this paragraph,
we argue that the first term on the right hand side of (23) is bounded from above by N k

Λn
3. Our argument

is based on the following three observations.

• Let supp f ♯
i = {x ∈ Hn : f ♯

i (x) 6= 0}. Then |supp f ♯
i | < k

Λ 2n for all i ∈ [N ]. It is because

(i) Tr Ex∼µ[f ♯
i (x)] ≤ Tr Ex∼µ[fi(x)] ≤ k ‖Ex∼µ[fi(x)]‖op = k, cf. (21); (ii) Tr Ex∼µ[f ♯

i (x)] =
1
2n

∑

x∈Hn
Tr f ♯

i (x); and (iii) Tr f ♯
i (x) > Λ for all x ∈ supp f ♯

i by definition of f ♯
i .

• For each i ∈ [N ],
〈
f ♯
i (x), gi(y)

〉
≤ n for all x, y ∈ Hn. This follows from Eq. (18) because

〈

f ♯
i (x), gi(y)

〉

≤
N∑

i=1

〈fi(x), gi(y)〉 =
1

1 + ǫ

(
1

n
(xT y)2 + ǫ

)

≤ 1

1 + ǫ

(
n+ ǫ

)
≤ n.

• Lastly, |qy(x)| ≤ n(n− 1) for all x, y ∈ Hn because qy(x) = (xT y)2 − n ≤ n(n− 1) and qy(x) ≥ −n.

Combining the three observations above, we can see that for any y ∈ Hn,

N∑

i=1

〈

Ex∼µ[qy(x)f ♯
i (x)], gi(y)

〉

=

N∑

i=1

Ex∼µ

[

qy(x)
〈

f ♯
i (x), gi(y)

〉 ]

=

N∑

i=1

∑

x∈supp f♯
i

1

2n
qy(x)

〈

f ♯
i (x), gi(y)

〉

≤
N∑

i=1

∣
∣supp f ♯

i

∣
∣

2n

(

max
x,y∈Hn

∣
∣qy(x)

∣
∣

)(

max
x,y∈Hn

〈

f ♯
i (x), gi(y)

〉)

≤ k

Λ
n2(n− 1)N.

Taking expectation with respect to y ∼ µ, we obtain

Ey∼µ

N∑

i=1

〈

Ex∼µ[qy(x)f ♯
i (x)], gi(y)

〉

≤ k

Λ
n2(n− 1)N ≤ k

Λ
n3N. (24)

Step 3-D. Upper Bound on the Contribution of Flat Components in (23) Next, we prove an
upper bound for the second term on the right hand side of (23). Our proof is based on the concentration of
the degree-2 harmonic components of bounded functions and the usual ǫ-net argument.

First, we reduce the matrix-valued function f ♭
i ’s to the supremum of multiple scalar-valued functions

indexed over a finite set. Given ǫnet > 0, let N be an ǫnet-net of Sk−1 with the smallest possible cardinality.

Note that |N | ≤
(
1 + 2

ǫnet

)k
by the well-known upper bound on the ǫnet-covering number of Sk−1. Then

Ey∼µ

[
N∑

i=1

〈

Ex∼µ[qy(x)f ♭
i (x)], gi(y)

〉
]

(a)

≤ Ey∼µ

[
N∑

i=1

∥
∥
∥Ex∼µ[qy(x)f ♭

i (x)]
∥
∥
∥
op

Tr gi(y)

]

(b)

≤ Ey∼µ

[

max
i∈[N ]

∥
∥
∥Ex∼µ[qy(x)f ♭

i (x)]
∥
∥
∥
op

]

(c)

≤ 1

1 − 2ǫnet
Ey∼µ

[

max
i∈[N ]
v∈N

∣
∣
∣vTEx∼µ

[
qy(x)f ♭

i (x)
]
v
∣
∣
∣

]

=
1

1 − 2ǫnet
Ey∼µ

[

max
i∈[N ]
v∈N

∣
∣
∣Ex∼µ

[
qy(x) vT f ♭

i (x)v
]
∣
∣
∣

]

.
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In the above lines, (a) follows from Cauchy-Schwarz inequality; (b) is due to the normalization
∑N

i=1 Tr gi(y) ≡
1; and (c) is obtained by the ǫ-net argument, i.e., if N is an ǫnet-net of Sk−1, then for any M ∈ S

k
+,

‖M‖op ≤ 1
1−2ǫnet

supv∈N vTMv. Now it remains to evaluate the expectation in the last line.

Recall that Ex∼µ

[
qy(x)vT f ♭

i (x)v
]

=
〈
qy(x), vT f ♭

i (x)v
〉

µ
= 2proj2

(
vT f ♭

i v
)
(y). We observe that for

each (i, v) ∈ [N ] × N , the derived random variable proj2
(
vT f ♭

i v
)
(y) is sub-exponential with parameters

(c1‖proj2(vT f ♭
i v)‖22/2, c2‖proj2(vT f ♭

i v)‖2/
√

2), due to Lemma 2.12. Here, c1, c2 > 0 are the same absolute
constants that appear in Lemma 2.11.

Next, we find a common upper bound on ‖proj2(vT f ♭
i v)‖2 that holds for all (i, v). Note that for all (i, v),

Ey∈µ[vT f ♭
i (y)v] ≤ Ey∈µ‖f ♭

i (y)‖op ≤ Ey∈µ‖fi(y)‖op = 1 due to the normalization in (21), and 0 ≤ vT f ♭
i v ≤ Λ

by definition of f ♭
i . Thus, we can apply Lemma 2.6 to get ‖proj2(vT f ♭

i v)‖2 ≤ e log Λ for all (i, v), provided
that we will choose the threshold Λ ≥ e.

Now we can use a result on the expected maximum of N |N | sub-exponential random variables (Lemma
2.13) to obtain

Ey∼µ

[

max
i∈[N ]
v∈N

∣
∣
∣Ex∼µ

[
qy(x) vT f ♭

i (x)v
]
∣
∣
∣

]

= 2 · Ey∼µ

[

max
i∈[N ]
v∈N

∣
∣proj2

(
vT f ♭

i v
)
(y)
∣
∣

]

≤ 2 · e log Λ√
2

max

{
√

2c1 log(N |N |), 2c2 log(N |N |)
}

≤ 2e log Λ · max

{
√

c1 log(N |N |),
√

2c2 log(N |N |)
}

.

Collecting the pieces in this step, we obtain the following upper bound:

Ey∼µ

N∑

i=1

〈

Ex∈Hn [qy(x)f ♭
i (x)], gi(y)

〉

≤ 2e log Λ

1 − 2ǫnet
max

{√

c1 log

[

N
(

1 +
2

ǫnet

)k
]

,
√

2c2 log

[

N
(

1 +
2

ǫnet

)k
]}

.

(25)

Step 4. Concluding the Proof Lastly, we revisit Eq. (19) to conclude the proof. Recall that we obtained
the value of the left-hand side in Step 2, cf. (20), and derived an upper bound for the right-hand side in
Step 3, cf. (23), (24), and (25). Putting these together, we have the following inequality that holds for any
choice of parameters ǫnet, Λ such that 0 < ǫnet <

1
2 and Λ ≥ e:

2

1 + ǫ
(n− 1) ≤ k

Λ
n3N +

2e log Λ

1 − 2ǫnet
max

{√

c1 log

[

N
(

1 +
2

ǫnet

)k
]

,
√

2c2 log

[

N
(

1 +
2

ǫnet

)k
]}

. (26)

We choose ǫnet = 1/4 for simplicity because optimizing ǫnet does not make much difference. Observe that
log(9kN) ≥ 2 log 3 for all k,N ≥ 1. Thus,

√

c1 log(9kN) ≤
√

c1/2 log 3 log(9kN) for all k,N ≥ 1. Therefore,

max
{√

c1 log(9kN),
√

2c2 log(9kN)
}
≤ c log(9kN) where c = max{

√

c1/2 log 3,
√

2c2}.
Then, we select Λ that minimizes the right-hand side of (26). It is easy to see that the upper bound

is minimized (w.r.t. Λ) at Λ∗ = kn3N
4ec log(9kN)

. Noticing that Λ∗ ≤ kn3N
4ec log(9k)

(because N ≥ 1), we get the

following quadratic inequality in logN as a necessary condition for (26):

2

1 + ǫ
(n− 1) ≤ 4e · c log(9kN)

(
1 + log Λ∗)

≤ 4e · c
[

logN + 2k log 3
]
[

logN + log
( n3

8 · c log 3

)]

. (27)

Letting z = logN ≥ 0, we note that (27) is a quadratic inequality of the form (z + α)(z + β) ≥ γ where

α = 2k log 3, β = log
( n3

8 · c log 3

)

, γ =
1

2e · c
n− 1

(1 + ǫ)
.
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We want to solve this quadratic inequality with an implicit constraint z ≥ 0 because N ≥ 1. Observe that
its discriminant D = (α − β)2 + 4γ > 0, regardless of n, k, ǫ. Therefore, the set of solutions is given as
{
z ∈ R : (z + α)(z + β) ≥ γ, z ≥ 0

}
=
{
z ∈ R : z ≥

[−(α+β)+
√
D

2

]

+

}
where [x]+ = max{x, 0}.

5.3 Proof of Theorem 3

The following is a formal version of Theorem 3, which will be proved later in this section.

Theorem 5. If S is an average ǫ-approximation of BH

(
S

n
+

)
, then for all positive integer 1 ≤ k ≤ n,

log xcSk
+

(S) ≥
{(
α+

√

α2 + β3
)1/3

+
(
α−

√

α2 + β3
)1/3

}2

− 2k log 3

where

α =

√
n

22000e(1 + ǫ)
and β =

1

3

{

log

(
16(1 + ǫ)k1/2n3/2

5
√

2 log 3

)

− 2k log 3

}

.

Now we discuss how Theorem 3 can be derived from Theorem 5. For notational brevity in our derivation,

we let T+ =
(
α+

√

α2 + β3
)1/3

and T− =
(
α−

√

α2 + β3
)1/3

. Suppose that n is sufficiently large, tending
to infinity.

• When k = on
((

n
(1+ǫ)2

)1/3)
, we can see that α2 ≫ |β|3 and thus,

√

α2 + β3 ≈ α. Therefore, T+ +T− ≈
(2α)1/3, and in the end, (T+ + T−)2 − 2k log 3 ≈ (2α)2/3 ≈ C · n1/3

(1+ǫ)2/3
for some constant C.

• When k = ωn

((
n

(1+ǫ)2

)1/3)
, note that β < 0 and α2 ≪ |β|3. Let γ :=

√

α2 + β3. We observe that

γ ≈ |β|3/2i, and thus, |γ| ≈ |β|3/2 ≫ α. Then, we can see that T+ = (α + γ)1/3 ≈ γ1/3
(
1 + α

3γ

)
, and

likewise, T− ≈ γ̄1/3
(
1 + α

3γ̄

)
where γ̄ is the complex conjugate of γ. Then it follows that

T+ + T− ≈ γ1/3 + γ̄1/3 +
α

3

( 1

γ2/3
+

1

γ̄2/3
)
≈ |γ|1/3

(
ei

π
6 + e−iπ6

)
+

α

3|γ|2/3
(
e−iπ3 + ei

π
3

)

=
√

3|γ|1/3
(

1 +
α

3
√

3|γ|

)

.

Therefore, (T+ + T−)2 ≈ 3|γ|2/3
(
1 + 2α

3
√
3|γ|
)

= 3|γ|2/3 + 2√
3

α
|γ|1/3 . Lastly, noticing that |γ|2/3 ≈ |β| ≈

2
3k log 3, we can conclude that (T+ + T−)2 − 2k log 3 ≈ C · 1

1+ǫ

√
n
k for some constant C.

Proof of Theorem 5. We follow a similar strategy to that of Theorem 4 with some modifications. Here,
we assume S is ǫ-approximation of BH

(
S

n
+

)
only in the average sense, and thus, S can be arbitrarily

shaped and S ⊆ (1 + ǫ)BH

(
S

n
+

)
is not necessarily true. Instead, we define a set Q – to be precise, we let

Q = 10(1 + ǫ)
√
nG◦

S for GS to be defined in (28) – that contains S in an adaptive manner. Then we consider
the generalized slack matrix of the pair

(
BH

(
S

n
+

)
, Q
)
. We express the slack matrix in two equivalent ways:

one is obtained from the knowledge about the extreme points of BH

(
S

n
+

)
, and the other is obtained by

assuming the existence of a S
k
+-factorization having N factors. Interpreting the extreme points of BH

(
S

n
+

)

and Q◦ as formal variables, x and G, we may view the two expressions of the slack matrix as bivariate
polynomials. As already done in the proof of Theorem 4, we ‘smooth out’ the two expressions with respect
to one variable, x; and then take expectation with respect to the other variable, G. Comparing the two
resulting expressions, we derive a lower bound on the number of factors N , which implies a lower bound on
the S

k
+-extension complexity of S.

Step 1. Gaussian Surrogate for S◦ and the Associated Slack Matrix Let S
n
0 denote the set of

n×n symmetric matrices with trace zero, endowed with the trace inner product. Let N0 denote the standard
Gaussian distribution associated to S

n
0 , i.e., G0 ∼ N0 if G0 = G− TrG

n In where G has the standard Gaussian
distribution in Sn. Then we define a set

GS =
{

G ∈ S
n
0 :
∣
∣ 〈G, X〉

∣
∣ ≤ 5

√
2wG(S), ∀X ∈ S

}

. (28)
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The number 5
√

2 is chosen for the convenience of our analysis, and has no special meaning. Observe that
wG(S) ≤ (1 + ǫ) · wG

(
BH

(
S

n
+

) )
≤ (1 + ǫ)

√
2n, cf. Remark 4.

Then, we can see that

−10(1 + ǫ)
√
n ≤ 〈G, X〉 ≤ 10(1 + ǫ)

√
n, ∀(X,G) ∈ S ×GS .

This implies that 1
10(1+ǫ)

√
n
GS ⊆ S◦, or equivalently, S ⊆ 10(1 + ǫ)

√
nG◦

S .

Now we consider the slack operator associated to the pair
(
BH

(
S

n
+

)
, 10(1+ǫ)

√
nG◦

S

)
, treating 1

10(1+ǫ)
√
n
GS

as a surrogate for S◦. Specifically, we are led to study the following infinite matrix:

(x̃, G) ∈ S
n−1 ×GS 7→ 1 −

〈

x̃x̃T − 1

n
In,

1

10(1 + ǫ)
√
n
G

〉

= 1 − 1

10(1 + ǫ)
√
n
x̃TGx̃.

We consider the PSD rank (Sk
+-rank) of the submatrix restricted to x̃ ∈

{
− 1√

n
, 1√

n

}n ⊂ Sn−1, with a proper

reparametrization (x =
√
nx̃), namely,

s : (x,G) ∈ Hn ×GS 7→ 1 − 1

10(1 + ǫ)n
√
n
xTGx. (29)

Assuming that we can write the matrix (29) as a sum of N trace inner products of Sk
+ factors, we have

1 − 1

10(1 + ǫ)n
√
n
xTGx = s(x,G) =

N∑

i=1

〈fi(x), gi(G)〉 , ∀(x,G) ∈ Hn ×GS (30)

where fi : Hn → S
k
+ and gi : GS → S

k
+ are some matrix-valued functions.

Again, we ‘smooth out’ the two expressions of s(x,G) in (30) and compare them to derive a lower bound
for N . To be precise, for each fixed G ∈ GS , we let qG(x) = −xTGx. Recall that we let µ denote the
uniform probability measure on Hn, and observe that for any function f : Hn → R, the inner product,
〈f, qG(x)〉µ = Ex∼µ[f(x)qG(x)] is a centered Gaussian random variable.

Taking the inner product of both sides of (30) with qG(x), we get

Ex∼µ

[

qG(x) +
1

10(1 + ǫ)n
√
n
qG(x)2

]

=

N∑

i=1

〈Ex∼µ[qG(x) · fi(x)], gi(G)〉 .

Letting EG∼N0|GS
[ · ] denote the conditional expectation with respect to G ∼ N0 given G ∈ GS, we can see

that

1

10(1 + ǫ)n
√
n
· EG∼N0|GS

Ex∼µ

[
qG(x)2

]

︸ ︷︷ ︸

=:LHS

= EG∼N0|GS

N∑

i=1

〈Ex∼µ[qG(x) · fi(x)], gi(G)〉
︸ ︷︷ ︸

=:RHS

. (31)

The rest of the proof is organized as follows. In Step 2, we prove a lower bound for the expectation on the
left-hand side. In Step 3, we derive an upper bound on the expectation on the right-hand side as a function
of N . In the end, we obtain the desired lower bound on N in Step 4 by comparing these bounds.

Step 2. A Lower Bound for the Left-hand side of (31). We additionally define a set

G1/2 =

{

G ∈ S
n
0 : Ex∼µ

[
qG(x)2

]
≥ 1

5
n(n− 1)

}

.

The constant 1/5 is chosen for the convenience of analysis, and has no special meaning. By the law of total
probability, we can see that

EG∼N0|GS
Ex∼µ

[
qG(x)2

]
≥ EG∼N0|GS∩G1/2

Ex∼µ

[
qG(x)2

]
· Pr[G ∈ GS ∩G1/2 | G ∈ GS].

Note that EG∼N0|GS∩G1/2
Ex∼µ

[
qG(x)2

]
≥ 1

5n(n − 1) by definition of G1/2. Thus, it suffices to find a lower
bound for the conditional probability, Pr[G ∈ GS ∩G1/2 | G ∈ GS].
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It is easy to see that

Pr[G ∈ GS ∩G1/2 | G ∈ GS] =
Pr[G ∈ GS ∩G1/2]

Pr[G ∈ GS ]
≥ Pr[G ∈ GS ] − Pr[G 6∈ G1/2]

Pr[G ∈ GS ]
.

Observe that Pr[G ∈ GS] ≥ 1− exp
(
− (5

√
2−1)2

4π

)
> 0.893 by Lemma 2.10. Now it remains to show an upper

bound for Pr[G 6∈ G1/2].
We use standard concentration results for the chi-square distribution. Note that if G ∼ N0, then qG(x) =

−Tr G − 2
∑

i<j Gijxixj = −2
∑

i<j Gijxixj , and therefore, Ex∼µ

[
qG(x)2

]
= 4

∑

i<j G
2
ij . Thus, we have

EG∼N0Ex∼µ[qG(x)2] = 4
(
n
2

)
1
2 = n(n − 1). Using an exponential inequality for chi-square distribution (e.g.,

[LM00, Lemma 1]), we obtain Pr[G 6∈ G1/2] ≤ exp
(
− 2

25n(n− 1)
)
≤ 0.8522 for all n ≥ 1.

All in all, we obtain

LHS in (31) ≥ 1

10(1 + ǫ)n
√
n
· 1

5
n(n− 1) · Pr[G ∈ GS] − Pr[G 6∈ G1/2]

Pr[G ∈ GS]
≥

√
n

2200(1 + ǫ)
(32)

because 0.893−0.8522
0.893 ≥ 1/22 and n− 1 ≥ n/2 for all n ≥ 1.

Step 3. An Upper Bound for the Right-hand side of (31). Next, we prove an upper bound on the
right-hand side of (31), which is a function of N . Note that for the same reason as discussed in Step 3-A of
the proof of Theorem 4, we may assume without loss of generality that the factor functions fi, gi satisfy

‖Ex∼µ[fi(x)]‖op = 1, ∀i ∈ [N ] and

n∑

i=1

Tr
(
gi(G)

)
= 1, ∀G ∈ GS . (33)

For each i ∈ [N ], we define the component functions f ♯
i , f

♭
i : Hn → S

k
+ in the same way as in (22), using a

fixed threshold Λ whose value will be determined later in this proof, cf. Step 3-B of the proof of Theorem 4.
By linearity of expectation, we can decompose the expression on the right-hand side of (31) as

RHS in (31) = EG∼N0|GS

N∑

i=1

〈

Ex∼µ[qG(x) · f ♯
i (x)], gi(G)

〉

+ EG∼N0|GS

N∑

i=1

〈

Ex∼µ[qG(x) · f ♭
i (x)], gi(G)

〉

.

(34)
In the two sub-steps below, we prove upper bounds for the two terms on the right hand side separately.

Step 3-A. Upper Bound on the Contribution of Sharp Components in (34) Here we argue

that the first term on the right hand side of (34) is bounded from above by 16(1+ǫ)
Λ kn

√
nN . Our argument

is based on the following three observations.

• Let supp f ♯
i = {x ∈ Hn : f ♯

i (x) 6= 0}. Then |supp f ♯
i | < k

Λ 2n for all i ∈ [N ], cf. Step 3-C of the proof
of Theorem 4.

• Observe that 〈f ♯
i (x), gi(G)〉 ≤ 〈fi(x), gi(G)〉 ≤ s(x,G) ≤ 2 for all i ∈ [N ] and for all (x,G) ∈ Hn×GS.

• qG(x) = −xTGx = 8(1 + ǫ)n
√
n
(
s(x,G) − 1

)
≤ 8(1 + ǫ)n

√
n for all (x,G) ∈ Hn ×GS .

Combining these observations, we can see that for every G ∈ GS ,

N∑

i=1

〈

Ex∼µ[qG(x)f ♯
i (x)], gi(G)

〉

=

N∑

i=1

Ex∼µ

[

qG(x)
〈

f ♯
i (x), gi(G)

〉 ]

≤
N∑

i=1

∣
∣supp f ♯

i

∣
∣

2n
· 16(1 + ǫ)n

√
n

≤ 16(1 + ǫ)

Λ
kn

√
nN.

This upper bound is independent of G, and thus, we get

EG∼N0|GS

N∑

i=1

〈

Ex∼µ[qG(x) · f ♯
i (x)], gi(G)

〉

≤ 16(1 + ǫ)

Λ
kn

√
nN. (35)
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Step 3-B. Upper Bound on the Contribution of Flat Components in (34) Here we prove an
upper bound for the second term in (34). First of all, we observe that for every G ∈ GS ,

N∑

i=1

〈

Ex∼µ[qG(x) · f ♭
i (x)], gi(G)

〉

≤
N∑

i=1

∥
∥
∥Ex∼µ[qG(x) · f ♭

i (x)]
∥
∥
∥
op

Tr gi(G) ≤ max
i∈[N ]

∥
∥
∥Ex∼µ[qG(x) · f ♭

i (x)]
∥
∥
∥
op

due to Cauchy-Schwarz inequality and the normalization assumption that
∑N

i=1 Tr gi(G) = 1, ∀G ∈ GS .
Given ǫnet > 0, let N be an ǫnet-net of Sk−1 with the smallest possible cardinality. It follows from the

standard ǫ-net argument that for each i ∈ [N ],
∥
∥
∥Ex∼µ[qG(x) · f ♭

i (x)]
∥
∥
∥
op

= sup
v∈Sk−1

vTEx∼µ

[
qG(x) · f ♭

i (x)
]
v ≤ 1

1 − 2ǫnet
max
v∈N

Ex∼µ

[
qG(x) · vT f ♭

i (x)v
]
.

Next, we observe that if G ∼ N0, then for every function f : Hn → R, the derived random variable
〈f, qG(x)〉µ is a centered Gaussian random variable with variance

EG∼N0

[

〈f, qG(x)〉2µ
]

= EG∼N0

[

Ex∼µ

[
f(x) · xTGx

]2
]

= EG∼N0

[

Ex∼µ

[

f(x) ·
(

Tr G+ 2
∑

i<j

Gijxixj

)]2
]

= 4
∑

i<j

EG∼N0 [G2
ij ] · Ex∼µ[f(x)xixj ]

2 = 2
∑

i<j

〈f(x), xixj〉2µ = 2‖proj2f‖22.

Then we use Lemma 2.13 to obtain the following inequalities:

EG∼N0|GS

N∑

i=1

〈

Ex∼µ[qG(x) · f ♭
i (x)], gi(G)

〉

≤ 1

Pr[G ∈ GS ]
EG∼N0

N∑

i=1

〈

Ex∼µ[qG(x) · f ♭
i (x)], gi(G)

〉

≤ 1

Pr[G ∈ GS ]

1

1 − 2ǫnet
EG∼N0

[

max
i∈[N ]
v∈N

Ex∼µ[qG(x) vT f ♭
i (x)v]

]

≤ 1

Pr[G ∈ GS ]

2

1 − 2ǫnet

(

max
i∈[N ]
v∈N

‖proj2
(
vT f ♭

i v
)
‖2
)
√

log(N |N |).

We have seen in Step 2 that Pr[G ∈ GS ] ≥ 1 − exp
(
− (5

√
2−1)2

4π

)
≥ 4/5. Also, Lemma 2.6 ensures that

‖proj2(vT f ♭
i v)‖2 ≤ e log Λ for all (i, v), provided that we will choose the threshold Λ ≥ e. Lastly, it is well

known that |N | ≤
(
1 + 2

ǫnet

)k
. In conclusion, we obtain

EG∼N0|GS

N∑

i=1

〈

Ex∼µ[qG(x) · f ♭
i (x)], gi(G)

〉

≤ 5e log Λ

2(1 − 2ǫnet)

√

log

[

N
(

1 +
2

ǫnet

)k
]

. (36)

Step 4. Concluding the Proof Lastly, we revisit Eq. (31) to conclude the proof. Recall that we obtained
a lower bound for the left-hand side in Step 2, cf. (32), and derived an upper bound for the right-hand side
in Step 3, cf. (34), (35), and (36). Putting these together, we obtain the following inequality that holds for
any choice of parameters ǫnet, Λ such that 0 < ǫnet <

1
2 and Λ ≥ e:

1

2200(1 + ǫ)

√
n ≤ 16(1 + ǫ)

Λ
kn

√
nN +

5e log Λ

2(1 − 2ǫnet)

√

log

[

N
(

1 +
2

ǫnet

)k
]

. (37)

We choose ǫnet = 1/4 for simplicity because optimizing ǫnet does not make much difference. Next, we
find Λ that minimizes the right-hand side of (37). It is easy to see that the upper bound is minimized (w.r.t.

Λ) at Λ∗ = 16(1+ǫ)kn
√
nN

5e
√

log(9kN)
. As a result, we get the following inequality from (37) by choosing Λ = Λ∗ and

noticing N ≥ 1:

1

11000e(1 + ǫ)

√
n ≤

√

log(9kN) · log

(
16(1 + ǫ)kn

√
nN

5
√

log(9kN)

)

≤
√

log(9kN) ·
[

logN + log

(
16(1 + ǫ)kn

√
n

5
√

log(9k)

)]

. (38)
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Letting z =
√

log(9kN), we can see that (38) is a cubic inequality of the form z3 + 3βz ≥ 2α where

α =

√
n

22000e(1 + ǫ)
and β =

1

3
log

(
16(1 + ǫ)kn

√
n

5 · 9k
√

log(9k)

)

.

We want to solve the cubic inequality with an implicit constraint z > 0 because log(9kN) > 0 for all k,N ≥ 1.
Note that α > 0 for all ǫ ≥ 0, n ≥ 1. Observe that the cubic equation z3 + 3βz − 2α = 0 always has a

unique positive real root when α > 0, regardless of the value of β. Letting z∗ denote the positive real root,
we can see that {z ∈ R : z3 + 3βz ≥ 2α, z > 0} = {z ∈ R : z ≥ z∗}. Indeed, we can explicitly write z∗ as

z∗ =
(
α +

√

α2 + β3
)1/3

+
(
α −

√

α2 + β3
)1/3

, due to the general cubic formula, commonly referred to as
Cardano’s formula. See Appendix C for more details.

Consequently, we obtain the following lower bound for N by solving (27):

logN ≥
{(
α+

√

α2 + β3
)1/3

+
(
α−

√

α2 + β3
)1/3

}2

− 2k log 3

because
√

log(9kN) ≥ z∗ if and only if logN ≥ z2∗ − 2k log 3.
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A Proof of Some Lemmas from Section 2

A.1 Proof of Lemma 2.6

Proof. Let f = f0 + f1 + f2 + · · · + fn be the Fourier expansion of f . Then for 0 ≤ ρ ≤ 1,

‖proj2f‖22 = ‖f2‖22 =
1

ρ4
(
ρ2‖f2‖2

)2 ≤ 1

ρ4

n∑

k=0

ρ2k‖fk‖22 =
1

ρ4
‖Tρf‖22.

With ρ =
√
p− 1 for 1 ≤ p ≤ 2, we have ‖Tρf‖2 ≤ ‖f‖p by hypercontractivity. Then it follows that

‖proj2f‖2 ≤
1

ρ2
‖Tρf‖2 ≤

1

p− 1
‖f‖p ≤ 1

p− 1
Λp−1

because ‖f‖p = E[fp]
1
p ≤ Λ

p−1
p E[f ]

1
p ≤ Λ

p−1
p ≤ Λp−1. If Λ < e, we choose p = 2 to get ‖proj2f‖2 ≤ Λ.

Otherwise, we choose p = 1 + 1
log Λ to obtain ‖proj2f‖2 ≤ e log(Λ).

A.2 Proof of Lemma 2.8

Proof. We consider a Gaussian process (Xv)v∈Sn−1 defined over Sn−1 such that Xv = vTGv+γ with G being
standard Gaussian in S

n and γ ∼ N(0, 1) independent of G. It is easy to verify that E
[

supv∈Sn−1〈v,Gv〉
]

=

EG,γ

[
supv∈Sn−1 Xv

]
. Now we introduce an auxiliary Gaussian process (Yv)v∈Sn−1 such that Yv = gT v

with g ∼ N(0, 2In). Observe that for all u, v ∈ Sn−1, (1) EXv = EYv = 0; (2) EX2
v = EY 2

v = 2; and
(3) EXuXv − EYuYv = (1 − uT v)2 ≥ 0. Thus, we can apply Slepian’s lemma (Lemma 2.7) to obtain

EG,γ

[
supv∈Sn−1 Xv

]
≤ Eg∼N(0,2In)

[
supv∈Sn−1 Yv

]
= Eg∼N(0,2In)‖g‖2 ≤

(
Eg∼N(0,2In)‖g‖22

)1/2
=

√
2n.

A.3 Proof of Lemma 2.10

Proof. Let hK(u) := maxx∈K 〈u, x〉 = ‖u‖K◦ denote the support function of K. The function hK is L-
Lipschitz with L = supx∈K ‖x‖2, the diameter of K, because for any u, v ∈ Rd,

∣
∣hK(u) − hK(v)

∣
∣ =

∣
∣‖u‖K◦ − ‖v‖K◦

∣
∣ ≤ ‖u− v‖K◦ ≤ sup

x∈K
‖x‖2‖u− v‖2.

Moreover, we can show that supx∈K ‖x‖2 ≤
√

2πwG(K). To see this, let B(0, R) denote the Euclidean
ball centered at 0 with radius R. It follows from [Ver18, Proposition 7.5.2-(e)] that supx,y∈K ‖x − y‖2 ≤√

2πwG(K). Since 0 ∈ K, this implies K ⊆ B(0,
√

2πwG(K)). Applying Lemma 2.9 with f = hK and
τ = αwG(K) completes the proof.
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A.4 Proof of Lemma 2.12

Proof. Let A be a symmetric n× n matrix such that Aii = 0, ∀i and Aij = 1
2EY∼µ(Hn)[YiYjf(Y )] for i 6= j.

Then we observe that for all X ∈ Hn,

proj2(f)(X) =

n∑

i=1
j>i

XiXjEY ∼µ(Hn)[YiYjf(Y )] = XTAX.

Note that Xi is sub-Gaussian with sub-Gaussian parameter 1 for all i because E[eλXi ] = 1
2 (eλ + e−λ) ≤ e

λ2

2 .

To conclude the proof, we apply Lemma 2.11 and observe that ‖A‖2F =
∑n

i=1
j 6=i

(
1
2EX∼µ(Hn)[XiXjf(X)]

)2
=

1
2‖proj2f‖22 and ‖A‖op ≤ ‖A‖F .

A.5 Proof of Lemma 2.13

Proof. For any λ ∈ (0, 1/c],

E

[

max
i∈[N ]

Xi

]

=
1

λ
E

[

log exp
(

λmax
i∈[N ]

Xi

)]

≤ 1

λ
logE

[

exp
(

λmax
i∈[N ]

Xi

)]

∵ Jensen’s inequality

=
1

λ
logE

[

max
i∈[N ]

exp
(

λXi

)]

≤ 1

λ
log

( N∑

i=1

E

[

exp
(
λXi

)]
)

≤ 1

λ
log

( N∑

i=1

e
λ2v
2

)

∵ sub-exponential

=
logN

λ
+
λv

2
.

It remains to choose λ in the interval (0, 1/c] to optimize the upper bound. If
√

2 logN/v ≤ 1/c, then we

choose λ =
√

2 logN/v to get E
[

maxi∈[N ]Xi

]
≤ √

2v logN . On the other hand, if
√

2 logN/v ≤ 1/c, then

we choose λ = 1/c to get E
[

maxi∈[N ]Xi

]
≤ 2c logN since v/2c ≤

√

2 logN/v ≤ c logN .

B More on Example 3.3 (Ball, Needle, and Pancake)

Let Bd
2 := {x ∈ Rd : ‖x‖2 ≤ 1} denote the d-dimensional unit ℓ2-ball, and let B = Bd

2 . Fix 0 < δ < 1,
and let N = conv

{
Bd

2 (0, 1) ∪ {± 1
δ e1}

}
be the ‘needle’ where e1 = (1, 0, . . . , 0) ∈ Rd. Lastly, we define the

‘pancake’ P = {x ∈ B : −δ ≤ x1 ≤ δ} where x1 is the first coordinate of x ∈ Rd. Observe that N and P are
the polars of each other, and B is the polar of itself.

First of all, wG(B) = Eg‖g‖2 = κd and it is known that
√

d− 1/2 ≤ κd ≤
√

d− d/(2d+ 1), cf. the

paragraph below Definition 2.1. Next, we can see that wG(N) ≥ 1
δ

√

2/π because {± 1
δ e1} ⊆ N and thus,

wG(N) ≥ wG

(
{± 1

δ e1}
)

= 1
δEg∼N (0,1)|g| = 1

δ

√

2/π. Lastly, observe that wG(P ) ≥ κd−1 ≥
√

d− 3/2 because

{0} ×Bd−1
2 (0, 1) ⊆ P and wG(P ) ≥ wG

(
{0} ×Bd−1

2 (0, 1)
)

= wG

(
Bd−1

2 (0, 1)
)

= κd−1.
It follows that B is an ǫ-approximation of P in the average sense for ǫ = κd/κd−1 − 1 ≤ 3/(2d − 3).

Nevertheless, B is not an ǫ′-approximation of P in the dual-average sense unless ǫ′ ≥ 1
δ

√

2/π/κd − 1 ≥
2

δ
√

π(2d−1)
− 1, which can be made arbitrarily large by choosing small δ. For example, if we choose δ ≤

1/
√

π(2d− 1), then ǫ∗dual-avg(P, S) ≥ 1 whereas ǫ∗avg(P, S) ≤ 3/(2d− 3) regardless of δ.

C Solving the Cubic Inequality z3 + αz ≥ β with β > 0

Consider a cubic equation of the form z3 + αz − β = 0, which is commonly referred to as a depressed cubic.
Note that when β > 0, this cubic equation always has a positive real root. The other two roots can be either
negative real roots (when D ≤ 0), or a pair of complex conjugate roots (when D > 0), depending on the
sign of its discriminant, D = (α/3)3 + (β/2)2.
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Indeed, we can find the roots with a generic cubic formula, known as Cardano’s formula. Let i =
√
−1

denote the imaginary unit, ω = −1+
√
3i

2 be a primitive 3rd of unity, and

T+ =
3

√

β

2
+

√
(β

2

)2

+
(α

3

)3

and T− =
3

√

β

2
−
√
(β

2

)2

+
(α

3

)3

. (39)

Case 1: D > 0. When D > 0, the cubic equation z3 + αz − β = 0 with β > 0 has only one real root,
z∗ = T+ + T−, which turns out to be positive. Thus, the set of real solutions for the cubic inequality
z3 + αz ≥ β is {z ∈ R : z ≥ T+ + T−}.

Case 2: D ≤ 0. There are three real roots for the cubic equation z3 +αz−β = 0, which can be written as

z1 = T+ + T−, z2 = ωT+ + ω2T−, z3 = ω2T+ + ωT−.

One of these three real roots is positive, and the other two are negative.
Note that (39) now involves complex roots, and the choice of branches might affect the order of the

roots, z1, z2, z3, however, the choice will not change the values of the roots. To avoid any ambiguity in our
description, we choose the principal branch so that Arg ( m

√
z) ∈ (− π

m ,
π
m ] for any complex number z and any

positive integer m.

Observe that T+ = 3

√

β/2 +
√

|D|i and Arg (T+) ∈ [0, π/3). Similarly, we can see that Arg (T−) ∈
(−π/3, 0]. It follows that T+ + T− is a positive real number, and thus, the largest real root. Thus, the set
of real solutions for the cubic inequality z3 + αz ≥ β is {z ∈ R : z ≥ T+ + T−}.

33


	1 Introduction
	2 Background
	2.1 Primer on Convex Geometry
	2.2 Lifts, Extension Complexity and Slack Operator
	2.3 Fourier Analysis on the Hypercube and Hypercontractivity
	2.4 Some Useful Facts about (Sub-)Gaussians
	2.4.1 Gaussian Random Matrices and Sub-gaussian Random Variables
	2.4.2 Useful Inequalities


	3 Three Notions of Approximation
	3.1 Notions of Approximation for Sets
	3.2 Notions of Approximation for Cones

	4 k-PSD Approximations of bold0mu mumu SS2005/06/28 ver: 1.3 subfig packageSSSS+n
	4.1 Lower Bound for k-PSD Approximations of bold0mu mumu SS2005/06/28 ver: 1.3 subfig packageSSSS+n
	4.2 Example: the Sparse k-PSD Approximation of bold0mu mumu SS2005/06/28 ver: 1.3 subfig packageSSSS+n
	4.2.1 A Weak Bound Using Corollary 1
	4.2.2 A More Refined Analysis Tailored to bold0mu mumu SS2005/06/28 ver: 1.3 subfig packageSSSS+n,k


	5 Approximate Extended Formulations of bold0mu mumu SS2005/06/28 ver: 1.3 subfig packageSSSS+n
	5.1 Theorem Statements
	5.2 Proof of Theorem 2
	5.3 Proof of Theorem 3

	A Proof of Some Lemmas from Section 2
	A.1 Proof of Lemma 2.6
	A.2 Proof of Lemma 2.8
	A.3 Proof of Lemma 2.10
	A.4 Proof of Lemma 2.12
	A.5 Proof of Lemma 2.13

	B More on Example 3.3 (Ball, Needle, and Pancake)
	C Solving the Cubic Inequality z3 + z  with > 0 

